1580 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1580 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /*
 | |
|  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
 | |
|  *
 | |
|  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
 | |
|  * Copyright (C) 2006 David Brownell (convert to new framework)
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
 | |
|  * That defined the register interface now provided by all PCs, some
 | |
|  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
 | |
|  * integrate an MC146818 clone in their southbridge, and boards use
 | |
|  * that instead of discrete clones like the DS12887 or M48T86.  There
 | |
|  * are also clones that connect using the LPC bus.
 | |
|  *
 | |
|  * That register API is also used directly by various other drivers
 | |
|  * (notably for integrated NVRAM), infrastructure (x86 has code to
 | |
|  * bypass the RTC framework, directly reading the RTC during boot
 | |
|  * and updating minutes/seconds for systems using NTP synch) and
 | |
|  * utilities (like userspace 'hwclock', if no /dev node exists).
 | |
|  *
 | |
|  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
 | |
|  * interrupts disabled, holding the global rtc_lock, to exclude those
 | |
|  * other drivers and utilities on correctly configured systems.
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/log2.h>
 | |
| #include <linux/pm.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/of_platform.h>
 | |
| #ifdef CONFIG_X86
 | |
| #include <asm/i8259.h>
 | |
| #include <asm/processor.h>
 | |
| #include <linux/dmi.h>
 | |
| #endif
 | |
| 
 | |
| /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
 | |
| #include <linux/mc146818rtc.h>
 | |
| 
 | |
| #ifdef CONFIG_ACPI
 | |
| /*
 | |
|  * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
 | |
|  *
 | |
|  * If cleared, ACPI SCI is only used to wake up the system from suspend
 | |
|  *
 | |
|  * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
 | |
|  */
 | |
| 
 | |
| static bool use_acpi_alarm;
 | |
| module_param(use_acpi_alarm, bool, 0444);
 | |
| 
 | |
| static inline int cmos_use_acpi_alarm(void)
 | |
| {
 | |
| 	return use_acpi_alarm;
 | |
| }
 | |
| #else /* !CONFIG_ACPI */
 | |
| 
 | |
| static inline int cmos_use_acpi_alarm(void)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| struct cmos_rtc {
 | |
| 	struct rtc_device	*rtc;
 | |
| 	struct device		*dev;
 | |
| 	int			irq;
 | |
| 	struct resource		*iomem;
 | |
| 	time64_t		alarm_expires;
 | |
| 
 | |
| 	void			(*wake_on)(struct device *);
 | |
| 	void			(*wake_off)(struct device *);
 | |
| 
 | |
| 	u8			enabled_wake;
 | |
| 	u8			suspend_ctrl;
 | |
| 
 | |
| 	/* newer hardware extends the original register set */
 | |
| 	u8			day_alrm;
 | |
| 	u8			mon_alrm;
 | |
| 	u8			century;
 | |
| 
 | |
| 	struct rtc_wkalrm	saved_wkalrm;
 | |
| };
 | |
| 
 | |
| /* both platform and pnp busses use negative numbers for invalid irqs */
 | |
| #define is_valid_irq(n)		((n) > 0)
 | |
| 
 | |
| static const char driver_name[] = "rtc_cmos";
 | |
| 
 | |
| /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
 | |
|  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
 | |
|  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
 | |
|  */
 | |
| #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
 | |
| 
 | |
| static inline int is_intr(u8 rtc_intr)
 | |
| {
 | |
| 	if (!(rtc_intr & RTC_IRQF))
 | |
| 		return 0;
 | |
| 	return rtc_intr & RTC_IRQMASK;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
 | |
|  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
 | |
|  * used in a broken "legacy replacement" mode.  The breakage includes
 | |
|  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
 | |
|  * other (better) use.
 | |
|  *
 | |
|  * When that broken mode is in use, platform glue provides a partial
 | |
|  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
 | |
|  * want to use HPET for anything except those IRQs though...
 | |
|  */
 | |
| #ifdef CONFIG_HPET_EMULATE_RTC
 | |
| #include <asm/hpet.h>
 | |
| #else
 | |
| 
 | |
| static inline int is_hpet_enabled(void)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int hpet_set_rtc_irq_bit(unsigned long mask)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int hpet_set_periodic_freq(unsigned long freq)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int hpet_rtc_dropped_irq(void)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int hpet_rtc_timer_init(void)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| extern irq_handler_t hpet_rtc_interrupt;
 | |
| 
 | |
| static inline int hpet_register_irq_handler(irq_handler_t handler)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int hpet_unregister_irq_handler(irq_handler_t handler)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
 | |
| static inline int use_hpet_alarm(void)
 | |
| {
 | |
| 	return is_hpet_enabled() && !cmos_use_acpi_alarm();
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| #ifdef RTC_PORT
 | |
| 
 | |
| /* Most newer x86 systems have two register banks, the first used
 | |
|  * for RTC and NVRAM and the second only for NVRAM.  Caller must
 | |
|  * own rtc_lock ... and we won't worry about access during NMI.
 | |
|  */
 | |
| #define can_bank2	true
 | |
| 
 | |
| static inline unsigned char cmos_read_bank2(unsigned char addr)
 | |
| {
 | |
| 	outb(addr, RTC_PORT(2));
 | |
| 	return inb(RTC_PORT(3));
 | |
| }
 | |
| 
 | |
| static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
 | |
| {
 | |
| 	outb(addr, RTC_PORT(2));
 | |
| 	outb(val, RTC_PORT(3));
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| #define can_bank2	false
 | |
| 
 | |
| static inline unsigned char cmos_read_bank2(unsigned char addr)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| static int cmos_read_time(struct device *dev, struct rtc_time *t)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * If pm_trace abused the RTC for storage, set the timespec to 0,
 | |
| 	 * which tells the caller that this RTC value is unusable.
 | |
| 	 */
 | |
| 	if (!pm_trace_rtc_valid())
 | |
| 		return -EIO;
 | |
| 
 | |
| 	ret = mc146818_get_time(t);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err_ratelimited(dev, "unable to read current time\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cmos_set_time(struct device *dev, struct rtc_time *t)
 | |
| {
 | |
| 	/* NOTE: this ignores the issue whereby updating the seconds
 | |
| 	 * takes effect exactly 500ms after we write the register.
 | |
| 	 * (Also queueing and other delays before we get this far.)
 | |
| 	 */
 | |
| 	return mc146818_set_time(t);
 | |
| }
 | |
| 
 | |
| struct cmos_read_alarm_callback_param {
 | |
| 	struct cmos_rtc *cmos;
 | |
| 	struct rtc_time *time;
 | |
| 	unsigned char	rtc_control;
 | |
| };
 | |
| 
 | |
| static void cmos_read_alarm_callback(unsigned char __always_unused seconds,
 | |
| 				     void *param_in)
 | |
| {
 | |
| 	struct cmos_read_alarm_callback_param *p =
 | |
| 		(struct cmos_read_alarm_callback_param *)param_in;
 | |
| 	struct rtc_time *time = p->time;
 | |
| 
 | |
| 	time->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
 | |
| 	time->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
 | |
| 	time->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
 | |
| 
 | |
| 	if (p->cmos->day_alrm) {
 | |
| 		/* ignore upper bits on readback per ACPI spec */
 | |
| 		time->tm_mday = CMOS_READ(p->cmos->day_alrm) & 0x3f;
 | |
| 		if (!time->tm_mday)
 | |
| 			time->tm_mday = -1;
 | |
| 
 | |
| 		if (p->cmos->mon_alrm) {
 | |
| 			time->tm_mon = CMOS_READ(p->cmos->mon_alrm);
 | |
| 			if (!time->tm_mon)
 | |
| 				time->tm_mon = -1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	p->rtc_control = CMOS_READ(RTC_CONTROL);
 | |
| }
 | |
| 
 | |
| static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
 | |
| {
 | |
| 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 | |
| 	struct cmos_read_alarm_callback_param p = {
 | |
| 		.cmos = cmos,
 | |
| 		.time = &t->time,
 | |
| 	};
 | |
| 
 | |
| 	/* This not only a rtc_op, but also called directly */
 | |
| 	if (!is_valid_irq(cmos->irq))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	/* Basic alarms only support hour, minute, and seconds fields.
 | |
| 	 * Some also support day and month, for alarms up to a year in
 | |
| 	 * the future.
 | |
| 	 */
 | |
| 
 | |
| 	/* Some Intel chipsets disconnect the alarm registers when the clock
 | |
| 	 * update is in progress - during this time reads return bogus values
 | |
| 	 * and writes may fail silently. See for example "7th Generation Intel®
 | |
| 	 * Processor Family I/O for U/Y Platforms [...] Datasheet", section
 | |
| 	 * 27.7.1
 | |
| 	 *
 | |
| 	 * Use the mc146818_avoid_UIP() function to avoid this.
 | |
| 	 */
 | |
| 	if (!mc146818_avoid_UIP(cmos_read_alarm_callback, &p))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	if (!(p.rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
 | |
| 		if (((unsigned)t->time.tm_sec) < 0x60)
 | |
| 			t->time.tm_sec = bcd2bin(t->time.tm_sec);
 | |
| 		else
 | |
| 			t->time.tm_sec = -1;
 | |
| 		if (((unsigned)t->time.tm_min) < 0x60)
 | |
| 			t->time.tm_min = bcd2bin(t->time.tm_min);
 | |
| 		else
 | |
| 			t->time.tm_min = -1;
 | |
| 		if (((unsigned)t->time.tm_hour) < 0x24)
 | |
| 			t->time.tm_hour = bcd2bin(t->time.tm_hour);
 | |
| 		else
 | |
| 			t->time.tm_hour = -1;
 | |
| 
 | |
| 		if (cmos->day_alrm) {
 | |
| 			if (((unsigned)t->time.tm_mday) <= 0x31)
 | |
| 				t->time.tm_mday = bcd2bin(t->time.tm_mday);
 | |
| 			else
 | |
| 				t->time.tm_mday = -1;
 | |
| 
 | |
| 			if (cmos->mon_alrm) {
 | |
| 				if (((unsigned)t->time.tm_mon) <= 0x12)
 | |
| 					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
 | |
| 				else
 | |
| 					t->time.tm_mon = -1;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	t->enabled = !!(p.rtc_control & RTC_AIE);
 | |
| 	t->pending = 0;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
 | |
| {
 | |
| 	unsigned char	rtc_intr;
 | |
| 
 | |
| 	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
 | |
| 	 * allegedly some older rtcs need that to handle irqs properly
 | |
| 	 */
 | |
| 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
 | |
| 
 | |
| 	if (use_hpet_alarm())
 | |
| 		return;
 | |
| 
 | |
| 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
 | |
| 	if (is_intr(rtc_intr))
 | |
| 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
 | |
| }
 | |
| 
 | |
| static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
 | |
| {
 | |
| 	unsigned char	rtc_control;
 | |
| 
 | |
| 	/* flush any pending IRQ status, notably for update irqs,
 | |
| 	 * before we enable new IRQs
 | |
| 	 */
 | |
| 	rtc_control = CMOS_READ(RTC_CONTROL);
 | |
| 	cmos_checkintr(cmos, rtc_control);
 | |
| 
 | |
| 	rtc_control |= mask;
 | |
| 	CMOS_WRITE(rtc_control, RTC_CONTROL);
 | |
| 	if (use_hpet_alarm())
 | |
| 		hpet_set_rtc_irq_bit(mask);
 | |
| 
 | |
| 	if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
 | |
| 		if (cmos->wake_on)
 | |
| 			cmos->wake_on(cmos->dev);
 | |
| 	}
 | |
| 
 | |
| 	cmos_checkintr(cmos, rtc_control);
 | |
| }
 | |
| 
 | |
| static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
 | |
| {
 | |
| 	unsigned char	rtc_control;
 | |
| 
 | |
| 	rtc_control = CMOS_READ(RTC_CONTROL);
 | |
| 	rtc_control &= ~mask;
 | |
| 	CMOS_WRITE(rtc_control, RTC_CONTROL);
 | |
| 	if (use_hpet_alarm())
 | |
| 		hpet_mask_rtc_irq_bit(mask);
 | |
| 
 | |
| 	if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
 | |
| 		if (cmos->wake_off)
 | |
| 			cmos->wake_off(cmos->dev);
 | |
| 	}
 | |
| 
 | |
| 	cmos_checkintr(cmos, rtc_control);
 | |
| }
 | |
| 
 | |
| static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
 | |
| {
 | |
| 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
 | |
| 	struct rtc_time now;
 | |
| 
 | |
| 	cmos_read_time(dev, &now);
 | |
| 
 | |
| 	if (!cmos->day_alrm) {
 | |
| 		time64_t t_max_date;
 | |
| 		time64_t t_alrm;
 | |
| 
 | |
| 		t_max_date = rtc_tm_to_time64(&now);
 | |
| 		t_max_date += 24 * 60 * 60 - 1;
 | |
| 		t_alrm = rtc_tm_to_time64(&t->time);
 | |
| 		if (t_alrm > t_max_date) {
 | |
| 			dev_err(dev,
 | |
| 				"Alarms can be up to one day in the future\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	} else if (!cmos->mon_alrm) {
 | |
| 		struct rtc_time max_date = now;
 | |
| 		time64_t t_max_date;
 | |
| 		time64_t t_alrm;
 | |
| 		int max_mday;
 | |
| 
 | |
| 		if (max_date.tm_mon == 11) {
 | |
| 			max_date.tm_mon = 0;
 | |
| 			max_date.tm_year += 1;
 | |
| 		} else {
 | |
| 			max_date.tm_mon += 1;
 | |
| 		}
 | |
| 		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
 | |
| 		if (max_date.tm_mday > max_mday)
 | |
| 			max_date.tm_mday = max_mday;
 | |
| 
 | |
| 		t_max_date = rtc_tm_to_time64(&max_date);
 | |
| 		t_max_date -= 1;
 | |
| 		t_alrm = rtc_tm_to_time64(&t->time);
 | |
| 		if (t_alrm > t_max_date) {
 | |
| 			dev_err(dev,
 | |
| 				"Alarms can be up to one month in the future\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	} else {
 | |
| 		struct rtc_time max_date = now;
 | |
| 		time64_t t_max_date;
 | |
| 		time64_t t_alrm;
 | |
| 		int max_mday;
 | |
| 
 | |
| 		max_date.tm_year += 1;
 | |
| 		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
 | |
| 		if (max_date.tm_mday > max_mday)
 | |
| 			max_date.tm_mday = max_mday;
 | |
| 
 | |
| 		t_max_date = rtc_tm_to_time64(&max_date);
 | |
| 		t_max_date -= 1;
 | |
| 		t_alrm = rtc_tm_to_time64(&t->time);
 | |
| 		if (t_alrm > t_max_date) {
 | |
| 			dev_err(dev,
 | |
| 				"Alarms can be up to one year in the future\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct cmos_set_alarm_callback_param {
 | |
| 	struct cmos_rtc *cmos;
 | |
| 	unsigned char mon, mday, hrs, min, sec;
 | |
| 	struct rtc_wkalrm *t;
 | |
| };
 | |
| 
 | |
| /* Note: this function may be executed by mc146818_avoid_UIP() more then
 | |
|  *	 once
 | |
|  */
 | |
| static void cmos_set_alarm_callback(unsigned char __always_unused seconds,
 | |
| 				    void *param_in)
 | |
| {
 | |
| 	struct cmos_set_alarm_callback_param *p =
 | |
| 		(struct cmos_set_alarm_callback_param *)param_in;
 | |
| 
 | |
| 	/* next rtc irq must not be from previous alarm setting */
 | |
| 	cmos_irq_disable(p->cmos, RTC_AIE);
 | |
| 
 | |
| 	/* update alarm */
 | |
| 	CMOS_WRITE(p->hrs, RTC_HOURS_ALARM);
 | |
| 	CMOS_WRITE(p->min, RTC_MINUTES_ALARM);
 | |
| 	CMOS_WRITE(p->sec, RTC_SECONDS_ALARM);
 | |
| 
 | |
| 	/* the system may support an "enhanced" alarm */
 | |
| 	if (p->cmos->day_alrm) {
 | |
| 		CMOS_WRITE(p->mday, p->cmos->day_alrm);
 | |
| 		if (p->cmos->mon_alrm)
 | |
| 			CMOS_WRITE(p->mon, p->cmos->mon_alrm);
 | |
| 	}
 | |
| 
 | |
| 	if (use_hpet_alarm()) {
 | |
| 		/*
 | |
| 		 * FIXME the HPET alarm glue currently ignores day_alrm
 | |
| 		 * and mon_alrm ...
 | |
| 		 */
 | |
| 		hpet_set_alarm_time(p->t->time.tm_hour, p->t->time.tm_min,
 | |
| 				    p->t->time.tm_sec);
 | |
| 	}
 | |
| 
 | |
| 	if (p->t->enabled)
 | |
| 		cmos_irq_enable(p->cmos, RTC_AIE);
 | |
| }
 | |
| 
 | |
| static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
 | |
| {
 | |
| 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 | |
| 	struct cmos_set_alarm_callback_param p = {
 | |
| 		.cmos = cmos,
 | |
| 		.t = t
 | |
| 	};
 | |
| 	unsigned char rtc_control;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* This not only a rtc_op, but also called directly */
 | |
| 	if (!is_valid_irq(cmos->irq))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	ret = cmos_validate_alarm(dev, t);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	p.mon = t->time.tm_mon + 1;
 | |
| 	p.mday = t->time.tm_mday;
 | |
| 	p.hrs = t->time.tm_hour;
 | |
| 	p.min = t->time.tm_min;
 | |
| 	p.sec = t->time.tm_sec;
 | |
| 
 | |
| 	spin_lock_irq(&rtc_lock);
 | |
| 	rtc_control = CMOS_READ(RTC_CONTROL);
 | |
| 	spin_unlock_irq(&rtc_lock);
 | |
| 
 | |
| 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
 | |
| 		/* Writing 0xff means "don't care" or "match all".  */
 | |
| 		p.mon = (p.mon <= 12) ? bin2bcd(p.mon) : 0xff;
 | |
| 		p.mday = (p.mday >= 1 && p.mday <= 31) ? bin2bcd(p.mday) : 0xff;
 | |
| 		p.hrs = (p.hrs < 24) ? bin2bcd(p.hrs) : 0xff;
 | |
| 		p.min = (p.min < 60) ? bin2bcd(p.min) : 0xff;
 | |
| 		p.sec = (p.sec < 60) ? bin2bcd(p.sec) : 0xff;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Some Intel chipsets disconnect the alarm registers when the clock
 | |
| 	 * update is in progress - during this time writes fail silently.
 | |
| 	 *
 | |
| 	 * Use mc146818_avoid_UIP() to avoid this.
 | |
| 	 */
 | |
| 	if (!mc146818_avoid_UIP(cmos_set_alarm_callback, &p))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	cmos->alarm_expires = rtc_tm_to_time64(&t->time);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
 | |
| {
 | |
| 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 | |
| 	unsigned long	flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&rtc_lock, flags);
 | |
| 
 | |
| 	if (enabled)
 | |
| 		cmos_irq_enable(cmos, RTC_AIE);
 | |
| 	else
 | |
| 		cmos_irq_disable(cmos, RTC_AIE);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&rtc_lock, flags);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #if IS_ENABLED(CONFIG_RTC_INTF_PROC)
 | |
| 
 | |
| static int cmos_procfs(struct device *dev, struct seq_file *seq)
 | |
| {
 | |
| 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 | |
| 	unsigned char	rtc_control, valid;
 | |
| 
 | |
| 	spin_lock_irq(&rtc_lock);
 | |
| 	rtc_control = CMOS_READ(RTC_CONTROL);
 | |
| 	valid = CMOS_READ(RTC_VALID);
 | |
| 	spin_unlock_irq(&rtc_lock);
 | |
| 
 | |
| 	/* NOTE:  at least ICH6 reports battery status using a different
 | |
| 	 * (non-RTC) bit; and SQWE is ignored on many current systems.
 | |
| 	 */
 | |
| 	seq_printf(seq,
 | |
| 		   "periodic_IRQ\t: %s\n"
 | |
| 		   "update_IRQ\t: %s\n"
 | |
| 		   "HPET_emulated\t: %s\n"
 | |
| 		   // "square_wave\t: %s\n"
 | |
| 		   "BCD\t\t: %s\n"
 | |
| 		   "DST_enable\t: %s\n"
 | |
| 		   "periodic_freq\t: %d\n"
 | |
| 		   "batt_status\t: %s\n",
 | |
| 		   (rtc_control & RTC_PIE) ? "yes" : "no",
 | |
| 		   (rtc_control & RTC_UIE) ? "yes" : "no",
 | |
| 		   use_hpet_alarm() ? "yes" : "no",
 | |
| 		   // (rtc_control & RTC_SQWE) ? "yes" : "no",
 | |
| 		   (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
 | |
| 		   (rtc_control & RTC_DST_EN) ? "yes" : "no",
 | |
| 		   cmos->rtc->irq_freq,
 | |
| 		   (valid & RTC_VRT) ? "okay" : "dead");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #else
 | |
| #define	cmos_procfs	NULL
 | |
| #endif
 | |
| 
 | |
| static const struct rtc_class_ops cmos_rtc_ops = {
 | |
| 	.read_time		= cmos_read_time,
 | |
| 	.set_time		= cmos_set_time,
 | |
| 	.read_alarm		= cmos_read_alarm,
 | |
| 	.set_alarm		= cmos_set_alarm,
 | |
| 	.proc			= cmos_procfs,
 | |
| 	.alarm_irq_enable	= cmos_alarm_irq_enable,
 | |
| };
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| /*
 | |
|  * All these chips have at least 64 bytes of address space, shared by
 | |
|  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
 | |
|  * by boot firmware.  Modern chips have 128 or 256 bytes.
 | |
|  */
 | |
| 
 | |
| #define NVRAM_OFFSET	(RTC_REG_D + 1)
 | |
| 
 | |
| static int cmos_nvram_read(void *priv, unsigned int off, void *val,
 | |
| 			   size_t count)
 | |
| {
 | |
| 	unsigned char *buf = val;
 | |
| 	int	retval;
 | |
| 
 | |
| 	off += NVRAM_OFFSET;
 | |
| 	spin_lock_irq(&rtc_lock);
 | |
| 	for (retval = 0; count; count--, off++, retval++) {
 | |
| 		if (off < 128)
 | |
| 			*buf++ = CMOS_READ(off);
 | |
| 		else if (can_bank2)
 | |
| 			*buf++ = cmos_read_bank2(off);
 | |
| 		else
 | |
| 			break;
 | |
| 	}
 | |
| 	spin_unlock_irq(&rtc_lock);
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static int cmos_nvram_write(void *priv, unsigned int off, void *val,
 | |
| 			    size_t count)
 | |
| {
 | |
| 	struct cmos_rtc	*cmos = priv;
 | |
| 	unsigned char	*buf = val;
 | |
| 	int		retval;
 | |
| 
 | |
| 	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
 | |
| 	 * checksum on part of the NVRAM data.  That's currently ignored
 | |
| 	 * here.  If userspace is smart enough to know what fields of
 | |
| 	 * NVRAM to update, updating checksums is also part of its job.
 | |
| 	 */
 | |
| 	off += NVRAM_OFFSET;
 | |
| 	spin_lock_irq(&rtc_lock);
 | |
| 	for (retval = 0; count; count--, off++, retval++) {
 | |
| 		/* don't trash RTC registers */
 | |
| 		if (off == cmos->day_alrm
 | |
| 				|| off == cmos->mon_alrm
 | |
| 				|| off == cmos->century)
 | |
| 			buf++;
 | |
| 		else if (off < 128)
 | |
| 			CMOS_WRITE(*buf++, off);
 | |
| 		else if (can_bank2)
 | |
| 			cmos_write_bank2(*buf++, off);
 | |
| 		else
 | |
| 			break;
 | |
| 	}
 | |
| 	spin_unlock_irq(&rtc_lock);
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| static struct cmos_rtc	cmos_rtc;
 | |
| 
 | |
| static irqreturn_t cmos_interrupt(int irq, void *p)
 | |
| {
 | |
| 	u8		irqstat;
 | |
| 	u8		rtc_control;
 | |
| 
 | |
| 	spin_lock(&rtc_lock);
 | |
| 
 | |
| 	/* When the HPET interrupt handler calls us, the interrupt
 | |
| 	 * status is passed as arg1 instead of the irq number.  But
 | |
| 	 * always clear irq status, even when HPET is in the way.
 | |
| 	 *
 | |
| 	 * Note that HPET and RTC are almost certainly out of phase,
 | |
| 	 * giving different IRQ status ...
 | |
| 	 */
 | |
| 	irqstat = CMOS_READ(RTC_INTR_FLAGS);
 | |
| 	rtc_control = CMOS_READ(RTC_CONTROL);
 | |
| 	if (use_hpet_alarm())
 | |
| 		irqstat = (unsigned long)irq & 0xF0;
 | |
| 
 | |
| 	/* If we were suspended, RTC_CONTROL may not be accurate since the
 | |
| 	 * bios may have cleared it.
 | |
| 	 */
 | |
| 	if (!cmos_rtc.suspend_ctrl)
 | |
| 		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
 | |
| 	else
 | |
| 		irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
 | |
| 
 | |
| 	/* All Linux RTC alarms should be treated as if they were oneshot.
 | |
| 	 * Similar code may be needed in system wakeup paths, in case the
 | |
| 	 * alarm woke the system.
 | |
| 	 */
 | |
| 	if (irqstat & RTC_AIE) {
 | |
| 		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
 | |
| 		rtc_control &= ~RTC_AIE;
 | |
| 		CMOS_WRITE(rtc_control, RTC_CONTROL);
 | |
| 		if (use_hpet_alarm())
 | |
| 			hpet_mask_rtc_irq_bit(RTC_AIE);
 | |
| 		CMOS_READ(RTC_INTR_FLAGS);
 | |
| 	}
 | |
| 	spin_unlock(&rtc_lock);
 | |
| 
 | |
| 	if (is_intr(irqstat)) {
 | |
| 		rtc_update_irq(p, 1, irqstat);
 | |
| 		return IRQ_HANDLED;
 | |
| 	} else
 | |
| 		return IRQ_NONE;
 | |
| }
 | |
| 
 | |
| #ifdef	CONFIG_ACPI
 | |
| 
 | |
| #include <linux/acpi.h>
 | |
| 
 | |
| static u32 rtc_handler(void *context)
 | |
| {
 | |
| 	struct device *dev = context;
 | |
| 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
 | |
| 	unsigned char rtc_control = 0;
 | |
| 	unsigned char rtc_intr;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * Always update rtc irq when ACPI is used as RTC Alarm.
 | |
| 	 * Or else, ACPI SCI is enabled during suspend/resume only,
 | |
| 	 * update rtc irq in that case.
 | |
| 	 */
 | |
| 	if (cmos_use_acpi_alarm())
 | |
| 		cmos_interrupt(0, (void *)cmos->rtc);
 | |
| 	else {
 | |
| 		/* Fix me: can we use cmos_interrupt() here as well? */
 | |
| 		spin_lock_irqsave(&rtc_lock, flags);
 | |
| 		if (cmos_rtc.suspend_ctrl)
 | |
| 			rtc_control = CMOS_READ(RTC_CONTROL);
 | |
| 		if (rtc_control & RTC_AIE) {
 | |
| 			cmos_rtc.suspend_ctrl &= ~RTC_AIE;
 | |
| 			CMOS_WRITE(rtc_control, RTC_CONTROL);
 | |
| 			rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
 | |
| 			rtc_update_irq(cmos->rtc, 1, rtc_intr);
 | |
| 		}
 | |
| 		spin_unlock_irqrestore(&rtc_lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	pm_wakeup_hard_event(dev);
 | |
| 	acpi_clear_event(ACPI_EVENT_RTC);
 | |
| 	acpi_disable_event(ACPI_EVENT_RTC, 0);
 | |
| 	return ACPI_INTERRUPT_HANDLED;
 | |
| }
 | |
| 
 | |
| static void acpi_rtc_event_setup(struct device *dev)
 | |
| {
 | |
| 	if (acpi_disabled)
 | |
| 		return;
 | |
| 
 | |
| 	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
 | |
| 	/*
 | |
| 	 * After the RTC handler is installed, the Fixed_RTC event should
 | |
| 	 * be disabled. Only when the RTC alarm is set will it be enabled.
 | |
| 	 */
 | |
| 	acpi_clear_event(ACPI_EVENT_RTC);
 | |
| 	acpi_disable_event(ACPI_EVENT_RTC, 0);
 | |
| }
 | |
| 
 | |
| static void acpi_rtc_event_cleanup(void)
 | |
| {
 | |
| 	if (acpi_disabled)
 | |
| 		return;
 | |
| 
 | |
| 	acpi_remove_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler);
 | |
| }
 | |
| 
 | |
| static void rtc_wake_on(struct device *dev)
 | |
| {
 | |
| 	acpi_clear_event(ACPI_EVENT_RTC);
 | |
| 	acpi_enable_event(ACPI_EVENT_RTC, 0);
 | |
| }
 | |
| 
 | |
| static void rtc_wake_off(struct device *dev)
 | |
| {
 | |
| 	acpi_disable_event(ACPI_EVENT_RTC, 0);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86
 | |
| static void use_acpi_alarm_quirks(void)
 | |
| {
 | |
| 	switch (boot_cpu_data.x86_vendor) {
 | |
| 	case X86_VENDOR_INTEL:
 | |
| 		if (dmi_get_bios_year() < 2015)
 | |
| 			return;
 | |
| 		break;
 | |
| 	case X86_VENDOR_AMD:
 | |
| 	case X86_VENDOR_HYGON:
 | |
| 		if (dmi_get_bios_year() < 2021)
 | |
| 			return;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return;
 | |
| 	}
 | |
| 	if (!is_hpet_enabled())
 | |
| 		return;
 | |
| 
 | |
| 	use_acpi_alarm = true;
 | |
| }
 | |
| #else
 | |
| static inline void use_acpi_alarm_quirks(void) { }
 | |
| #endif
 | |
| 
 | |
| static void acpi_cmos_wake_setup(struct device *dev)
 | |
| {
 | |
| 	if (acpi_disabled)
 | |
| 		return;
 | |
| 
 | |
| 	use_acpi_alarm_quirks();
 | |
| 
 | |
| 	cmos_rtc.wake_on = rtc_wake_on;
 | |
| 	cmos_rtc.wake_off = rtc_wake_off;
 | |
| 
 | |
| 	/* ACPI tables bug workaround. */
 | |
| 	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
 | |
| 		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
 | |
| 			acpi_gbl_FADT.month_alarm);
 | |
| 		acpi_gbl_FADT.month_alarm = 0;
 | |
| 	}
 | |
| 
 | |
| 	cmos_rtc.day_alrm = acpi_gbl_FADT.day_alarm;
 | |
| 	cmos_rtc.mon_alrm = acpi_gbl_FADT.month_alarm;
 | |
| 	cmos_rtc.century = acpi_gbl_FADT.century;
 | |
| 
 | |
| 	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
 | |
| 		dev_info(dev, "RTC can wake from S4\n");
 | |
| 
 | |
| 	/* RTC always wakes from S1/S2/S3, and often S4/STD */
 | |
| 	device_init_wakeup(dev, 1);
 | |
| }
 | |
| 
 | |
| static void cmos_check_acpi_rtc_status(struct device *dev,
 | |
| 					      unsigned char *rtc_control)
 | |
| {
 | |
| 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
 | |
| 	acpi_event_status rtc_status;
 | |
| 	acpi_status status;
 | |
| 
 | |
| 	if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
 | |
| 		return;
 | |
| 
 | |
| 	status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
 | |
| 	if (ACPI_FAILURE(status)) {
 | |
| 		dev_err(dev, "Could not get RTC status\n");
 | |
| 	} else if (rtc_status & ACPI_EVENT_FLAG_SET) {
 | |
| 		unsigned char mask;
 | |
| 		*rtc_control &= ~RTC_AIE;
 | |
| 		CMOS_WRITE(*rtc_control, RTC_CONTROL);
 | |
| 		mask = CMOS_READ(RTC_INTR_FLAGS);
 | |
| 		rtc_update_irq(cmos->rtc, 1, mask);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #else /* !CONFIG_ACPI */
 | |
| 
 | |
| static inline void acpi_rtc_event_setup(struct device *dev)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void acpi_rtc_event_cleanup(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void acpi_cmos_wake_setup(struct device *dev)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void cmos_check_acpi_rtc_status(struct device *dev,
 | |
| 					      unsigned char *rtc_control)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_ACPI */
 | |
| 
 | |
| #ifdef	CONFIG_PNP
 | |
| #define	INITSECTION
 | |
| 
 | |
| #else
 | |
| #define	INITSECTION	__init
 | |
| #endif
 | |
| 
 | |
| static int INITSECTION
 | |
| cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
 | |
| {
 | |
| 	struct cmos_rtc_board_info	*info = dev_get_platdata(dev);
 | |
| 	int				retval = 0;
 | |
| 	unsigned char			rtc_control;
 | |
| 	unsigned			address_space;
 | |
| 	u32				flags = 0;
 | |
| 	struct nvmem_config nvmem_cfg = {
 | |
| 		.name = "cmos_nvram",
 | |
| 		.word_size = 1,
 | |
| 		.stride = 1,
 | |
| 		.reg_read = cmos_nvram_read,
 | |
| 		.reg_write = cmos_nvram_write,
 | |
| 		.priv = &cmos_rtc,
 | |
| 	};
 | |
| 
 | |
| 	/* there can be only one ... */
 | |
| 	if (cmos_rtc.dev)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	if (!ports)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
 | |
| 	 *
 | |
| 	 * REVISIT non-x86 systems may instead use memory space resources
 | |
| 	 * (needing ioremap etc), not i/o space resources like this ...
 | |
| 	 */
 | |
| 	if (RTC_IOMAPPED)
 | |
| 		ports = request_region(ports->start, resource_size(ports),
 | |
| 				       driver_name);
 | |
| 	else
 | |
| 		ports = request_mem_region(ports->start, resource_size(ports),
 | |
| 					   driver_name);
 | |
| 	if (!ports) {
 | |
| 		dev_dbg(dev, "i/o registers already in use\n");
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	cmos_rtc.irq = rtc_irq;
 | |
| 	cmos_rtc.iomem = ports;
 | |
| 
 | |
| 	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
 | |
| 	 * driver did, but don't reject unknown configs.   Old hardware
 | |
| 	 * won't address 128 bytes.  Newer chips have multiple banks,
 | |
| 	 * though they may not be listed in one I/O resource.
 | |
| 	 */
 | |
| #if	defined(CONFIG_ATARI)
 | |
| 	address_space = 64;
 | |
| #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
 | |
| 			|| defined(__sparc__) || defined(__mips__) \
 | |
| 			|| defined(__powerpc__)
 | |
| 	address_space = 128;
 | |
| #else
 | |
| #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
 | |
| 	address_space = 128;
 | |
| #endif
 | |
| 	if (can_bank2 && ports->end > (ports->start + 1))
 | |
| 		address_space = 256;
 | |
| 
 | |
| 	/* For ACPI systems extension info comes from the FADT.  On others,
 | |
| 	 * board specific setup provides it as appropriate.  Systems where
 | |
| 	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
 | |
| 	 * some almost-clones) can provide hooks to make that behave.
 | |
| 	 *
 | |
| 	 * Note that ACPI doesn't preclude putting these registers into
 | |
| 	 * "extended" areas of the chip, including some that we won't yet
 | |
| 	 * expect CMOS_READ and friends to handle.
 | |
| 	 */
 | |
| 	if (info) {
 | |
| 		if (info->flags)
 | |
| 			flags = info->flags;
 | |
| 		if (info->address_space)
 | |
| 			address_space = info->address_space;
 | |
| 
 | |
| 		cmos_rtc.day_alrm = info->rtc_day_alarm;
 | |
| 		cmos_rtc.mon_alrm = info->rtc_mon_alarm;
 | |
| 		cmos_rtc.century = info->rtc_century;
 | |
| 
 | |
| 		if (info->wake_on && info->wake_off) {
 | |
| 			cmos_rtc.wake_on = info->wake_on;
 | |
| 			cmos_rtc.wake_off = info->wake_off;
 | |
| 		}
 | |
| 	} else {
 | |
| 		acpi_cmos_wake_setup(dev);
 | |
| 	}
 | |
| 
 | |
| 	if (cmos_rtc.day_alrm >= 128)
 | |
| 		cmos_rtc.day_alrm = 0;
 | |
| 
 | |
| 	if (cmos_rtc.mon_alrm >= 128)
 | |
| 		cmos_rtc.mon_alrm = 0;
 | |
| 
 | |
| 	if (cmos_rtc.century >= 128)
 | |
| 		cmos_rtc.century = 0;
 | |
| 
 | |
| 	cmos_rtc.dev = dev;
 | |
| 	dev_set_drvdata(dev, &cmos_rtc);
 | |
| 
 | |
| 	cmos_rtc.rtc = devm_rtc_allocate_device(dev);
 | |
| 	if (IS_ERR(cmos_rtc.rtc)) {
 | |
| 		retval = PTR_ERR(cmos_rtc.rtc);
 | |
| 		goto cleanup0;
 | |
| 	}
 | |
| 
 | |
| 	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
 | |
| 
 | |
| 	if (!mc146818_does_rtc_work()) {
 | |
| 		dev_warn(dev, "broken or not accessible\n");
 | |
| 		retval = -ENXIO;
 | |
| 		goto cleanup1;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irq(&rtc_lock);
 | |
| 
 | |
| 	if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
 | |
| 		/* force periodic irq to CMOS reset default of 1024Hz;
 | |
| 		 *
 | |
| 		 * REVISIT it's been reported that at least one x86_64 ALI
 | |
| 		 * mobo doesn't use 32KHz here ... for portability we might
 | |
| 		 * need to do something about other clock frequencies.
 | |
| 		 */
 | |
| 		cmos_rtc.rtc->irq_freq = 1024;
 | |
| 		if (use_hpet_alarm())
 | |
| 			hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
 | |
| 		CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
 | |
| 	}
 | |
| 
 | |
| 	/* disable irqs */
 | |
| 	if (is_valid_irq(rtc_irq))
 | |
| 		cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
 | |
| 
 | |
| 	rtc_control = CMOS_READ(RTC_CONTROL);
 | |
| 
 | |
| 	spin_unlock_irq(&rtc_lock);
 | |
| 
 | |
| 	if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
 | |
| 		dev_warn(dev, "only 24-hr supported\n");
 | |
| 		retval = -ENXIO;
 | |
| 		goto cleanup1;
 | |
| 	}
 | |
| 
 | |
| 	if (use_hpet_alarm())
 | |
| 		hpet_rtc_timer_init();
 | |
| 
 | |
| 	if (is_valid_irq(rtc_irq)) {
 | |
| 		irq_handler_t rtc_cmos_int_handler;
 | |
| 
 | |
| 		if (use_hpet_alarm()) {
 | |
| 			rtc_cmos_int_handler = hpet_rtc_interrupt;
 | |
| 			retval = hpet_register_irq_handler(cmos_interrupt);
 | |
| 			if (retval) {
 | |
| 				hpet_mask_rtc_irq_bit(RTC_IRQMASK);
 | |
| 				dev_warn(dev, "hpet_register_irq_handler "
 | |
| 						" failed in rtc_init().");
 | |
| 				goto cleanup1;
 | |
| 			}
 | |
| 		} else
 | |
| 			rtc_cmos_int_handler = cmos_interrupt;
 | |
| 
 | |
| 		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
 | |
| 				0, dev_name(&cmos_rtc.rtc->dev),
 | |
| 				cmos_rtc.rtc);
 | |
| 		if (retval < 0) {
 | |
| 			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
 | |
| 			goto cleanup1;
 | |
| 		}
 | |
| 	} else {
 | |
| 		clear_bit(RTC_FEATURE_ALARM, cmos_rtc.rtc->features);
 | |
| 	}
 | |
| 
 | |
| 	cmos_rtc.rtc->ops = &cmos_rtc_ops;
 | |
| 
 | |
| 	retval = devm_rtc_register_device(cmos_rtc.rtc);
 | |
| 	if (retval)
 | |
| 		goto cleanup2;
 | |
| 
 | |
| 	/* Set the sync offset for the periodic 11min update correct */
 | |
| 	cmos_rtc.rtc->set_offset_nsec = NSEC_PER_SEC / 2;
 | |
| 
 | |
| 	/* export at least the first block of NVRAM */
 | |
| 	nvmem_cfg.size = address_space - NVRAM_OFFSET;
 | |
| 	devm_rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg);
 | |
| 
 | |
| 	/*
 | |
| 	 * Everything has gone well so far, so by default register a handler for
 | |
| 	 * the ACPI RTC fixed event.
 | |
| 	 */
 | |
| 	if (!info)
 | |
| 		acpi_rtc_event_setup(dev);
 | |
| 
 | |
| 	dev_info(dev, "%s%s, %d bytes nvram%s\n",
 | |
| 		 !is_valid_irq(rtc_irq) ? "no alarms" :
 | |
| 		 cmos_rtc.mon_alrm ? "alarms up to one year" :
 | |
| 		 cmos_rtc.day_alrm ? "alarms up to one month" :
 | |
| 		 "alarms up to one day",
 | |
| 		 cmos_rtc.century ? ", y3k" : "",
 | |
| 		 nvmem_cfg.size,
 | |
| 		 use_hpet_alarm() ? ", hpet irqs" : "");
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| cleanup2:
 | |
| 	if (is_valid_irq(rtc_irq))
 | |
| 		free_irq(rtc_irq, cmos_rtc.rtc);
 | |
| cleanup1:
 | |
| 	cmos_rtc.dev = NULL;
 | |
| cleanup0:
 | |
| 	if (RTC_IOMAPPED)
 | |
| 		release_region(ports->start, resource_size(ports));
 | |
| 	else
 | |
| 		release_mem_region(ports->start, resource_size(ports));
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static void cmos_do_shutdown(int rtc_irq)
 | |
| {
 | |
| 	spin_lock_irq(&rtc_lock);
 | |
| 	if (is_valid_irq(rtc_irq))
 | |
| 		cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
 | |
| 	spin_unlock_irq(&rtc_lock);
 | |
| }
 | |
| 
 | |
| static void cmos_do_remove(struct device *dev)
 | |
| {
 | |
| 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 | |
| 	struct resource *ports;
 | |
| 
 | |
| 	cmos_do_shutdown(cmos->irq);
 | |
| 
 | |
| 	if (is_valid_irq(cmos->irq)) {
 | |
| 		free_irq(cmos->irq, cmos->rtc);
 | |
| 		if (use_hpet_alarm())
 | |
| 			hpet_unregister_irq_handler(cmos_interrupt);
 | |
| 	}
 | |
| 
 | |
| 	if (!dev_get_platdata(dev))
 | |
| 		acpi_rtc_event_cleanup();
 | |
| 
 | |
| 	cmos->rtc = NULL;
 | |
| 
 | |
| 	ports = cmos->iomem;
 | |
| 	if (RTC_IOMAPPED)
 | |
| 		release_region(ports->start, resource_size(ports));
 | |
| 	else
 | |
| 		release_mem_region(ports->start, resource_size(ports));
 | |
| 	cmos->iomem = NULL;
 | |
| 
 | |
| 	cmos->dev = NULL;
 | |
| }
 | |
| 
 | |
| static int cmos_aie_poweroff(struct device *dev)
 | |
| {
 | |
| 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 | |
| 	struct rtc_time now;
 | |
| 	time64_t t_now;
 | |
| 	int retval = 0;
 | |
| 	unsigned char rtc_control;
 | |
| 
 | |
| 	if (!cmos->alarm_expires)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	spin_lock_irq(&rtc_lock);
 | |
| 	rtc_control = CMOS_READ(RTC_CONTROL);
 | |
| 	spin_unlock_irq(&rtc_lock);
 | |
| 
 | |
| 	/* We only care about the situation where AIE is disabled. */
 | |
| 	if (rtc_control & RTC_AIE)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	cmos_read_time(dev, &now);
 | |
| 	t_now = rtc_tm_to_time64(&now);
 | |
| 
 | |
| 	/*
 | |
| 	 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
 | |
| 	 * automatically right after shutdown on some buggy boxes.
 | |
| 	 * This automatic rebooting issue won't happen when the alarm
 | |
| 	 * time is larger than now+1 seconds.
 | |
| 	 *
 | |
| 	 * If the alarm time is equal to now+1 seconds, the issue can be
 | |
| 	 * prevented by cancelling the alarm.
 | |
| 	 */
 | |
| 	if (cmos->alarm_expires == t_now + 1) {
 | |
| 		struct rtc_wkalrm alarm;
 | |
| 
 | |
| 		/* Cancel the AIE timer by configuring the past time. */
 | |
| 		rtc_time64_to_tm(t_now - 1, &alarm.time);
 | |
| 		alarm.enabled = 0;
 | |
| 		retval = cmos_set_alarm(dev, &alarm);
 | |
| 	} else if (cmos->alarm_expires > t_now + 1) {
 | |
| 		retval = -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static int cmos_suspend(struct device *dev)
 | |
| {
 | |
| 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 | |
| 	unsigned char	tmp;
 | |
| 
 | |
| 	/* only the alarm might be a wakeup event source */
 | |
| 	spin_lock_irq(&rtc_lock);
 | |
| 	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
 | |
| 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
 | |
| 		unsigned char	mask;
 | |
| 
 | |
| 		if (device_may_wakeup(dev))
 | |
| 			mask = RTC_IRQMASK & ~RTC_AIE;
 | |
| 		else
 | |
| 			mask = RTC_IRQMASK;
 | |
| 		tmp &= ~mask;
 | |
| 		CMOS_WRITE(tmp, RTC_CONTROL);
 | |
| 		if (use_hpet_alarm())
 | |
| 			hpet_mask_rtc_irq_bit(mask);
 | |
| 		cmos_checkintr(cmos, tmp);
 | |
| 	}
 | |
| 	spin_unlock_irq(&rtc_lock);
 | |
| 
 | |
| 	if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
 | |
| 		cmos->enabled_wake = 1;
 | |
| 		if (cmos->wake_on)
 | |
| 			cmos->wake_on(dev);
 | |
| 		else
 | |
| 			enable_irq_wake(cmos->irq);
 | |
| 	}
 | |
| 
 | |
| 	memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm));
 | |
| 	cmos_read_alarm(dev, &cmos->saved_wkalrm);
 | |
| 
 | |
| 	dev_dbg(dev, "suspend%s, ctrl %02x\n",
 | |
| 			(tmp & RTC_AIE) ? ", alarm may wake" : "",
 | |
| 			tmp);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
 | |
|  * after a detour through G3 "mechanical off", although the ACPI spec
 | |
|  * says wakeup should only work from G1/S4 "hibernate".  To most users,
 | |
|  * distinctions between S4 and S5 are pointless.  So when the hardware
 | |
|  * allows, don't draw that distinction.
 | |
|  */
 | |
| static inline int cmos_poweroff(struct device *dev)
 | |
| {
 | |
| 	if (!IS_ENABLED(CONFIG_PM))
 | |
| 		return -ENOSYS;
 | |
| 
 | |
| 	return cmos_suspend(dev);
 | |
| }
 | |
| 
 | |
| static void cmos_check_wkalrm(struct device *dev)
 | |
| {
 | |
| 	struct cmos_rtc *cmos = dev_get_drvdata(dev);
 | |
| 	struct rtc_wkalrm current_alarm;
 | |
| 	time64_t t_now;
 | |
| 	time64_t t_current_expires;
 | |
| 	time64_t t_saved_expires;
 | |
| 	struct rtc_time now;
 | |
| 
 | |
| 	/* Check if we have RTC Alarm armed */
 | |
| 	if (!(cmos->suspend_ctrl & RTC_AIE))
 | |
| 		return;
 | |
| 
 | |
| 	cmos_read_time(dev, &now);
 | |
| 	t_now = rtc_tm_to_time64(&now);
 | |
| 
 | |
| 	/*
 | |
| 	 * ACPI RTC wake event is cleared after resume from STR,
 | |
| 	 * ACK the rtc irq here
 | |
| 	 */
 | |
| 	if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
 | |
| 		local_irq_disable();
 | |
| 		cmos_interrupt(0, (void *)cmos->rtc);
 | |
| 		local_irq_enable();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	memset(¤t_alarm, 0, sizeof(struct rtc_wkalrm));
 | |
| 	cmos_read_alarm(dev, ¤t_alarm);
 | |
| 	t_current_expires = rtc_tm_to_time64(¤t_alarm.time);
 | |
| 	t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
 | |
| 	if (t_current_expires != t_saved_expires ||
 | |
| 	    cmos->saved_wkalrm.enabled != current_alarm.enabled) {
 | |
| 		cmos_set_alarm(dev, &cmos->saved_wkalrm);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __maybe_unused cmos_resume(struct device *dev)
 | |
| {
 | |
| 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 | |
| 	unsigned char tmp;
 | |
| 
 | |
| 	if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
 | |
| 		if (cmos->wake_off)
 | |
| 			cmos->wake_off(dev);
 | |
| 		else
 | |
| 			disable_irq_wake(cmos->irq);
 | |
| 		cmos->enabled_wake = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* The BIOS might have changed the alarm, restore it */
 | |
| 	cmos_check_wkalrm(dev);
 | |
| 
 | |
| 	spin_lock_irq(&rtc_lock);
 | |
| 	tmp = cmos->suspend_ctrl;
 | |
| 	cmos->suspend_ctrl = 0;
 | |
| 	/* re-enable any irqs previously active */
 | |
| 	if (tmp & RTC_IRQMASK) {
 | |
| 		unsigned char	mask;
 | |
| 
 | |
| 		if (device_may_wakeup(dev) && use_hpet_alarm())
 | |
| 			hpet_rtc_timer_init();
 | |
| 
 | |
| 		do {
 | |
| 			CMOS_WRITE(tmp, RTC_CONTROL);
 | |
| 			if (use_hpet_alarm())
 | |
| 				hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
 | |
| 
 | |
| 			mask = CMOS_READ(RTC_INTR_FLAGS);
 | |
| 			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
 | |
| 			if (!use_hpet_alarm() || !is_intr(mask))
 | |
| 				break;
 | |
| 
 | |
| 			/* force one-shot behavior if HPET blocked
 | |
| 			 * the wake alarm's irq
 | |
| 			 */
 | |
| 			rtc_update_irq(cmos->rtc, 1, mask);
 | |
| 			tmp &= ~RTC_AIE;
 | |
| 			hpet_mask_rtc_irq_bit(RTC_AIE);
 | |
| 		} while (mask & RTC_AIE);
 | |
| 
 | |
| 		if (tmp & RTC_AIE)
 | |
| 			cmos_check_acpi_rtc_status(dev, &tmp);
 | |
| 	}
 | |
| 	spin_unlock_irq(&rtc_lock);
 | |
| 
 | |
| 	dev_dbg(dev, "resume, ctrl %02x\n", tmp);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
 | |
| 
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
 | |
|  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
 | |
|  * probably list them in similar PNPBIOS tables; so PNP is more common.
 | |
|  *
 | |
|  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
 | |
|  * predate even PNPBIOS should set up platform_bus devices.
 | |
|  */
 | |
| 
 | |
| #ifdef	CONFIG_PNP
 | |
| 
 | |
| #include <linux/pnp.h>
 | |
| 
 | |
| static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
 | |
| {
 | |
| 	int irq;
 | |
| 
 | |
| 	if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
 | |
| 		irq = 0;
 | |
| #ifdef CONFIG_X86
 | |
| 		/* Some machines contain a PNP entry for the RTC, but
 | |
| 		 * don't define the IRQ. It should always be safe to
 | |
| 		 * hardcode it on systems with a legacy PIC.
 | |
| 		 */
 | |
| 		if (nr_legacy_irqs())
 | |
| 			irq = RTC_IRQ;
 | |
| #endif
 | |
| 	} else {
 | |
| 		irq = pnp_irq(pnp, 0);
 | |
| 	}
 | |
| 
 | |
| 	return cmos_do_probe(&pnp->dev, pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
 | |
| }
 | |
| 
 | |
| static void cmos_pnp_remove(struct pnp_dev *pnp)
 | |
| {
 | |
| 	cmos_do_remove(&pnp->dev);
 | |
| }
 | |
| 
 | |
| static void cmos_pnp_shutdown(struct pnp_dev *pnp)
 | |
| {
 | |
| 	struct device *dev = &pnp->dev;
 | |
| 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 | |
| 
 | |
| 	if (system_state == SYSTEM_POWER_OFF) {
 | |
| 		int retval = cmos_poweroff(dev);
 | |
| 
 | |
| 		if (cmos_aie_poweroff(dev) < 0 && !retval)
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	cmos_do_shutdown(cmos->irq);
 | |
| }
 | |
| 
 | |
| static const struct pnp_device_id rtc_ids[] = {
 | |
| 	{ .id = "PNP0b00", },
 | |
| 	{ .id = "PNP0b01", },
 | |
| 	{ .id = "PNP0b02", },
 | |
| 	{ },
 | |
| };
 | |
| MODULE_DEVICE_TABLE(pnp, rtc_ids);
 | |
| 
 | |
| static struct pnp_driver cmos_pnp_driver = {
 | |
| 	.name		= driver_name,
 | |
| 	.id_table	= rtc_ids,
 | |
| 	.probe		= cmos_pnp_probe,
 | |
| 	.remove		= cmos_pnp_remove,
 | |
| 	.shutdown	= cmos_pnp_shutdown,
 | |
| 
 | |
| 	/* flag ensures resume() gets called, and stops syslog spam */
 | |
| 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
 | |
| 	.driver		= {
 | |
| 			.pm = &cmos_pm_ops,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| #endif	/* CONFIG_PNP */
 | |
| 
 | |
| #ifdef CONFIG_OF
 | |
| static const struct of_device_id of_cmos_match[] = {
 | |
| 	{
 | |
| 		.compatible = "motorola,mc146818",
 | |
| 	},
 | |
| 	{ },
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, of_cmos_match);
 | |
| 
 | |
| static __init void cmos_of_init(struct platform_device *pdev)
 | |
| {
 | |
| 	struct device_node *node = pdev->dev.of_node;
 | |
| 	const __be32 *val;
 | |
| 
 | |
| 	if (!node)
 | |
| 		return;
 | |
| 
 | |
| 	val = of_get_property(node, "ctrl-reg", NULL);
 | |
| 	if (val)
 | |
| 		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
 | |
| 
 | |
| 	val = of_get_property(node, "freq-reg", NULL);
 | |
| 	if (val)
 | |
| 		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
 | |
| }
 | |
| #else
 | |
| static inline void cmos_of_init(struct platform_device *pdev) {}
 | |
| #endif
 | |
| /*----------------------------------------------------------------*/
 | |
| 
 | |
| /* Platform setup should have set up an RTC device, when PNP is
 | |
|  * unavailable ... this could happen even on (older) PCs.
 | |
|  */
 | |
| 
 | |
| static int __init cmos_platform_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct resource *resource;
 | |
| 	int irq;
 | |
| 
 | |
| 	cmos_of_init(pdev);
 | |
| 
 | |
| 	if (RTC_IOMAPPED)
 | |
| 		resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
 | |
| 	else
 | |
| 		resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 | |
| 	irq = platform_get_irq(pdev, 0);
 | |
| 	if (irq < 0)
 | |
| 		irq = -1;
 | |
| 
 | |
| 	return cmos_do_probe(&pdev->dev, resource, irq);
 | |
| }
 | |
| 
 | |
| static int cmos_platform_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	cmos_do_remove(&pdev->dev);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void cmos_platform_shutdown(struct platform_device *pdev)
 | |
| {
 | |
| 	struct device *dev = &pdev->dev;
 | |
| 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 | |
| 
 | |
| 	if (system_state == SYSTEM_POWER_OFF) {
 | |
| 		int retval = cmos_poweroff(dev);
 | |
| 
 | |
| 		if (cmos_aie_poweroff(dev) < 0 && !retval)
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	cmos_do_shutdown(cmos->irq);
 | |
| }
 | |
| 
 | |
| /* work with hotplug and coldplug */
 | |
| MODULE_ALIAS("platform:rtc_cmos");
 | |
| 
 | |
| static struct platform_driver cmos_platform_driver = {
 | |
| 	.remove		= cmos_platform_remove,
 | |
| 	.shutdown	= cmos_platform_shutdown,
 | |
| 	.driver = {
 | |
| 		.name		= driver_name,
 | |
| 		.pm		= &cmos_pm_ops,
 | |
| 		.of_match_table = of_match_ptr(of_cmos_match),
 | |
| 	}
 | |
| };
 | |
| 
 | |
| #ifdef CONFIG_PNP
 | |
| static bool pnp_driver_registered;
 | |
| #endif
 | |
| static bool platform_driver_registered;
 | |
| 
 | |
| static int __init cmos_init(void)
 | |
| {
 | |
| 	int retval = 0;
 | |
| 
 | |
| #ifdef	CONFIG_PNP
 | |
| 	retval = pnp_register_driver(&cmos_pnp_driver);
 | |
| 	if (retval == 0)
 | |
| 		pnp_driver_registered = true;
 | |
| #endif
 | |
| 
 | |
| 	if (!cmos_rtc.dev) {
 | |
| 		retval = platform_driver_probe(&cmos_platform_driver,
 | |
| 					       cmos_platform_probe);
 | |
| 		if (retval == 0)
 | |
| 			platform_driver_registered = true;
 | |
| 	}
 | |
| 
 | |
| 	if (retval == 0)
 | |
| 		return 0;
 | |
| 
 | |
| #ifdef	CONFIG_PNP
 | |
| 	if (pnp_driver_registered)
 | |
| 		pnp_unregister_driver(&cmos_pnp_driver);
 | |
| #endif
 | |
| 	return retval;
 | |
| }
 | |
| module_init(cmos_init);
 | |
| 
 | |
| static void __exit cmos_exit(void)
 | |
| {
 | |
| #ifdef	CONFIG_PNP
 | |
| 	if (pnp_driver_registered)
 | |
| 		pnp_unregister_driver(&cmos_pnp_driver);
 | |
| #endif
 | |
| 	if (platform_driver_registered)
 | |
| 		platform_driver_unregister(&cmos_platform_driver);
 | |
| }
 | |
| module_exit(cmos_exit);
 | |
| 
 | |
| 
 | |
| MODULE_AUTHOR("David Brownell");
 | |
| MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
 | |
| MODULE_LICENSE("GPL");
 |