308 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			308 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (C) 2019 Spreadtrum Communications Inc.
 | |
|  */
 | |
| 
 | |
| #include <linux/clk.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/math64.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/pwm.h>
 | |
| 
 | |
| #define SPRD_PWM_PRESCALE	0x0
 | |
| #define SPRD_PWM_MOD		0x4
 | |
| #define SPRD_PWM_DUTY		0x8
 | |
| #define SPRD_PWM_ENABLE		0x18
 | |
| 
 | |
| #define SPRD_PWM_MOD_MAX	GENMASK(7, 0)
 | |
| #define SPRD_PWM_DUTY_MSK	GENMASK(15, 0)
 | |
| #define SPRD_PWM_PRESCALE_MSK	GENMASK(7, 0)
 | |
| #define SPRD_PWM_ENABLE_BIT	BIT(0)
 | |
| 
 | |
| #define SPRD_PWM_CHN_NUM	4
 | |
| #define SPRD_PWM_REGS_SHIFT	5
 | |
| #define SPRD_PWM_CHN_CLKS_NUM	2
 | |
| #define SPRD_PWM_CHN_OUTPUT_CLK	1
 | |
| 
 | |
| struct sprd_pwm_chn {
 | |
| 	struct clk_bulk_data clks[SPRD_PWM_CHN_CLKS_NUM];
 | |
| 	u32 clk_rate;
 | |
| };
 | |
| 
 | |
| struct sprd_pwm_chip {
 | |
| 	void __iomem *base;
 | |
| 	struct device *dev;
 | |
| 	struct pwm_chip chip;
 | |
| 	int num_pwms;
 | |
| 	struct sprd_pwm_chn chn[SPRD_PWM_CHN_NUM];
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * The list of clocks required by PWM channels, and each channel has 2 clocks:
 | |
|  * enable clock and pwm clock.
 | |
|  */
 | |
| static const char * const sprd_pwm_clks[] = {
 | |
| 	"enable0", "pwm0",
 | |
| 	"enable1", "pwm1",
 | |
| 	"enable2", "pwm2",
 | |
| 	"enable3", "pwm3",
 | |
| };
 | |
| 
 | |
| static u32 sprd_pwm_read(struct sprd_pwm_chip *spc, u32 hwid, u32 reg)
 | |
| {
 | |
| 	u32 offset = reg + (hwid << SPRD_PWM_REGS_SHIFT);
 | |
| 
 | |
| 	return readl_relaxed(spc->base + offset);
 | |
| }
 | |
| 
 | |
| static void sprd_pwm_write(struct sprd_pwm_chip *spc, u32 hwid,
 | |
| 			   u32 reg, u32 val)
 | |
| {
 | |
| 	u32 offset = reg + (hwid << SPRD_PWM_REGS_SHIFT);
 | |
| 
 | |
| 	writel_relaxed(val, spc->base + offset);
 | |
| }
 | |
| 
 | |
| static void sprd_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
 | |
| 			       struct pwm_state *state)
 | |
| {
 | |
| 	struct sprd_pwm_chip *spc =
 | |
| 		container_of(chip, struct sprd_pwm_chip, chip);
 | |
| 	struct sprd_pwm_chn *chn = &spc->chn[pwm->hwpwm];
 | |
| 	u32 val, duty, prescale;
 | |
| 	u64 tmp;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * The clocks to PWM channel has to be enabled first before
 | |
| 	 * reading to the registers.
 | |
| 	 */
 | |
| 	ret = clk_bulk_prepare_enable(SPRD_PWM_CHN_CLKS_NUM, chn->clks);
 | |
| 	if (ret) {
 | |
| 		dev_err(spc->dev, "failed to enable pwm%u clocks\n",
 | |
| 			pwm->hwpwm);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	val = sprd_pwm_read(spc, pwm->hwpwm, SPRD_PWM_ENABLE);
 | |
| 	if (val & SPRD_PWM_ENABLE_BIT)
 | |
| 		state->enabled = true;
 | |
| 	else
 | |
| 		state->enabled = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * The hardware provides a counter that is feed by the source clock.
 | |
| 	 * The period length is (PRESCALE + 1) * MOD counter steps.
 | |
| 	 * The duty cycle length is (PRESCALE + 1) * DUTY counter steps.
 | |
| 	 * Thus the period_ns and duty_ns calculation formula should be:
 | |
| 	 * period_ns = NSEC_PER_SEC * (prescale + 1) * mod / clk_rate
 | |
| 	 * duty_ns = NSEC_PER_SEC * (prescale + 1) * duty / clk_rate
 | |
| 	 */
 | |
| 	val = sprd_pwm_read(spc, pwm->hwpwm, SPRD_PWM_PRESCALE);
 | |
| 	prescale = val & SPRD_PWM_PRESCALE_MSK;
 | |
| 	tmp = (prescale + 1) * NSEC_PER_SEC * SPRD_PWM_MOD_MAX;
 | |
| 	state->period = DIV_ROUND_CLOSEST_ULL(tmp, chn->clk_rate);
 | |
| 
 | |
| 	val = sprd_pwm_read(spc, pwm->hwpwm, SPRD_PWM_DUTY);
 | |
| 	duty = val & SPRD_PWM_DUTY_MSK;
 | |
| 	tmp = (prescale + 1) * NSEC_PER_SEC * duty;
 | |
| 	state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, chn->clk_rate);
 | |
| 
 | |
| 	/* Disable PWM clocks if the PWM channel is not in enable state. */
 | |
| 	if (!state->enabled)
 | |
| 		clk_bulk_disable_unprepare(SPRD_PWM_CHN_CLKS_NUM, chn->clks);
 | |
| }
 | |
| 
 | |
| static int sprd_pwm_config(struct sprd_pwm_chip *spc, struct pwm_device *pwm,
 | |
| 			   int duty_ns, int period_ns)
 | |
| {
 | |
| 	struct sprd_pwm_chn *chn = &spc->chn[pwm->hwpwm];
 | |
| 	u32 prescale, duty;
 | |
| 	u64 tmp;
 | |
| 
 | |
| 	/*
 | |
| 	 * The hardware provides a counter that is feed by the source clock.
 | |
| 	 * The period length is (PRESCALE + 1) * MOD counter steps.
 | |
| 	 * The duty cycle length is (PRESCALE + 1) * DUTY counter steps.
 | |
| 	 *
 | |
| 	 * To keep the maths simple we're always using MOD = SPRD_PWM_MOD_MAX.
 | |
| 	 * The value for PRESCALE is selected such that the resulting period
 | |
| 	 * gets the maximal length not bigger than the requested one with the
 | |
| 	 * given settings (MOD = SPRD_PWM_MOD_MAX and input clock).
 | |
| 	 */
 | |
| 	duty = duty_ns * SPRD_PWM_MOD_MAX / period_ns;
 | |
| 
 | |
| 	tmp = (u64)chn->clk_rate * period_ns;
 | |
| 	do_div(tmp, NSEC_PER_SEC);
 | |
| 	prescale = DIV_ROUND_CLOSEST_ULL(tmp, SPRD_PWM_MOD_MAX) - 1;
 | |
| 	if (prescale > SPRD_PWM_PRESCALE_MSK)
 | |
| 		prescale = SPRD_PWM_PRESCALE_MSK;
 | |
| 
 | |
| 	/*
 | |
| 	 * Note: Writing DUTY triggers the hardware to actually apply the
 | |
| 	 * values written to MOD and DUTY to the output, so must keep writing
 | |
| 	 * DUTY last.
 | |
| 	 *
 | |
| 	 * The hardware can ensures that current running period is completed
 | |
| 	 * before changing a new configuration to avoid mixed settings.
 | |
| 	 */
 | |
| 	sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_PRESCALE, prescale);
 | |
| 	sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_MOD, SPRD_PWM_MOD_MAX);
 | |
| 	sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_DUTY, duty);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sprd_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
 | |
| 			  const struct pwm_state *state)
 | |
| {
 | |
| 	struct sprd_pwm_chip *spc =
 | |
| 		container_of(chip, struct sprd_pwm_chip, chip);
 | |
| 	struct sprd_pwm_chn *chn = &spc->chn[pwm->hwpwm];
 | |
| 	struct pwm_state *cstate = &pwm->state;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (state->polarity != PWM_POLARITY_NORMAL)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (state->enabled) {
 | |
| 		if (!cstate->enabled) {
 | |
| 			/*
 | |
| 			 * The clocks to PWM channel has to be enabled first
 | |
| 			 * before writing to the registers.
 | |
| 			 */
 | |
| 			ret = clk_bulk_prepare_enable(SPRD_PWM_CHN_CLKS_NUM,
 | |
| 						      chn->clks);
 | |
| 			if (ret) {
 | |
| 				dev_err(spc->dev,
 | |
| 					"failed to enable pwm%u clocks\n",
 | |
| 					pwm->hwpwm);
 | |
| 				return ret;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		ret = sprd_pwm_config(spc, pwm, state->duty_cycle,
 | |
| 				      state->period);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_ENABLE, 1);
 | |
| 	} else if (cstate->enabled) {
 | |
| 		/*
 | |
| 		 * Note: After setting SPRD_PWM_ENABLE to zero, the controller
 | |
| 		 * will not wait for current period to be completed, instead it
 | |
| 		 * will stop the PWM channel immediately.
 | |
| 		 */
 | |
| 		sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_ENABLE, 0);
 | |
| 
 | |
| 		clk_bulk_disable_unprepare(SPRD_PWM_CHN_CLKS_NUM, chn->clks);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct pwm_ops sprd_pwm_ops = {
 | |
| 	.apply = sprd_pwm_apply,
 | |
| 	.get_state = sprd_pwm_get_state,
 | |
| 	.owner = THIS_MODULE,
 | |
| };
 | |
| 
 | |
| static int sprd_pwm_clk_init(struct sprd_pwm_chip *spc)
 | |
| {
 | |
| 	struct clk *clk_pwm;
 | |
| 	int ret, i;
 | |
| 
 | |
| 	for (i = 0; i < SPRD_PWM_CHN_NUM; i++) {
 | |
| 		struct sprd_pwm_chn *chn = &spc->chn[i];
 | |
| 		int j;
 | |
| 
 | |
| 		for (j = 0; j < SPRD_PWM_CHN_CLKS_NUM; ++j)
 | |
| 			chn->clks[j].id =
 | |
| 				sprd_pwm_clks[i * SPRD_PWM_CHN_CLKS_NUM + j];
 | |
| 
 | |
| 		ret = devm_clk_bulk_get(spc->dev, SPRD_PWM_CHN_CLKS_NUM,
 | |
| 					chn->clks);
 | |
| 		if (ret) {
 | |
| 			if (ret == -ENOENT)
 | |
| 				break;
 | |
| 
 | |
| 			return dev_err_probe(spc->dev, ret,
 | |
| 					     "failed to get channel clocks\n");
 | |
| 		}
 | |
| 
 | |
| 		clk_pwm = chn->clks[SPRD_PWM_CHN_OUTPUT_CLK].clk;
 | |
| 		chn->clk_rate = clk_get_rate(clk_pwm);
 | |
| 	}
 | |
| 
 | |
| 	if (!i) {
 | |
| 		dev_err(spc->dev, "no available PWM channels\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	spc->num_pwms = i;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sprd_pwm_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct sprd_pwm_chip *spc;
 | |
| 	int ret;
 | |
| 
 | |
| 	spc = devm_kzalloc(&pdev->dev, sizeof(*spc), GFP_KERNEL);
 | |
| 	if (!spc)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	spc->base = devm_platform_ioremap_resource(pdev, 0);
 | |
| 	if (IS_ERR(spc->base))
 | |
| 		return PTR_ERR(spc->base);
 | |
| 
 | |
| 	spc->dev = &pdev->dev;
 | |
| 	platform_set_drvdata(pdev, spc);
 | |
| 
 | |
| 	ret = sprd_pwm_clk_init(spc);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	spc->chip.dev = &pdev->dev;
 | |
| 	spc->chip.ops = &sprd_pwm_ops;
 | |
| 	spc->chip.npwm = spc->num_pwms;
 | |
| 
 | |
| 	ret = pwmchip_add(&spc->chip);
 | |
| 	if (ret)
 | |
| 		dev_err(&pdev->dev, "failed to add PWM chip\n");
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int sprd_pwm_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	struct sprd_pwm_chip *spc = platform_get_drvdata(pdev);
 | |
| 
 | |
| 	pwmchip_remove(&spc->chip);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct of_device_id sprd_pwm_of_match[] = {
 | |
| 	{ .compatible = "sprd,ums512-pwm", },
 | |
| 	{ },
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, sprd_pwm_of_match);
 | |
| 
 | |
| static struct platform_driver sprd_pwm_driver = {
 | |
| 	.driver = {
 | |
| 		.name = "sprd-pwm",
 | |
| 		.of_match_table = sprd_pwm_of_match,
 | |
| 	},
 | |
| 	.probe = sprd_pwm_probe,
 | |
| 	.remove = sprd_pwm_remove,
 | |
| };
 | |
| 
 | |
| module_platform_driver(sprd_pwm_driver);
 | |
| 
 | |
| MODULE_DESCRIPTION("Spreadtrum PWM Driver");
 | |
| MODULE_LICENSE("GPL v2");
 |