601 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			601 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (c) 2017-2019 Borislav Petkov, SUSE Labs.
 | |
|  */
 | |
| #include <linux/mm.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/ras.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/workqueue.h>
 | |
| 
 | |
| #include <asm/mce.h>
 | |
| 
 | |
| #include "debugfs.h"
 | |
| 
 | |
| /*
 | |
|  * RAS Correctable Errors Collector
 | |
|  *
 | |
|  * This is a simple gadget which collects correctable errors and counts their
 | |
|  * occurrence per physical page address.
 | |
|  *
 | |
|  * We've opted for possibly the simplest data structure to collect those - an
 | |
|  * array of the size of a memory page. It stores 512 u64's with the following
 | |
|  * structure:
 | |
|  *
 | |
|  * [63 ... PFN ... 12 | 11 ... generation ... 10 | 9 ... count ... 0]
 | |
|  *
 | |
|  * The generation in the two highest order bits is two bits which are set to 11b
 | |
|  * on every insertion. During the course of each entry's existence, the
 | |
|  * generation field gets decremented during spring cleaning to 10b, then 01b and
 | |
|  * then 00b.
 | |
|  *
 | |
|  * This way we're employing the natural numeric ordering to make sure that newly
 | |
|  * inserted/touched elements have higher 12-bit counts (which we've manufactured)
 | |
|  * and thus iterating over the array initially won't kick out those elements
 | |
|  * which were inserted last.
 | |
|  *
 | |
|  * Spring cleaning is what we do when we reach a certain number CLEAN_ELEMS of
 | |
|  * elements entered into the array, during which, we're decaying all elements.
 | |
|  * If, after decay, an element gets inserted again, its generation is set to 11b
 | |
|  * to make sure it has higher numerical count than other, older elements and
 | |
|  * thus emulate an an LRU-like behavior when deleting elements to free up space
 | |
|  * in the page.
 | |
|  *
 | |
|  * When an element reaches it's max count of action_threshold, we try to poison
 | |
|  * it by assuming that errors triggered action_threshold times in a single page
 | |
|  * are excessive and that page shouldn't be used anymore. action_threshold is
 | |
|  * initialized to COUNT_MASK which is the maximum.
 | |
|  *
 | |
|  * That error event entry causes cec_add_elem() to return !0 value and thus
 | |
|  * signal to its callers to log the error.
 | |
|  *
 | |
|  * To the question why we've chosen a page and moving elements around with
 | |
|  * memmove(), it is because it is a very simple structure to handle and max data
 | |
|  * movement is 4K which on highly optimized modern CPUs is almost unnoticeable.
 | |
|  * We wanted to avoid the pointer traversal of more complex structures like a
 | |
|  * linked list or some sort of a balancing search tree.
 | |
|  *
 | |
|  * Deleting an element takes O(n) but since it is only a single page, it should
 | |
|  * be fast enough and it shouldn't happen all too often depending on error
 | |
|  * patterns.
 | |
|  */
 | |
| 
 | |
| #undef pr_fmt
 | |
| #define pr_fmt(fmt) "RAS: " fmt
 | |
| 
 | |
| /*
 | |
|  * We use DECAY_BITS bits of PAGE_SHIFT bits for counting decay, i.e., how long
 | |
|  * elements have stayed in the array without having been accessed again.
 | |
|  */
 | |
| #define DECAY_BITS		2
 | |
| #define DECAY_MASK		((1ULL << DECAY_BITS) - 1)
 | |
| #define MAX_ELEMS		(PAGE_SIZE / sizeof(u64))
 | |
| 
 | |
| /*
 | |
|  * Threshold amount of inserted elements after which we start spring
 | |
|  * cleaning.
 | |
|  */
 | |
| #define CLEAN_ELEMS		(MAX_ELEMS >> DECAY_BITS)
 | |
| 
 | |
| /* Bits which count the number of errors happened in this 4K page. */
 | |
| #define COUNT_BITS		(PAGE_SHIFT - DECAY_BITS)
 | |
| #define COUNT_MASK		((1ULL << COUNT_BITS) - 1)
 | |
| #define FULL_COUNT_MASK		(PAGE_SIZE - 1)
 | |
| 
 | |
| /*
 | |
|  * u64: [ 63 ... 12 | DECAY_BITS | COUNT_BITS ]
 | |
|  */
 | |
| 
 | |
| #define PFN(e)			((e) >> PAGE_SHIFT)
 | |
| #define DECAY(e)		(((e) >> COUNT_BITS) & DECAY_MASK)
 | |
| #define COUNT(e)		((unsigned int)(e) & COUNT_MASK)
 | |
| #define FULL_COUNT(e)		((e) & (PAGE_SIZE - 1))
 | |
| 
 | |
| static struct ce_array {
 | |
| 	u64 *array;			/* container page */
 | |
| 	unsigned int n;			/* number of elements in the array */
 | |
| 
 | |
| 	unsigned int decay_count;	/*
 | |
| 					 * number of element insertions/increments
 | |
| 					 * since the last spring cleaning.
 | |
| 					 */
 | |
| 
 | |
| 	u64 pfns_poisoned;		/*
 | |
| 					 * number of PFNs which got poisoned.
 | |
| 					 */
 | |
| 
 | |
| 	u64 ces_entered;		/*
 | |
| 					 * The number of correctable errors
 | |
| 					 * entered into the collector.
 | |
| 					 */
 | |
| 
 | |
| 	u64 decays_done;		/*
 | |
| 					 * Times we did spring cleaning.
 | |
| 					 */
 | |
| 
 | |
| 	union {
 | |
| 		struct {
 | |
| 			__u32	disabled : 1,	/* cmdline disabled */
 | |
| 			__resv   : 31;
 | |
| 		};
 | |
| 		__u32 flags;
 | |
| 	};
 | |
| } ce_arr;
 | |
| 
 | |
| static DEFINE_MUTEX(ce_mutex);
 | |
| static u64 dfs_pfn;
 | |
| 
 | |
| /* Amount of errors after which we offline */
 | |
| static u64 action_threshold = COUNT_MASK;
 | |
| 
 | |
| /* Each element "decays" each decay_interval which is 24hrs by default. */
 | |
| #define CEC_DECAY_DEFAULT_INTERVAL	24 * 60 * 60	/* 24 hrs */
 | |
| #define CEC_DECAY_MIN_INTERVAL		 1 * 60 * 60	/* 1h */
 | |
| #define CEC_DECAY_MAX_INTERVAL	   30 *	24 * 60 * 60	/* one month */
 | |
| static struct delayed_work cec_work;
 | |
| static u64 decay_interval = CEC_DECAY_DEFAULT_INTERVAL;
 | |
| 
 | |
| /*
 | |
|  * Decrement decay value. We're using DECAY_BITS bits to denote decay of an
 | |
|  * element in the array. On insertion and any access, it gets reset to max.
 | |
|  */
 | |
| static void do_spring_cleaning(struct ce_array *ca)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ca->n; i++) {
 | |
| 		u8 decay = DECAY(ca->array[i]);
 | |
| 
 | |
| 		if (!decay)
 | |
| 			continue;
 | |
| 
 | |
| 		decay--;
 | |
| 
 | |
| 		ca->array[i] &= ~(DECAY_MASK << COUNT_BITS);
 | |
| 		ca->array[i] |= (decay << COUNT_BITS);
 | |
| 	}
 | |
| 	ca->decay_count = 0;
 | |
| 	ca->decays_done++;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * @interval in seconds
 | |
|  */
 | |
| static void cec_mod_work(unsigned long interval)
 | |
| {
 | |
| 	unsigned long iv;
 | |
| 
 | |
| 	iv = interval * HZ;
 | |
| 	mod_delayed_work(system_wq, &cec_work, round_jiffies(iv));
 | |
| }
 | |
| 
 | |
| static void cec_work_fn(struct work_struct *work)
 | |
| {
 | |
| 	mutex_lock(&ce_mutex);
 | |
| 	do_spring_cleaning(&ce_arr);
 | |
| 	mutex_unlock(&ce_mutex);
 | |
| 
 | |
| 	cec_mod_work(decay_interval);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * @to: index of the smallest element which is >= then @pfn.
 | |
|  *
 | |
|  * Return the index of the pfn if found, otherwise negative value.
 | |
|  */
 | |
| static int __find_elem(struct ce_array *ca, u64 pfn, unsigned int *to)
 | |
| {
 | |
| 	int min = 0, max = ca->n - 1;
 | |
| 	u64 this_pfn;
 | |
| 
 | |
| 	while (min <= max) {
 | |
| 		int i = (min + max) >> 1;
 | |
| 
 | |
| 		this_pfn = PFN(ca->array[i]);
 | |
| 
 | |
| 		if (this_pfn < pfn)
 | |
| 			min = i + 1;
 | |
| 		else if (this_pfn > pfn)
 | |
| 			max = i - 1;
 | |
| 		else if (this_pfn == pfn) {
 | |
| 			if (to)
 | |
| 				*to = i;
 | |
| 
 | |
| 			return i;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * When the loop terminates without finding @pfn, min has the index of
 | |
| 	 * the element slot where the new @pfn should be inserted. The loop
 | |
| 	 * terminates when min > max, which means the min index points to the
 | |
| 	 * bigger element while the max index to the smaller element, in-between
 | |
| 	 * which the new @pfn belongs to.
 | |
| 	 *
 | |
| 	 * For more details, see exercise 1, Section 6.2.1 in TAOCP, vol. 3.
 | |
| 	 */
 | |
| 	if (to)
 | |
| 		*to = min;
 | |
| 
 | |
| 	return -ENOKEY;
 | |
| }
 | |
| 
 | |
| static int find_elem(struct ce_array *ca, u64 pfn, unsigned int *to)
 | |
| {
 | |
| 	WARN_ON(!to);
 | |
| 
 | |
| 	if (!ca->n) {
 | |
| 		*to = 0;
 | |
| 		return -ENOKEY;
 | |
| 	}
 | |
| 	return __find_elem(ca, pfn, to);
 | |
| }
 | |
| 
 | |
| static void del_elem(struct ce_array *ca, int idx)
 | |
| {
 | |
| 	/* Save us a function call when deleting the last element. */
 | |
| 	if (ca->n - (idx + 1))
 | |
| 		memmove((void *)&ca->array[idx],
 | |
| 			(void *)&ca->array[idx + 1],
 | |
| 			(ca->n - (idx + 1)) * sizeof(u64));
 | |
| 
 | |
| 	ca->n--;
 | |
| }
 | |
| 
 | |
| static u64 del_lru_elem_unlocked(struct ce_array *ca)
 | |
| {
 | |
| 	unsigned int min = FULL_COUNT_MASK;
 | |
| 	int i, min_idx = 0;
 | |
| 
 | |
| 	for (i = 0; i < ca->n; i++) {
 | |
| 		unsigned int this = FULL_COUNT(ca->array[i]);
 | |
| 
 | |
| 		if (min > this) {
 | |
| 			min = this;
 | |
| 			min_idx = i;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	del_elem(ca, min_idx);
 | |
| 
 | |
| 	return PFN(ca->array[min_idx]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We return the 0th pfn in the error case under the assumption that it cannot
 | |
|  * be poisoned and excessive CEs in there are a serious deal anyway.
 | |
|  */
 | |
| static u64 __maybe_unused del_lru_elem(void)
 | |
| {
 | |
| 	struct ce_array *ca = &ce_arr;
 | |
| 	u64 pfn;
 | |
| 
 | |
| 	if (!ca->n)
 | |
| 		return 0;
 | |
| 
 | |
| 	mutex_lock(&ce_mutex);
 | |
| 	pfn = del_lru_elem_unlocked(ca);
 | |
| 	mutex_unlock(&ce_mutex);
 | |
| 
 | |
| 	return pfn;
 | |
| }
 | |
| 
 | |
| static bool sanity_check(struct ce_array *ca)
 | |
| {
 | |
| 	bool ret = false;
 | |
| 	u64 prev = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ca->n; i++) {
 | |
| 		u64 this = PFN(ca->array[i]);
 | |
| 
 | |
| 		if (WARN(prev > this, "prev: 0x%016llx <-> this: 0x%016llx\n", prev, this))
 | |
| 			ret = true;
 | |
| 
 | |
| 		prev = this;
 | |
| 	}
 | |
| 
 | |
| 	if (!ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	pr_info("Sanity check dump:\n{ n: %d\n", ca->n);
 | |
| 	for (i = 0; i < ca->n; i++) {
 | |
| 		u64 this = PFN(ca->array[i]);
 | |
| 
 | |
| 		pr_info(" %03d: [%016llx|%03llx]\n", i, this, FULL_COUNT(ca->array[i]));
 | |
| 	}
 | |
| 	pr_info("}\n");
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * cec_add_elem - Add an element to the CEC array.
 | |
|  * @pfn:	page frame number to insert
 | |
|  *
 | |
|  * Return values:
 | |
|  * - <0:	on error
 | |
|  * -  0:	on success
 | |
|  * - >0:	when the inserted pfn was offlined
 | |
|  */
 | |
| static int cec_add_elem(u64 pfn)
 | |
| {
 | |
| 	struct ce_array *ca = &ce_arr;
 | |
| 	int count, err, ret = 0;
 | |
| 	unsigned int to = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We can be called very early on the identify_cpu() path where we are
 | |
| 	 * not initialized yet. We ignore the error for simplicity.
 | |
| 	 */
 | |
| 	if (!ce_arr.array || ce_arr.disabled)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	mutex_lock(&ce_mutex);
 | |
| 
 | |
| 	ca->ces_entered++;
 | |
| 
 | |
| 	/* Array full, free the LRU slot. */
 | |
| 	if (ca->n == MAX_ELEMS)
 | |
| 		WARN_ON(!del_lru_elem_unlocked(ca));
 | |
| 
 | |
| 	err = find_elem(ca, pfn, &to);
 | |
| 	if (err < 0) {
 | |
| 		/*
 | |
| 		 * Shift range [to-end] to make room for one more element.
 | |
| 		 */
 | |
| 		memmove((void *)&ca->array[to + 1],
 | |
| 			(void *)&ca->array[to],
 | |
| 			(ca->n - to) * sizeof(u64));
 | |
| 
 | |
| 		ca->array[to] = pfn << PAGE_SHIFT;
 | |
| 		ca->n++;
 | |
| 	}
 | |
| 
 | |
| 	/* Add/refresh element generation and increment count */
 | |
| 	ca->array[to] |= DECAY_MASK << COUNT_BITS;
 | |
| 	ca->array[to]++;
 | |
| 
 | |
| 	/* Check action threshold and soft-offline, if reached. */
 | |
| 	count = COUNT(ca->array[to]);
 | |
| 	if (count >= action_threshold) {
 | |
| 		u64 pfn = ca->array[to] >> PAGE_SHIFT;
 | |
| 
 | |
| 		if (!pfn_valid(pfn)) {
 | |
| 			pr_warn("CEC: Invalid pfn: 0x%llx\n", pfn);
 | |
| 		} else {
 | |
| 			/* We have reached max count for this page, soft-offline it. */
 | |
| 			pr_err("Soft-offlining pfn: 0x%llx\n", pfn);
 | |
| 			memory_failure_queue(pfn, MF_SOFT_OFFLINE);
 | |
| 			ca->pfns_poisoned++;
 | |
| 		}
 | |
| 
 | |
| 		del_elem(ca, to);
 | |
| 
 | |
| 		/*
 | |
| 		 * Return a >0 value to callers, to denote that we've reached
 | |
| 		 * the offlining threshold.
 | |
| 		 */
 | |
| 		ret = 1;
 | |
| 
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	ca->decay_count++;
 | |
| 
 | |
| 	if (ca->decay_count >= CLEAN_ELEMS)
 | |
| 		do_spring_cleaning(ca);
 | |
| 
 | |
| 	WARN_ON_ONCE(sanity_check(ca));
 | |
| 
 | |
| unlock:
 | |
| 	mutex_unlock(&ce_mutex);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int u64_get(void *data, u64 *val)
 | |
| {
 | |
| 	*val = *(u64 *)data;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int pfn_set(void *data, u64 val)
 | |
| {
 | |
| 	*(u64 *)data = val;
 | |
| 
 | |
| 	cec_add_elem(val);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| DEFINE_DEBUGFS_ATTRIBUTE(pfn_ops, u64_get, pfn_set, "0x%llx\n");
 | |
| 
 | |
| static int decay_interval_set(void *data, u64 val)
 | |
| {
 | |
| 	if (val < CEC_DECAY_MIN_INTERVAL)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (val > CEC_DECAY_MAX_INTERVAL)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	*(u64 *)data   = val;
 | |
| 	decay_interval = val;
 | |
| 
 | |
| 	cec_mod_work(decay_interval);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DEFINE_DEBUGFS_ATTRIBUTE(decay_interval_ops, u64_get, decay_interval_set, "%lld\n");
 | |
| 
 | |
| static int action_threshold_set(void *data, u64 val)
 | |
| {
 | |
| 	*(u64 *)data = val;
 | |
| 
 | |
| 	if (val > COUNT_MASK)
 | |
| 		val = COUNT_MASK;
 | |
| 
 | |
| 	action_threshold = val;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DEFINE_DEBUGFS_ATTRIBUTE(action_threshold_ops, u64_get, action_threshold_set, "%lld\n");
 | |
| 
 | |
| static const char * const bins[] = { "00", "01", "10", "11" };
 | |
| 
 | |
| static int array_show(struct seq_file *m, void *v)
 | |
| {
 | |
| 	struct ce_array *ca = &ce_arr;
 | |
| 	int i;
 | |
| 
 | |
| 	mutex_lock(&ce_mutex);
 | |
| 
 | |
| 	seq_printf(m, "{ n: %d\n", ca->n);
 | |
| 	for (i = 0; i < ca->n; i++) {
 | |
| 		u64 this = PFN(ca->array[i]);
 | |
| 
 | |
| 		seq_printf(m, " %3d: [%016llx|%s|%03llx]\n",
 | |
| 			   i, this, bins[DECAY(ca->array[i])], COUNT(ca->array[i]));
 | |
| 	}
 | |
| 
 | |
| 	seq_printf(m, "}\n");
 | |
| 
 | |
| 	seq_printf(m, "Stats:\nCEs: %llu\nofflined pages: %llu\n",
 | |
| 		   ca->ces_entered, ca->pfns_poisoned);
 | |
| 
 | |
| 	seq_printf(m, "Flags: 0x%x\n", ca->flags);
 | |
| 
 | |
| 	seq_printf(m, "Decay interval: %lld seconds\n", decay_interval);
 | |
| 	seq_printf(m, "Decays: %lld\n", ca->decays_done);
 | |
| 
 | |
| 	seq_printf(m, "Action threshold: %lld\n", action_threshold);
 | |
| 
 | |
| 	mutex_unlock(&ce_mutex);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| DEFINE_SHOW_ATTRIBUTE(array);
 | |
| 
 | |
| static int __init create_debugfs_nodes(void)
 | |
| {
 | |
| 	struct dentry *d, *pfn, *decay, *count, *array, *dfs;
 | |
| 
 | |
| 	dfs = ras_get_debugfs_root();
 | |
| 	if (!dfs) {
 | |
| 		pr_warn("Error getting RAS debugfs root!\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	d = debugfs_create_dir("cec", dfs);
 | |
| 	if (!d) {
 | |
| 		pr_warn("Error creating cec debugfs node!\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	decay = debugfs_create_file("decay_interval", S_IRUSR | S_IWUSR, d,
 | |
| 				    &decay_interval, &decay_interval_ops);
 | |
| 	if (!decay) {
 | |
| 		pr_warn("Error creating decay_interval debugfs node!\n");
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	count = debugfs_create_file("action_threshold", S_IRUSR | S_IWUSR, d,
 | |
| 				    &action_threshold, &action_threshold_ops);
 | |
| 	if (!count) {
 | |
| 		pr_warn("Error creating action_threshold debugfs node!\n");
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	if (!IS_ENABLED(CONFIG_RAS_CEC_DEBUG))
 | |
| 		return 0;
 | |
| 
 | |
| 	pfn = debugfs_create_file("pfn", S_IRUSR | S_IWUSR, d, &dfs_pfn, &pfn_ops);
 | |
| 	if (!pfn) {
 | |
| 		pr_warn("Error creating pfn debugfs node!\n");
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	array = debugfs_create_file("array", S_IRUSR, d, NULL, &array_fops);
 | |
| 	if (!array) {
 | |
| 		pr_warn("Error creating array debugfs node!\n");
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err:
 | |
| 	debugfs_remove_recursive(d);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int cec_notifier(struct notifier_block *nb, unsigned long val,
 | |
| 			void *data)
 | |
| {
 | |
| 	struct mce *m = (struct mce *)data;
 | |
| 
 | |
| 	if (!m)
 | |
| 		return NOTIFY_DONE;
 | |
| 
 | |
| 	/* We eat only correctable DRAM errors with usable addresses. */
 | |
| 	if (mce_is_memory_error(m) &&
 | |
| 	    mce_is_correctable(m)  &&
 | |
| 	    mce_usable_address(m)) {
 | |
| 		if (!cec_add_elem(m->addr >> PAGE_SHIFT)) {
 | |
| 			m->kflags |= MCE_HANDLED_CEC;
 | |
| 			return NOTIFY_OK;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return NOTIFY_DONE;
 | |
| }
 | |
| 
 | |
| static struct notifier_block cec_nb = {
 | |
| 	.notifier_call	= cec_notifier,
 | |
| 	.priority	= MCE_PRIO_CEC,
 | |
| };
 | |
| 
 | |
| static int __init cec_init(void)
 | |
| {
 | |
| 	if (ce_arr.disabled)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	ce_arr.array = (void *)get_zeroed_page(GFP_KERNEL);
 | |
| 	if (!ce_arr.array) {
 | |
| 		pr_err("Error allocating CE array page!\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	if (create_debugfs_nodes()) {
 | |
| 		free_page((unsigned long)ce_arr.array);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	INIT_DELAYED_WORK(&cec_work, cec_work_fn);
 | |
| 	schedule_delayed_work(&cec_work, CEC_DECAY_DEFAULT_INTERVAL);
 | |
| 
 | |
| 	mce_register_decode_chain(&cec_nb);
 | |
| 
 | |
| 	pr_info("Correctable Errors collector initialized.\n");
 | |
| 	return 0;
 | |
| }
 | |
| late_initcall(cec_init);
 | |
| 
 | |
| int __init parse_cec_param(char *str)
 | |
| {
 | |
| 	if (!str)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (*str == '=')
 | |
| 		str++;
 | |
| 
 | |
| 	if (!strcmp(str, "cec_disable"))
 | |
| 		ce_arr.disabled = 1;
 | |
| 	else
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 |