298 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			298 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Copyright 2020 Linaro Limited
 | |
|  *
 | |
|  * Author: Daniel Lezcano <daniel.lezcano@linaro.org>
 | |
|  *
 | |
|  * The DTPM CPU is based on the energy model. It hooks the CPU in the
 | |
|  * DTPM tree which in turns update the power number by propagating the
 | |
|  * power number from the CPU energy model information to the parents.
 | |
|  *
 | |
|  * The association between the power and the performance state, allows
 | |
|  * to set the power of the CPU at the OPP granularity.
 | |
|  *
 | |
|  * The CPU hotplug is supported and the power numbers will be updated
 | |
|  * if a CPU is hot plugged / unplugged.
 | |
|  */
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/cpumask.h>
 | |
| #include <linux/cpufreq.h>
 | |
| #include <linux/cpuhotplug.h>
 | |
| #include <linux/dtpm.h>
 | |
| #include <linux/energy_model.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/pm_qos.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/units.h>
 | |
| 
 | |
| struct dtpm_cpu {
 | |
| 	struct dtpm dtpm;
 | |
| 	struct freq_qos_request qos_req;
 | |
| 	int cpu;
 | |
| };
 | |
| 
 | |
| static DEFINE_PER_CPU(struct dtpm_cpu *, dtpm_per_cpu);
 | |
| 
 | |
| static struct dtpm_cpu *to_dtpm_cpu(struct dtpm *dtpm)
 | |
| {
 | |
| 	return container_of(dtpm, struct dtpm_cpu, dtpm);
 | |
| }
 | |
| 
 | |
| static u64 set_pd_power_limit(struct dtpm *dtpm, u64 power_limit)
 | |
| {
 | |
| 	struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
 | |
| 	struct em_perf_domain *pd = em_cpu_get(dtpm_cpu->cpu);
 | |
| 	struct cpumask cpus;
 | |
| 	unsigned long freq;
 | |
| 	u64 power;
 | |
| 	int i, nr_cpus;
 | |
| 
 | |
| 	cpumask_and(&cpus, cpu_online_mask, to_cpumask(pd->cpus));
 | |
| 	nr_cpus = cpumask_weight(&cpus);
 | |
| 
 | |
| 	for (i = 0; i < pd->nr_perf_states; i++) {
 | |
| 
 | |
| 		power = pd->table[i].power * nr_cpus;
 | |
| 
 | |
| 		if (power > power_limit)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	freq = pd->table[i - 1].frequency;
 | |
| 
 | |
| 	freq_qos_update_request(&dtpm_cpu->qos_req, freq);
 | |
| 
 | |
| 	power_limit = pd->table[i - 1].power * nr_cpus;
 | |
| 
 | |
| 	return power_limit;
 | |
| }
 | |
| 
 | |
| static u64 scale_pd_power_uw(struct cpumask *pd_mask, u64 power)
 | |
| {
 | |
| 	unsigned long max, sum_util = 0;
 | |
| 	int cpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * The capacity is the same for all CPUs belonging to
 | |
| 	 * the same perf domain.
 | |
| 	 */
 | |
| 	max = arch_scale_cpu_capacity(cpumask_first(pd_mask));
 | |
| 
 | |
| 	for_each_cpu_and(cpu, pd_mask, cpu_online_mask)
 | |
| 		sum_util += sched_cpu_util(cpu);
 | |
| 
 | |
| 	return (power * ((sum_util << 10) / max)) >> 10;
 | |
| }
 | |
| 
 | |
| static u64 get_pd_power_uw(struct dtpm *dtpm)
 | |
| {
 | |
| 	struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
 | |
| 	struct em_perf_domain *pd;
 | |
| 	struct cpumask *pd_mask;
 | |
| 	unsigned long freq;
 | |
| 	int i;
 | |
| 
 | |
| 	pd = em_cpu_get(dtpm_cpu->cpu);
 | |
| 
 | |
| 	pd_mask = em_span_cpus(pd);
 | |
| 
 | |
| 	freq = cpufreq_quick_get(dtpm_cpu->cpu);
 | |
| 
 | |
| 	for (i = 0; i < pd->nr_perf_states; i++) {
 | |
| 
 | |
| 		if (pd->table[i].frequency < freq)
 | |
| 			continue;
 | |
| 
 | |
| 		return scale_pd_power_uw(pd_mask, pd->table[i].power *
 | |
| 					 MICROWATT_PER_MILLIWATT);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int update_pd_power_uw(struct dtpm *dtpm)
 | |
| {
 | |
| 	struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
 | |
| 	struct em_perf_domain *em = em_cpu_get(dtpm_cpu->cpu);
 | |
| 	struct cpumask cpus;
 | |
| 	int nr_cpus;
 | |
| 
 | |
| 	cpumask_and(&cpus, cpu_online_mask, to_cpumask(em->cpus));
 | |
| 	nr_cpus = cpumask_weight(&cpus);
 | |
| 
 | |
| 	dtpm->power_min = em->table[0].power;
 | |
| 	dtpm->power_min *= MICROWATT_PER_MILLIWATT;
 | |
| 	dtpm->power_min *= nr_cpus;
 | |
| 
 | |
| 	dtpm->power_max = em->table[em->nr_perf_states - 1].power;
 | |
| 	dtpm->power_max *= MICROWATT_PER_MILLIWATT;
 | |
| 	dtpm->power_max *= nr_cpus;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void pd_release(struct dtpm *dtpm)
 | |
| {
 | |
| 	struct dtpm_cpu *dtpm_cpu = to_dtpm_cpu(dtpm);
 | |
| 	struct cpufreq_policy *policy;
 | |
| 
 | |
| 	if (freq_qos_request_active(&dtpm_cpu->qos_req))
 | |
| 		freq_qos_remove_request(&dtpm_cpu->qos_req);
 | |
| 
 | |
| 	policy = cpufreq_cpu_get(dtpm_cpu->cpu);
 | |
| 	if (policy) {
 | |
| 		for_each_cpu(dtpm_cpu->cpu, policy->related_cpus)
 | |
| 			per_cpu(dtpm_per_cpu, dtpm_cpu->cpu) = NULL;
 | |
| 	}
 | |
| 	
 | |
| 	kfree(dtpm_cpu);
 | |
| }
 | |
| 
 | |
| static struct dtpm_ops dtpm_ops = {
 | |
| 	.set_power_uw	 = set_pd_power_limit,
 | |
| 	.get_power_uw	 = get_pd_power_uw,
 | |
| 	.update_power_uw = update_pd_power_uw,
 | |
| 	.release	 = pd_release,
 | |
| };
 | |
| 
 | |
| static int cpuhp_dtpm_cpu_offline(unsigned int cpu)
 | |
| {
 | |
| 	struct dtpm_cpu *dtpm_cpu;
 | |
| 
 | |
| 	dtpm_cpu = per_cpu(dtpm_per_cpu, cpu);
 | |
| 	if (dtpm_cpu)
 | |
| 		dtpm_update_power(&dtpm_cpu->dtpm);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cpuhp_dtpm_cpu_online(unsigned int cpu)
 | |
| {
 | |
| 	struct dtpm_cpu *dtpm_cpu;
 | |
| 
 | |
| 	dtpm_cpu = per_cpu(dtpm_per_cpu, cpu);
 | |
| 	if (dtpm_cpu)
 | |
| 		return dtpm_update_power(&dtpm_cpu->dtpm);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __dtpm_cpu_setup(int cpu, struct dtpm *parent)
 | |
| {
 | |
| 	struct dtpm_cpu *dtpm_cpu;
 | |
| 	struct cpufreq_policy *policy;
 | |
| 	struct em_perf_domain *pd;
 | |
| 	char name[CPUFREQ_NAME_LEN];
 | |
| 	int ret = -ENOMEM;
 | |
| 
 | |
| 	dtpm_cpu = per_cpu(dtpm_per_cpu, cpu);
 | |
| 	if (dtpm_cpu)
 | |
| 		return 0;
 | |
| 
 | |
| 	policy = cpufreq_cpu_get(cpu);
 | |
| 	if (!policy)
 | |
| 		return 0;
 | |
| 
 | |
| 	pd = em_cpu_get(cpu);
 | |
| 	if (!pd || em_is_artificial(pd))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	dtpm_cpu = kzalloc(sizeof(*dtpm_cpu), GFP_KERNEL);
 | |
| 	if (!dtpm_cpu)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	dtpm_init(&dtpm_cpu->dtpm, &dtpm_ops);
 | |
| 	dtpm_cpu->cpu = cpu;
 | |
| 
 | |
| 	for_each_cpu(cpu, policy->related_cpus)
 | |
| 		per_cpu(dtpm_per_cpu, cpu) = dtpm_cpu;
 | |
| 
 | |
| 	snprintf(name, sizeof(name), "cpu%d-cpufreq", dtpm_cpu->cpu);
 | |
| 
 | |
| 	ret = dtpm_register(name, &dtpm_cpu->dtpm, parent);
 | |
| 	if (ret)
 | |
| 		goto out_kfree_dtpm_cpu;
 | |
| 
 | |
| 	ret = freq_qos_add_request(&policy->constraints,
 | |
| 				   &dtpm_cpu->qos_req, FREQ_QOS_MAX,
 | |
| 				   pd->table[pd->nr_perf_states - 1].frequency);
 | |
| 	if (ret)
 | |
| 		goto out_dtpm_unregister;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_dtpm_unregister:
 | |
| 	dtpm_unregister(&dtpm_cpu->dtpm);
 | |
| 	dtpm_cpu = NULL;
 | |
| 
 | |
| out_kfree_dtpm_cpu:
 | |
| 	for_each_cpu(cpu, policy->related_cpus)
 | |
| 		per_cpu(dtpm_per_cpu, cpu) = NULL;
 | |
| 	kfree(dtpm_cpu);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int dtpm_cpu_setup(struct dtpm *dtpm, struct device_node *np)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	cpu = of_cpu_node_to_id(np);
 | |
| 	if (cpu < 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	return __dtpm_cpu_setup(cpu, dtpm);
 | |
| }
 | |
| 
 | |
| static int dtpm_cpu_init(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * The callbacks at CPU hotplug time are calling
 | |
| 	 * dtpm_update_power() which in turns calls update_pd_power().
 | |
| 	 *
 | |
| 	 * The function update_pd_power() uses the online mask to
 | |
| 	 * figure out the power consumption limits.
 | |
| 	 *
 | |
| 	 * At CPUHP_AP_ONLINE_DYN, the CPU is present in the CPU
 | |
| 	 * online mask when the cpuhp_dtpm_cpu_online function is
 | |
| 	 * called, but the CPU is still in the online mask for the
 | |
| 	 * tear down callback. So the power can not be updated when
 | |
| 	 * the CPU is unplugged.
 | |
| 	 *
 | |
| 	 * At CPUHP_AP_DTPM_CPU_DEAD, the situation is the opposite as
 | |
| 	 * above. The CPU online mask is not up to date when the CPU
 | |
| 	 * is plugged in.
 | |
| 	 *
 | |
| 	 * For this reason, we need to call the online and offline
 | |
| 	 * callbacks at different moments when the CPU online mask is
 | |
| 	 * consistent with the power numbers we want to update.
 | |
| 	 */
 | |
| 	ret = cpuhp_setup_state(CPUHP_AP_DTPM_CPU_DEAD, "dtpm_cpu:offline",
 | |
| 				NULL, cpuhp_dtpm_cpu_offline);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "dtpm_cpu:online",
 | |
| 				cpuhp_dtpm_cpu_online, NULL);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void dtpm_cpu_exit(void)
 | |
| {
 | |
| 	cpuhp_remove_state_nocalls(CPUHP_AP_ONLINE_DYN);
 | |
| 	cpuhp_remove_state_nocalls(CPUHP_AP_DTPM_CPU_DEAD);
 | |
| }
 | |
| 
 | |
| struct dtpm_subsys_ops dtpm_cpu_ops = {
 | |
| 	.name = KBUILD_MODNAME,
 | |
| 	.init = dtpm_cpu_init,
 | |
| 	.exit = dtpm_cpu_exit,
 | |
| 	.setup = dtpm_cpu_setup,
 | |
| };
 |