955 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			955 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| /*
 | |
|  * rtc-ab-b5ze-s3 - Driver for Abracon AB-RTCMC-32.768Khz-B5ZE-S3
 | |
|  *                  I2C RTC / Alarm chip
 | |
|  *
 | |
|  * Copyright (C) 2014, Arnaud EBALARD <arno@natisbad.org>
 | |
|  *
 | |
|  * Detailed datasheet of the chip is available here:
 | |
|  *
 | |
|  *  https://www.abracon.com/realtimeclock/AB-RTCMC-32.768kHz-B5ZE-S3-Application-Manual.pdf
 | |
|  *
 | |
|  * This work is based on ISL12057 driver (drivers/rtc/rtc-isl12057.c).
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/rtc.h>
 | |
| #include <linux/i2c.h>
 | |
| #include <linux/bcd.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/regmap.h>
 | |
| #include <linux/interrupt.h>
 | |
| 
 | |
| #define DRV_NAME "rtc-ab-b5ze-s3"
 | |
| 
 | |
| /* Control section */
 | |
| #define ABB5ZES3_REG_CTRL1	   0x00	   /* Control 1 register */
 | |
| #define ABB5ZES3_REG_CTRL1_CIE	   BIT(0)  /* Pulse interrupt enable */
 | |
| #define ABB5ZES3_REG_CTRL1_AIE	   BIT(1)  /* Alarm interrupt enable */
 | |
| #define ABB5ZES3_REG_CTRL1_SIE	   BIT(2)  /* Second interrupt enable */
 | |
| #define ABB5ZES3_REG_CTRL1_PM	   BIT(3)  /* 24h/12h mode */
 | |
| #define ABB5ZES3_REG_CTRL1_SR	   BIT(4)  /* Software reset */
 | |
| #define ABB5ZES3_REG_CTRL1_STOP	   BIT(5)  /* RTC circuit enable */
 | |
| #define ABB5ZES3_REG_CTRL1_CAP	   BIT(7)
 | |
| 
 | |
| #define ABB5ZES3_REG_CTRL2	   0x01	   /* Control 2 register */
 | |
| #define ABB5ZES3_REG_CTRL2_CTBIE   BIT(0)  /* Countdown timer B int. enable */
 | |
| #define ABB5ZES3_REG_CTRL2_CTAIE   BIT(1)  /* Countdown timer A int. enable */
 | |
| #define ABB5ZES3_REG_CTRL2_WTAIE   BIT(2)  /* Watchdog timer A int. enable */
 | |
| #define ABB5ZES3_REG_CTRL2_AF	   BIT(3)  /* Alarm interrupt status */
 | |
| #define ABB5ZES3_REG_CTRL2_SF	   BIT(4)  /* Second interrupt status */
 | |
| #define ABB5ZES3_REG_CTRL2_CTBF	   BIT(5)  /* Countdown timer B int. status */
 | |
| #define ABB5ZES3_REG_CTRL2_CTAF	   BIT(6)  /* Countdown timer A int. status */
 | |
| #define ABB5ZES3_REG_CTRL2_WTAF	   BIT(7)  /* Watchdog timer A int. status */
 | |
| 
 | |
| #define ABB5ZES3_REG_CTRL3	   0x02	   /* Control 3 register */
 | |
| #define ABB5ZES3_REG_CTRL3_PM2	   BIT(7)  /* Power Management bit 2 */
 | |
| #define ABB5ZES3_REG_CTRL3_PM1	   BIT(6)  /* Power Management bit 1 */
 | |
| #define ABB5ZES3_REG_CTRL3_PM0	   BIT(5)  /* Power Management bit 0 */
 | |
| #define ABB5ZES3_REG_CTRL3_BSF	   BIT(3)  /* Battery switchover int. status */
 | |
| #define ABB5ZES3_REG_CTRL3_BLF	   BIT(2)  /* Battery low int. status */
 | |
| #define ABB5ZES3_REG_CTRL3_BSIE	   BIT(1)  /* Battery switchover int. enable */
 | |
| #define ABB5ZES3_REG_CTRL3_BLIE	   BIT(0)  /* Battery low int. enable */
 | |
| 
 | |
| #define ABB5ZES3_CTRL_SEC_LEN	   3
 | |
| 
 | |
| /* RTC section */
 | |
| #define ABB5ZES3_REG_RTC_SC	   0x03	   /* RTC Seconds register */
 | |
| #define ABB5ZES3_REG_RTC_SC_OSC	   BIT(7)  /* Clock integrity status */
 | |
| #define ABB5ZES3_REG_RTC_MN	   0x04	   /* RTC Minutes register */
 | |
| #define ABB5ZES3_REG_RTC_HR	   0x05	   /* RTC Hours register */
 | |
| #define ABB5ZES3_REG_RTC_HR_PM	   BIT(5)  /* RTC Hours PM bit */
 | |
| #define ABB5ZES3_REG_RTC_DT	   0x06	   /* RTC Date register */
 | |
| #define ABB5ZES3_REG_RTC_DW	   0x07	   /* RTC Day of the week register */
 | |
| #define ABB5ZES3_REG_RTC_MO	   0x08	   /* RTC Month register */
 | |
| #define ABB5ZES3_REG_RTC_YR	   0x09	   /* RTC Year register */
 | |
| 
 | |
| #define ABB5ZES3_RTC_SEC_LEN	   7
 | |
| 
 | |
| /* Alarm section (enable bits are all active low) */
 | |
| #define ABB5ZES3_REG_ALRM_MN	   0x0A	   /* Alarm - minute register */
 | |
| #define ABB5ZES3_REG_ALRM_MN_AE	   BIT(7)  /* Minute enable */
 | |
| #define ABB5ZES3_REG_ALRM_HR	   0x0B	   /* Alarm - hours register */
 | |
| #define ABB5ZES3_REG_ALRM_HR_AE	   BIT(7)  /* Hour enable */
 | |
| #define ABB5ZES3_REG_ALRM_DT	   0x0C	   /* Alarm - date register */
 | |
| #define ABB5ZES3_REG_ALRM_DT_AE	   BIT(7)  /* Date (day of the month) enable */
 | |
| #define ABB5ZES3_REG_ALRM_DW	   0x0D	   /* Alarm - day of the week reg. */
 | |
| #define ABB5ZES3_REG_ALRM_DW_AE	   BIT(7)  /* Day of the week enable */
 | |
| 
 | |
| #define ABB5ZES3_ALRM_SEC_LEN	   4
 | |
| 
 | |
| /* Frequency offset section */
 | |
| #define ABB5ZES3_REG_FREQ_OF	   0x0E	   /* Frequency offset register */
 | |
| #define ABB5ZES3_REG_FREQ_OF_MODE  0x0E	   /* Offset mode: 2 hours / minute */
 | |
| 
 | |
| /* CLOCKOUT section */
 | |
| #define ABB5ZES3_REG_TIM_CLK	   0x0F	   /* Timer & Clockout register */
 | |
| #define ABB5ZES3_REG_TIM_CLK_TAM   BIT(7)  /* Permanent/pulsed timer A/int. 2 */
 | |
| #define ABB5ZES3_REG_TIM_CLK_TBM   BIT(6)  /* Permanent/pulsed timer B */
 | |
| #define ABB5ZES3_REG_TIM_CLK_COF2  BIT(5)  /* Clkout Freq bit 2 */
 | |
| #define ABB5ZES3_REG_TIM_CLK_COF1  BIT(4)  /* Clkout Freq bit 1 */
 | |
| #define ABB5ZES3_REG_TIM_CLK_COF0  BIT(3)  /* Clkout Freq bit 0 */
 | |
| #define ABB5ZES3_REG_TIM_CLK_TAC1  BIT(2)  /* Timer A: - 01 : countdown */
 | |
| #define ABB5ZES3_REG_TIM_CLK_TAC0  BIT(1)  /*	       - 10 : timer	*/
 | |
| #define ABB5ZES3_REG_TIM_CLK_TBC   BIT(0)  /* Timer B enable */
 | |
| 
 | |
| /* Timer A Section */
 | |
| #define ABB5ZES3_REG_TIMA_CLK	   0x10	   /* Timer A clock register */
 | |
| #define ABB5ZES3_REG_TIMA_CLK_TAQ2 BIT(2)  /* Freq bit 2 */
 | |
| #define ABB5ZES3_REG_TIMA_CLK_TAQ1 BIT(1)  /* Freq bit 1 */
 | |
| #define ABB5ZES3_REG_TIMA_CLK_TAQ0 BIT(0)  /* Freq bit 0 */
 | |
| #define ABB5ZES3_REG_TIMA	   0x11	   /* Timer A register */
 | |
| 
 | |
| #define ABB5ZES3_TIMA_SEC_LEN	   2
 | |
| 
 | |
| /* Timer B Section */
 | |
| #define ABB5ZES3_REG_TIMB_CLK	   0x12	   /* Timer B clock register */
 | |
| #define ABB5ZES3_REG_TIMB_CLK_TBW2 BIT(6)
 | |
| #define ABB5ZES3_REG_TIMB_CLK_TBW1 BIT(5)
 | |
| #define ABB5ZES3_REG_TIMB_CLK_TBW0 BIT(4)
 | |
| #define ABB5ZES3_REG_TIMB_CLK_TAQ2 BIT(2)
 | |
| #define ABB5ZES3_REG_TIMB_CLK_TAQ1 BIT(1)
 | |
| #define ABB5ZES3_REG_TIMB_CLK_TAQ0 BIT(0)
 | |
| #define ABB5ZES3_REG_TIMB	   0x13	   /* Timer B register */
 | |
| #define ABB5ZES3_TIMB_SEC_LEN	   2
 | |
| 
 | |
| #define ABB5ZES3_MEM_MAP_LEN	   0x14
 | |
| 
 | |
| struct abb5zes3_rtc_data {
 | |
| 	struct rtc_device *rtc;
 | |
| 	struct regmap *regmap;
 | |
| 
 | |
| 	int irq;
 | |
| 
 | |
| 	bool battery_low;
 | |
| 	bool timer_alarm; /* current alarm is via timer A */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Try and match register bits w/ fixed null values to see whether we
 | |
|  * are dealing with an ABB5ZES3.
 | |
|  */
 | |
| static int abb5zes3_i2c_validate_chip(struct regmap *regmap)
 | |
| {
 | |
| 	u8 regs[ABB5ZES3_MEM_MAP_LEN];
 | |
| 	static const u8 mask[ABB5ZES3_MEM_MAP_LEN] = { 0x00, 0x00, 0x10, 0x00,
 | |
| 						       0x80, 0xc0, 0xc0, 0xf8,
 | |
| 						       0xe0, 0x00, 0x00, 0x40,
 | |
| 						       0x40, 0x78, 0x00, 0x00,
 | |
| 						       0xf8, 0x00, 0x88, 0x00 };
 | |
| 	int ret, i;
 | |
| 
 | |
| 	ret = regmap_bulk_read(regmap, 0, regs, ABB5ZES3_MEM_MAP_LEN);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	for (i = 0; i < ABB5ZES3_MEM_MAP_LEN; ++i) {
 | |
| 		if (regs[i] & mask[i]) /* check if bits are cleared */
 | |
| 			return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Clear alarm status bit. */
 | |
| static int _abb5zes3_rtc_clear_alarm(struct device *dev)
 | |
| {
 | |
| 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
 | |
| 				 ABB5ZES3_REG_CTRL2_AF, 0);
 | |
| 	if (ret)
 | |
| 		dev_err(dev, "%s: clearing alarm failed (%d)\n", __func__, ret);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Enable or disable alarm (i.e. alarm interrupt generation) */
 | |
| static int _abb5zes3_rtc_update_alarm(struct device *dev, bool enable)
 | |
| {
 | |
| 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL1,
 | |
| 				 ABB5ZES3_REG_CTRL1_AIE,
 | |
| 				 enable ? ABB5ZES3_REG_CTRL1_AIE : 0);
 | |
| 	if (ret)
 | |
| 		dev_err(dev, "%s: writing alarm INT failed (%d)\n",
 | |
| 			__func__, ret);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Enable or disable timer (watchdog timer A interrupt generation) */
 | |
| static int _abb5zes3_rtc_update_timer(struct device *dev, bool enable)
 | |
| {
 | |
| 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_CTRL2,
 | |
| 				 ABB5ZES3_REG_CTRL2_WTAIE,
 | |
| 				 enable ? ABB5ZES3_REG_CTRL2_WTAIE : 0);
 | |
| 	if (ret)
 | |
| 		dev_err(dev, "%s: writing timer INT failed (%d)\n",
 | |
| 			__func__, ret);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note: we only read, so regmap inner lock protection is sufficient, i.e.
 | |
|  * we do not need driver's main lock protection.
 | |
|  */
 | |
| static int _abb5zes3_rtc_read_time(struct device *dev, struct rtc_time *tm)
 | |
| {
 | |
| 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 | |
| 	u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * As we need to read CTRL1 register anyway to access 24/12h
 | |
| 	 * mode bit, we do a single bulk read of both control and RTC
 | |
| 	 * sections (they are consecutive). This also ease indexing
 | |
| 	 * of register values after bulk read.
 | |
| 	 */
 | |
| 	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_CTRL1, regs,
 | |
| 			       sizeof(regs));
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "%s: reading RTC time failed (%d)\n",
 | |
| 			__func__, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* If clock integrity is not guaranteed, do not return a time value */
 | |
| 	if (regs[ABB5ZES3_REG_RTC_SC] & ABB5ZES3_REG_RTC_SC_OSC)
 | |
| 		return -ENODATA;
 | |
| 
 | |
| 	tm->tm_sec = bcd2bin(regs[ABB5ZES3_REG_RTC_SC] & 0x7F);
 | |
| 	tm->tm_min = bcd2bin(regs[ABB5ZES3_REG_RTC_MN]);
 | |
| 
 | |
| 	if (regs[ABB5ZES3_REG_CTRL1] & ABB5ZES3_REG_CTRL1_PM) { /* 12hr mode */
 | |
| 		tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR] & 0x1f);
 | |
| 		if (regs[ABB5ZES3_REG_RTC_HR] & ABB5ZES3_REG_RTC_HR_PM) /* PM */
 | |
| 			tm->tm_hour += 12;
 | |
| 	} else {						/* 24hr mode */
 | |
| 		tm->tm_hour = bcd2bin(regs[ABB5ZES3_REG_RTC_HR]);
 | |
| 	}
 | |
| 
 | |
| 	tm->tm_mday = bcd2bin(regs[ABB5ZES3_REG_RTC_DT]);
 | |
| 	tm->tm_wday = bcd2bin(regs[ABB5ZES3_REG_RTC_DW]);
 | |
| 	tm->tm_mon  = bcd2bin(regs[ABB5ZES3_REG_RTC_MO]) - 1; /* starts at 1 */
 | |
| 	tm->tm_year = bcd2bin(regs[ABB5ZES3_REG_RTC_YR]) + 100;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int abb5zes3_rtc_set_time(struct device *dev, struct rtc_time *tm)
 | |
| {
 | |
| 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 | |
| 	u8 regs[ABB5ZES3_REG_RTC_SC + ABB5ZES3_RTC_SEC_LEN];
 | |
| 	int ret;
 | |
| 
 | |
| 	regs[ABB5ZES3_REG_RTC_SC] = bin2bcd(tm->tm_sec); /* MSB=0 clears OSC */
 | |
| 	regs[ABB5ZES3_REG_RTC_MN] = bin2bcd(tm->tm_min);
 | |
| 	regs[ABB5ZES3_REG_RTC_HR] = bin2bcd(tm->tm_hour); /* 24-hour format */
 | |
| 	regs[ABB5ZES3_REG_RTC_DT] = bin2bcd(tm->tm_mday);
 | |
| 	regs[ABB5ZES3_REG_RTC_DW] = bin2bcd(tm->tm_wday);
 | |
| 	regs[ABB5ZES3_REG_RTC_MO] = bin2bcd(tm->tm_mon + 1);
 | |
| 	regs[ABB5ZES3_REG_RTC_YR] = bin2bcd(tm->tm_year - 100);
 | |
| 
 | |
| 	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_RTC_SC,
 | |
| 				regs + ABB5ZES3_REG_RTC_SC,
 | |
| 				ABB5ZES3_RTC_SEC_LEN);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set provided TAQ and Timer A registers (TIMA_CLK and TIMA) based on
 | |
|  * given number of seconds.
 | |
|  */
 | |
| static inline void sec_to_timer_a(u8 secs, u8 *taq, u8 *timer_a)
 | |
| {
 | |
| 	*taq = ABB5ZES3_REG_TIMA_CLK_TAQ1; /* 1Hz */
 | |
| 	*timer_a = secs;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return current number of seconds in Timer A. As we only use
 | |
|  * timer A with a 1Hz freq, this is what we expect to have.
 | |
|  */
 | |
| static inline int sec_from_timer_a(u8 *secs, u8 taq, u8 timer_a)
 | |
| {
 | |
| 	if (taq != ABB5ZES3_REG_TIMA_CLK_TAQ1) /* 1Hz */
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	*secs = timer_a;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read alarm currently configured via a watchdog timer using timer A. This
 | |
|  * is done by reading current RTC time and adding remaining timer time.
 | |
|  */
 | |
| static int _abb5zes3_rtc_read_timer(struct device *dev,
 | |
| 				    struct rtc_wkalrm *alarm)
 | |
| {
 | |
| 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 | |
| 	struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
 | |
| 	u8 regs[ABB5ZES3_TIMA_SEC_LEN + 1];
 | |
| 	unsigned long rtc_secs;
 | |
| 	unsigned int reg;
 | |
| 	u8 timer_secs;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Instead of doing two separate calls, because they are consecutive,
 | |
| 	 * we grab both clockout register and Timer A section. The latter is
 | |
| 	 * used to decide if timer A is enabled (as a watchdog timer).
 | |
| 	 */
 | |
| 	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_TIM_CLK, regs,
 | |
| 			       ABB5ZES3_TIMA_SEC_LEN + 1);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "%s: reading Timer A section failed (%d)\n",
 | |
| 			__func__, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* get current time ... */
 | |
| 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* ... convert to seconds ... */
 | |
| 	rtc_secs = rtc_tm_to_time64(&rtc_tm);
 | |
| 
 | |
| 	/* ... add remaining timer A time ... */
 | |
| 	ret = sec_from_timer_a(&timer_secs, regs[1], regs[2]);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* ... and convert back. */
 | |
| 	rtc_time64_to_tm(rtc_secs + timer_secs, alarm_tm);
 | |
| 
 | |
| 	ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL2, ®);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
 | |
| 			__func__, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL2_WTAIE);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Read alarm currently configured via a RTC alarm registers. */
 | |
| static int _abb5zes3_rtc_read_alarm(struct device *dev,
 | |
| 				    struct rtc_wkalrm *alarm)
 | |
| {
 | |
| 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 | |
| 	struct rtc_time rtc_tm, *alarm_tm = &alarm->time;
 | |
| 	unsigned long rtc_secs, alarm_secs;
 | |
| 	u8 regs[ABB5ZES3_ALRM_SEC_LEN];
 | |
| 	unsigned int reg;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = regmap_bulk_read(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
 | |
| 			       ABB5ZES3_ALRM_SEC_LEN);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "%s: reading alarm section failed (%d)\n",
 | |
| 			__func__, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	alarm_tm->tm_sec  = 0;
 | |
| 	alarm_tm->tm_min  = bcd2bin(regs[0] & 0x7f);
 | |
| 	alarm_tm->tm_hour = bcd2bin(regs[1] & 0x3f);
 | |
| 	alarm_tm->tm_mday = bcd2bin(regs[2] & 0x3f);
 | |
| 	alarm_tm->tm_wday = -1;
 | |
| 
 | |
| 	/*
 | |
| 	 * The alarm section does not store year/month. We use the ones in rtc
 | |
| 	 * section as a basis and increment month and then year if needed to get
 | |
| 	 * alarm after current time.
 | |
| 	 */
 | |
| 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	alarm_tm->tm_year = rtc_tm.tm_year;
 | |
| 	alarm_tm->tm_mon = rtc_tm.tm_mon;
 | |
| 
 | |
| 	rtc_secs = rtc_tm_to_time64(&rtc_tm);
 | |
| 	alarm_secs = rtc_tm_to_time64(alarm_tm);
 | |
| 
 | |
| 	if (alarm_secs < rtc_secs) {
 | |
| 		if (alarm_tm->tm_mon == 11) {
 | |
| 			alarm_tm->tm_mon = 0;
 | |
| 			alarm_tm->tm_year += 1;
 | |
| 		} else {
 | |
| 			alarm_tm->tm_mon += 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ret = regmap_read(data->regmap, ABB5ZES3_REG_CTRL1, ®);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "%s: reading ctrl reg failed (%d)\n",
 | |
| 			__func__, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	alarm->enabled = !!(reg & ABB5ZES3_REG_CTRL1_AIE);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * As the Alarm mechanism supported by the chip is only accurate to the
 | |
|  * minute, we use the watchdog timer mechanism provided by timer A
 | |
|  * (up to 256 seconds w/ a second accuracy) for low alarm values (below
 | |
|  * 4 minutes). Otherwise, we use the common alarm mechanism provided
 | |
|  * by the chip. In order for that to work, we keep track of currently
 | |
|  * configured timer type via 'timer_alarm' flag in our private data
 | |
|  * structure.
 | |
|  */
 | |
| static int abb5zes3_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
 | |
| {
 | |
| 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (data->timer_alarm)
 | |
| 		ret = _abb5zes3_rtc_read_timer(dev, alarm);
 | |
| 	else
 | |
| 		ret = _abb5zes3_rtc_read_alarm(dev, alarm);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set alarm using chip alarm mechanism. It is only accurate to the
 | |
|  * minute (not the second). The function expects alarm interrupt to
 | |
|  * be disabled.
 | |
|  */
 | |
| static int _abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
 | |
| {
 | |
| 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 | |
| 	struct rtc_time *alarm_tm = &alarm->time;
 | |
| 	u8 regs[ABB5ZES3_ALRM_SEC_LEN];
 | |
| 	struct rtc_time rtc_tm;
 | |
| 	int ret, enable = 1;
 | |
| 
 | |
| 	if (!alarm->enabled) {
 | |
| 		enable = 0;
 | |
| 	} else {
 | |
| 		unsigned long rtc_secs, alarm_secs;
 | |
| 
 | |
| 		/*
 | |
| 		 * Chip only support alarms up to one month in the future. Let's
 | |
| 		 * return an error if we get something after that limit.
 | |
| 		 * Comparison is done by incrementing rtc_tm month field by one
 | |
| 		 * and checking alarm value is still below.
 | |
| 		 */
 | |
| 		ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		if (rtc_tm.tm_mon == 11) { /* handle year wrapping */
 | |
| 			rtc_tm.tm_mon = 0;
 | |
| 			rtc_tm.tm_year += 1;
 | |
| 		} else {
 | |
| 			rtc_tm.tm_mon += 1;
 | |
| 		}
 | |
| 
 | |
| 		rtc_secs = rtc_tm_to_time64(&rtc_tm);
 | |
| 		alarm_secs = rtc_tm_to_time64(alarm_tm);
 | |
| 
 | |
| 		if (alarm_secs > rtc_secs) {
 | |
| 			dev_err(dev, "%s: alarm maximum is one month in the future (%d)\n",
 | |
| 				__func__, ret);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Program all alarm registers but DW one. For each register, setting
 | |
| 	 * MSB to 0 enables associated alarm.
 | |
| 	 */
 | |
| 	regs[0] = bin2bcd(alarm_tm->tm_min) & 0x7f;
 | |
| 	regs[1] = bin2bcd(alarm_tm->tm_hour) & 0x3f;
 | |
| 	regs[2] = bin2bcd(alarm_tm->tm_mday) & 0x3f;
 | |
| 	regs[3] = ABB5ZES3_REG_ALRM_DW_AE; /* do not match day of the week */
 | |
| 
 | |
| 	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_ALRM_MN, regs,
 | |
| 				ABB5ZES3_ALRM_SEC_LEN);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(dev, "%s: writing ALARM section failed (%d)\n",
 | |
| 			__func__, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* Record currently configured alarm is not a timer */
 | |
| 	data->timer_alarm = 0;
 | |
| 
 | |
| 	/* Enable or disable alarm interrupt generation */
 | |
| 	return _abb5zes3_rtc_update_alarm(dev, enable);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set alarm using timer watchdog (via timer A) mechanism. The function expects
 | |
|  * timer A interrupt to be disabled.
 | |
|  */
 | |
| static int _abb5zes3_rtc_set_timer(struct device *dev, struct rtc_wkalrm *alarm,
 | |
| 				   u8 secs)
 | |
| {
 | |
| 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 | |
| 	u8 regs[ABB5ZES3_TIMA_SEC_LEN];
 | |
| 	u8 mask = ABB5ZES3_REG_TIM_CLK_TAC0 | ABB5ZES3_REG_TIM_CLK_TAC1;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/* Program given number of seconds to Timer A registers */
 | |
| 	sec_to_timer_a(secs, ®s[0], ®s[1]);
 | |
| 	ret = regmap_bulk_write(data->regmap, ABB5ZES3_REG_TIMA_CLK, regs,
 | |
| 				ABB5ZES3_TIMA_SEC_LEN);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(dev, "%s: writing timer section failed\n", __func__);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* Configure Timer A as a watchdog timer */
 | |
| 	ret = regmap_update_bits(data->regmap, ABB5ZES3_REG_TIM_CLK,
 | |
| 				 mask, ABB5ZES3_REG_TIM_CLK_TAC1);
 | |
| 	if (ret)
 | |
| 		dev_err(dev, "%s: failed to update timer\n", __func__);
 | |
| 
 | |
| 	/* Record currently configured alarm is a timer */
 | |
| 	data->timer_alarm = 1;
 | |
| 
 | |
| 	/* Enable or disable timer interrupt generation */
 | |
| 	return _abb5zes3_rtc_update_timer(dev, alarm->enabled);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The chip has an alarm which is only accurate to the minute. In order to
 | |
|  * handle alarms below that limit, we use the watchdog timer function of
 | |
|  * timer A. More precisely, the timer method is used for alarms below 240
 | |
|  * seconds.
 | |
|  */
 | |
| static int abb5zes3_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
 | |
| {
 | |
| 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 | |
| 	struct rtc_time *alarm_tm = &alarm->time;
 | |
| 	unsigned long rtc_secs, alarm_secs;
 | |
| 	struct rtc_time rtc_tm;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = _abb5zes3_rtc_read_time(dev, &rtc_tm);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	rtc_secs = rtc_tm_to_time64(&rtc_tm);
 | |
| 	alarm_secs = rtc_tm_to_time64(alarm_tm);
 | |
| 
 | |
| 	/* Let's first disable both the alarm and the timer interrupts */
 | |
| 	ret = _abb5zes3_rtc_update_alarm(dev, false);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(dev, "%s: unable to disable alarm (%d)\n", __func__,
 | |
| 			ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	ret = _abb5zes3_rtc_update_timer(dev, false);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(dev, "%s: unable to disable timer (%d)\n", __func__,
 | |
| 			ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	data->timer_alarm = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Let's now configure the alarm; if we are expected to ring in
 | |
| 	 * more than 240s, then we setup an alarm. Otherwise, a timer.
 | |
| 	 */
 | |
| 	if ((alarm_secs > rtc_secs) && ((alarm_secs - rtc_secs) <= 240))
 | |
| 		ret = _abb5zes3_rtc_set_timer(dev, alarm,
 | |
| 					      alarm_secs - rtc_secs);
 | |
| 	else
 | |
| 		ret = _abb5zes3_rtc_set_alarm(dev, alarm);
 | |
| 
 | |
| 	if (ret)
 | |
| 		dev_err(dev, "%s: unable to configure alarm (%d)\n", __func__,
 | |
| 			ret);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Enable or disable battery low irq generation */
 | |
| static inline int _abb5zes3_rtc_battery_low_irq_enable(struct regmap *regmap,
 | |
| 						       bool enable)
 | |
| {
 | |
| 	return regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3,
 | |
| 				  ABB5ZES3_REG_CTRL3_BLIE,
 | |
| 				  enable ? ABB5ZES3_REG_CTRL3_BLIE : 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check current RTC status and enable/disable what needs to be. Return 0 if
 | |
|  * everything went ok and a negative value upon error.
 | |
|  */
 | |
| static int abb5zes3_rtc_check_setup(struct device *dev)
 | |
| {
 | |
| 	struct abb5zes3_rtc_data *data = dev_get_drvdata(dev);
 | |
| 	struct regmap *regmap = data->regmap;
 | |
| 	unsigned int reg;
 | |
| 	int ret;
 | |
| 	u8 mask;
 | |
| 
 | |
| 	/*
 | |
| 	 * By default, the devices generates a 32.768KHz signal on IRQ#1 pin. It
 | |
| 	 * is disabled here to prevent polluting the interrupt line and
 | |
| 	 * uselessly triggering the IRQ handler we install for alarm and battery
 | |
| 	 * low events. Note: this is done before clearing int. status below
 | |
| 	 * in this function.
 | |
| 	 * We also disable all timers and set timer interrupt to permanent (not
 | |
| 	 * pulsed).
 | |
| 	 */
 | |
| 	mask = (ABB5ZES3_REG_TIM_CLK_TBC | ABB5ZES3_REG_TIM_CLK_TAC0 |
 | |
| 		ABB5ZES3_REG_TIM_CLK_TAC1 | ABB5ZES3_REG_TIM_CLK_COF0 |
 | |
| 		ABB5ZES3_REG_TIM_CLK_COF1 | ABB5ZES3_REG_TIM_CLK_COF2 |
 | |
| 		ABB5ZES3_REG_TIM_CLK_TBM | ABB5ZES3_REG_TIM_CLK_TAM);
 | |
| 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_TIM_CLK, mask,
 | |
| 				 ABB5ZES3_REG_TIM_CLK_COF0 |
 | |
| 				 ABB5ZES3_REG_TIM_CLK_COF1 |
 | |
| 				 ABB5ZES3_REG_TIM_CLK_COF2);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(dev, "%s: unable to initialize clkout register (%d)\n",
 | |
| 			__func__, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Each component of the alarm (MN, HR, DT, DW) can be enabled/disabled
 | |
| 	 * individually by clearing/setting MSB of each associated register. So,
 | |
| 	 * we set all alarm enable bits to disable current alarm setting.
 | |
| 	 */
 | |
| 	mask = (ABB5ZES3_REG_ALRM_MN_AE | ABB5ZES3_REG_ALRM_HR_AE |
 | |
| 		ABB5ZES3_REG_ALRM_DT_AE | ABB5ZES3_REG_ALRM_DW_AE);
 | |
| 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, mask);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(dev, "%s: unable to disable alarm setting (%d)\n",
 | |
| 			__func__, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* Set Control 1 register (RTC enabled, 24hr mode, all int. disabled) */
 | |
| 	mask = (ABB5ZES3_REG_CTRL1_CIE | ABB5ZES3_REG_CTRL1_AIE |
 | |
| 		ABB5ZES3_REG_CTRL1_SIE | ABB5ZES3_REG_CTRL1_PM |
 | |
| 		ABB5ZES3_REG_CTRL1_CAP | ABB5ZES3_REG_CTRL1_STOP);
 | |
| 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL1, mask, 0);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(dev, "%s: unable to initialize CTRL1 register (%d)\n",
 | |
| 			__func__, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Set Control 2 register (timer int. disabled, alarm status cleared).
 | |
| 	 * WTAF is read-only and cleared automatically by reading the register.
 | |
| 	 */
 | |
| 	mask = (ABB5ZES3_REG_CTRL2_CTBIE | ABB5ZES3_REG_CTRL2_CTAIE |
 | |
| 		ABB5ZES3_REG_CTRL2_WTAIE | ABB5ZES3_REG_CTRL2_AF |
 | |
| 		ABB5ZES3_REG_CTRL2_SF | ABB5ZES3_REG_CTRL2_CTBF |
 | |
| 		ABB5ZES3_REG_CTRL2_CTAF);
 | |
| 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL2, mask, 0);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(dev, "%s: unable to initialize CTRL2 register (%d)\n",
 | |
| 			__func__, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable battery low detection function and battery switchover function
 | |
| 	 * (standard mode). Disable associated interrupts. Clear battery
 | |
| 	 * switchover flag but not battery low flag. The latter is checked
 | |
| 	 * later below.
 | |
| 	 */
 | |
| 	mask = (ABB5ZES3_REG_CTRL3_PM0  | ABB5ZES3_REG_CTRL3_PM1 |
 | |
| 		ABB5ZES3_REG_CTRL3_PM2  | ABB5ZES3_REG_CTRL3_BLIE |
 | |
| 		ABB5ZES3_REG_CTRL3_BSIE | ABB5ZES3_REG_CTRL3_BSF);
 | |
| 	ret = regmap_update_bits(regmap, ABB5ZES3_REG_CTRL3, mask, 0);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(dev, "%s: unable to initialize CTRL3 register (%d)\n",
 | |
| 			__func__, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* Check oscillator integrity flag */
 | |
| 	ret = regmap_read(regmap, ABB5ZES3_REG_RTC_SC, ®);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(dev, "%s: unable to read osc. integrity flag (%d)\n",
 | |
| 			__func__, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (reg & ABB5ZES3_REG_RTC_SC_OSC) {
 | |
| 		dev_err(dev, "clock integrity not guaranteed. Osc. has stopped or has been interrupted.\n");
 | |
| 		dev_err(dev, "change battery (if not already done) and then set time to reset osc. failure flag.\n");
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check battery low flag at startup: this allows reporting battery
 | |
| 	 * is low at startup when IRQ line is not connected. Note: we record
 | |
| 	 * current status to avoid reenabling this interrupt later in probe
 | |
| 	 * function if battery is low.
 | |
| 	 */
 | |
| 	ret = regmap_read(regmap, ABB5ZES3_REG_CTRL3, ®);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(dev, "%s: unable to read battery low flag (%d)\n",
 | |
| 			__func__, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	data->battery_low = reg & ABB5ZES3_REG_CTRL3_BLF;
 | |
| 	if (data->battery_low) {
 | |
| 		dev_err(dev, "RTC battery is low; please, consider changing it!\n");
 | |
| 
 | |
| 		ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, false);
 | |
| 		if (ret)
 | |
| 			dev_err(dev, "%s: disabling battery low interrupt generation failed (%d)\n",
 | |
| 				__func__, ret);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int abb5zes3_rtc_alarm_irq_enable(struct device *dev,
 | |
| 					 unsigned int enable)
 | |
| {
 | |
| 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (rtc_data->irq) {
 | |
| 		if (rtc_data->timer_alarm)
 | |
| 			ret = _abb5zes3_rtc_update_timer(dev, enable);
 | |
| 		else
 | |
| 			ret = _abb5zes3_rtc_update_alarm(dev, enable);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static irqreturn_t _abb5zes3_rtc_interrupt(int irq, void *data)
 | |
| {
 | |
| 	struct i2c_client *client = data;
 | |
| 	struct device *dev = &client->dev;
 | |
| 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
 | |
| 	struct rtc_device *rtc = rtc_data->rtc;
 | |
| 	u8 regs[ABB5ZES3_CTRL_SEC_LEN];
 | |
| 	int ret, handled = IRQ_NONE;
 | |
| 
 | |
| 	ret = regmap_bulk_read(rtc_data->regmap, 0, regs,
 | |
| 			       ABB5ZES3_CTRL_SEC_LEN);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "%s: unable to read control section (%d)!\n",
 | |
| 			__func__, ret);
 | |
| 		return handled;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check battery low detection flag and disable battery low interrupt
 | |
| 	 * generation if flag is set (interrupt can only be cleared when
 | |
| 	 * battery is replaced).
 | |
| 	 */
 | |
| 	if (regs[ABB5ZES3_REG_CTRL3] & ABB5ZES3_REG_CTRL3_BLF) {
 | |
| 		dev_err(dev, "RTC battery is low; please change it!\n");
 | |
| 
 | |
| 		_abb5zes3_rtc_battery_low_irq_enable(rtc_data->regmap, false);
 | |
| 
 | |
| 		handled = IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	/* Check alarm flag */
 | |
| 	if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_AF) {
 | |
| 		dev_dbg(dev, "RTC alarm!\n");
 | |
| 
 | |
| 		rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
 | |
| 
 | |
| 		/* Acknowledge and disable the alarm */
 | |
| 		_abb5zes3_rtc_clear_alarm(dev);
 | |
| 		_abb5zes3_rtc_update_alarm(dev, 0);
 | |
| 
 | |
| 		handled = IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	/* Check watchdog Timer A flag */
 | |
| 	if (regs[ABB5ZES3_REG_CTRL2] & ABB5ZES3_REG_CTRL2_WTAF) {
 | |
| 		dev_dbg(dev, "RTC timer!\n");
 | |
| 
 | |
| 		rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
 | |
| 
 | |
| 		/*
 | |
| 		 * Acknowledge and disable the alarm. Note: WTAF
 | |
| 		 * flag had been cleared when reading CTRL2
 | |
| 		 */
 | |
| 		_abb5zes3_rtc_update_timer(dev, 0);
 | |
| 
 | |
| 		rtc_data->timer_alarm = 0;
 | |
| 
 | |
| 		handled = IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	return handled;
 | |
| }
 | |
| 
 | |
| static const struct rtc_class_ops rtc_ops = {
 | |
| 	.read_time = _abb5zes3_rtc_read_time,
 | |
| 	.set_time = abb5zes3_rtc_set_time,
 | |
| 	.read_alarm = abb5zes3_rtc_read_alarm,
 | |
| 	.set_alarm = abb5zes3_rtc_set_alarm,
 | |
| 	.alarm_irq_enable = abb5zes3_rtc_alarm_irq_enable,
 | |
| };
 | |
| 
 | |
| static const struct regmap_config abb5zes3_rtc_regmap_config = {
 | |
| 	.reg_bits = 8,
 | |
| 	.val_bits = 8,
 | |
| };
 | |
| 
 | |
| static int abb5zes3_probe(struct i2c_client *client)
 | |
| {
 | |
| 	struct abb5zes3_rtc_data *data = NULL;
 | |
| 	struct device *dev = &client->dev;
 | |
| 	struct regmap *regmap;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C |
 | |
| 				     I2C_FUNC_SMBUS_BYTE_DATA |
 | |
| 				     I2C_FUNC_SMBUS_I2C_BLOCK))
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	regmap = devm_regmap_init_i2c(client, &abb5zes3_rtc_regmap_config);
 | |
| 	if (IS_ERR(regmap)) {
 | |
| 		ret = PTR_ERR(regmap);
 | |
| 		dev_err(dev, "%s: regmap allocation failed: %d\n",
 | |
| 			__func__, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = abb5zes3_i2c_validate_chip(regmap);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
 | |
| 	if (!data)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	data->regmap = regmap;
 | |
| 	dev_set_drvdata(dev, data);
 | |
| 
 | |
| 	ret = abb5zes3_rtc_check_setup(dev);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	data->rtc = devm_rtc_allocate_device(dev);
 | |
| 	ret = PTR_ERR_OR_ZERO(data->rtc);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "%s: unable to allocate RTC device (%d)\n",
 | |
| 			__func__, ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (client->irq > 0) {
 | |
| 		ret = devm_request_threaded_irq(dev, client->irq, NULL,
 | |
| 						_abb5zes3_rtc_interrupt,
 | |
| 						IRQF_SHARED | IRQF_ONESHOT,
 | |
| 						DRV_NAME, client);
 | |
| 		if (!ret) {
 | |
| 			device_init_wakeup(dev, true);
 | |
| 			data->irq = client->irq;
 | |
| 			dev_dbg(dev, "%s: irq %d used by RTC\n", __func__,
 | |
| 				client->irq);
 | |
| 		} else {
 | |
| 			dev_err(dev, "%s: irq %d unavailable (%d)\n",
 | |
| 				__func__, client->irq, ret);
 | |
| 			goto err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	data->rtc->ops = &rtc_ops;
 | |
| 	data->rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
 | |
| 	data->rtc->range_max = RTC_TIMESTAMP_END_2099;
 | |
| 
 | |
| 	/* Enable battery low detection interrupt if battery not already low */
 | |
| 	if (!data->battery_low && data->irq) {
 | |
| 		ret = _abb5zes3_rtc_battery_low_irq_enable(regmap, true);
 | |
| 		if (ret) {
 | |
| 			dev_err(dev, "%s: enabling battery low interrupt generation failed (%d)\n",
 | |
| 				__func__, ret);
 | |
| 			goto err;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ret = devm_rtc_register_device(data->rtc);
 | |
| 
 | |
| err:
 | |
| 	if (ret && data->irq)
 | |
| 		device_init_wakeup(dev, false);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PM_SLEEP
 | |
| static int abb5zes3_rtc_suspend(struct device *dev)
 | |
| {
 | |
| 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
 | |
| 
 | |
| 	if (device_may_wakeup(dev))
 | |
| 		return enable_irq_wake(rtc_data->irq);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int abb5zes3_rtc_resume(struct device *dev)
 | |
| {
 | |
| 	struct abb5zes3_rtc_data *rtc_data = dev_get_drvdata(dev);
 | |
| 
 | |
| 	if (device_may_wakeup(dev))
 | |
| 		return disable_irq_wake(rtc_data->irq);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static SIMPLE_DEV_PM_OPS(abb5zes3_rtc_pm_ops, abb5zes3_rtc_suspend,
 | |
| 			 abb5zes3_rtc_resume);
 | |
| 
 | |
| #ifdef CONFIG_OF
 | |
| static const struct of_device_id abb5zes3_dt_match[] = {
 | |
| 	{ .compatible = "abracon,abb5zes3" },
 | |
| 	{ },
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, abb5zes3_dt_match);
 | |
| #endif
 | |
| 
 | |
| static const struct i2c_device_id abb5zes3_id[] = {
 | |
| 	{ "abb5zes3", 0 },
 | |
| 	{ }
 | |
| };
 | |
| MODULE_DEVICE_TABLE(i2c, abb5zes3_id);
 | |
| 
 | |
| static struct i2c_driver abb5zes3_driver = {
 | |
| 	.driver = {
 | |
| 		.name = DRV_NAME,
 | |
| 		.pm = &abb5zes3_rtc_pm_ops,
 | |
| 		.of_match_table = of_match_ptr(abb5zes3_dt_match),
 | |
| 	},
 | |
| 	.probe_new = abb5zes3_probe,
 | |
| 	.id_table = abb5zes3_id,
 | |
| };
 | |
| module_i2c_driver(abb5zes3_driver);
 | |
| 
 | |
| MODULE_AUTHOR("Arnaud EBALARD <arno@natisbad.org>");
 | |
| MODULE_DESCRIPTION("Abracon AB-RTCMC-32.768kHz-B5ZE-S3 RTC/Alarm driver");
 | |
| MODULE_LICENSE("GPL");
 |