430 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			430 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * PCI Virtual Channel support
 | |
|  *
 | |
|  * Copyright (C) 2013 Red Hat, Inc.  All rights reserved.
 | |
|  *     Author: Alex Williamson <alex.williamson@redhat.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/bitfield.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/pci_regs.h>
 | |
| #include <linux/types.h>
 | |
| 
 | |
| #include "pci.h"
 | |
| 
 | |
| /**
 | |
|  * pci_vc_save_restore_dwords - Save or restore a series of dwords
 | |
|  * @dev: device
 | |
|  * @pos: starting config space position
 | |
|  * @buf: buffer to save to or restore from
 | |
|  * @dwords: number of dwords to save/restore
 | |
|  * @save: whether to save or restore
 | |
|  */
 | |
| static void pci_vc_save_restore_dwords(struct pci_dev *dev, int pos,
 | |
| 				       u32 *buf, int dwords, bool save)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < dwords; i++, buf++) {
 | |
| 		if (save)
 | |
| 			pci_read_config_dword(dev, pos + (i * 4), buf);
 | |
| 		else
 | |
| 			pci_write_config_dword(dev, pos + (i * 4), *buf);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pci_vc_load_arb_table - load and wait for VC arbitration table
 | |
|  * @dev: device
 | |
|  * @pos: starting position of VC capability (VC/VC9/MFVC)
 | |
|  *
 | |
|  * Set Load VC Arbitration Table bit requesting hardware to apply the VC
 | |
|  * Arbitration Table (previously loaded).  When the VC Arbitration Table
 | |
|  * Status clears, hardware has latched the table into VC arbitration logic.
 | |
|  */
 | |
| static void pci_vc_load_arb_table(struct pci_dev *dev, int pos)
 | |
| {
 | |
| 	u16 ctrl;
 | |
| 
 | |
| 	pci_read_config_word(dev, pos + PCI_VC_PORT_CTRL, &ctrl);
 | |
| 	pci_write_config_word(dev, pos + PCI_VC_PORT_CTRL,
 | |
| 			      ctrl | PCI_VC_PORT_CTRL_LOAD_TABLE);
 | |
| 	if (pci_wait_for_pending(dev, pos + PCI_VC_PORT_STATUS,
 | |
| 				 PCI_VC_PORT_STATUS_TABLE))
 | |
| 		return;
 | |
| 
 | |
| 	pci_err(dev, "VC arbitration table failed to load\n");
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pci_vc_load_port_arb_table - Load and wait for VC port arbitration table
 | |
|  * @dev: device
 | |
|  * @pos: starting position of VC capability (VC/VC9/MFVC)
 | |
|  * @res: VC resource number, ie. VCn (0-7)
 | |
|  *
 | |
|  * Set Load Port Arbitration Table bit requesting hardware to apply the Port
 | |
|  * Arbitration Table (previously loaded).  When the Port Arbitration Table
 | |
|  * Status clears, hardware has latched the table into port arbitration logic.
 | |
|  */
 | |
| static void pci_vc_load_port_arb_table(struct pci_dev *dev, int pos, int res)
 | |
| {
 | |
| 	int ctrl_pos, status_pos;
 | |
| 	u32 ctrl;
 | |
| 
 | |
| 	ctrl_pos = pos + PCI_VC_RES_CTRL + (res * PCI_CAP_VC_PER_VC_SIZEOF);
 | |
| 	status_pos = pos + PCI_VC_RES_STATUS + (res * PCI_CAP_VC_PER_VC_SIZEOF);
 | |
| 
 | |
| 	pci_read_config_dword(dev, ctrl_pos, &ctrl);
 | |
| 	pci_write_config_dword(dev, ctrl_pos,
 | |
| 			       ctrl | PCI_VC_RES_CTRL_LOAD_TABLE);
 | |
| 
 | |
| 	if (pci_wait_for_pending(dev, status_pos, PCI_VC_RES_STATUS_TABLE))
 | |
| 		return;
 | |
| 
 | |
| 	pci_err(dev, "VC%d port arbitration table failed to load\n", res);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pci_vc_enable - Enable virtual channel
 | |
|  * @dev: device
 | |
|  * @pos: starting position of VC capability (VC/VC9/MFVC)
 | |
|  * @res: VC res number, ie. VCn (0-7)
 | |
|  *
 | |
|  * A VC is enabled by setting the enable bit in matching resource control
 | |
|  * registers on both sides of a link.  We therefore need to find the opposite
 | |
|  * end of the link.  To keep this simple we enable from the downstream device.
 | |
|  * RC devices do not have an upstream device, nor does it seem that VC9 do
 | |
|  * (spec is unclear).  Once we find the upstream device, match the VC ID to
 | |
|  * get the correct resource, disable and enable on both ends.
 | |
|  */
 | |
| static void pci_vc_enable(struct pci_dev *dev, int pos, int res)
 | |
| {
 | |
| 	int ctrl_pos, status_pos, id, pos2, evcc, i, ctrl_pos2, status_pos2;
 | |
| 	u32 ctrl, header, cap1, ctrl2;
 | |
| 	struct pci_dev *link = NULL;
 | |
| 
 | |
| 	/* Enable VCs from the downstream device */
 | |
| 	if (!pci_is_pcie(dev) || !pcie_downstream_port(dev))
 | |
| 		return;
 | |
| 
 | |
| 	ctrl_pos = pos + PCI_VC_RES_CTRL + (res * PCI_CAP_VC_PER_VC_SIZEOF);
 | |
| 	status_pos = pos + PCI_VC_RES_STATUS + (res * PCI_CAP_VC_PER_VC_SIZEOF);
 | |
| 
 | |
| 	pci_read_config_dword(dev, ctrl_pos, &ctrl);
 | |
| 	id = ctrl & PCI_VC_RES_CTRL_ID;
 | |
| 
 | |
| 	pci_read_config_dword(dev, pos, &header);
 | |
| 
 | |
| 	/* If there is no opposite end of the link, skip to enable */
 | |
| 	if (PCI_EXT_CAP_ID(header) == PCI_EXT_CAP_ID_VC9 ||
 | |
| 	    pci_is_root_bus(dev->bus))
 | |
| 		goto enable;
 | |
| 
 | |
| 	pos2 = pci_find_ext_capability(dev->bus->self, PCI_EXT_CAP_ID_VC);
 | |
| 	if (!pos2)
 | |
| 		goto enable;
 | |
| 
 | |
| 	pci_read_config_dword(dev->bus->self, pos2 + PCI_VC_PORT_CAP1, &cap1);
 | |
| 	evcc = cap1 & PCI_VC_CAP1_EVCC;
 | |
| 
 | |
| 	/* VC0 is hardwired enabled, so we can start with 1 */
 | |
| 	for (i = 1; i < evcc + 1; i++) {
 | |
| 		ctrl_pos2 = pos2 + PCI_VC_RES_CTRL +
 | |
| 				(i * PCI_CAP_VC_PER_VC_SIZEOF);
 | |
| 		status_pos2 = pos2 + PCI_VC_RES_STATUS +
 | |
| 				(i * PCI_CAP_VC_PER_VC_SIZEOF);
 | |
| 		pci_read_config_dword(dev->bus->self, ctrl_pos2, &ctrl2);
 | |
| 		if ((ctrl2 & PCI_VC_RES_CTRL_ID) == id) {
 | |
| 			link = dev->bus->self;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!link)
 | |
| 		goto enable;
 | |
| 
 | |
| 	/* Disable if enabled */
 | |
| 	if (ctrl2 & PCI_VC_RES_CTRL_ENABLE) {
 | |
| 		ctrl2 &= ~PCI_VC_RES_CTRL_ENABLE;
 | |
| 		pci_write_config_dword(link, ctrl_pos2, ctrl2);
 | |
| 	}
 | |
| 
 | |
| 	/* Enable on both ends */
 | |
| 	ctrl2 |= PCI_VC_RES_CTRL_ENABLE;
 | |
| 	pci_write_config_dword(link, ctrl_pos2, ctrl2);
 | |
| enable:
 | |
| 	ctrl |= PCI_VC_RES_CTRL_ENABLE;
 | |
| 	pci_write_config_dword(dev, ctrl_pos, ctrl);
 | |
| 
 | |
| 	if (!pci_wait_for_pending(dev, status_pos, PCI_VC_RES_STATUS_NEGO))
 | |
| 		pci_err(dev, "VC%d negotiation stuck pending\n", id);
 | |
| 
 | |
| 	if (link && !pci_wait_for_pending(link, status_pos2,
 | |
| 					  PCI_VC_RES_STATUS_NEGO))
 | |
| 		pci_err(link, "VC%d negotiation stuck pending\n", id);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pci_vc_do_save_buffer - Size, save, or restore VC state
 | |
|  * @dev: device
 | |
|  * @pos: starting position of VC capability (VC/VC9/MFVC)
 | |
|  * @save_state: buffer for save/restore
 | |
|  * @save: if provided a buffer, this indicates what to do with it
 | |
|  *
 | |
|  * Walking Virtual Channel config space to size, save, or restore it
 | |
|  * is complicated, so we do it all from one function to reduce code and
 | |
|  * guarantee ordering matches in the buffer.  When called with NULL
 | |
|  * @save_state, return the size of the necessary save buffer.  When called
 | |
|  * with a non-NULL @save_state, @save determines whether we save to the
 | |
|  * buffer or restore from it.
 | |
|  */
 | |
| static int pci_vc_do_save_buffer(struct pci_dev *dev, int pos,
 | |
| 				 struct pci_cap_saved_state *save_state,
 | |
| 				 bool save)
 | |
| {
 | |
| 	u32 cap1;
 | |
| 	char evcc, lpevcc, parb_size;
 | |
| 	int i, len = 0;
 | |
| 	u8 *buf = save_state ? (u8 *)save_state->cap.data : NULL;
 | |
| 
 | |
| 	/* Sanity check buffer size for save/restore */
 | |
| 	if (buf && save_state->cap.size !=
 | |
| 	    pci_vc_do_save_buffer(dev, pos, NULL, save)) {
 | |
| 		pci_err(dev, "VC save buffer size does not match @0x%x\n", pos);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	pci_read_config_dword(dev, pos + PCI_VC_PORT_CAP1, &cap1);
 | |
| 	/* Extended VC Count (not counting VC0) */
 | |
| 	evcc = cap1 & PCI_VC_CAP1_EVCC;
 | |
| 	/* Low Priority Extended VC Count (not counting VC0) */
 | |
| 	lpevcc = FIELD_GET(PCI_VC_CAP1_LPEVCC, cap1);
 | |
| 	/* Port Arbitration Table Entry Size (bits) */
 | |
| 	parb_size = 1 << FIELD_GET(PCI_VC_CAP1_ARB_SIZE, cap1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Port VC Control Register contains VC Arbitration Select, which
 | |
| 	 * cannot be modified when more than one LPVC is in operation.  We
 | |
| 	 * therefore save/restore it first, as only VC0 should be enabled
 | |
| 	 * after device reset.
 | |
| 	 */
 | |
| 	if (buf) {
 | |
| 		if (save)
 | |
| 			pci_read_config_word(dev, pos + PCI_VC_PORT_CTRL,
 | |
| 					     (u16 *)buf);
 | |
| 		else
 | |
| 			pci_write_config_word(dev, pos + PCI_VC_PORT_CTRL,
 | |
| 					      *(u16 *)buf);
 | |
| 		buf += 4;
 | |
| 	}
 | |
| 	len += 4;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have any Low Priority VCs and a VC Arbitration Table Offset
 | |
| 	 * in Port VC Capability Register 2 then save/restore it next.
 | |
| 	 */
 | |
| 	if (lpevcc) {
 | |
| 		u32 cap2;
 | |
| 		int vcarb_offset;
 | |
| 
 | |
| 		pci_read_config_dword(dev, pos + PCI_VC_PORT_CAP2, &cap2);
 | |
| 		vcarb_offset = FIELD_GET(PCI_VC_CAP2_ARB_OFF, cap2) * 16;
 | |
| 
 | |
| 		if (vcarb_offset) {
 | |
| 			int size, vcarb_phases = 0;
 | |
| 
 | |
| 			if (cap2 & PCI_VC_CAP2_128_PHASE)
 | |
| 				vcarb_phases = 128;
 | |
| 			else if (cap2 & PCI_VC_CAP2_64_PHASE)
 | |
| 				vcarb_phases = 64;
 | |
| 			else if (cap2 & PCI_VC_CAP2_32_PHASE)
 | |
| 				vcarb_phases = 32;
 | |
| 
 | |
| 			/* Fixed 4 bits per phase per lpevcc (plus VC0) */
 | |
| 			size = ((lpevcc + 1) * vcarb_phases * 4) / 8;
 | |
| 
 | |
| 			if (size && buf) {
 | |
| 				pci_vc_save_restore_dwords(dev,
 | |
| 							   pos + vcarb_offset,
 | |
| 							   (u32 *)buf,
 | |
| 							   size / 4, save);
 | |
| 				/*
 | |
| 				 * On restore, we need to signal hardware to
 | |
| 				 * re-load the VC Arbitration Table.
 | |
| 				 */
 | |
| 				if (!save)
 | |
| 					pci_vc_load_arb_table(dev, pos);
 | |
| 
 | |
| 				buf += size;
 | |
| 			}
 | |
| 			len += size;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * In addition to each VC Resource Control Register, we may have a
 | |
| 	 * Port Arbitration Table attached to each VC.  The Port Arbitration
 | |
| 	 * Table Offset in each VC Resource Capability Register tells us if
 | |
| 	 * it exists.  The entry size is global from the Port VC Capability
 | |
| 	 * Register1 above.  The number of phases is determined per VC.
 | |
| 	 */
 | |
| 	for (i = 0; i < evcc + 1; i++) {
 | |
| 		u32 cap;
 | |
| 		int parb_offset;
 | |
| 
 | |
| 		pci_read_config_dword(dev, pos + PCI_VC_RES_CAP +
 | |
| 				      (i * PCI_CAP_VC_PER_VC_SIZEOF), &cap);
 | |
| 		parb_offset = FIELD_GET(PCI_VC_RES_CAP_ARB_OFF, cap) * 16;
 | |
| 		if (parb_offset) {
 | |
| 			int size, parb_phases = 0;
 | |
| 
 | |
| 			if (cap & PCI_VC_RES_CAP_256_PHASE)
 | |
| 				parb_phases = 256;
 | |
| 			else if (cap & (PCI_VC_RES_CAP_128_PHASE |
 | |
| 					PCI_VC_RES_CAP_128_PHASE_TB))
 | |
| 				parb_phases = 128;
 | |
| 			else if (cap & PCI_VC_RES_CAP_64_PHASE)
 | |
| 				parb_phases = 64;
 | |
| 			else if (cap & PCI_VC_RES_CAP_32_PHASE)
 | |
| 				parb_phases = 32;
 | |
| 
 | |
| 			size = (parb_size * parb_phases) / 8;
 | |
| 
 | |
| 			if (size && buf) {
 | |
| 				pci_vc_save_restore_dwords(dev,
 | |
| 							   pos + parb_offset,
 | |
| 							   (u32 *)buf,
 | |
| 							   size / 4, save);
 | |
| 				buf += size;
 | |
| 			}
 | |
| 			len += size;
 | |
| 		}
 | |
| 
 | |
| 		/* VC Resource Control Register */
 | |
| 		if (buf) {
 | |
| 			int ctrl_pos = pos + PCI_VC_RES_CTRL +
 | |
| 						(i * PCI_CAP_VC_PER_VC_SIZEOF);
 | |
| 			if (save)
 | |
| 				pci_read_config_dword(dev, ctrl_pos,
 | |
| 						      (u32 *)buf);
 | |
| 			else {
 | |
| 				u32 tmp, ctrl = *(u32 *)buf;
 | |
| 				/*
 | |
| 				 * For an FLR case, the VC config may remain.
 | |
| 				 * Preserve enable bit, restore the rest.
 | |
| 				 */
 | |
| 				pci_read_config_dword(dev, ctrl_pos, &tmp);
 | |
| 				tmp &= PCI_VC_RES_CTRL_ENABLE;
 | |
| 				tmp |= ctrl & ~PCI_VC_RES_CTRL_ENABLE;
 | |
| 				pci_write_config_dword(dev, ctrl_pos, tmp);
 | |
| 				/* Load port arbitration table if used */
 | |
| 				if (ctrl & PCI_VC_RES_CTRL_ARB_SELECT)
 | |
| 					pci_vc_load_port_arb_table(dev, pos, i);
 | |
| 				/* Re-enable if needed */
 | |
| 				if ((ctrl ^ tmp) & PCI_VC_RES_CTRL_ENABLE)
 | |
| 					pci_vc_enable(dev, pos, i);
 | |
| 			}
 | |
| 			buf += 4;
 | |
| 		}
 | |
| 		len += 4;
 | |
| 	}
 | |
| 
 | |
| 	return buf ? 0 : len;
 | |
| }
 | |
| 
 | |
| static struct {
 | |
| 	u16 id;
 | |
| 	const char *name;
 | |
| } vc_caps[] = { { PCI_EXT_CAP_ID_MFVC, "MFVC" },
 | |
| 		{ PCI_EXT_CAP_ID_VC, "VC" },
 | |
| 		{ PCI_EXT_CAP_ID_VC9, "VC9" } };
 | |
| 
 | |
| /**
 | |
|  * pci_save_vc_state - Save VC state to pre-allocate save buffer
 | |
|  * @dev: device
 | |
|  *
 | |
|  * For each type of VC capability, VC/VC9/MFVC, find the capability and
 | |
|  * save it to the pre-allocated save buffer.
 | |
|  */
 | |
| int pci_save_vc_state(struct pci_dev *dev)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
 | |
| 		int pos, ret;
 | |
| 		struct pci_cap_saved_state *save_state;
 | |
| 
 | |
| 		pos = pci_find_ext_capability(dev, vc_caps[i].id);
 | |
| 		if (!pos)
 | |
| 			continue;
 | |
| 
 | |
| 		save_state = pci_find_saved_ext_cap(dev, vc_caps[i].id);
 | |
| 		if (!save_state) {
 | |
| 			pci_err(dev, "%s buffer not found in %s\n",
 | |
| 				vc_caps[i].name, __func__);
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		ret = pci_vc_do_save_buffer(dev, pos, save_state, true);
 | |
| 		if (ret) {
 | |
| 			pci_err(dev, "%s save unsuccessful %s\n",
 | |
| 				vc_caps[i].name, __func__);
 | |
| 			return ret;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pci_restore_vc_state - Restore VC state from save buffer
 | |
|  * @dev: device
 | |
|  *
 | |
|  * For each type of VC capability, VC/VC9/MFVC, find the capability and
 | |
|  * restore it from the previously saved buffer.
 | |
|  */
 | |
| void pci_restore_vc_state(struct pci_dev *dev)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
 | |
| 		int pos;
 | |
| 		struct pci_cap_saved_state *save_state;
 | |
| 
 | |
| 		pos = pci_find_ext_capability(dev, vc_caps[i].id);
 | |
| 		save_state = pci_find_saved_ext_cap(dev, vc_caps[i].id);
 | |
| 		if (!save_state || !pos)
 | |
| 			continue;
 | |
| 
 | |
| 		pci_vc_do_save_buffer(dev, pos, save_state, false);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pci_allocate_vc_save_buffers - Allocate save buffers for VC caps
 | |
|  * @dev: device
 | |
|  *
 | |
|  * For each type of VC capability, VC/VC9/MFVC, find the capability, size
 | |
|  * it, and allocate a buffer for save/restore.
 | |
|  */
 | |
| void pci_allocate_vc_save_buffers(struct pci_dev *dev)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
 | |
| 		int len, pos = pci_find_ext_capability(dev, vc_caps[i].id);
 | |
| 
 | |
| 		if (!pos)
 | |
| 			continue;
 | |
| 
 | |
| 		len = pci_vc_do_save_buffer(dev, pos, NULL, false);
 | |
| 		if (pci_add_ext_cap_save_buffer(dev, vc_caps[i].id, len))
 | |
| 			pci_err(dev, "unable to preallocate %s save buffer\n",
 | |
| 				vc_caps[i].name);
 | |
| 	}
 | |
| }
 |