440 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			440 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * ACPI probing code for ARM performance counters.
 | |
|  *
 | |
|  * Copyright (C) 2017 ARM Ltd.
 | |
|  */
 | |
| 
 | |
| #include <linux/acpi.h>
 | |
| #include <linux/cpumask.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/irq.h>
 | |
| #include <linux/irqdesc.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/perf/arm_pmu.h>
 | |
| 
 | |
| #include <asm/cpu.h>
 | |
| #include <asm/cputype.h>
 | |
| 
 | |
| static DEFINE_PER_CPU(struct arm_pmu *, probed_pmus);
 | |
| static DEFINE_PER_CPU(int, pmu_irqs);
 | |
| 
 | |
| static int arm_pmu_acpi_register_irq(int cpu)
 | |
| {
 | |
| 	struct acpi_madt_generic_interrupt *gicc;
 | |
| 	int gsi, trigger;
 | |
| 
 | |
| 	gicc = acpi_cpu_get_madt_gicc(cpu);
 | |
| 
 | |
| 	gsi = gicc->performance_interrupt;
 | |
| 
 | |
| 	/*
 | |
| 	 * Per the ACPI spec, the MADT cannot describe a PMU that doesn't
 | |
| 	 * have an interrupt. QEMU advertises this by using a GSI of zero,
 | |
| 	 * which is not known to be valid on any hardware despite being
 | |
| 	 * valid per the spec. Take the pragmatic approach and reject a
 | |
| 	 * GSI of zero for now.
 | |
| 	 */
 | |
| 	if (!gsi)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (gicc->flags & ACPI_MADT_PERFORMANCE_IRQ_MODE)
 | |
| 		trigger = ACPI_EDGE_SENSITIVE;
 | |
| 	else
 | |
| 		trigger = ACPI_LEVEL_SENSITIVE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Helpfully, the MADT GICC doesn't have a polarity flag for the
 | |
| 	 * "performance interrupt". Luckily, on compliant GICs the polarity is
 | |
| 	 * a fixed value in HW (for both SPIs and PPIs) that we cannot change
 | |
| 	 * from SW.
 | |
| 	 *
 | |
| 	 * Here we pass in ACPI_ACTIVE_HIGH to keep the core code happy. This
 | |
| 	 * may not match the real polarity, but that should not matter.
 | |
| 	 *
 | |
| 	 * Other interrupt controllers are not supported with ACPI.
 | |
| 	 */
 | |
| 	return acpi_register_gsi(NULL, gsi, trigger, ACPI_ACTIVE_HIGH);
 | |
| }
 | |
| 
 | |
| static void arm_pmu_acpi_unregister_irq(int cpu)
 | |
| {
 | |
| 	struct acpi_madt_generic_interrupt *gicc;
 | |
| 	int gsi;
 | |
| 
 | |
| 	gicc = acpi_cpu_get_madt_gicc(cpu);
 | |
| 
 | |
| 	gsi = gicc->performance_interrupt;
 | |
| 	if (gsi)
 | |
| 		acpi_unregister_gsi(gsi);
 | |
| }
 | |
| 
 | |
| static int __maybe_unused
 | |
| arm_acpi_register_pmu_device(struct platform_device *pdev, u8 len,
 | |
| 			     u16 (*parse_gsi)(struct acpi_madt_generic_interrupt *))
 | |
| {
 | |
| 	int cpu, this_hetid, hetid, irq, ret;
 | |
| 	u16 this_gsi = 0, gsi = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure that platform device must have IORESOURCE_IRQ
 | |
| 	 * resource to hold gsi interrupt.
 | |
| 	 */
 | |
| 	if (pdev->num_resources != 1)
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	if (pdev->resource[0].flags != IORESOURCE_IRQ)
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	/*
 | |
| 	 * Sanity check all the GICC tables for the same interrupt
 | |
| 	 * number. For now, only support homogeneous ACPI machines.
 | |
| 	 */
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		struct acpi_madt_generic_interrupt *gicc;
 | |
| 
 | |
| 		gicc = acpi_cpu_get_madt_gicc(cpu);
 | |
| 		if (gicc->header.length < len)
 | |
| 			return gsi ? -ENXIO : 0;
 | |
| 
 | |
| 		this_gsi = parse_gsi(gicc);
 | |
| 		this_hetid = find_acpi_cpu_topology_hetero_id(cpu);
 | |
| 		if (!gsi) {
 | |
| 			hetid = this_hetid;
 | |
| 			gsi = this_gsi;
 | |
| 		} else if (hetid != this_hetid || gsi != this_gsi) {
 | |
| 			pr_warn("ACPI: %s: must be homogeneous\n", pdev->name);
 | |
| 			return -ENXIO;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!this_gsi)
 | |
| 		return 0;
 | |
| 
 | |
| 	irq = acpi_register_gsi(NULL, gsi, ACPI_LEVEL_SENSITIVE, ACPI_ACTIVE_HIGH);
 | |
| 	if (irq < 0) {
 | |
| 		pr_warn("ACPI: %s Unable to register interrupt: %d\n", pdev->name, gsi);
 | |
| 		return -ENXIO;
 | |
| 	}
 | |
| 
 | |
| 	pdev->resource[0].start = irq;
 | |
| 	ret = platform_device_register(pdev);
 | |
| 	if (ret)
 | |
| 		acpi_unregister_gsi(gsi);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #if IS_ENABLED(CONFIG_ARM_SPE_PMU)
 | |
| static struct resource spe_resources[] = {
 | |
| 	{
 | |
| 		/* irq */
 | |
| 		.flags          = IORESOURCE_IRQ,
 | |
| 	}
 | |
| };
 | |
| 
 | |
| static struct platform_device spe_dev = {
 | |
| 	.name = ARMV8_SPE_PDEV_NAME,
 | |
| 	.id = -1,
 | |
| 	.resource = spe_resources,
 | |
| 	.num_resources = ARRAY_SIZE(spe_resources)
 | |
| };
 | |
| 
 | |
| static u16 arm_spe_parse_gsi(struct acpi_madt_generic_interrupt *gicc)
 | |
| {
 | |
| 	return gicc->spe_interrupt;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For lack of a better place, hook the normal PMU MADT walk
 | |
|  * and create a SPE device if we detect a recent MADT with
 | |
|  * a homogeneous PPI mapping.
 | |
|  */
 | |
| static void arm_spe_acpi_register_device(void)
 | |
| {
 | |
| 	int ret = arm_acpi_register_pmu_device(&spe_dev, ACPI_MADT_GICC_SPE,
 | |
| 					       arm_spe_parse_gsi);
 | |
| 	if (ret)
 | |
| 		pr_warn("ACPI: SPE: Unable to register device\n");
 | |
| }
 | |
| #else
 | |
| static inline void arm_spe_acpi_register_device(void)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_ARM_SPE_PMU */
 | |
| 
 | |
| #if IS_ENABLED(CONFIG_CORESIGHT_TRBE)
 | |
| static struct resource trbe_resources[] = {
 | |
| 	{
 | |
| 		/* irq */
 | |
| 		.flags          = IORESOURCE_IRQ,
 | |
| 	}
 | |
| };
 | |
| 
 | |
| static struct platform_device trbe_dev = {
 | |
| 	.name = ARMV8_TRBE_PDEV_NAME,
 | |
| 	.id = -1,
 | |
| 	.resource = trbe_resources,
 | |
| 	.num_resources = ARRAY_SIZE(trbe_resources)
 | |
| };
 | |
| 
 | |
| static u16 arm_trbe_parse_gsi(struct acpi_madt_generic_interrupt *gicc)
 | |
| {
 | |
| 	return gicc->trbe_interrupt;
 | |
| }
 | |
| 
 | |
| static void arm_trbe_acpi_register_device(void)
 | |
| {
 | |
| 	int ret = arm_acpi_register_pmu_device(&trbe_dev, ACPI_MADT_GICC_TRBE,
 | |
| 					       arm_trbe_parse_gsi);
 | |
| 	if (ret)
 | |
| 		pr_warn("ACPI: TRBE: Unable to register device\n");
 | |
| }
 | |
| #else
 | |
| static inline void arm_trbe_acpi_register_device(void)
 | |
| {
 | |
| 
 | |
| }
 | |
| #endif /* CONFIG_CORESIGHT_TRBE */
 | |
| 
 | |
| static int arm_pmu_acpi_parse_irqs(void)
 | |
| {
 | |
| 	int irq, cpu, irq_cpu, err;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		irq = arm_pmu_acpi_register_irq(cpu);
 | |
| 		if (irq < 0) {
 | |
| 			err = irq;
 | |
| 			pr_warn("Unable to parse ACPI PMU IRQ for CPU%d: %d\n",
 | |
| 				cpu, err);
 | |
| 			goto out_err;
 | |
| 		} else if (irq == 0) {
 | |
| 			pr_warn("No ACPI PMU IRQ for CPU%d\n", cpu);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Log and request the IRQ so the core arm_pmu code can manage
 | |
| 		 * it. We'll have to sanity-check IRQs later when we associate
 | |
| 		 * them with their PMUs.
 | |
| 		 */
 | |
| 		per_cpu(pmu_irqs, cpu) = irq;
 | |
| 		err = armpmu_request_irq(irq, cpu);
 | |
| 		if (err)
 | |
| 			goto out_err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_err:
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		irq = per_cpu(pmu_irqs, cpu);
 | |
| 		if (!irq)
 | |
| 			continue;
 | |
| 
 | |
| 		arm_pmu_acpi_unregister_irq(cpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * Blat all copies of the IRQ so that we only unregister the
 | |
| 		 * corresponding GSI once (e.g. when we have PPIs).
 | |
| 		 */
 | |
| 		for_each_possible_cpu(irq_cpu) {
 | |
| 			if (per_cpu(pmu_irqs, irq_cpu) == irq)
 | |
| 				per_cpu(pmu_irqs, irq_cpu) = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static struct arm_pmu *arm_pmu_acpi_find_pmu(void)
 | |
| {
 | |
| 	unsigned long cpuid = read_cpuid_id();
 | |
| 	struct arm_pmu *pmu;
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		pmu = per_cpu(probed_pmus, cpu);
 | |
| 		if (!pmu || pmu->acpi_cpuid != cpuid)
 | |
| 			continue;
 | |
| 
 | |
| 		return pmu;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check whether the new IRQ is compatible with those already associated with
 | |
|  * the PMU (e.g. we don't have mismatched PPIs).
 | |
|  */
 | |
| static bool pmu_irq_matches(struct arm_pmu *pmu, int irq)
 | |
| {
 | |
| 	struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
 | |
| 	int cpu;
 | |
| 
 | |
| 	if (!irq)
 | |
| 		return true;
 | |
| 
 | |
| 	for_each_cpu(cpu, &pmu->supported_cpus) {
 | |
| 		int other_irq = per_cpu(hw_events->irq, cpu);
 | |
| 		if (!other_irq)
 | |
| 			continue;
 | |
| 
 | |
| 		if (irq == other_irq)
 | |
| 			continue;
 | |
| 		if (!irq_is_percpu_devid(irq) && !irq_is_percpu_devid(other_irq))
 | |
| 			continue;
 | |
| 
 | |
| 		pr_warn("mismatched PPIs detected\n");
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void arm_pmu_acpi_associate_pmu_cpu(struct arm_pmu *pmu,
 | |
| 					   unsigned int cpu)
 | |
| {
 | |
| 	int irq = per_cpu(pmu_irqs, cpu);
 | |
| 
 | |
| 	per_cpu(probed_pmus, cpu) = pmu;
 | |
| 
 | |
| 	if (pmu_irq_matches(pmu, irq)) {
 | |
| 		struct pmu_hw_events __percpu *hw_events;
 | |
| 		hw_events = pmu->hw_events;
 | |
| 		per_cpu(hw_events->irq, cpu) = irq;
 | |
| 	}
 | |
| 
 | |
| 	cpumask_set_cpu(cpu, &pmu->supported_cpus);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This must run before the common arm_pmu hotplug logic, so that we can
 | |
|  * associate a CPU and its interrupt before the common code tries to manage the
 | |
|  * affinity and so on.
 | |
|  *
 | |
|  * Note that hotplug events are serialized, so we cannot race with another CPU
 | |
|  * coming up. The perf core won't open events while a hotplug event is in
 | |
|  * progress.
 | |
|  */
 | |
| static int arm_pmu_acpi_cpu_starting(unsigned int cpu)
 | |
| {
 | |
| 	struct arm_pmu *pmu;
 | |
| 
 | |
| 	/* If we've already probed this CPU, we have nothing to do */
 | |
| 	if (per_cpu(probed_pmus, cpu))
 | |
| 		return 0;
 | |
| 
 | |
| 	pmu = arm_pmu_acpi_find_pmu();
 | |
| 	if (!pmu) {
 | |
| 		pr_warn_ratelimited("Unable to associate CPU%d with a PMU\n",
 | |
| 				    cpu);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	arm_pmu_acpi_associate_pmu_cpu(pmu, cpu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void arm_pmu_acpi_probe_matching_cpus(struct arm_pmu *pmu,
 | |
| 					     unsigned long cpuid)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		unsigned long cpu_cpuid = per_cpu(cpu_data, cpu).reg_midr;
 | |
| 
 | |
| 		if (cpu_cpuid == cpuid)
 | |
| 			arm_pmu_acpi_associate_pmu_cpu(pmu, cpu);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int arm_pmu_acpi_probe(armpmu_init_fn init_fn)
 | |
| {
 | |
| 	int pmu_idx = 0;
 | |
| 	unsigned int cpu;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = arm_pmu_acpi_parse_irqs();
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_PERF_ARM_ACPI_STARTING,
 | |
| 					"perf/arm/pmu_acpi:starting",
 | |
| 					arm_pmu_acpi_cpu_starting, NULL);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialise and register the set of PMUs which we know about right
 | |
| 	 * now. Ideally we'd do this in arm_pmu_acpi_cpu_starting() so that we
 | |
| 	 * could handle late hotplug, but this may lead to deadlock since we
 | |
| 	 * might try to register a hotplug notifier instance from within a
 | |
| 	 * hotplug notifier.
 | |
| 	 *
 | |
| 	 * There's also the problem of having access to the right init_fn,
 | |
| 	 * without tying this too deeply into the "real" PMU driver.
 | |
| 	 *
 | |
| 	 * For the moment, as with the platform/DT case, we need at least one
 | |
| 	 * of a PMU's CPUs to be online at probe time.
 | |
| 	 */
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		struct arm_pmu *pmu = per_cpu(probed_pmus, cpu);
 | |
| 		unsigned long cpuid;
 | |
| 		char *base_name;
 | |
| 
 | |
| 		/* If we've already probed this CPU, we have nothing to do */
 | |
| 		if (pmu)
 | |
| 			continue;
 | |
| 
 | |
| 		pmu = armpmu_alloc();
 | |
| 		if (!pmu) {
 | |
| 			pr_warn("Unable to allocate PMU for CPU%d\n",
 | |
| 				cpu);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		cpuid = per_cpu(cpu_data, cpu).reg_midr;
 | |
| 		pmu->acpi_cpuid = cpuid;
 | |
| 
 | |
| 		arm_pmu_acpi_probe_matching_cpus(pmu, cpuid);
 | |
| 
 | |
| 		ret = init_fn(pmu);
 | |
| 		if (ret == -ENODEV) {
 | |
| 			/* PMU not handled by this driver, or not present */
 | |
| 			continue;
 | |
| 		} else if (ret) {
 | |
| 			pr_warn("Unable to initialise PMU for CPU%d\n", cpu);
 | |
| 			return ret;
 | |
| 		}
 | |
| 
 | |
| 		base_name = pmu->name;
 | |
| 		pmu->name = kasprintf(GFP_KERNEL, "%s_%d", base_name, pmu_idx++);
 | |
| 		if (!pmu->name) {
 | |
| 			pr_warn("Unable to allocate PMU name for CPU%d\n", cpu);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		ret = armpmu_register(pmu);
 | |
| 		if (ret) {
 | |
| 			pr_warn("Failed to register PMU for CPU%d\n", cpu);
 | |
| 			kfree(pmu->name);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int arm_pmu_acpi_init(void)
 | |
| {
 | |
| 	if (acpi_disabled)
 | |
| 		return 0;
 | |
| 
 | |
| 	arm_spe_acpi_register_device();
 | |
| 	arm_trbe_acpi_register_device();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| subsys_initcall(arm_pmu_acpi_init)
 |