969 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			969 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| //
 | |
| // helpers.c  --  Voltage/Current Regulator framework helper functions.
 | |
| //
 | |
| // Copyright 2007, 2008 Wolfson Microelectronics PLC.
 | |
| // Copyright 2008 SlimLogic Ltd.
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/regmap.h>
 | |
| #include <linux/regulator/consumer.h>
 | |
| #include <linux/regulator/driver.h>
 | |
| #include <linux/module.h>
 | |
| 
 | |
| #include "internal.h"
 | |
| 
 | |
| /**
 | |
|  * regulator_is_enabled_regmap - standard is_enabled() for regmap users
 | |
|  *
 | |
|  * @rdev: regulator to operate on
 | |
|  *
 | |
|  * Regulators that use regmap for their register I/O can set the
 | |
|  * enable_reg and enable_mask fields in their descriptor and then use
 | |
|  * this as their is_enabled operation, saving some code.
 | |
|  */
 | |
| int regulator_is_enabled_regmap(struct regulator_dev *rdev)
 | |
| {
 | |
| 	unsigned int val;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
 | |
| 	if (ret != 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	val &= rdev->desc->enable_mask;
 | |
| 
 | |
| 	if (rdev->desc->enable_is_inverted) {
 | |
| 		if (rdev->desc->enable_val)
 | |
| 			return val != rdev->desc->enable_val;
 | |
| 		return val == 0;
 | |
| 	} else {
 | |
| 		if (rdev->desc->enable_val)
 | |
| 			return val == rdev->desc->enable_val;
 | |
| 		return val != 0;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
 | |
| 
 | |
| /**
 | |
|  * regulator_enable_regmap - standard enable() for regmap users
 | |
|  *
 | |
|  * @rdev: regulator to operate on
 | |
|  *
 | |
|  * Regulators that use regmap for their register I/O can set the
 | |
|  * enable_reg and enable_mask fields in their descriptor and then use
 | |
|  * this as their enable() operation, saving some code.
 | |
|  */
 | |
| int regulator_enable_regmap(struct regulator_dev *rdev)
 | |
| {
 | |
| 	unsigned int val;
 | |
| 
 | |
| 	if (rdev->desc->enable_is_inverted) {
 | |
| 		val = rdev->desc->disable_val;
 | |
| 	} else {
 | |
| 		val = rdev->desc->enable_val;
 | |
| 		if (!val)
 | |
| 			val = rdev->desc->enable_mask;
 | |
| 	}
 | |
| 
 | |
| 	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
 | |
| 				  rdev->desc->enable_mask, val);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(regulator_enable_regmap);
 | |
| 
 | |
| /**
 | |
|  * regulator_disable_regmap - standard disable() for regmap users
 | |
|  *
 | |
|  * @rdev: regulator to operate on
 | |
|  *
 | |
|  * Regulators that use regmap for their register I/O can set the
 | |
|  * enable_reg and enable_mask fields in their descriptor and then use
 | |
|  * this as their disable() operation, saving some code.
 | |
|  */
 | |
| int regulator_disable_regmap(struct regulator_dev *rdev)
 | |
| {
 | |
| 	unsigned int val;
 | |
| 
 | |
| 	if (rdev->desc->enable_is_inverted) {
 | |
| 		val = rdev->desc->enable_val;
 | |
| 		if (!val)
 | |
| 			val = rdev->desc->enable_mask;
 | |
| 	} else {
 | |
| 		val = rdev->desc->disable_val;
 | |
| 	}
 | |
| 
 | |
| 	return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
 | |
| 				  rdev->desc->enable_mask, val);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(regulator_disable_regmap);
 | |
| 
 | |
| static int regulator_range_selector_to_index(struct regulator_dev *rdev,
 | |
| 					     unsigned int rval)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!rdev->desc->linear_range_selectors)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	rval &= rdev->desc->vsel_range_mask;
 | |
| 
 | |
| 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
 | |
| 		if (rdev->desc->linear_range_selectors[i] == rval)
 | |
| 			return i;
 | |
| 	}
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * regulator_get_voltage_sel_pickable_regmap - pickable range get_voltage_sel
 | |
|  *
 | |
|  * @rdev: regulator to operate on
 | |
|  *
 | |
|  * Regulators that use regmap for their register I/O and use pickable
 | |
|  * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
 | |
|  * fields in their descriptor and then use this as their get_voltage_vsel
 | |
|  * operation, saving some code.
 | |
|  */
 | |
| int regulator_get_voltage_sel_pickable_regmap(struct regulator_dev *rdev)
 | |
| {
 | |
| 	unsigned int r_val;
 | |
| 	int range;
 | |
| 	unsigned int val;
 | |
| 	int ret;
 | |
| 	unsigned int voltages = 0;
 | |
| 	const struct linear_range *r = rdev->desc->linear_ranges;
 | |
| 
 | |
| 	if (!r)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
 | |
| 	if (ret != 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = regmap_read(rdev->regmap, rdev->desc->vsel_range_reg, &r_val);
 | |
| 	if (ret != 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	val &= rdev->desc->vsel_mask;
 | |
| 	val >>= ffs(rdev->desc->vsel_mask) - 1;
 | |
| 
 | |
| 	range = regulator_range_selector_to_index(rdev, r_val);
 | |
| 	if (range < 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	voltages = linear_range_values_in_range_array(r, range);
 | |
| 
 | |
| 	return val + voltages;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_pickable_regmap);
 | |
| 
 | |
| /**
 | |
|  * regulator_set_voltage_sel_pickable_regmap - pickable range set_voltage_sel
 | |
|  *
 | |
|  * @rdev: regulator to operate on
 | |
|  * @sel: Selector to set
 | |
|  *
 | |
|  * Regulators that use regmap for their register I/O and use pickable
 | |
|  * ranges can set the vsel_reg, vsel_mask, vsel_range_reg and vsel_range_mask
 | |
|  * fields in their descriptor and then use this as their set_voltage_vsel
 | |
|  * operation, saving some code.
 | |
|  */
 | |
| int regulator_set_voltage_sel_pickable_regmap(struct regulator_dev *rdev,
 | |
| 					      unsigned int sel)
 | |
| {
 | |
| 	unsigned int range;
 | |
| 	int ret, i;
 | |
| 	unsigned int voltages_in_range = 0;
 | |
| 
 | |
| 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
 | |
| 		const struct linear_range *r;
 | |
| 
 | |
| 		r = &rdev->desc->linear_ranges[i];
 | |
| 		voltages_in_range = linear_range_values_in_range(r);
 | |
| 
 | |
| 		if (sel < voltages_in_range)
 | |
| 			break;
 | |
| 		sel -= voltages_in_range;
 | |
| 	}
 | |
| 
 | |
| 	if (i == rdev->desc->n_linear_ranges)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	sel <<= ffs(rdev->desc->vsel_mask) - 1;
 | |
| 	sel += rdev->desc->linear_ranges[i].min_sel;
 | |
| 
 | |
| 	range = rdev->desc->linear_range_selectors[i];
 | |
| 
 | |
| 	if (rdev->desc->vsel_reg == rdev->desc->vsel_range_reg) {
 | |
| 		ret = regmap_update_bits(rdev->regmap,
 | |
| 					 rdev->desc->vsel_reg,
 | |
| 					 rdev->desc->vsel_range_mask |
 | |
| 					 rdev->desc->vsel_mask, sel | range);
 | |
| 	} else {
 | |
| 		ret = regmap_update_bits(rdev->regmap,
 | |
| 					 rdev->desc->vsel_range_reg,
 | |
| 					 rdev->desc->vsel_range_mask, range);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
 | |
| 				  rdev->desc->vsel_mask, sel);
 | |
| 	}
 | |
| 
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (rdev->desc->apply_bit)
 | |
| 		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
 | |
| 					 rdev->desc->apply_bit,
 | |
| 					 rdev->desc->apply_bit);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_pickable_regmap);
 | |
| 
 | |
| /**
 | |
|  * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
 | |
|  *
 | |
|  * @rdev: regulator to operate on
 | |
|  *
 | |
|  * Regulators that use regmap for their register I/O can set the
 | |
|  * vsel_reg and vsel_mask fields in their descriptor and then use this
 | |
|  * as their get_voltage_vsel operation, saving some code.
 | |
|  */
 | |
| int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
 | |
| {
 | |
| 	unsigned int val;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
 | |
| 	if (ret != 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	val &= rdev->desc->vsel_mask;
 | |
| 	val >>= ffs(rdev->desc->vsel_mask) - 1;
 | |
| 
 | |
| 	return val;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
 | |
| 
 | |
| /**
 | |
|  * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
 | |
|  *
 | |
|  * @rdev: regulator to operate on
 | |
|  * @sel: Selector to set
 | |
|  *
 | |
|  * Regulators that use regmap for their register I/O can set the
 | |
|  * vsel_reg and vsel_mask fields in their descriptor and then use this
 | |
|  * as their set_voltage_vsel operation, saving some code.
 | |
|  */
 | |
| int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	sel <<= ffs(rdev->desc->vsel_mask) - 1;
 | |
| 
 | |
| 	ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
 | |
| 				  rdev->desc->vsel_mask, sel);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (rdev->desc->apply_bit)
 | |
| 		ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
 | |
| 					 rdev->desc->apply_bit,
 | |
| 					 rdev->desc->apply_bit);
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
 | |
| 
 | |
| /**
 | |
|  * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
 | |
|  *
 | |
|  * @rdev: Regulator to operate on
 | |
|  * @min_uV: Lower bound for voltage
 | |
|  * @max_uV: Upper bound for voltage
 | |
|  *
 | |
|  * Drivers implementing set_voltage_sel() and list_voltage() can use
 | |
|  * this as their map_voltage() operation.  It will find a suitable
 | |
|  * voltage by calling list_voltage() until it gets something in bounds
 | |
|  * for the requested voltages.
 | |
|  */
 | |
| int regulator_map_voltage_iterate(struct regulator_dev *rdev,
 | |
| 				  int min_uV, int max_uV)
 | |
| {
 | |
| 	int best_val = INT_MAX;
 | |
| 	int selector = 0;
 | |
| 	int i, ret;
 | |
| 
 | |
| 	/* Find the smallest voltage that falls within the specified
 | |
| 	 * range.
 | |
| 	 */
 | |
| 	for (i = 0; i < rdev->desc->n_voltages; i++) {
 | |
| 		ret = rdev->desc->ops->list_voltage(rdev, i);
 | |
| 		if (ret < 0)
 | |
| 			continue;
 | |
| 
 | |
| 		if (ret < best_val && ret >= min_uV && ret <= max_uV) {
 | |
| 			best_val = ret;
 | |
| 			selector = i;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (best_val != INT_MAX)
 | |
| 		return selector;
 | |
| 	else
 | |
| 		return -EINVAL;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
 | |
| 
 | |
| /**
 | |
|  * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
 | |
|  *
 | |
|  * @rdev: Regulator to operate on
 | |
|  * @min_uV: Lower bound for voltage
 | |
|  * @max_uV: Upper bound for voltage
 | |
|  *
 | |
|  * Drivers that have ascendant voltage list can use this as their
 | |
|  * map_voltage() operation.
 | |
|  */
 | |
| int regulator_map_voltage_ascend(struct regulator_dev *rdev,
 | |
| 				 int min_uV, int max_uV)
 | |
| {
 | |
| 	int i, ret;
 | |
| 
 | |
| 	for (i = 0; i < rdev->desc->n_voltages; i++) {
 | |
| 		ret = rdev->desc->ops->list_voltage(rdev, i);
 | |
| 		if (ret < 0)
 | |
| 			continue;
 | |
| 
 | |
| 		if (ret > max_uV)
 | |
| 			break;
 | |
| 
 | |
| 		if (ret >= min_uV && ret <= max_uV)
 | |
| 			return i;
 | |
| 	}
 | |
| 
 | |
| 	return -EINVAL;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
 | |
| 
 | |
| /**
 | |
|  * regulator_map_voltage_linear - map_voltage() for simple linear mappings
 | |
|  *
 | |
|  * @rdev: Regulator to operate on
 | |
|  * @min_uV: Lower bound for voltage
 | |
|  * @max_uV: Upper bound for voltage
 | |
|  *
 | |
|  * Drivers providing min_uV and uV_step in their regulator_desc can
 | |
|  * use this as their map_voltage() operation.
 | |
|  */
 | |
| int regulator_map_voltage_linear(struct regulator_dev *rdev,
 | |
| 				 int min_uV, int max_uV)
 | |
| {
 | |
| 	int ret, voltage;
 | |
| 
 | |
| 	/* Allow uV_step to be 0 for fixed voltage */
 | |
| 	if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
 | |
| 		if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
 | |
| 			return 0;
 | |
| 		else
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!rdev->desc->uV_step) {
 | |
| 		BUG_ON(!rdev->desc->uV_step);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (min_uV < rdev->desc->min_uV)
 | |
| 		min_uV = rdev->desc->min_uV;
 | |
| 
 | |
| 	ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret += rdev->desc->linear_min_sel;
 | |
| 
 | |
| 	/* Map back into a voltage to verify we're still in bounds */
 | |
| 	voltage = rdev->desc->ops->list_voltage(rdev, ret);
 | |
| 	if (voltage < min_uV || voltage > max_uV)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
 | |
| 
 | |
| /**
 | |
|  * regulator_map_voltage_linear_range - map_voltage() for multiple linear ranges
 | |
|  *
 | |
|  * @rdev: Regulator to operate on
 | |
|  * @min_uV: Lower bound for voltage
 | |
|  * @max_uV: Upper bound for voltage
 | |
|  *
 | |
|  * Drivers providing linear_ranges in their descriptor can use this as
 | |
|  * their map_voltage() callback.
 | |
|  */
 | |
| int regulator_map_voltage_linear_range(struct regulator_dev *rdev,
 | |
| 				       int min_uV, int max_uV)
 | |
| {
 | |
| 	const struct linear_range *range;
 | |
| 	int ret = -EINVAL;
 | |
| 	unsigned int sel;
 | |
| 	bool found;
 | |
| 	int voltage, i;
 | |
| 
 | |
| 	if (!rdev->desc->n_linear_ranges) {
 | |
| 		BUG_ON(!rdev->desc->n_linear_ranges);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
 | |
| 		range = &rdev->desc->linear_ranges[i];
 | |
| 
 | |
| 		ret = linear_range_get_selector_high(range, min_uV, &sel,
 | |
| 						     &found);
 | |
| 		if (ret)
 | |
| 			continue;
 | |
| 		ret = sel;
 | |
| 
 | |
| 		/*
 | |
| 		 * Map back into a voltage to verify we're still in bounds.
 | |
| 		 * If we are not, then continue checking rest of the ranges.
 | |
| 		 */
 | |
| 		voltage = rdev->desc->ops->list_voltage(rdev, sel);
 | |
| 		if (voltage >= min_uV && voltage <= max_uV)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (i == rdev->desc->n_linear_ranges)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(regulator_map_voltage_linear_range);
 | |
| 
 | |
| /**
 | |
|  * regulator_map_voltage_pickable_linear_range - map_voltage, pickable ranges
 | |
|  *
 | |
|  * @rdev: Regulator to operate on
 | |
|  * @min_uV: Lower bound for voltage
 | |
|  * @max_uV: Upper bound for voltage
 | |
|  *
 | |
|  * Drivers providing pickable linear_ranges in their descriptor can use
 | |
|  * this as their map_voltage() callback.
 | |
|  */
 | |
| int regulator_map_voltage_pickable_linear_range(struct regulator_dev *rdev,
 | |
| 						int min_uV, int max_uV)
 | |
| {
 | |
| 	const struct linear_range *range;
 | |
| 	int ret = -EINVAL;
 | |
| 	int voltage, i;
 | |
| 	unsigned int selector = 0;
 | |
| 
 | |
| 	if (!rdev->desc->n_linear_ranges) {
 | |
| 		BUG_ON(!rdev->desc->n_linear_ranges);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
 | |
| 		int linear_max_uV;
 | |
| 		bool found;
 | |
| 		unsigned int sel;
 | |
| 
 | |
| 		range = &rdev->desc->linear_ranges[i];
 | |
| 		linear_max_uV = linear_range_get_max_value(range);
 | |
| 
 | |
| 		if (!(min_uV <= linear_max_uV && max_uV >= range->min)) {
 | |
| 			selector += linear_range_values_in_range(range);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		ret = linear_range_get_selector_high(range, min_uV, &sel,
 | |
| 						     &found);
 | |
| 		if (ret) {
 | |
| 			selector += linear_range_values_in_range(range);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		ret = selector + sel - range->min_sel;
 | |
| 
 | |
| 		voltage = rdev->desc->ops->list_voltage(rdev, ret);
 | |
| 
 | |
| 		/*
 | |
| 		 * Map back into a voltage to verify we're still in bounds.
 | |
| 		 * We may have overlapping voltage ranges. Hence we don't
 | |
| 		 * exit but retry until we have checked all ranges.
 | |
| 		 */
 | |
| 		if (voltage < min_uV || voltage > max_uV)
 | |
| 			selector += linear_range_values_in_range(range);
 | |
| 		else
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (i == rdev->desc->n_linear_ranges)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(regulator_map_voltage_pickable_linear_range);
 | |
| 
 | |
| /**
 | |
|  * regulator_desc_list_voltage_linear - List voltages with simple calculation
 | |
|  *
 | |
|  * @desc: Regulator desc for regulator which volatges are to be listed
 | |
|  * @selector: Selector to convert into a voltage
 | |
|  *
 | |
|  * Regulators with a simple linear mapping between voltages and
 | |
|  * selectors can set min_uV and uV_step in the regulator descriptor
 | |
|  * and then use this function prior regulator registration to list
 | |
|  * the voltages. This is useful when voltages need to be listed during
 | |
|  * device-tree parsing.
 | |
|  */
 | |
| int regulator_desc_list_voltage_linear(const struct regulator_desc *desc,
 | |
| 				       unsigned int selector)
 | |
| {
 | |
| 	if (selector >= desc->n_voltages)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (selector < desc->linear_min_sel)
 | |
| 		return 0;
 | |
| 
 | |
| 	selector -= desc->linear_min_sel;
 | |
| 
 | |
| 	return desc->min_uV + (desc->uV_step * selector);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear);
 | |
| 
 | |
| /**
 | |
|  * regulator_list_voltage_linear - List voltages with simple calculation
 | |
|  *
 | |
|  * @rdev: Regulator device
 | |
|  * @selector: Selector to convert into a voltage
 | |
|  *
 | |
|  * Regulators with a simple linear mapping between voltages and
 | |
|  * selectors can set min_uV and uV_step in the regulator descriptor
 | |
|  * and then use this function as their list_voltage() operation,
 | |
|  */
 | |
| int regulator_list_voltage_linear(struct regulator_dev *rdev,
 | |
| 				  unsigned int selector)
 | |
| {
 | |
| 	return regulator_desc_list_voltage_linear(rdev->desc, selector);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
 | |
| 
 | |
| /**
 | |
|  * regulator_list_voltage_pickable_linear_range - pickable range list voltages
 | |
|  *
 | |
|  * @rdev: Regulator device
 | |
|  * @selector: Selector to convert into a voltage
 | |
|  *
 | |
|  * list_voltage() operation, intended to be used by drivers utilizing pickable
 | |
|  * ranges helpers.
 | |
|  */
 | |
| int regulator_list_voltage_pickable_linear_range(struct regulator_dev *rdev,
 | |
| 						 unsigned int selector)
 | |
| {
 | |
| 	const struct linear_range *range;
 | |
| 	int i;
 | |
| 	unsigned int all_sels = 0;
 | |
| 
 | |
| 	if (!rdev->desc->n_linear_ranges) {
 | |
| 		BUG_ON(!rdev->desc->n_linear_ranges);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < rdev->desc->n_linear_ranges; i++) {
 | |
| 		unsigned int sel_indexes;
 | |
| 
 | |
| 		range = &rdev->desc->linear_ranges[i];
 | |
| 
 | |
| 		sel_indexes = linear_range_values_in_range(range) - 1;
 | |
| 
 | |
| 		if (all_sels + sel_indexes >= selector) {
 | |
| 			selector -= all_sels;
 | |
| 			/*
 | |
| 			 * As we see here, pickable ranges work only as
 | |
| 			 * long as the first selector for each pickable
 | |
| 			 * range is 0, and the each subsequent range for
 | |
| 			 * this 'pick' follow immediately at next unused
 | |
| 			 * selector (Eg. there is no gaps between ranges).
 | |
| 			 * I think this is fine but it probably should be
 | |
| 			 * documented. OTOH, whole pickable range stuff
 | |
| 			 * might benefit from some documentation
 | |
| 			 */
 | |
| 			return range->min + (range->step * selector);
 | |
| 		}
 | |
| 
 | |
| 		all_sels += (sel_indexes + 1);
 | |
| 	}
 | |
| 
 | |
| 	return -EINVAL;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(regulator_list_voltage_pickable_linear_range);
 | |
| 
 | |
| /**
 | |
|  * regulator_desc_list_voltage_linear_range - List voltages for linear ranges
 | |
|  *
 | |
|  * @desc: Regulator desc for regulator which volatges are to be listed
 | |
|  * @selector: Selector to convert into a voltage
 | |
|  *
 | |
|  * Regulators with a series of simple linear mappings between voltages
 | |
|  * and selectors who have set linear_ranges in the regulator descriptor
 | |
|  * can use this function prior regulator registration to list voltages.
 | |
|  * This is useful when voltages need to be listed during device-tree
 | |
|  * parsing.
 | |
|  */
 | |
| int regulator_desc_list_voltage_linear_range(const struct regulator_desc *desc,
 | |
| 					     unsigned int selector)
 | |
| {
 | |
| 	unsigned int val;
 | |
| 	int ret;
 | |
| 
 | |
| 	BUG_ON(!desc->n_linear_ranges);
 | |
| 
 | |
| 	ret = linear_range_get_value_array(desc->linear_ranges,
 | |
| 					   desc->n_linear_ranges, selector,
 | |
| 					   &val);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return val;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(regulator_desc_list_voltage_linear_range);
 | |
| 
 | |
| /**
 | |
|  * regulator_list_voltage_linear_range - List voltages for linear ranges
 | |
|  *
 | |
|  * @rdev: Regulator device
 | |
|  * @selector: Selector to convert into a voltage
 | |
|  *
 | |
|  * Regulators with a series of simple linear mappings between voltages
 | |
|  * and selectors can set linear_ranges in the regulator descriptor and
 | |
|  * then use this function as their list_voltage() operation,
 | |
|  */
 | |
| int regulator_list_voltage_linear_range(struct regulator_dev *rdev,
 | |
| 					unsigned int selector)
 | |
| {
 | |
| 	return regulator_desc_list_voltage_linear_range(rdev->desc, selector);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(regulator_list_voltage_linear_range);
 | |
| 
 | |
| /**
 | |
|  * regulator_list_voltage_table - List voltages with table based mapping
 | |
|  *
 | |
|  * @rdev: Regulator device
 | |
|  * @selector: Selector to convert into a voltage
 | |
|  *
 | |
|  * Regulators with table based mapping between voltages and
 | |
|  * selectors can set volt_table in the regulator descriptor
 | |
|  * and then use this function as their list_voltage() operation.
 | |
|  */
 | |
| int regulator_list_voltage_table(struct regulator_dev *rdev,
 | |
| 				 unsigned int selector)
 | |
| {
 | |
| 	if (!rdev->desc->volt_table) {
 | |
| 		BUG_ON(!rdev->desc->volt_table);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (selector >= rdev->desc->n_voltages)
 | |
| 		return -EINVAL;
 | |
| 	if (selector < rdev->desc->linear_min_sel)
 | |
| 		return 0;
 | |
| 
 | |
| 	return rdev->desc->volt_table[selector];
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
 | |
| 
 | |
| /**
 | |
|  * regulator_set_bypass_regmap - Default set_bypass() using regmap
 | |
|  *
 | |
|  * @rdev: device to operate on.
 | |
|  * @enable: state to set.
 | |
|  */
 | |
| int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
 | |
| {
 | |
| 	unsigned int val;
 | |
| 
 | |
| 	if (enable) {
 | |
| 		val = rdev->desc->bypass_val_on;
 | |
| 		if (!val)
 | |
| 			val = rdev->desc->bypass_mask;
 | |
| 	} else {
 | |
| 		val = rdev->desc->bypass_val_off;
 | |
| 	}
 | |
| 
 | |
| 	return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
 | |
| 				  rdev->desc->bypass_mask, val);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
 | |
| 
 | |
| /**
 | |
|  * regulator_set_soft_start_regmap - Default set_soft_start() using regmap
 | |
|  *
 | |
|  * @rdev: device to operate on.
 | |
|  */
 | |
| int regulator_set_soft_start_regmap(struct regulator_dev *rdev)
 | |
| {
 | |
| 	unsigned int val;
 | |
| 
 | |
| 	val = rdev->desc->soft_start_val_on;
 | |
| 	if (!val)
 | |
| 		val = rdev->desc->soft_start_mask;
 | |
| 
 | |
| 	return regmap_update_bits(rdev->regmap, rdev->desc->soft_start_reg,
 | |
| 				  rdev->desc->soft_start_mask, val);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(regulator_set_soft_start_regmap);
 | |
| 
 | |
| /**
 | |
|  * regulator_set_pull_down_regmap - Default set_pull_down() using regmap
 | |
|  *
 | |
|  * @rdev: device to operate on.
 | |
|  */
 | |
| int regulator_set_pull_down_regmap(struct regulator_dev *rdev)
 | |
| {
 | |
| 	unsigned int val;
 | |
| 
 | |
| 	val = rdev->desc->pull_down_val_on;
 | |
| 	if (!val)
 | |
| 		val = rdev->desc->pull_down_mask;
 | |
| 
 | |
| 	return regmap_update_bits(rdev->regmap, rdev->desc->pull_down_reg,
 | |
| 				  rdev->desc->pull_down_mask, val);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(regulator_set_pull_down_regmap);
 | |
| 
 | |
| /**
 | |
|  * regulator_get_bypass_regmap - Default get_bypass() using regmap
 | |
|  *
 | |
|  * @rdev: device to operate on.
 | |
|  * @enable: current state.
 | |
|  */
 | |
| int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
 | |
| {
 | |
| 	unsigned int val;
 | |
| 	unsigned int val_on = rdev->desc->bypass_val_on;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
 | |
| 	if (ret != 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (!val_on)
 | |
| 		val_on = rdev->desc->bypass_mask;
 | |
| 
 | |
| 	*enable = (val & rdev->desc->bypass_mask) == val_on;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
 | |
| 
 | |
| /**
 | |
|  * regulator_set_active_discharge_regmap - Default set_active_discharge()
 | |
|  *					   using regmap
 | |
|  *
 | |
|  * @rdev: device to operate on.
 | |
|  * @enable: state to set, 0 to disable and 1 to enable.
 | |
|  */
 | |
| int regulator_set_active_discharge_regmap(struct regulator_dev *rdev,
 | |
| 					  bool enable)
 | |
| {
 | |
| 	unsigned int val;
 | |
| 
 | |
| 	if (enable)
 | |
| 		val = rdev->desc->active_discharge_on;
 | |
| 	else
 | |
| 		val = rdev->desc->active_discharge_off;
 | |
| 
 | |
| 	return regmap_update_bits(rdev->regmap,
 | |
| 				  rdev->desc->active_discharge_reg,
 | |
| 				  rdev->desc->active_discharge_mask, val);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(regulator_set_active_discharge_regmap);
 | |
| 
 | |
| /**
 | |
|  * regulator_set_current_limit_regmap - set_current_limit for regmap users
 | |
|  *
 | |
|  * @rdev: regulator to operate on
 | |
|  * @min_uA: Lower bound for current limit
 | |
|  * @max_uA: Upper bound for current limit
 | |
|  *
 | |
|  * Regulators that use regmap for their register I/O can set curr_table,
 | |
|  * csel_reg and csel_mask fields in their descriptor and then use this
 | |
|  * as their set_current_limit operation, saving some code.
 | |
|  */
 | |
| int regulator_set_current_limit_regmap(struct regulator_dev *rdev,
 | |
| 				       int min_uA, int max_uA)
 | |
| {
 | |
| 	unsigned int n_currents = rdev->desc->n_current_limits;
 | |
| 	int i, sel = -1;
 | |
| 
 | |
| 	if (n_currents == 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (rdev->desc->curr_table) {
 | |
| 		const unsigned int *curr_table = rdev->desc->curr_table;
 | |
| 		bool ascend = curr_table[n_currents - 1] > curr_table[0];
 | |
| 
 | |
| 		/* search for closest to maximum */
 | |
| 		if (ascend) {
 | |
| 			for (i = n_currents - 1; i >= 0; i--) {
 | |
| 				if (min_uA <= curr_table[i] &&
 | |
| 				    curr_table[i] <= max_uA) {
 | |
| 					sel = i;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 		} else {
 | |
| 			for (i = 0; i < n_currents; i++) {
 | |
| 				if (min_uA <= curr_table[i] &&
 | |
| 				    curr_table[i] <= max_uA) {
 | |
| 					sel = i;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (sel < 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	sel <<= ffs(rdev->desc->csel_mask) - 1;
 | |
| 
 | |
| 	return regmap_update_bits(rdev->regmap, rdev->desc->csel_reg,
 | |
| 				  rdev->desc->csel_mask, sel);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(regulator_set_current_limit_regmap);
 | |
| 
 | |
| /**
 | |
|  * regulator_get_current_limit_regmap - get_current_limit for regmap users
 | |
|  *
 | |
|  * @rdev: regulator to operate on
 | |
|  *
 | |
|  * Regulators that use regmap for their register I/O can set the
 | |
|  * csel_reg and csel_mask fields in their descriptor and then use this
 | |
|  * as their get_current_limit operation, saving some code.
 | |
|  */
 | |
| int regulator_get_current_limit_regmap(struct regulator_dev *rdev)
 | |
| {
 | |
| 	unsigned int val;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = regmap_read(rdev->regmap, rdev->desc->csel_reg, &val);
 | |
| 	if (ret != 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	val &= rdev->desc->csel_mask;
 | |
| 	val >>= ffs(rdev->desc->csel_mask) - 1;
 | |
| 
 | |
| 	if (rdev->desc->curr_table) {
 | |
| 		if (val >= rdev->desc->n_current_limits)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		return rdev->desc->curr_table[val];
 | |
| 	}
 | |
| 
 | |
| 	return -EINVAL;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(regulator_get_current_limit_regmap);
 | |
| 
 | |
| /**
 | |
|  * regulator_bulk_set_supply_names - initialize the 'supply' fields in an array
 | |
|  *                                   of regulator_bulk_data structs
 | |
|  *
 | |
|  * @consumers: array of regulator_bulk_data entries to initialize
 | |
|  * @supply_names: array of supply name strings
 | |
|  * @num_supplies: number of supply names to initialize
 | |
|  *
 | |
|  * Note: the 'consumers' array must be the size of 'num_supplies'.
 | |
|  */
 | |
| void regulator_bulk_set_supply_names(struct regulator_bulk_data *consumers,
 | |
| 				     const char *const *supply_names,
 | |
| 				     unsigned int num_supplies)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < num_supplies; i++)
 | |
| 		consumers[i].supply = supply_names[i];
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(regulator_bulk_set_supply_names);
 | |
| 
 | |
| /**
 | |
|  * regulator_is_equal - test whether two regulators are the same
 | |
|  *
 | |
|  * @reg1: first regulator to operate on
 | |
|  * @reg2: second regulator to operate on
 | |
|  */
 | |
| bool regulator_is_equal(struct regulator *reg1, struct regulator *reg2)
 | |
| {
 | |
| 	return reg1->rdev == reg2->rdev;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(regulator_is_equal);
 | |
| 
 | |
| static int find_closest_bigger(unsigned int target, const unsigned int *table,
 | |
| 			       unsigned int num_sel, unsigned int *sel)
 | |
| {
 | |
| 	unsigned int s, tmp, max, maxsel = 0;
 | |
| 	bool found = false;
 | |
| 
 | |
| 	max = table[0];
 | |
| 
 | |
| 	for (s = 0; s < num_sel; s++) {
 | |
| 		if (table[s] > max) {
 | |
| 			max = table[s];
 | |
| 			maxsel = s;
 | |
| 		}
 | |
| 		if (table[s] >= target) {
 | |
| 			if (!found || table[s] - target < tmp - target) {
 | |
| 				tmp = table[s];
 | |
| 				*sel = s;
 | |
| 				found = true;
 | |
| 				if (tmp == target)
 | |
| 					break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!found) {
 | |
| 		*sel = maxsel;
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * regulator_set_ramp_delay_regmap - set_ramp_delay() helper
 | |
|  *
 | |
|  * @rdev: regulator to operate on
 | |
|  *
 | |
|  * Regulators that use regmap for their register I/O can set the ramp_reg
 | |
|  * and ramp_mask fields in their descriptor and then use this as their
 | |
|  * set_ramp_delay operation, saving some code.
 | |
|  */
 | |
| int regulator_set_ramp_delay_regmap(struct regulator_dev *rdev, int ramp_delay)
 | |
| {
 | |
| 	int ret;
 | |
| 	unsigned int sel;
 | |
| 
 | |
| 	if (WARN_ON(!rdev->desc->n_ramp_values || !rdev->desc->ramp_delay_table))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ret = find_closest_bigger(ramp_delay, rdev->desc->ramp_delay_table,
 | |
| 				  rdev->desc->n_ramp_values, &sel);
 | |
| 
 | |
| 	if (ret) {
 | |
| 		dev_warn(rdev_get_dev(rdev),
 | |
| 			 "Can't set ramp-delay %u, setting %u\n", ramp_delay,
 | |
| 			 rdev->desc->ramp_delay_table[sel]);
 | |
| 	}
 | |
| 
 | |
| 	sel <<= ffs(rdev->desc->ramp_mask) - 1;
 | |
| 
 | |
| 	return regmap_update_bits(rdev->regmap, rdev->desc->ramp_reg,
 | |
| 				  rdev->desc->ramp_mask, sel);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(regulator_set_ramp_delay_regmap);
 |