1747 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1747 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (c) 2013-2015, The Linux Foundation. All rights reserved.
 | |
|  * Copyright (c) 2019, Linaro Limited
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/debugfs.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/of_device.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/pm_domain.h>
 | |
| #include <linux/pm_opp.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/regmap.h>
 | |
| #include <linux/mfd/syscon.h>
 | |
| #include <linux/regulator/consumer.h>
 | |
| #include <linux/clk.h>
 | |
| #include <linux/nvmem-consumer.h>
 | |
| 
 | |
| /* Register Offsets for RB-CPR and Bit Definitions */
 | |
| 
 | |
| /* RBCPR Version Register */
 | |
| #define REG_RBCPR_VERSION		0
 | |
| #define RBCPR_VER_2			0x02
 | |
| #define FLAGS_IGNORE_1ST_IRQ_STATUS	BIT(0)
 | |
| 
 | |
| /* RBCPR Gate Count and Target Registers */
 | |
| #define REG_RBCPR_GCNT_TARGET(n)	(0x60 + 4 * (n))
 | |
| 
 | |
| #define RBCPR_GCNT_TARGET_TARGET_SHIFT	0
 | |
| #define RBCPR_GCNT_TARGET_TARGET_MASK	GENMASK(11, 0)
 | |
| #define RBCPR_GCNT_TARGET_GCNT_SHIFT	12
 | |
| #define RBCPR_GCNT_TARGET_GCNT_MASK	GENMASK(9, 0)
 | |
| 
 | |
| /* RBCPR Timer Control */
 | |
| #define REG_RBCPR_TIMER_INTERVAL	0x44
 | |
| #define REG_RBIF_TIMER_ADJUST		0x4c
 | |
| 
 | |
| #define RBIF_TIMER_ADJ_CONS_UP_MASK	GENMASK(3, 0)
 | |
| #define RBIF_TIMER_ADJ_CONS_UP_SHIFT	0
 | |
| #define RBIF_TIMER_ADJ_CONS_DOWN_MASK	GENMASK(3, 0)
 | |
| #define RBIF_TIMER_ADJ_CONS_DOWN_SHIFT	4
 | |
| #define RBIF_TIMER_ADJ_CLAMP_INT_MASK	GENMASK(7, 0)
 | |
| #define RBIF_TIMER_ADJ_CLAMP_INT_SHIFT	8
 | |
| 
 | |
| /* RBCPR Config Register */
 | |
| #define REG_RBIF_LIMIT			0x48
 | |
| #define RBIF_LIMIT_CEILING_MASK		GENMASK(5, 0)
 | |
| #define RBIF_LIMIT_CEILING_SHIFT	6
 | |
| #define RBIF_LIMIT_FLOOR_BITS		6
 | |
| #define RBIF_LIMIT_FLOOR_MASK		GENMASK(5, 0)
 | |
| 
 | |
| #define RBIF_LIMIT_CEILING_DEFAULT	RBIF_LIMIT_CEILING_MASK
 | |
| #define RBIF_LIMIT_FLOOR_DEFAULT	0
 | |
| 
 | |
| #define REG_RBIF_SW_VLEVEL		0x94
 | |
| #define RBIF_SW_VLEVEL_DEFAULT		0x20
 | |
| 
 | |
| #define REG_RBCPR_STEP_QUOT		0x80
 | |
| #define RBCPR_STEP_QUOT_STEPQUOT_MASK	GENMASK(7, 0)
 | |
| #define RBCPR_STEP_QUOT_IDLE_CLK_MASK	GENMASK(3, 0)
 | |
| #define RBCPR_STEP_QUOT_IDLE_CLK_SHIFT	8
 | |
| 
 | |
| /* RBCPR Control Register */
 | |
| #define REG_RBCPR_CTL			0x90
 | |
| 
 | |
| #define RBCPR_CTL_LOOP_EN			BIT(0)
 | |
| #define RBCPR_CTL_TIMER_EN			BIT(3)
 | |
| #define RBCPR_CTL_SW_AUTO_CONT_ACK_EN		BIT(5)
 | |
| #define RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN	BIT(6)
 | |
| #define RBCPR_CTL_COUNT_MODE			BIT(10)
 | |
| #define RBCPR_CTL_UP_THRESHOLD_MASK	GENMASK(3, 0)
 | |
| #define RBCPR_CTL_UP_THRESHOLD_SHIFT	24
 | |
| #define RBCPR_CTL_DN_THRESHOLD_MASK	GENMASK(3, 0)
 | |
| #define RBCPR_CTL_DN_THRESHOLD_SHIFT	28
 | |
| 
 | |
| /* RBCPR Ack/Nack Response */
 | |
| #define REG_RBIF_CONT_ACK_CMD		0x98
 | |
| #define REG_RBIF_CONT_NACK_CMD		0x9c
 | |
| 
 | |
| /* RBCPR Result status Register */
 | |
| #define REG_RBCPR_RESULT_0		0xa0
 | |
| 
 | |
| #define RBCPR_RESULT0_BUSY_SHIFT	19
 | |
| #define RBCPR_RESULT0_BUSY_MASK		BIT(RBCPR_RESULT0_BUSY_SHIFT)
 | |
| #define RBCPR_RESULT0_ERROR_LT0_SHIFT	18
 | |
| #define RBCPR_RESULT0_ERROR_SHIFT	6
 | |
| #define RBCPR_RESULT0_ERROR_MASK	GENMASK(11, 0)
 | |
| #define RBCPR_RESULT0_ERROR_STEPS_SHIFT	2
 | |
| #define RBCPR_RESULT0_ERROR_STEPS_MASK	GENMASK(3, 0)
 | |
| #define RBCPR_RESULT0_STEP_UP_SHIFT	1
 | |
| 
 | |
| /* RBCPR Interrupt Control Register */
 | |
| #define REG_RBIF_IRQ_EN(n)		(0x100 + 4 * (n))
 | |
| #define REG_RBIF_IRQ_CLEAR		0x110
 | |
| #define REG_RBIF_IRQ_STATUS		0x114
 | |
| 
 | |
| #define CPR_INT_DONE		BIT(0)
 | |
| #define CPR_INT_MIN		BIT(1)
 | |
| #define CPR_INT_DOWN		BIT(2)
 | |
| #define CPR_INT_MID		BIT(3)
 | |
| #define CPR_INT_UP		BIT(4)
 | |
| #define CPR_INT_MAX		BIT(5)
 | |
| #define CPR_INT_CLAMP		BIT(6)
 | |
| #define CPR_INT_ALL	(CPR_INT_DONE | CPR_INT_MIN | CPR_INT_DOWN | \
 | |
| 			CPR_INT_MID | CPR_INT_UP | CPR_INT_MAX | CPR_INT_CLAMP)
 | |
| #define CPR_INT_DEFAULT	(CPR_INT_UP | CPR_INT_DOWN)
 | |
| 
 | |
| #define CPR_NUM_RING_OSC	8
 | |
| 
 | |
| /* CPR eFuse parameters */
 | |
| #define CPR_FUSE_TARGET_QUOT_BITS_MASK	GENMASK(11, 0)
 | |
| 
 | |
| #define CPR_FUSE_MIN_QUOT_DIFF		50
 | |
| 
 | |
| #define FUSE_REVISION_UNKNOWN		(-1)
 | |
| 
 | |
| enum voltage_change_dir {
 | |
| 	NO_CHANGE,
 | |
| 	DOWN,
 | |
| 	UP,
 | |
| };
 | |
| 
 | |
| struct cpr_fuse {
 | |
| 	char *ring_osc;
 | |
| 	char *init_voltage;
 | |
| 	char *quotient;
 | |
| 	char *quotient_offset;
 | |
| };
 | |
| 
 | |
| struct fuse_corner_data {
 | |
| 	int ref_uV;
 | |
| 	int max_uV;
 | |
| 	int min_uV;
 | |
| 	int max_volt_scale;
 | |
| 	int max_quot_scale;
 | |
| 	/* fuse quot */
 | |
| 	int quot_offset;
 | |
| 	int quot_scale;
 | |
| 	int quot_adjust;
 | |
| 	/* fuse quot_offset */
 | |
| 	int quot_offset_scale;
 | |
| 	int quot_offset_adjust;
 | |
| };
 | |
| 
 | |
| struct cpr_fuses {
 | |
| 	int init_voltage_step;
 | |
| 	int init_voltage_width;
 | |
| 	struct fuse_corner_data *fuse_corner_data;
 | |
| };
 | |
| 
 | |
| struct corner_data {
 | |
| 	unsigned int fuse_corner;
 | |
| 	unsigned long freq;
 | |
| };
 | |
| 
 | |
| struct cpr_desc {
 | |
| 	unsigned int num_fuse_corners;
 | |
| 	int min_diff_quot;
 | |
| 	int *step_quot;
 | |
| 
 | |
| 	unsigned int		timer_delay_us;
 | |
| 	unsigned int		timer_cons_up;
 | |
| 	unsigned int		timer_cons_down;
 | |
| 	unsigned int		up_threshold;
 | |
| 	unsigned int		down_threshold;
 | |
| 	unsigned int		idle_clocks;
 | |
| 	unsigned int		gcnt_us;
 | |
| 	unsigned int		vdd_apc_step_up_limit;
 | |
| 	unsigned int		vdd_apc_step_down_limit;
 | |
| 	unsigned int		clamp_timer_interval;
 | |
| 
 | |
| 	struct cpr_fuses cpr_fuses;
 | |
| 	bool reduce_to_fuse_uV;
 | |
| 	bool reduce_to_corner_uV;
 | |
| };
 | |
| 
 | |
| struct acc_desc {
 | |
| 	unsigned int	enable_reg;
 | |
| 	u32		enable_mask;
 | |
| 
 | |
| 	struct reg_sequence	*config;
 | |
| 	struct reg_sequence	*settings;
 | |
| 	int			num_regs_per_fuse;
 | |
| };
 | |
| 
 | |
| struct cpr_acc_desc {
 | |
| 	const struct cpr_desc *cpr_desc;
 | |
| 	const struct acc_desc *acc_desc;
 | |
| };
 | |
| 
 | |
| struct fuse_corner {
 | |
| 	int min_uV;
 | |
| 	int max_uV;
 | |
| 	int uV;
 | |
| 	int quot;
 | |
| 	int step_quot;
 | |
| 	const struct reg_sequence *accs;
 | |
| 	int num_accs;
 | |
| 	unsigned long max_freq;
 | |
| 	u8 ring_osc_idx;
 | |
| };
 | |
| 
 | |
| struct corner {
 | |
| 	int min_uV;
 | |
| 	int max_uV;
 | |
| 	int uV;
 | |
| 	int last_uV;
 | |
| 	int quot_adjust;
 | |
| 	u32 save_ctl;
 | |
| 	u32 save_irq;
 | |
| 	unsigned long freq;
 | |
| 	struct fuse_corner *fuse_corner;
 | |
| };
 | |
| 
 | |
| struct cpr_drv {
 | |
| 	unsigned int		num_corners;
 | |
| 	unsigned int		ref_clk_khz;
 | |
| 
 | |
| 	struct generic_pm_domain pd;
 | |
| 	struct device		*dev;
 | |
| 	struct device		*attached_cpu_dev;
 | |
| 	struct mutex		lock;
 | |
| 	void __iomem		*base;
 | |
| 	struct corner		*corner;
 | |
| 	struct regulator	*vdd_apc;
 | |
| 	struct clk		*cpu_clk;
 | |
| 	struct regmap		*tcsr;
 | |
| 	bool			loop_disabled;
 | |
| 	u32			gcnt;
 | |
| 	unsigned long		flags;
 | |
| 
 | |
| 	struct fuse_corner	*fuse_corners;
 | |
| 	struct corner		*corners;
 | |
| 
 | |
| 	const struct cpr_desc *desc;
 | |
| 	const struct acc_desc *acc_desc;
 | |
| 	const struct cpr_fuse *cpr_fuses;
 | |
| 
 | |
| 	struct dentry *debugfs;
 | |
| };
 | |
| 
 | |
| static bool cpr_is_allowed(struct cpr_drv *drv)
 | |
| {
 | |
| 	return !drv->loop_disabled;
 | |
| }
 | |
| 
 | |
| static void cpr_write(struct cpr_drv *drv, u32 offset, u32 value)
 | |
| {
 | |
| 	writel_relaxed(value, drv->base + offset);
 | |
| }
 | |
| 
 | |
| static u32 cpr_read(struct cpr_drv *drv, u32 offset)
 | |
| {
 | |
| 	return readl_relaxed(drv->base + offset);
 | |
| }
 | |
| 
 | |
| static void
 | |
| cpr_masked_write(struct cpr_drv *drv, u32 offset, u32 mask, u32 value)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	val = readl_relaxed(drv->base + offset);
 | |
| 	val &= ~mask;
 | |
| 	val |= value & mask;
 | |
| 	writel_relaxed(val, drv->base + offset);
 | |
| }
 | |
| 
 | |
| static void cpr_irq_clr(struct cpr_drv *drv)
 | |
| {
 | |
| 	cpr_write(drv, REG_RBIF_IRQ_CLEAR, CPR_INT_ALL);
 | |
| }
 | |
| 
 | |
| static void cpr_irq_clr_nack(struct cpr_drv *drv)
 | |
| {
 | |
| 	cpr_irq_clr(drv);
 | |
| 	cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
 | |
| }
 | |
| 
 | |
| static void cpr_irq_clr_ack(struct cpr_drv *drv)
 | |
| {
 | |
| 	cpr_irq_clr(drv);
 | |
| 	cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
 | |
| }
 | |
| 
 | |
| static void cpr_irq_set(struct cpr_drv *drv, u32 int_bits)
 | |
| {
 | |
| 	cpr_write(drv, REG_RBIF_IRQ_EN(0), int_bits);
 | |
| }
 | |
| 
 | |
| static void cpr_ctl_modify(struct cpr_drv *drv, u32 mask, u32 value)
 | |
| {
 | |
| 	cpr_masked_write(drv, REG_RBCPR_CTL, mask, value);
 | |
| }
 | |
| 
 | |
| static void cpr_ctl_enable(struct cpr_drv *drv, struct corner *corner)
 | |
| {
 | |
| 	u32 val, mask;
 | |
| 	const struct cpr_desc *desc = drv->desc;
 | |
| 
 | |
| 	/* Program Consecutive Up & Down */
 | |
| 	val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
 | |
| 	val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
 | |
| 	mask = RBIF_TIMER_ADJ_CONS_UP_MASK | RBIF_TIMER_ADJ_CONS_DOWN_MASK;
 | |
| 	cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST, mask, val);
 | |
| 	cpr_masked_write(drv, REG_RBCPR_CTL,
 | |
| 			 RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
 | |
| 			 RBCPR_CTL_SW_AUTO_CONT_ACK_EN,
 | |
| 			 corner->save_ctl);
 | |
| 	cpr_irq_set(drv, corner->save_irq);
 | |
| 
 | |
| 	if (cpr_is_allowed(drv) && corner->max_uV > corner->min_uV)
 | |
| 		val = RBCPR_CTL_LOOP_EN;
 | |
| 	else
 | |
| 		val = 0;
 | |
| 	cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, val);
 | |
| }
 | |
| 
 | |
| static void cpr_ctl_disable(struct cpr_drv *drv)
 | |
| {
 | |
| 	cpr_irq_set(drv, 0);
 | |
| 	cpr_ctl_modify(drv, RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
 | |
| 		       RBCPR_CTL_SW_AUTO_CONT_ACK_EN, 0);
 | |
| 	cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST,
 | |
| 			 RBIF_TIMER_ADJ_CONS_UP_MASK |
 | |
| 			 RBIF_TIMER_ADJ_CONS_DOWN_MASK, 0);
 | |
| 	cpr_irq_clr(drv);
 | |
| 	cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
 | |
| 	cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
 | |
| 	cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, 0);
 | |
| }
 | |
| 
 | |
| static bool cpr_ctl_is_enabled(struct cpr_drv *drv)
 | |
| {
 | |
| 	u32 reg_val;
 | |
| 
 | |
| 	reg_val = cpr_read(drv, REG_RBCPR_CTL);
 | |
| 	return reg_val & RBCPR_CTL_LOOP_EN;
 | |
| }
 | |
| 
 | |
| static bool cpr_ctl_is_busy(struct cpr_drv *drv)
 | |
| {
 | |
| 	u32 reg_val;
 | |
| 
 | |
| 	reg_val = cpr_read(drv, REG_RBCPR_RESULT_0);
 | |
| 	return reg_val & RBCPR_RESULT0_BUSY_MASK;
 | |
| }
 | |
| 
 | |
| static void cpr_corner_save(struct cpr_drv *drv, struct corner *corner)
 | |
| {
 | |
| 	corner->save_ctl = cpr_read(drv, REG_RBCPR_CTL);
 | |
| 	corner->save_irq = cpr_read(drv, REG_RBIF_IRQ_EN(0));
 | |
| }
 | |
| 
 | |
| static void cpr_corner_restore(struct cpr_drv *drv, struct corner *corner)
 | |
| {
 | |
| 	u32 gcnt, ctl, irq, ro_sel, step_quot;
 | |
| 	struct fuse_corner *fuse = corner->fuse_corner;
 | |
| 	const struct cpr_desc *desc = drv->desc;
 | |
| 	int i;
 | |
| 
 | |
| 	ro_sel = fuse->ring_osc_idx;
 | |
| 	gcnt = drv->gcnt;
 | |
| 	gcnt |= fuse->quot - corner->quot_adjust;
 | |
| 
 | |
| 	/* Program the step quotient and idle clocks */
 | |
| 	step_quot = desc->idle_clocks << RBCPR_STEP_QUOT_IDLE_CLK_SHIFT;
 | |
| 	step_quot |= fuse->step_quot & RBCPR_STEP_QUOT_STEPQUOT_MASK;
 | |
| 	cpr_write(drv, REG_RBCPR_STEP_QUOT, step_quot);
 | |
| 
 | |
| 	/* Clear the target quotient value and gate count of all ROs */
 | |
| 	for (i = 0; i < CPR_NUM_RING_OSC; i++)
 | |
| 		cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
 | |
| 
 | |
| 	cpr_write(drv, REG_RBCPR_GCNT_TARGET(ro_sel), gcnt);
 | |
| 	ctl = corner->save_ctl;
 | |
| 	cpr_write(drv, REG_RBCPR_CTL, ctl);
 | |
| 	irq = corner->save_irq;
 | |
| 	cpr_irq_set(drv, irq);
 | |
| 	dev_dbg(drv->dev, "gcnt = %#08x, ctl = %#08x, irq = %#08x\n", gcnt,
 | |
| 		ctl, irq);
 | |
| }
 | |
| 
 | |
| static void cpr_set_acc(struct regmap *tcsr, struct fuse_corner *f,
 | |
| 			struct fuse_corner *end)
 | |
| {
 | |
| 	if (f == end)
 | |
| 		return;
 | |
| 
 | |
| 	if (f < end) {
 | |
| 		for (f += 1; f <= end; f++)
 | |
| 			regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
 | |
| 	} else {
 | |
| 		for (f -= 1; f >= end; f--)
 | |
| 			regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int cpr_pre_voltage(struct cpr_drv *drv,
 | |
| 			   struct fuse_corner *fuse_corner,
 | |
| 			   enum voltage_change_dir dir)
 | |
| {
 | |
| 	struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
 | |
| 
 | |
| 	if (drv->tcsr && dir == DOWN)
 | |
| 		cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cpr_post_voltage(struct cpr_drv *drv,
 | |
| 			    struct fuse_corner *fuse_corner,
 | |
| 			    enum voltage_change_dir dir)
 | |
| {
 | |
| 	struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
 | |
| 
 | |
| 	if (drv->tcsr && dir == UP)
 | |
| 		cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cpr_scale_voltage(struct cpr_drv *drv, struct corner *corner,
 | |
| 			     int new_uV, enum voltage_change_dir dir)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct fuse_corner *fuse_corner = corner->fuse_corner;
 | |
| 
 | |
| 	ret = cpr_pre_voltage(drv, fuse_corner, dir);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = regulator_set_voltage(drv->vdd_apc, new_uV, new_uV);
 | |
| 	if (ret) {
 | |
| 		dev_err_ratelimited(drv->dev, "failed to set apc voltage %d\n",
 | |
| 				    new_uV);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = cpr_post_voltage(drv, fuse_corner, dir);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned int cpr_get_cur_perf_state(struct cpr_drv *drv)
 | |
| {
 | |
| 	return drv->corner ? drv->corner - drv->corners + 1 : 0;
 | |
| }
 | |
| 
 | |
| static int cpr_scale(struct cpr_drv *drv, enum voltage_change_dir dir)
 | |
| {
 | |
| 	u32 val, error_steps, reg_mask;
 | |
| 	int last_uV, new_uV, step_uV, ret;
 | |
| 	struct corner *corner;
 | |
| 	const struct cpr_desc *desc = drv->desc;
 | |
| 
 | |
| 	if (dir != UP && dir != DOWN)
 | |
| 		return 0;
 | |
| 
 | |
| 	step_uV = regulator_get_linear_step(drv->vdd_apc);
 | |
| 	if (!step_uV)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	corner = drv->corner;
 | |
| 
 | |
| 	val = cpr_read(drv, REG_RBCPR_RESULT_0);
 | |
| 
 | |
| 	error_steps = val >> RBCPR_RESULT0_ERROR_STEPS_SHIFT;
 | |
| 	error_steps &= RBCPR_RESULT0_ERROR_STEPS_MASK;
 | |
| 	last_uV = corner->last_uV;
 | |
| 
 | |
| 	if (dir == UP) {
 | |
| 		if (desc->clamp_timer_interval &&
 | |
| 		    error_steps < desc->up_threshold) {
 | |
| 			/*
 | |
| 			 * Handle the case where another measurement started
 | |
| 			 * after the interrupt was triggered due to a core
 | |
| 			 * exiting from power collapse.
 | |
| 			 */
 | |
| 			error_steps = max(desc->up_threshold,
 | |
| 					  desc->vdd_apc_step_up_limit);
 | |
| 		}
 | |
| 
 | |
| 		if (last_uV >= corner->max_uV) {
 | |
| 			cpr_irq_clr_nack(drv);
 | |
| 
 | |
| 			/* Maximize the UP threshold */
 | |
| 			reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
 | |
| 			reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
 | |
| 			val = reg_mask;
 | |
| 			cpr_ctl_modify(drv, reg_mask, val);
 | |
| 
 | |
| 			/* Disable UP interrupt */
 | |
| 			cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_UP);
 | |
| 
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		if (error_steps > desc->vdd_apc_step_up_limit)
 | |
| 			error_steps = desc->vdd_apc_step_up_limit;
 | |
| 
 | |
| 		/* Calculate new voltage */
 | |
| 		new_uV = last_uV + error_steps * step_uV;
 | |
| 		new_uV = min(new_uV, corner->max_uV);
 | |
| 
 | |
| 		dev_dbg(drv->dev,
 | |
| 			"UP: -> new_uV: %d last_uV: %d perf state: %u\n",
 | |
| 			new_uV, last_uV, cpr_get_cur_perf_state(drv));
 | |
| 	} else {
 | |
| 		if (desc->clamp_timer_interval &&
 | |
| 		    error_steps < desc->down_threshold) {
 | |
| 			/*
 | |
| 			 * Handle the case where another measurement started
 | |
| 			 * after the interrupt was triggered due to a core
 | |
| 			 * exiting from power collapse.
 | |
| 			 */
 | |
| 			error_steps = max(desc->down_threshold,
 | |
| 					  desc->vdd_apc_step_down_limit);
 | |
| 		}
 | |
| 
 | |
| 		if (last_uV <= corner->min_uV) {
 | |
| 			cpr_irq_clr_nack(drv);
 | |
| 
 | |
| 			/* Enable auto nack down */
 | |
| 			reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
 | |
| 			val = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
 | |
| 
 | |
| 			cpr_ctl_modify(drv, reg_mask, val);
 | |
| 
 | |
| 			/* Disable DOWN interrupt */
 | |
| 			cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_DOWN);
 | |
| 
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		if (error_steps > desc->vdd_apc_step_down_limit)
 | |
| 			error_steps = desc->vdd_apc_step_down_limit;
 | |
| 
 | |
| 		/* Calculate new voltage */
 | |
| 		new_uV = last_uV - error_steps * step_uV;
 | |
| 		new_uV = max(new_uV, corner->min_uV);
 | |
| 
 | |
| 		dev_dbg(drv->dev,
 | |
| 			"DOWN: -> new_uV: %d last_uV: %d perf state: %u\n",
 | |
| 			new_uV, last_uV, cpr_get_cur_perf_state(drv));
 | |
| 	}
 | |
| 
 | |
| 	ret = cpr_scale_voltage(drv, corner, new_uV, dir);
 | |
| 	if (ret) {
 | |
| 		cpr_irq_clr_nack(drv);
 | |
| 		return ret;
 | |
| 	}
 | |
| 	drv->corner->last_uV = new_uV;
 | |
| 
 | |
| 	if (dir == UP) {
 | |
| 		/* Disable auto nack down */
 | |
| 		reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
 | |
| 		val = 0;
 | |
| 	} else {
 | |
| 		/* Restore default threshold for UP */
 | |
| 		reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
 | |
| 		reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
 | |
| 		val = desc->up_threshold;
 | |
| 		val <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
 | |
| 	}
 | |
| 
 | |
| 	cpr_ctl_modify(drv, reg_mask, val);
 | |
| 
 | |
| 	/* Re-enable default interrupts */
 | |
| 	cpr_irq_set(drv, CPR_INT_DEFAULT);
 | |
| 
 | |
| 	/* Ack */
 | |
| 	cpr_irq_clr_ack(drv);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static irqreturn_t cpr_irq_handler(int irq, void *dev)
 | |
| {
 | |
| 	struct cpr_drv *drv = dev;
 | |
| 	const struct cpr_desc *desc = drv->desc;
 | |
| 	irqreturn_t ret = IRQ_HANDLED;
 | |
| 	u32 val;
 | |
| 
 | |
| 	mutex_lock(&drv->lock);
 | |
| 
 | |
| 	val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
 | |
| 	if (drv->flags & FLAGS_IGNORE_1ST_IRQ_STATUS)
 | |
| 		val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
 | |
| 
 | |
| 	dev_dbg(drv->dev, "IRQ_STATUS = %#02x\n", val);
 | |
| 
 | |
| 	if (!cpr_ctl_is_enabled(drv)) {
 | |
| 		dev_dbg(drv->dev, "CPR is disabled\n");
 | |
| 		ret = IRQ_NONE;
 | |
| 	} else if (cpr_ctl_is_busy(drv) && !desc->clamp_timer_interval) {
 | |
| 		dev_dbg(drv->dev, "CPR measurement is not ready\n");
 | |
| 	} else if (!cpr_is_allowed(drv)) {
 | |
| 		val = cpr_read(drv, REG_RBCPR_CTL);
 | |
| 		dev_err_ratelimited(drv->dev,
 | |
| 				    "Interrupt broken? RBCPR_CTL = %#02x\n",
 | |
| 				    val);
 | |
| 		ret = IRQ_NONE;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Following sequence of handling is as per each IRQ's
 | |
| 		 * priority
 | |
| 		 */
 | |
| 		if (val & CPR_INT_UP) {
 | |
| 			cpr_scale(drv, UP);
 | |
| 		} else if (val & CPR_INT_DOWN) {
 | |
| 			cpr_scale(drv, DOWN);
 | |
| 		} else if (val & CPR_INT_MIN) {
 | |
| 			cpr_irq_clr_nack(drv);
 | |
| 		} else if (val & CPR_INT_MAX) {
 | |
| 			cpr_irq_clr_nack(drv);
 | |
| 		} else if (val & CPR_INT_MID) {
 | |
| 			/* RBCPR_CTL_SW_AUTO_CONT_ACK_EN is enabled */
 | |
| 			dev_dbg(drv->dev, "IRQ occurred for Mid Flag\n");
 | |
| 		} else {
 | |
| 			dev_dbg(drv->dev,
 | |
| 				"IRQ occurred for unknown flag (%#08x)\n", val);
 | |
| 		}
 | |
| 
 | |
| 		/* Save register values for the corner */
 | |
| 		cpr_corner_save(drv, drv->corner);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&drv->lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int cpr_enable(struct cpr_drv *drv)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = regulator_enable(drv->vdd_apc);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	mutex_lock(&drv->lock);
 | |
| 
 | |
| 	if (cpr_is_allowed(drv) && drv->corner) {
 | |
| 		cpr_irq_clr(drv);
 | |
| 		cpr_corner_restore(drv, drv->corner);
 | |
| 		cpr_ctl_enable(drv, drv->corner);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&drv->lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cpr_disable(struct cpr_drv *drv)
 | |
| {
 | |
| 	mutex_lock(&drv->lock);
 | |
| 
 | |
| 	if (cpr_is_allowed(drv)) {
 | |
| 		cpr_ctl_disable(drv);
 | |
| 		cpr_irq_clr(drv);
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&drv->lock);
 | |
| 
 | |
| 	return regulator_disable(drv->vdd_apc);
 | |
| }
 | |
| 
 | |
| static int cpr_config(struct cpr_drv *drv)
 | |
| {
 | |
| 	int i;
 | |
| 	u32 val, gcnt;
 | |
| 	struct corner *corner;
 | |
| 	const struct cpr_desc *desc = drv->desc;
 | |
| 
 | |
| 	/* Disable interrupt and CPR */
 | |
| 	cpr_write(drv, REG_RBIF_IRQ_EN(0), 0);
 | |
| 	cpr_write(drv, REG_RBCPR_CTL, 0);
 | |
| 
 | |
| 	/* Program the default HW ceiling, floor and vlevel */
 | |
| 	val = (RBIF_LIMIT_CEILING_DEFAULT & RBIF_LIMIT_CEILING_MASK)
 | |
| 		<< RBIF_LIMIT_CEILING_SHIFT;
 | |
| 	val |= RBIF_LIMIT_FLOOR_DEFAULT & RBIF_LIMIT_FLOOR_MASK;
 | |
| 	cpr_write(drv, REG_RBIF_LIMIT, val);
 | |
| 	cpr_write(drv, REG_RBIF_SW_VLEVEL, RBIF_SW_VLEVEL_DEFAULT);
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear the target quotient value and gate count of all
 | |
| 	 * ring oscillators
 | |
| 	 */
 | |
| 	for (i = 0; i < CPR_NUM_RING_OSC; i++)
 | |
| 		cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
 | |
| 
 | |
| 	/* Init and save gcnt */
 | |
| 	gcnt = (drv->ref_clk_khz * desc->gcnt_us) / 1000;
 | |
| 	gcnt = gcnt & RBCPR_GCNT_TARGET_GCNT_MASK;
 | |
| 	gcnt <<= RBCPR_GCNT_TARGET_GCNT_SHIFT;
 | |
| 	drv->gcnt = gcnt;
 | |
| 
 | |
| 	/* Program the delay count for the timer */
 | |
| 	val = (drv->ref_clk_khz * desc->timer_delay_us) / 1000;
 | |
| 	cpr_write(drv, REG_RBCPR_TIMER_INTERVAL, val);
 | |
| 	dev_dbg(drv->dev, "Timer count: %#0x (for %d us)\n", val,
 | |
| 		desc->timer_delay_us);
 | |
| 
 | |
| 	/* Program Consecutive Up & Down */
 | |
| 	val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
 | |
| 	val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
 | |
| 	val |= desc->clamp_timer_interval << RBIF_TIMER_ADJ_CLAMP_INT_SHIFT;
 | |
| 	cpr_write(drv, REG_RBIF_TIMER_ADJUST, val);
 | |
| 
 | |
| 	/* Program the control register */
 | |
| 	val = desc->up_threshold << RBCPR_CTL_UP_THRESHOLD_SHIFT;
 | |
| 	val |= desc->down_threshold << RBCPR_CTL_DN_THRESHOLD_SHIFT;
 | |
| 	val |= RBCPR_CTL_TIMER_EN | RBCPR_CTL_COUNT_MODE;
 | |
| 	val |= RBCPR_CTL_SW_AUTO_CONT_ACK_EN;
 | |
| 	cpr_write(drv, REG_RBCPR_CTL, val);
 | |
| 
 | |
| 	for (i = 0; i < drv->num_corners; i++) {
 | |
| 		corner = &drv->corners[i];
 | |
| 		corner->save_ctl = val;
 | |
| 		corner->save_irq = CPR_INT_DEFAULT;
 | |
| 	}
 | |
| 
 | |
| 	cpr_irq_set(drv, CPR_INT_DEFAULT);
 | |
| 
 | |
| 	val = cpr_read(drv, REG_RBCPR_VERSION);
 | |
| 	if (val <= RBCPR_VER_2)
 | |
| 		drv->flags |= FLAGS_IGNORE_1ST_IRQ_STATUS;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cpr_set_performance_state(struct generic_pm_domain *domain,
 | |
| 				     unsigned int state)
 | |
| {
 | |
| 	struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
 | |
| 	struct corner *corner, *end;
 | |
| 	enum voltage_change_dir dir;
 | |
| 	int ret = 0, new_uV;
 | |
| 
 | |
| 	mutex_lock(&drv->lock);
 | |
| 
 | |
| 	dev_dbg(drv->dev, "%s: setting perf state: %u (prev state: %u)\n",
 | |
| 		__func__, state, cpr_get_cur_perf_state(drv));
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine new corner we're going to.
 | |
| 	 * Remove one since lowest performance state is 1.
 | |
| 	 */
 | |
| 	corner = drv->corners + state - 1;
 | |
| 	end = &drv->corners[drv->num_corners - 1];
 | |
| 	if (corner > end || corner < drv->corners) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	/* Determine direction */
 | |
| 	if (drv->corner > corner)
 | |
| 		dir = DOWN;
 | |
| 	else if (drv->corner < corner)
 | |
| 		dir = UP;
 | |
| 	else
 | |
| 		dir = NO_CHANGE;
 | |
| 
 | |
| 	if (cpr_is_allowed(drv))
 | |
| 		new_uV = corner->last_uV;
 | |
| 	else
 | |
| 		new_uV = corner->uV;
 | |
| 
 | |
| 	if (cpr_is_allowed(drv))
 | |
| 		cpr_ctl_disable(drv);
 | |
| 
 | |
| 	ret = cpr_scale_voltage(drv, corner, new_uV, dir);
 | |
| 	if (ret)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	if (cpr_is_allowed(drv)) {
 | |
| 		cpr_irq_clr(drv);
 | |
| 		if (drv->corner != corner)
 | |
| 			cpr_corner_restore(drv, corner);
 | |
| 		cpr_ctl_enable(drv, corner);
 | |
| 	}
 | |
| 
 | |
| 	drv->corner = corner;
 | |
| 
 | |
| unlock:
 | |
| 	mutex_unlock(&drv->lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int
 | |
| cpr_populate_ring_osc_idx(struct cpr_drv *drv)
 | |
| {
 | |
| 	struct fuse_corner *fuse = drv->fuse_corners;
 | |
| 	struct fuse_corner *end = fuse + drv->desc->num_fuse_corners;
 | |
| 	const struct cpr_fuse *fuses = drv->cpr_fuses;
 | |
| 	u32 data;
 | |
| 	int ret;
 | |
| 
 | |
| 	for (; fuse < end; fuse++, fuses++) {
 | |
| 		ret = nvmem_cell_read_variable_le_u32(drv->dev, fuses->ring_osc, &data);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		fuse->ring_osc_idx = data;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cpr_read_fuse_uV(const struct cpr_desc *desc,
 | |
| 			    const struct fuse_corner_data *fdata,
 | |
| 			    const char *init_v_efuse,
 | |
| 			    int step_volt,
 | |
| 			    struct cpr_drv *drv)
 | |
| {
 | |
| 	int step_size_uV, steps, uV;
 | |
| 	u32 bits = 0;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = nvmem_cell_read_variable_le_u32(drv->dev, init_v_efuse, &bits);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	steps = bits & ~BIT(desc->cpr_fuses.init_voltage_width - 1);
 | |
| 	/* Not two's complement.. instead highest bit is sign bit */
 | |
| 	if (bits & BIT(desc->cpr_fuses.init_voltage_width - 1))
 | |
| 		steps = -steps;
 | |
| 
 | |
| 	step_size_uV = desc->cpr_fuses.init_voltage_step;
 | |
| 
 | |
| 	uV = fdata->ref_uV + steps * step_size_uV;
 | |
| 	return DIV_ROUND_UP(uV, step_volt) * step_volt;
 | |
| }
 | |
| 
 | |
| static int cpr_fuse_corner_init(struct cpr_drv *drv)
 | |
| {
 | |
| 	const struct cpr_desc *desc = drv->desc;
 | |
| 	const struct cpr_fuse *fuses = drv->cpr_fuses;
 | |
| 	const struct acc_desc *acc_desc = drv->acc_desc;
 | |
| 	int i;
 | |
| 	unsigned int step_volt;
 | |
| 	struct fuse_corner_data *fdata;
 | |
| 	struct fuse_corner *fuse, *end;
 | |
| 	int uV;
 | |
| 	const struct reg_sequence *accs;
 | |
| 	int ret;
 | |
| 
 | |
| 	accs = acc_desc->settings;
 | |
| 
 | |
| 	step_volt = regulator_get_linear_step(drv->vdd_apc);
 | |
| 	if (!step_volt)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Populate fuse_corner members */
 | |
| 	fuse = drv->fuse_corners;
 | |
| 	end = &fuse[desc->num_fuse_corners - 1];
 | |
| 	fdata = desc->cpr_fuses.fuse_corner_data;
 | |
| 
 | |
| 	for (i = 0; fuse <= end; fuse++, fuses++, i++, fdata++) {
 | |
| 		/*
 | |
| 		 * Update SoC voltages: platforms might choose a different
 | |
| 		 * regulators than the one used to characterize the algorithms
 | |
| 		 * (ie, init_voltage_step).
 | |
| 		 */
 | |
| 		fdata->min_uV = roundup(fdata->min_uV, step_volt);
 | |
| 		fdata->max_uV = roundup(fdata->max_uV, step_volt);
 | |
| 
 | |
| 		/* Populate uV */
 | |
| 		uV = cpr_read_fuse_uV(desc, fdata, fuses->init_voltage,
 | |
| 				      step_volt, drv);
 | |
| 		if (uV < 0)
 | |
| 			return uV;
 | |
| 
 | |
| 		fuse->min_uV = fdata->min_uV;
 | |
| 		fuse->max_uV = fdata->max_uV;
 | |
| 		fuse->uV = clamp(uV, fuse->min_uV, fuse->max_uV);
 | |
| 
 | |
| 		if (fuse == end) {
 | |
| 			/*
 | |
| 			 * Allow the highest fuse corner's PVS voltage to
 | |
| 			 * define the ceiling voltage for that corner in order
 | |
| 			 * to support SoC's in which variable ceiling values
 | |
| 			 * are required.
 | |
| 			 */
 | |
| 			end->max_uV = max(end->max_uV, end->uV);
 | |
| 		}
 | |
| 
 | |
| 		/* Populate target quotient by scaling */
 | |
| 		ret = nvmem_cell_read_variable_le_u32(drv->dev, fuses->quotient, &fuse->quot);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		fuse->quot *= fdata->quot_scale;
 | |
| 		fuse->quot += fdata->quot_offset;
 | |
| 		fuse->quot += fdata->quot_adjust;
 | |
| 		fuse->step_quot = desc->step_quot[fuse->ring_osc_idx];
 | |
| 
 | |
| 		/* Populate acc settings */
 | |
| 		fuse->accs = accs;
 | |
| 		fuse->num_accs = acc_desc->num_regs_per_fuse;
 | |
| 		accs += acc_desc->num_regs_per_fuse;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Restrict all fuse corner PVS voltages based upon per corner
 | |
| 	 * ceiling and floor voltages.
 | |
| 	 */
 | |
| 	for (fuse = drv->fuse_corners, i = 0; fuse <= end; fuse++, i++) {
 | |
| 		if (fuse->uV > fuse->max_uV)
 | |
| 			fuse->uV = fuse->max_uV;
 | |
| 		else if (fuse->uV < fuse->min_uV)
 | |
| 			fuse->uV = fuse->min_uV;
 | |
| 
 | |
| 		ret = regulator_is_supported_voltage(drv->vdd_apc,
 | |
| 						     fuse->min_uV,
 | |
| 						     fuse->min_uV);
 | |
| 		if (!ret) {
 | |
| 			dev_err(drv->dev,
 | |
| 				"min uV: %d (fuse corner: %d) not supported by regulator\n",
 | |
| 				fuse->min_uV, i);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		ret = regulator_is_supported_voltage(drv->vdd_apc,
 | |
| 						     fuse->max_uV,
 | |
| 						     fuse->max_uV);
 | |
| 		if (!ret) {
 | |
| 			dev_err(drv->dev,
 | |
| 				"max uV: %d (fuse corner: %d) not supported by regulator\n",
 | |
| 				fuse->max_uV, i);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		dev_dbg(drv->dev,
 | |
| 			"fuse corner %d: [%d %d %d] RO%hhu quot %d squot %d\n",
 | |
| 			i, fuse->min_uV, fuse->uV, fuse->max_uV,
 | |
| 			fuse->ring_osc_idx, fuse->quot, fuse->step_quot);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cpr_calculate_scaling(const char *quot_offset,
 | |
| 				 struct cpr_drv *drv,
 | |
| 				 const struct fuse_corner_data *fdata,
 | |
| 				 const struct corner *corner)
 | |
| {
 | |
| 	u32 quot_diff = 0;
 | |
| 	unsigned long freq_diff;
 | |
| 	int scaling;
 | |
| 	const struct fuse_corner *fuse, *prev_fuse;
 | |
| 	int ret;
 | |
| 
 | |
| 	fuse = corner->fuse_corner;
 | |
| 	prev_fuse = fuse - 1;
 | |
| 
 | |
| 	if (quot_offset) {
 | |
| 		ret = nvmem_cell_read_variable_le_u32(drv->dev, quot_offset, "_diff);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		quot_diff *= fdata->quot_offset_scale;
 | |
| 		quot_diff += fdata->quot_offset_adjust;
 | |
| 	} else {
 | |
| 		quot_diff = fuse->quot - prev_fuse->quot;
 | |
| 	}
 | |
| 
 | |
| 	freq_diff = fuse->max_freq - prev_fuse->max_freq;
 | |
| 	freq_diff /= 1000000; /* Convert to MHz */
 | |
| 	scaling = 1000 * quot_diff / freq_diff;
 | |
| 	return min(scaling, fdata->max_quot_scale);
 | |
| }
 | |
| 
 | |
| static int cpr_interpolate(const struct corner *corner, int step_volt,
 | |
| 			   const struct fuse_corner_data *fdata)
 | |
| {
 | |
| 	unsigned long f_high, f_low, f_diff;
 | |
| 	int uV_high, uV_low, uV;
 | |
| 	u64 temp, temp_limit;
 | |
| 	const struct fuse_corner *fuse, *prev_fuse;
 | |
| 
 | |
| 	fuse = corner->fuse_corner;
 | |
| 	prev_fuse = fuse - 1;
 | |
| 
 | |
| 	f_high = fuse->max_freq;
 | |
| 	f_low = prev_fuse->max_freq;
 | |
| 	uV_high = fuse->uV;
 | |
| 	uV_low = prev_fuse->uV;
 | |
| 	f_diff = fuse->max_freq - corner->freq;
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't interpolate in the wrong direction. This could happen
 | |
| 	 * if the adjusted fuse voltage overlaps with the previous fuse's
 | |
| 	 * adjusted voltage.
 | |
| 	 */
 | |
| 	if (f_high <= f_low || uV_high <= uV_low || f_high <= corner->freq)
 | |
| 		return corner->uV;
 | |
| 
 | |
| 	temp = f_diff * (uV_high - uV_low);
 | |
| 	temp = div64_ul(temp, f_high - f_low);
 | |
| 
 | |
| 	/*
 | |
| 	 * max_volt_scale has units of uV/MHz while freq values
 | |
| 	 * have units of Hz.  Divide by 1000000 to convert to.
 | |
| 	 */
 | |
| 	temp_limit = f_diff * fdata->max_volt_scale;
 | |
| 	do_div(temp_limit, 1000000);
 | |
| 
 | |
| 	uV = uV_high - min(temp, temp_limit);
 | |
| 	return roundup(uV, step_volt);
 | |
| }
 | |
| 
 | |
| static unsigned int cpr_get_fuse_corner(struct dev_pm_opp *opp)
 | |
| {
 | |
| 	struct device_node *np;
 | |
| 	unsigned int fuse_corner = 0;
 | |
| 
 | |
| 	np = dev_pm_opp_get_of_node(opp);
 | |
| 	if (of_property_read_u32(np, "qcom,opp-fuse-level", &fuse_corner))
 | |
| 		pr_err("%s: missing 'qcom,opp-fuse-level' property\n",
 | |
| 		       __func__);
 | |
| 
 | |
| 	of_node_put(np);
 | |
| 
 | |
| 	return fuse_corner;
 | |
| }
 | |
| 
 | |
| static unsigned long cpr_get_opp_hz_for_req(struct dev_pm_opp *ref,
 | |
| 					    struct device *cpu_dev)
 | |
| {
 | |
| 	u64 rate = 0;
 | |
| 	struct device_node *ref_np;
 | |
| 	struct device_node *desc_np;
 | |
| 	struct device_node *child_np = NULL;
 | |
| 	struct device_node *child_req_np = NULL;
 | |
| 
 | |
| 	desc_np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
 | |
| 	if (!desc_np)
 | |
| 		return 0;
 | |
| 
 | |
| 	ref_np = dev_pm_opp_get_of_node(ref);
 | |
| 	if (!ref_np)
 | |
| 		goto out_ref;
 | |
| 
 | |
| 	do {
 | |
| 		of_node_put(child_req_np);
 | |
| 		child_np = of_get_next_available_child(desc_np, child_np);
 | |
| 		child_req_np = of_parse_phandle(child_np, "required-opps", 0);
 | |
| 	} while (child_np && child_req_np != ref_np);
 | |
| 
 | |
| 	if (child_np && child_req_np == ref_np)
 | |
| 		of_property_read_u64(child_np, "opp-hz", &rate);
 | |
| 
 | |
| 	of_node_put(child_req_np);
 | |
| 	of_node_put(child_np);
 | |
| 	of_node_put(ref_np);
 | |
| out_ref:
 | |
| 	of_node_put(desc_np);
 | |
| 
 | |
| 	return (unsigned long) rate;
 | |
| }
 | |
| 
 | |
| static int cpr_corner_init(struct cpr_drv *drv)
 | |
| {
 | |
| 	const struct cpr_desc *desc = drv->desc;
 | |
| 	const struct cpr_fuse *fuses = drv->cpr_fuses;
 | |
| 	int i, level, scaling = 0;
 | |
| 	unsigned int fnum, fc;
 | |
| 	const char *quot_offset;
 | |
| 	struct fuse_corner *fuse, *prev_fuse;
 | |
| 	struct corner *corner, *end;
 | |
| 	struct corner_data *cdata;
 | |
| 	const struct fuse_corner_data *fdata;
 | |
| 	bool apply_scaling;
 | |
| 	unsigned long freq_diff, freq_diff_mhz;
 | |
| 	unsigned long freq;
 | |
| 	int step_volt = regulator_get_linear_step(drv->vdd_apc);
 | |
| 	struct dev_pm_opp *opp;
 | |
| 
 | |
| 	if (!step_volt)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	corner = drv->corners;
 | |
| 	end = &corner[drv->num_corners - 1];
 | |
| 
 | |
| 	cdata = devm_kcalloc(drv->dev, drv->num_corners,
 | |
| 			     sizeof(struct corner_data),
 | |
| 			     GFP_KERNEL);
 | |
| 	if (!cdata)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/*
 | |
| 	 * Store maximum frequency for each fuse corner based on the frequency
 | |
| 	 * plan
 | |
| 	 */
 | |
| 	for (level = 1; level <= drv->num_corners; level++) {
 | |
| 		opp = dev_pm_opp_find_level_exact(&drv->pd.dev, level);
 | |
| 		if (IS_ERR(opp))
 | |
| 			return -EINVAL;
 | |
| 		fc = cpr_get_fuse_corner(opp);
 | |
| 		if (!fc) {
 | |
| 			dev_pm_opp_put(opp);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		fnum = fc - 1;
 | |
| 		freq = cpr_get_opp_hz_for_req(opp, drv->attached_cpu_dev);
 | |
| 		if (!freq) {
 | |
| 			dev_pm_opp_put(opp);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		cdata[level - 1].fuse_corner = fnum;
 | |
| 		cdata[level - 1].freq = freq;
 | |
| 
 | |
| 		fuse = &drv->fuse_corners[fnum];
 | |
| 		dev_dbg(drv->dev, "freq: %lu level: %u fuse level: %u\n",
 | |
| 			freq, dev_pm_opp_get_level(opp) - 1, fnum);
 | |
| 		if (freq > fuse->max_freq)
 | |
| 			fuse->max_freq = freq;
 | |
| 		dev_pm_opp_put(opp);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the quotient adjustment scaling factor, according to:
 | |
| 	 *
 | |
| 	 * scaling = min(1000 * (QUOT(corner_N) - QUOT(corner_N-1))
 | |
| 	 *		/ (freq(corner_N) - freq(corner_N-1)), max_factor)
 | |
| 	 *
 | |
| 	 * QUOT(corner_N):	quotient read from fuse for fuse corner N
 | |
| 	 * QUOT(corner_N-1):	quotient read from fuse for fuse corner (N - 1)
 | |
| 	 * freq(corner_N):	max frequency in MHz supported by fuse corner N
 | |
| 	 * freq(corner_N-1):	max frequency in MHz supported by fuse corner
 | |
| 	 *			 (N - 1)
 | |
| 	 *
 | |
| 	 * Then walk through the corners mapped to each fuse corner
 | |
| 	 * and calculate the quotient adjustment for each one using the
 | |
| 	 * following formula:
 | |
| 	 *
 | |
| 	 * quot_adjust = (freq_max - freq_corner) * scaling / 1000
 | |
| 	 *
 | |
| 	 * freq_max: max frequency in MHz supported by the fuse corner
 | |
| 	 * freq_corner: frequency in MHz corresponding to the corner
 | |
| 	 * scaling: calculated from above equation
 | |
| 	 *
 | |
| 	 *
 | |
| 	 *     +                           +
 | |
| 	 *     |                         v |
 | |
| 	 *   q |           f c           o |           f c
 | |
| 	 *   u |         c               l |         c
 | |
| 	 *   o |       f                 t |       f
 | |
| 	 *   t |     c                   a |     c
 | |
| 	 *     | c f                     g | c f
 | |
| 	 *     |                         e |
 | |
| 	 *     +---------------            +----------------
 | |
| 	 *       0 1 2 3 4 5 6               0 1 2 3 4 5 6
 | |
| 	 *          corner                      corner
 | |
| 	 *
 | |
| 	 *    c = corner
 | |
| 	 *    f = fuse corner
 | |
| 	 *
 | |
| 	 */
 | |
| 	for (apply_scaling = false, i = 0; corner <= end; corner++, i++) {
 | |
| 		fnum = cdata[i].fuse_corner;
 | |
| 		fdata = &desc->cpr_fuses.fuse_corner_data[fnum];
 | |
| 		quot_offset = fuses[fnum].quotient_offset;
 | |
| 		fuse = &drv->fuse_corners[fnum];
 | |
| 		if (fnum)
 | |
| 			prev_fuse = &drv->fuse_corners[fnum - 1];
 | |
| 		else
 | |
| 			prev_fuse = NULL;
 | |
| 
 | |
| 		corner->fuse_corner = fuse;
 | |
| 		corner->freq = cdata[i].freq;
 | |
| 		corner->uV = fuse->uV;
 | |
| 
 | |
| 		if (prev_fuse && cdata[i - 1].freq == prev_fuse->max_freq) {
 | |
| 			scaling = cpr_calculate_scaling(quot_offset, drv,
 | |
| 							fdata, corner);
 | |
| 			if (scaling < 0)
 | |
| 				return scaling;
 | |
| 
 | |
| 			apply_scaling = true;
 | |
| 		} else if (corner->freq == fuse->max_freq) {
 | |
| 			/* This is a fuse corner; don't scale anything */
 | |
| 			apply_scaling = false;
 | |
| 		}
 | |
| 
 | |
| 		if (apply_scaling) {
 | |
| 			freq_diff = fuse->max_freq - corner->freq;
 | |
| 			freq_diff_mhz = freq_diff / 1000000;
 | |
| 			corner->quot_adjust = scaling * freq_diff_mhz / 1000;
 | |
| 
 | |
| 			corner->uV = cpr_interpolate(corner, step_volt, fdata);
 | |
| 		}
 | |
| 
 | |
| 		corner->max_uV = fuse->max_uV;
 | |
| 		corner->min_uV = fuse->min_uV;
 | |
| 		corner->uV = clamp(corner->uV, corner->min_uV, corner->max_uV);
 | |
| 		corner->last_uV = corner->uV;
 | |
| 
 | |
| 		/* Reduce the ceiling voltage if needed */
 | |
| 		if (desc->reduce_to_corner_uV && corner->uV < corner->max_uV)
 | |
| 			corner->max_uV = corner->uV;
 | |
| 		else if (desc->reduce_to_fuse_uV && fuse->uV < corner->max_uV)
 | |
| 			corner->max_uV = max(corner->min_uV, fuse->uV);
 | |
| 
 | |
| 		dev_dbg(drv->dev, "corner %d: [%d %d %d] quot %d\n", i,
 | |
| 			corner->min_uV, corner->uV, corner->max_uV,
 | |
| 			fuse->quot - corner->quot_adjust);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct cpr_fuse *cpr_get_fuses(struct cpr_drv *drv)
 | |
| {
 | |
| 	const struct cpr_desc *desc = drv->desc;
 | |
| 	struct cpr_fuse *fuses;
 | |
| 	int i;
 | |
| 
 | |
| 	fuses = devm_kcalloc(drv->dev, desc->num_fuse_corners,
 | |
| 			     sizeof(struct cpr_fuse),
 | |
| 			     GFP_KERNEL);
 | |
| 	if (!fuses)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	for (i = 0; i < desc->num_fuse_corners; i++) {
 | |
| 		char tbuf[32];
 | |
| 
 | |
| 		snprintf(tbuf, 32, "cpr_ring_osc%d", i + 1);
 | |
| 		fuses[i].ring_osc = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
 | |
| 		if (!fuses[i].ring_osc)
 | |
| 			return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 		snprintf(tbuf, 32, "cpr_init_voltage%d", i + 1);
 | |
| 		fuses[i].init_voltage = devm_kstrdup(drv->dev, tbuf,
 | |
| 						     GFP_KERNEL);
 | |
| 		if (!fuses[i].init_voltage)
 | |
| 			return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 		snprintf(tbuf, 32, "cpr_quotient%d", i + 1);
 | |
| 		fuses[i].quotient = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
 | |
| 		if (!fuses[i].quotient)
 | |
| 			return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 		snprintf(tbuf, 32, "cpr_quotient_offset%d", i + 1);
 | |
| 		fuses[i].quotient_offset = devm_kstrdup(drv->dev, tbuf,
 | |
| 							GFP_KERNEL);
 | |
| 		if (!fuses[i].quotient_offset)
 | |
| 			return ERR_PTR(-ENOMEM);
 | |
| 	}
 | |
| 
 | |
| 	return fuses;
 | |
| }
 | |
| 
 | |
| static void cpr_set_loop_allowed(struct cpr_drv *drv)
 | |
| {
 | |
| 	drv->loop_disabled = false;
 | |
| }
 | |
| 
 | |
| static int cpr_init_parameters(struct cpr_drv *drv)
 | |
| {
 | |
| 	const struct cpr_desc *desc = drv->desc;
 | |
| 	struct clk *clk;
 | |
| 
 | |
| 	clk = clk_get(drv->dev, "ref");
 | |
| 	if (IS_ERR(clk))
 | |
| 		return PTR_ERR(clk);
 | |
| 
 | |
| 	drv->ref_clk_khz = clk_get_rate(clk) / 1000;
 | |
| 	clk_put(clk);
 | |
| 
 | |
| 	if (desc->timer_cons_up > RBIF_TIMER_ADJ_CONS_UP_MASK ||
 | |
| 	    desc->timer_cons_down > RBIF_TIMER_ADJ_CONS_DOWN_MASK ||
 | |
| 	    desc->up_threshold > RBCPR_CTL_UP_THRESHOLD_MASK ||
 | |
| 	    desc->down_threshold > RBCPR_CTL_DN_THRESHOLD_MASK ||
 | |
| 	    desc->idle_clocks > RBCPR_STEP_QUOT_IDLE_CLK_MASK ||
 | |
| 	    desc->clamp_timer_interval > RBIF_TIMER_ADJ_CLAMP_INT_MASK)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	dev_dbg(drv->dev, "up threshold = %u, down threshold = %u\n",
 | |
| 		desc->up_threshold, desc->down_threshold);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cpr_find_initial_corner(struct cpr_drv *drv)
 | |
| {
 | |
| 	unsigned long rate;
 | |
| 	const struct corner *end;
 | |
| 	struct corner *iter;
 | |
| 	unsigned int i = 0;
 | |
| 
 | |
| 	if (!drv->cpu_clk) {
 | |
| 		dev_err(drv->dev, "cannot get rate from NULL clk\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	end = &drv->corners[drv->num_corners - 1];
 | |
| 	rate = clk_get_rate(drv->cpu_clk);
 | |
| 
 | |
| 	/*
 | |
| 	 * Some bootloaders set a CPU clock frequency that is not defined
 | |
| 	 * in the OPP table. When running at an unlisted frequency,
 | |
| 	 * cpufreq_online() will change to the OPP which has the lowest
 | |
| 	 * frequency, at or above the unlisted frequency.
 | |
| 	 * Since cpufreq_online() always "rounds up" in the case of an
 | |
| 	 * unlisted frequency, this function always "rounds down" in case
 | |
| 	 * of an unlisted frequency. That way, when cpufreq_online()
 | |
| 	 * triggers the first ever call to cpr_set_performance_state(),
 | |
| 	 * it will correctly determine the direction as UP.
 | |
| 	 */
 | |
| 	for (iter = drv->corners; iter <= end; iter++) {
 | |
| 		if (iter->freq > rate)
 | |
| 			break;
 | |
| 		i++;
 | |
| 		if (iter->freq == rate) {
 | |
| 			drv->corner = iter;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (iter->freq < rate)
 | |
| 			drv->corner = iter;
 | |
| 	}
 | |
| 
 | |
| 	if (!drv->corner) {
 | |
| 		dev_err(drv->dev, "boot up corner not found\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(drv->dev, "boot up perf state: %u\n", i);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct cpr_desc qcs404_cpr_desc = {
 | |
| 	.num_fuse_corners = 3,
 | |
| 	.min_diff_quot = CPR_FUSE_MIN_QUOT_DIFF,
 | |
| 	.step_quot = (int []){ 25, 25, 25, },
 | |
| 	.timer_delay_us = 5000,
 | |
| 	.timer_cons_up = 0,
 | |
| 	.timer_cons_down = 2,
 | |
| 	.up_threshold = 1,
 | |
| 	.down_threshold = 3,
 | |
| 	.idle_clocks = 15,
 | |
| 	.gcnt_us = 1,
 | |
| 	.vdd_apc_step_up_limit = 1,
 | |
| 	.vdd_apc_step_down_limit = 1,
 | |
| 	.cpr_fuses = {
 | |
| 		.init_voltage_step = 8000,
 | |
| 		.init_voltage_width = 6,
 | |
| 		.fuse_corner_data = (struct fuse_corner_data[]){
 | |
| 			/* fuse corner 0 */
 | |
| 			{
 | |
| 				.ref_uV = 1224000,
 | |
| 				.max_uV = 1224000,
 | |
| 				.min_uV = 1048000,
 | |
| 				.max_volt_scale = 0,
 | |
| 				.max_quot_scale = 0,
 | |
| 				.quot_offset = 0,
 | |
| 				.quot_scale = 1,
 | |
| 				.quot_adjust = 0,
 | |
| 				.quot_offset_scale = 5,
 | |
| 				.quot_offset_adjust = 0,
 | |
| 			},
 | |
| 			/* fuse corner 1 */
 | |
| 			{
 | |
| 				.ref_uV = 1288000,
 | |
| 				.max_uV = 1288000,
 | |
| 				.min_uV = 1048000,
 | |
| 				.max_volt_scale = 2000,
 | |
| 				.max_quot_scale = 1400,
 | |
| 				.quot_offset = 0,
 | |
| 				.quot_scale = 1,
 | |
| 				.quot_adjust = -20,
 | |
| 				.quot_offset_scale = 5,
 | |
| 				.quot_offset_adjust = 0,
 | |
| 			},
 | |
| 			/* fuse corner 2 */
 | |
| 			{
 | |
| 				.ref_uV = 1352000,
 | |
| 				.max_uV = 1384000,
 | |
| 				.min_uV = 1088000,
 | |
| 				.max_volt_scale = 2000,
 | |
| 				.max_quot_scale = 1400,
 | |
| 				.quot_offset = 0,
 | |
| 				.quot_scale = 1,
 | |
| 				.quot_adjust = 0,
 | |
| 				.quot_offset_scale = 5,
 | |
| 				.quot_offset_adjust = 0,
 | |
| 			},
 | |
| 		},
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static const struct acc_desc qcs404_acc_desc = {
 | |
| 	.settings = (struct reg_sequence[]){
 | |
| 		{ 0xb120, 0x1041040 },
 | |
| 		{ 0xb124, 0x41 },
 | |
| 		{ 0xb120, 0x0 },
 | |
| 		{ 0xb124, 0x0 },
 | |
| 		{ 0xb120, 0x0 },
 | |
| 		{ 0xb124, 0x0 },
 | |
| 	},
 | |
| 	.config = (struct reg_sequence[]){
 | |
| 		{ 0xb138, 0xff },
 | |
| 		{ 0xb130, 0x5555 },
 | |
| 	},
 | |
| 	.num_regs_per_fuse = 2,
 | |
| };
 | |
| 
 | |
| static const struct cpr_acc_desc qcs404_cpr_acc_desc = {
 | |
| 	.cpr_desc = &qcs404_cpr_desc,
 | |
| 	.acc_desc = &qcs404_acc_desc,
 | |
| };
 | |
| 
 | |
| static int cpr_power_off(struct generic_pm_domain *domain)
 | |
| {
 | |
| 	struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
 | |
| 
 | |
| 	return cpr_disable(drv);
 | |
| }
 | |
| 
 | |
| static int cpr_power_on(struct generic_pm_domain *domain)
 | |
| {
 | |
| 	struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
 | |
| 
 | |
| 	return cpr_enable(drv);
 | |
| }
 | |
| 
 | |
| static int cpr_pd_attach_dev(struct generic_pm_domain *domain,
 | |
| 			     struct device *dev)
 | |
| {
 | |
| 	struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
 | |
| 	const struct acc_desc *acc_desc = drv->acc_desc;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	mutex_lock(&drv->lock);
 | |
| 
 | |
| 	dev_dbg(drv->dev, "attach callback for: %s\n", dev_name(dev));
 | |
| 
 | |
| 	/*
 | |
| 	 * This driver only supports scaling voltage for a CPU cluster
 | |
| 	 * where all CPUs in the cluster share a single regulator.
 | |
| 	 * Therefore, save the struct device pointer only for the first
 | |
| 	 * CPU device that gets attached. There is no need to do any
 | |
| 	 * additional initialization when further CPUs get attached.
 | |
| 	 */
 | |
| 	if (drv->attached_cpu_dev)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * cpr_scale_voltage() requires the direction (if we are changing
 | |
| 	 * to a higher or lower OPP). The first time
 | |
| 	 * cpr_set_performance_state() is called, there is no previous
 | |
| 	 * performance state defined. Therefore, we call
 | |
| 	 * cpr_find_initial_corner() that gets the CPU clock frequency
 | |
| 	 * set by the bootloader, so that we can determine the direction
 | |
| 	 * the first time cpr_set_performance_state() is called.
 | |
| 	 */
 | |
| 	drv->cpu_clk = devm_clk_get(dev, NULL);
 | |
| 	if (IS_ERR(drv->cpu_clk)) {
 | |
| 		ret = PTR_ERR(drv->cpu_clk);
 | |
| 		if (ret != -EPROBE_DEFER)
 | |
| 			dev_err(drv->dev, "could not get cpu clk: %d\n", ret);
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 	drv->attached_cpu_dev = dev;
 | |
| 
 | |
| 	dev_dbg(drv->dev, "using cpu clk from: %s\n",
 | |
| 		dev_name(drv->attached_cpu_dev));
 | |
| 
 | |
| 	/*
 | |
| 	 * Everything related to (virtual) corners has to be initialized
 | |
| 	 * here, when attaching to the power domain, since we need to know
 | |
| 	 * the maximum frequency for each fuse corner, and this is only
 | |
| 	 * available after the cpufreq driver has attached to us.
 | |
| 	 * The reason for this is that we need to know the highest
 | |
| 	 * frequency associated with each fuse corner.
 | |
| 	 */
 | |
| 	ret = dev_pm_opp_get_opp_count(&drv->pd.dev);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(drv->dev, "could not get OPP count\n");
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 	drv->num_corners = ret;
 | |
| 
 | |
| 	if (drv->num_corners < 2) {
 | |
| 		dev_err(drv->dev, "need at least 2 OPPs to use CPR\n");
 | |
| 		ret = -EINVAL;
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	drv->corners = devm_kcalloc(drv->dev, drv->num_corners,
 | |
| 				    sizeof(*drv->corners),
 | |
| 				    GFP_KERNEL);
 | |
| 	if (!drv->corners) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto unlock;
 | |
| 	}
 | |
| 
 | |
| 	ret = cpr_corner_init(drv);
 | |
| 	if (ret)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	cpr_set_loop_allowed(drv);
 | |
| 
 | |
| 	ret = cpr_init_parameters(drv);
 | |
| 	if (ret)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	/* Configure CPR HW but keep it disabled */
 | |
| 	ret = cpr_config(drv);
 | |
| 	if (ret)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	ret = cpr_find_initial_corner(drv);
 | |
| 	if (ret)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	if (acc_desc->config)
 | |
| 		regmap_multi_reg_write(drv->tcsr, acc_desc->config,
 | |
| 				       acc_desc->num_regs_per_fuse);
 | |
| 
 | |
| 	/* Enable ACC if required */
 | |
| 	if (acc_desc->enable_mask)
 | |
| 		regmap_update_bits(drv->tcsr, acc_desc->enable_reg,
 | |
| 				   acc_desc->enable_mask,
 | |
| 				   acc_desc->enable_mask);
 | |
| 
 | |
| 	dev_info(drv->dev, "driver initialized with %u OPPs\n",
 | |
| 		 drv->num_corners);
 | |
| 
 | |
| unlock:
 | |
| 	mutex_unlock(&drv->lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int cpr_debug_info_show(struct seq_file *s, void *unused)
 | |
| {
 | |
| 	u32 gcnt, ro_sel, ctl, irq_status, reg, error_steps;
 | |
| 	u32 step_dn, step_up, error, error_lt0, busy;
 | |
| 	struct cpr_drv *drv = s->private;
 | |
| 	struct fuse_corner *fuse_corner;
 | |
| 	struct corner *corner;
 | |
| 
 | |
| 	corner = drv->corner;
 | |
| 	fuse_corner = corner->fuse_corner;
 | |
| 
 | |
| 	seq_printf(s, "corner, current_volt = %d uV\n",
 | |
| 		       corner->last_uV);
 | |
| 
 | |
| 	ro_sel = fuse_corner->ring_osc_idx;
 | |
| 	gcnt = cpr_read(drv, REG_RBCPR_GCNT_TARGET(ro_sel));
 | |
| 	seq_printf(s, "rbcpr_gcnt_target (%u) = %#02X\n", ro_sel, gcnt);
 | |
| 
 | |
| 	ctl = cpr_read(drv, REG_RBCPR_CTL);
 | |
| 	seq_printf(s, "rbcpr_ctl = %#02X\n", ctl);
 | |
| 
 | |
| 	irq_status = cpr_read(drv, REG_RBIF_IRQ_STATUS);
 | |
| 	seq_printf(s, "rbcpr_irq_status = %#02X\n", irq_status);
 | |
| 
 | |
| 	reg = cpr_read(drv, REG_RBCPR_RESULT_0);
 | |
| 	seq_printf(s, "rbcpr_result_0 = %#02X\n", reg);
 | |
| 
 | |
| 	step_dn = reg & 0x01;
 | |
| 	step_up = (reg >> RBCPR_RESULT0_STEP_UP_SHIFT) & 0x01;
 | |
| 	seq_printf(s, "  [step_dn = %u", step_dn);
 | |
| 
 | |
| 	seq_printf(s, ", step_up = %u", step_up);
 | |
| 
 | |
| 	error_steps = (reg >> RBCPR_RESULT0_ERROR_STEPS_SHIFT)
 | |
| 				& RBCPR_RESULT0_ERROR_STEPS_MASK;
 | |
| 	seq_printf(s, ", error_steps = %u", error_steps);
 | |
| 
 | |
| 	error = (reg >> RBCPR_RESULT0_ERROR_SHIFT) & RBCPR_RESULT0_ERROR_MASK;
 | |
| 	seq_printf(s, ", error = %u", error);
 | |
| 
 | |
| 	error_lt0 = (reg >> RBCPR_RESULT0_ERROR_LT0_SHIFT) & 0x01;
 | |
| 	seq_printf(s, ", error_lt_0 = %u", error_lt0);
 | |
| 
 | |
| 	busy = (reg >> RBCPR_RESULT0_BUSY_SHIFT) & 0x01;
 | |
| 	seq_printf(s, ", busy = %u]\n", busy);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| DEFINE_SHOW_ATTRIBUTE(cpr_debug_info);
 | |
| 
 | |
| static void cpr_debugfs_init(struct cpr_drv *drv)
 | |
| {
 | |
| 	drv->debugfs = debugfs_create_dir("qcom_cpr", NULL);
 | |
| 
 | |
| 	debugfs_create_file("debug_info", 0444, drv->debugfs,
 | |
| 			    drv, &cpr_debug_info_fops);
 | |
| }
 | |
| 
 | |
| static int cpr_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct device *dev = &pdev->dev;
 | |
| 	struct cpr_drv *drv;
 | |
| 	int irq, ret;
 | |
| 	const struct cpr_acc_desc *data;
 | |
| 	struct device_node *np;
 | |
| 	u32 cpr_rev = FUSE_REVISION_UNKNOWN;
 | |
| 
 | |
| 	data = of_device_get_match_data(dev);
 | |
| 	if (!data || !data->cpr_desc || !data->acc_desc)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	drv = devm_kzalloc(dev, sizeof(*drv), GFP_KERNEL);
 | |
| 	if (!drv)
 | |
| 		return -ENOMEM;
 | |
| 	drv->dev = dev;
 | |
| 	drv->desc = data->cpr_desc;
 | |
| 	drv->acc_desc = data->acc_desc;
 | |
| 
 | |
| 	drv->fuse_corners = devm_kcalloc(dev, drv->desc->num_fuse_corners,
 | |
| 					 sizeof(*drv->fuse_corners),
 | |
| 					 GFP_KERNEL);
 | |
| 	if (!drv->fuse_corners)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	np = of_parse_phandle(dev->of_node, "acc-syscon", 0);
 | |
| 	if (!np)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	drv->tcsr = syscon_node_to_regmap(np);
 | |
| 	of_node_put(np);
 | |
| 	if (IS_ERR(drv->tcsr))
 | |
| 		return PTR_ERR(drv->tcsr);
 | |
| 
 | |
| 	drv->base = devm_platform_ioremap_resource(pdev, 0);
 | |
| 	if (IS_ERR(drv->base))
 | |
| 		return PTR_ERR(drv->base);
 | |
| 
 | |
| 	irq = platform_get_irq(pdev, 0);
 | |
| 	if (irq < 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	drv->vdd_apc = devm_regulator_get(dev, "vdd-apc");
 | |
| 	if (IS_ERR(drv->vdd_apc))
 | |
| 		return PTR_ERR(drv->vdd_apc);
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize fuse corners, since it simply depends
 | |
| 	 * on data in efuses.
 | |
| 	 * Everything related to (virtual) corners has to be
 | |
| 	 * initialized after attaching to the power domain,
 | |
| 	 * since it depends on the CPU's OPP table.
 | |
| 	 */
 | |
| 	ret = nvmem_cell_read_variable_le_u32(dev, "cpr_fuse_revision", &cpr_rev);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	drv->cpr_fuses = cpr_get_fuses(drv);
 | |
| 	if (IS_ERR(drv->cpr_fuses))
 | |
| 		return PTR_ERR(drv->cpr_fuses);
 | |
| 
 | |
| 	ret = cpr_populate_ring_osc_idx(drv);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = cpr_fuse_corner_init(drv);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	mutex_init(&drv->lock);
 | |
| 
 | |
| 	ret = devm_request_threaded_irq(dev, irq, NULL,
 | |
| 					cpr_irq_handler,
 | |
| 					IRQF_ONESHOT | IRQF_TRIGGER_RISING,
 | |
| 					"cpr", drv);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	drv->pd.name = devm_kstrdup_const(dev, dev->of_node->full_name,
 | |
| 					  GFP_KERNEL);
 | |
| 	if (!drv->pd.name)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	drv->pd.power_off = cpr_power_off;
 | |
| 	drv->pd.power_on = cpr_power_on;
 | |
| 	drv->pd.set_performance_state = cpr_set_performance_state;
 | |
| 	drv->pd.attach_dev = cpr_pd_attach_dev;
 | |
| 
 | |
| 	ret = pm_genpd_init(&drv->pd, NULL, true);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = of_genpd_add_provider_simple(dev->of_node, &drv->pd);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	platform_set_drvdata(pdev, drv);
 | |
| 	cpr_debugfs_init(drv);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cpr_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	struct cpr_drv *drv = platform_get_drvdata(pdev);
 | |
| 
 | |
| 	if (cpr_is_allowed(drv)) {
 | |
| 		cpr_ctl_disable(drv);
 | |
| 		cpr_irq_set(drv, 0);
 | |
| 	}
 | |
| 
 | |
| 	of_genpd_del_provider(pdev->dev.of_node);
 | |
| 	pm_genpd_remove(&drv->pd);
 | |
| 
 | |
| 	debugfs_remove_recursive(drv->debugfs);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct of_device_id cpr_match_table[] = {
 | |
| 	{ .compatible = "qcom,qcs404-cpr", .data = &qcs404_cpr_acc_desc },
 | |
| 	{ }
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, cpr_match_table);
 | |
| 
 | |
| static struct platform_driver cpr_driver = {
 | |
| 	.probe		= cpr_probe,
 | |
| 	.remove		= cpr_remove,
 | |
| 	.driver		= {
 | |
| 		.name	= "qcom-cpr",
 | |
| 		.of_match_table = cpr_match_table,
 | |
| 	},
 | |
| };
 | |
| module_platform_driver(cpr_driver);
 | |
| 
 | |
| MODULE_DESCRIPTION("Core Power Reduction (CPR) driver");
 | |
| MODULE_LICENSE("GPL v2");
 |