396 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			396 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Remote Processor Framework ELF loader
 | |
|  *
 | |
|  * Copyright (C) 2011 Texas Instruments, Inc.
 | |
|  * Copyright (C) 2011 Google, Inc.
 | |
|  *
 | |
|  * Ohad Ben-Cohen <ohad@wizery.com>
 | |
|  * Brian Swetland <swetland@google.com>
 | |
|  * Mark Grosen <mgrosen@ti.com>
 | |
|  * Fernando Guzman Lugo <fernando.lugo@ti.com>
 | |
|  * Suman Anna <s-anna@ti.com>
 | |
|  * Robert Tivy <rtivy@ti.com>
 | |
|  * Armando Uribe De Leon <x0095078@ti.com>
 | |
|  * Sjur Brændeland <sjur.brandeland@stericsson.com>
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt)    "%s: " fmt, __func__
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/firmware.h>
 | |
| #include <linux/remoteproc.h>
 | |
| #include <linux/elf.h>
 | |
| 
 | |
| #include "remoteproc_internal.h"
 | |
| #include "remoteproc_elf_helpers.h"
 | |
| 
 | |
| /**
 | |
|  * rproc_elf_sanity_check() - Sanity Check for ELF32/ELF64 firmware image
 | |
|  * @rproc: the remote processor handle
 | |
|  * @fw: the ELF firmware image
 | |
|  *
 | |
|  * Make sure this fw image is sane (ie a correct ELF32/ELF64 file).
 | |
|  *
 | |
|  * Return: 0 on success and -EINVAL upon any failure
 | |
|  */
 | |
| int rproc_elf_sanity_check(struct rproc *rproc, const struct firmware *fw)
 | |
| {
 | |
| 	const char *name = rproc->firmware;
 | |
| 	struct device *dev = &rproc->dev;
 | |
| 	/*
 | |
| 	 * ELF files are beginning with the same structure. Thus, to simplify
 | |
| 	 * header parsing, we can use the elf32_hdr one for both elf64 and
 | |
| 	 * elf32.
 | |
| 	 */
 | |
| 	struct elf32_hdr *ehdr;
 | |
| 	u32 elf_shdr_get_size;
 | |
| 	u64 phoff, shoff;
 | |
| 	char class;
 | |
| 	u16 phnum;
 | |
| 
 | |
| 	if (!fw) {
 | |
| 		dev_err(dev, "failed to load %s\n", name);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (fw->size < sizeof(struct elf32_hdr)) {
 | |
| 		dev_err(dev, "Image is too small\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ehdr = (struct elf32_hdr *)fw->data;
 | |
| 
 | |
| 	if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG)) {
 | |
| 		dev_err(dev, "Image is corrupted (bad magic)\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	class = ehdr->e_ident[EI_CLASS];
 | |
| 	if (class != ELFCLASS32 && class != ELFCLASS64) {
 | |
| 		dev_err(dev, "Unsupported class: %d\n", class);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (class == ELFCLASS64 && fw->size < sizeof(struct elf64_hdr)) {
 | |
| 		dev_err(dev, "elf64 header is too small\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* We assume the firmware has the same endianness as the host */
 | |
| # ifdef __LITTLE_ENDIAN
 | |
| 	if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB) {
 | |
| # else /* BIG ENDIAN */
 | |
| 	if (ehdr->e_ident[EI_DATA] != ELFDATA2MSB) {
 | |
| # endif
 | |
| 		dev_err(dev, "Unsupported firmware endianness\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	phoff = elf_hdr_get_e_phoff(class, fw->data);
 | |
| 	shoff = elf_hdr_get_e_shoff(class, fw->data);
 | |
| 	phnum =  elf_hdr_get_e_phnum(class, fw->data);
 | |
| 	elf_shdr_get_size = elf_size_of_shdr(class);
 | |
| 
 | |
| 	if (fw->size < shoff + elf_shdr_get_size) {
 | |
| 		dev_err(dev, "Image is too small\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (phnum == 0) {
 | |
| 		dev_err(dev, "No loadable segments\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (phoff > fw->size) {
 | |
| 		dev_err(dev, "Firmware size is too small\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(dev, "Firmware is an elf%d file\n",
 | |
| 		class == ELFCLASS32 ? 32 : 64);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(rproc_elf_sanity_check);
 | |
| 
 | |
| /**
 | |
|  * rproc_elf_get_boot_addr() - Get rproc's boot address.
 | |
|  * @rproc: the remote processor handle
 | |
|  * @fw: the ELF firmware image
 | |
|  *
 | |
|  * Note that the boot address is not a configurable property of all remote
 | |
|  * processors. Some will always boot at a specific hard-coded address.
 | |
|  *
 | |
|  * Return: entry point address of the ELF image
 | |
|  *
 | |
|  */
 | |
| u64 rproc_elf_get_boot_addr(struct rproc *rproc, const struct firmware *fw)
 | |
| {
 | |
| 	return elf_hdr_get_e_entry(fw_elf_get_class(fw), fw->data);
 | |
| }
 | |
| EXPORT_SYMBOL(rproc_elf_get_boot_addr);
 | |
| 
 | |
| /**
 | |
|  * rproc_elf_load_segments() - load firmware segments to memory
 | |
|  * @rproc: remote processor which will be booted using these fw segments
 | |
|  * @fw: the ELF firmware image
 | |
|  *
 | |
|  * This function loads the firmware segments to memory, where the remote
 | |
|  * processor expects them.
 | |
|  *
 | |
|  * Some remote processors will expect their code and data to be placed
 | |
|  * in specific device addresses, and can't have them dynamically assigned.
 | |
|  *
 | |
|  * We currently support only those kind of remote processors, and expect
 | |
|  * the program header's paddr member to contain those addresses. We then go
 | |
|  * through the physically contiguous "carveout" memory regions which we
 | |
|  * allocated (and mapped) earlier on behalf of the remote processor,
 | |
|  * and "translate" device address to kernel addresses, so we can copy the
 | |
|  * segments where they are expected.
 | |
|  *
 | |
|  * Currently we only support remote processors that required carveout
 | |
|  * allocations and got them mapped onto their iommus. Some processors
 | |
|  * might be different: they might not have iommus, and would prefer to
 | |
|  * directly allocate memory for every segment/resource. This is not yet
 | |
|  * supported, though.
 | |
|  *
 | |
|  * Return: 0 on success and an appropriate error code otherwise
 | |
|  */
 | |
| int rproc_elf_load_segments(struct rproc *rproc, const struct firmware *fw)
 | |
| {
 | |
| 	struct device *dev = &rproc->dev;
 | |
| 	const void *ehdr, *phdr;
 | |
| 	int i, ret = 0;
 | |
| 	u16 phnum;
 | |
| 	const u8 *elf_data = fw->data;
 | |
| 	u8 class = fw_elf_get_class(fw);
 | |
| 	u32 elf_phdr_get_size = elf_size_of_phdr(class);
 | |
| 
 | |
| 	ehdr = elf_data;
 | |
| 	phnum = elf_hdr_get_e_phnum(class, ehdr);
 | |
| 	phdr = elf_data + elf_hdr_get_e_phoff(class, ehdr);
 | |
| 
 | |
| 	/* go through the available ELF segments */
 | |
| 	for (i = 0; i < phnum; i++, phdr += elf_phdr_get_size) {
 | |
| 		u64 da = elf_phdr_get_p_paddr(class, phdr);
 | |
| 		u64 memsz = elf_phdr_get_p_memsz(class, phdr);
 | |
| 		u64 filesz = elf_phdr_get_p_filesz(class, phdr);
 | |
| 		u64 offset = elf_phdr_get_p_offset(class, phdr);
 | |
| 		u32 type = elf_phdr_get_p_type(class, phdr);
 | |
| 		bool is_iomem = false;
 | |
| 		void *ptr;
 | |
| 
 | |
| 		if (type != PT_LOAD)
 | |
| 			continue;
 | |
| 
 | |
| 		dev_dbg(dev, "phdr: type %d da 0x%llx memsz 0x%llx filesz 0x%llx\n",
 | |
| 			type, da, memsz, filesz);
 | |
| 
 | |
| 		if (filesz > memsz) {
 | |
| 			dev_err(dev, "bad phdr filesz 0x%llx memsz 0x%llx\n",
 | |
| 				filesz, memsz);
 | |
| 			ret = -EINVAL;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (offset + filesz > fw->size) {
 | |
| 			dev_err(dev, "truncated fw: need 0x%llx avail 0x%zx\n",
 | |
| 				offset + filesz, fw->size);
 | |
| 			ret = -EINVAL;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (!rproc_u64_fit_in_size_t(memsz)) {
 | |
| 			dev_err(dev, "size (%llx) does not fit in size_t type\n",
 | |
| 				memsz);
 | |
| 			ret = -EOVERFLOW;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* grab the kernel address for this device address */
 | |
| 		ptr = rproc_da_to_va(rproc, da, memsz, &is_iomem);
 | |
| 		if (!ptr) {
 | |
| 			dev_err(dev, "bad phdr da 0x%llx mem 0x%llx\n", da,
 | |
| 				memsz);
 | |
| 			ret = -EINVAL;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* put the segment where the remote processor expects it */
 | |
| 		if (filesz) {
 | |
| 			if (is_iomem)
 | |
| 				memcpy_toio((void __iomem *)ptr, elf_data + offset, filesz);
 | |
| 			else
 | |
| 				memcpy(ptr, elf_data + offset, filesz);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Zero out remaining memory for this segment.
 | |
| 		 *
 | |
| 		 * This isn't strictly required since dma_alloc_coherent already
 | |
| 		 * did this for us. albeit harmless, we may consider removing
 | |
| 		 * this.
 | |
| 		 */
 | |
| 		if (memsz > filesz) {
 | |
| 			if (is_iomem)
 | |
| 				memset_io((void __iomem *)(ptr + filesz), 0, memsz - filesz);
 | |
| 			else
 | |
| 				memset(ptr + filesz, 0, memsz - filesz);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(rproc_elf_load_segments);
 | |
| 
 | |
| static const void *
 | |
| find_table(struct device *dev, const struct firmware *fw)
 | |
| {
 | |
| 	const void *shdr, *name_table_shdr;
 | |
| 	int i;
 | |
| 	const char *name_table;
 | |
| 	struct resource_table *table = NULL;
 | |
| 	const u8 *elf_data = (void *)fw->data;
 | |
| 	u8 class = fw_elf_get_class(fw);
 | |
| 	size_t fw_size = fw->size;
 | |
| 	const void *ehdr = elf_data;
 | |
| 	u16 shnum = elf_hdr_get_e_shnum(class, ehdr);
 | |
| 	u32 elf_shdr_get_size = elf_size_of_shdr(class);
 | |
| 	u16 shstrndx = elf_hdr_get_e_shstrndx(class, ehdr);
 | |
| 
 | |
| 	/* look for the resource table and handle it */
 | |
| 	/* First, get the section header according to the elf class */
 | |
| 	shdr = elf_data + elf_hdr_get_e_shoff(class, ehdr);
 | |
| 	/* Compute name table section header entry in shdr array */
 | |
| 	name_table_shdr = shdr + (shstrndx * elf_shdr_get_size);
 | |
| 	/* Finally, compute the name table section address in elf */
 | |
| 	name_table = elf_data + elf_shdr_get_sh_offset(class, name_table_shdr);
 | |
| 
 | |
| 	for (i = 0; i < shnum; i++, shdr += elf_shdr_get_size) {
 | |
| 		u64 size = elf_shdr_get_sh_size(class, shdr);
 | |
| 		u64 offset = elf_shdr_get_sh_offset(class, shdr);
 | |
| 		u32 name = elf_shdr_get_sh_name(class, shdr);
 | |
| 
 | |
| 		if (strcmp(name_table + name, ".resource_table"))
 | |
| 			continue;
 | |
| 
 | |
| 		table = (struct resource_table *)(elf_data + offset);
 | |
| 
 | |
| 		/* make sure we have the entire table */
 | |
| 		if (offset + size > fw_size || offset + size < size) {
 | |
| 			dev_err(dev, "resource table truncated\n");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		/* make sure table has at least the header */
 | |
| 		if (sizeof(struct resource_table) > size) {
 | |
| 			dev_err(dev, "header-less resource table\n");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		/* we don't support any version beyond the first */
 | |
| 		if (table->ver != 1) {
 | |
| 			dev_err(dev, "unsupported fw ver: %d\n", table->ver);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		/* make sure reserved bytes are zeroes */
 | |
| 		if (table->reserved[0] || table->reserved[1]) {
 | |
| 			dev_err(dev, "non zero reserved bytes\n");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		/* make sure the offsets array isn't truncated */
 | |
| 		if (struct_size(table, offset, table->num) > size) {
 | |
| 			dev_err(dev, "resource table incomplete\n");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		return shdr;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rproc_elf_load_rsc_table() - load the resource table
 | |
|  * @rproc: the rproc handle
 | |
|  * @fw: the ELF firmware image
 | |
|  *
 | |
|  * This function finds the resource table inside the remote processor's
 | |
|  * firmware, load it into the @cached_table and update @table_ptr.
 | |
|  *
 | |
|  * Return: 0 on success, negative errno on failure.
 | |
|  */
 | |
| int rproc_elf_load_rsc_table(struct rproc *rproc, const struct firmware *fw)
 | |
| {
 | |
| 	const void *shdr;
 | |
| 	struct device *dev = &rproc->dev;
 | |
| 	struct resource_table *table = NULL;
 | |
| 	const u8 *elf_data = fw->data;
 | |
| 	size_t tablesz;
 | |
| 	u8 class = fw_elf_get_class(fw);
 | |
| 	u64 sh_offset;
 | |
| 
 | |
| 	shdr = find_table(dev, fw);
 | |
| 	if (!shdr)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	sh_offset = elf_shdr_get_sh_offset(class, shdr);
 | |
| 	table = (struct resource_table *)(elf_data + sh_offset);
 | |
| 	tablesz = elf_shdr_get_sh_size(class, shdr);
 | |
| 
 | |
| 	/*
 | |
| 	 * Create a copy of the resource table. When a virtio device starts
 | |
| 	 * and calls vring_new_virtqueue() the address of the allocated vring
 | |
| 	 * will be stored in the cached_table. Before the device is started,
 | |
| 	 * cached_table will be copied into device memory.
 | |
| 	 */
 | |
| 	rproc->cached_table = kmemdup(table, tablesz, GFP_KERNEL);
 | |
| 	if (!rproc->cached_table)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	rproc->table_ptr = rproc->cached_table;
 | |
| 	rproc->table_sz = tablesz;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(rproc_elf_load_rsc_table);
 | |
| 
 | |
| /**
 | |
|  * rproc_elf_find_loaded_rsc_table() - find the loaded resource table
 | |
|  * @rproc: the rproc handle
 | |
|  * @fw: the ELF firmware image
 | |
|  *
 | |
|  * This function finds the location of the loaded resource table. Don't
 | |
|  * call this function if the table wasn't loaded yet - it's a bug if you do.
 | |
|  *
 | |
|  * Return: pointer to the resource table if it is found or NULL otherwise.
 | |
|  * If the table wasn't loaded yet the result is unspecified.
 | |
|  */
 | |
| struct resource_table *rproc_elf_find_loaded_rsc_table(struct rproc *rproc,
 | |
| 						       const struct firmware *fw)
 | |
| {
 | |
| 	const void *shdr;
 | |
| 	u64 sh_addr, sh_size;
 | |
| 	u8 class = fw_elf_get_class(fw);
 | |
| 	struct device *dev = &rproc->dev;
 | |
| 
 | |
| 	shdr = find_table(&rproc->dev, fw);
 | |
| 	if (!shdr)
 | |
| 		return NULL;
 | |
| 
 | |
| 	sh_addr = elf_shdr_get_sh_addr(class, shdr);
 | |
| 	sh_size = elf_shdr_get_sh_size(class, shdr);
 | |
| 
 | |
| 	if (!rproc_u64_fit_in_size_t(sh_size)) {
 | |
| 		dev_err(dev, "size (%llx) does not fit in size_t type\n",
 | |
| 			sh_size);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return rproc_da_to_va(rproc, sh_addr, sh_size, NULL);
 | |
| }
 | |
| EXPORT_SYMBOL(rproc_elf_find_loaded_rsc_table);
 |