554 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			554 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * PCI Endpoint *Function* (EPF) library
 | |
|  *
 | |
|  * Copyright (C) 2017 Texas Instruments
 | |
|  * Author: Kishon Vijay Abraham I <kishon@ti.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/device.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/module.h>
 | |
| 
 | |
| #include <linux/pci-epc.h>
 | |
| #include <linux/pci-epf.h>
 | |
| #include <linux/pci-ep-cfs.h>
 | |
| 
 | |
| static DEFINE_MUTEX(pci_epf_mutex);
 | |
| 
 | |
| static const struct bus_type pci_epf_bus_type;
 | |
| static const struct device_type pci_epf_type;
 | |
| 
 | |
| /**
 | |
|  * pci_epf_unbind() - Notify the function driver that the binding between the
 | |
|  *		      EPF device and EPC device has been lost
 | |
|  * @epf: the EPF device which has lost the binding with the EPC device
 | |
|  *
 | |
|  * Invoke to notify the function driver that the binding between the EPF device
 | |
|  * and EPC device has been lost.
 | |
|  */
 | |
| void pci_epf_unbind(struct pci_epf *epf)
 | |
| {
 | |
| 	struct pci_epf *epf_vf;
 | |
| 
 | |
| 	if (!epf->driver) {
 | |
| 		dev_WARN(&epf->dev, "epf device not bound to driver\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&epf->lock);
 | |
| 	list_for_each_entry(epf_vf, &epf->pci_vepf, list) {
 | |
| 		if (epf_vf->is_bound)
 | |
| 			epf_vf->driver->ops->unbind(epf_vf);
 | |
| 	}
 | |
| 	if (epf->is_bound)
 | |
| 		epf->driver->ops->unbind(epf);
 | |
| 	mutex_unlock(&epf->lock);
 | |
| 	module_put(epf->driver->owner);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(pci_epf_unbind);
 | |
| 
 | |
| /**
 | |
|  * pci_epf_bind() - Notify the function driver that the EPF device has been
 | |
|  *		    bound to a EPC device
 | |
|  * @epf: the EPF device which has been bound to the EPC device
 | |
|  *
 | |
|  * Invoke to notify the function driver that it has been bound to a EPC device
 | |
|  */
 | |
| int pci_epf_bind(struct pci_epf *epf)
 | |
| {
 | |
| 	struct device *dev = &epf->dev;
 | |
| 	struct pci_epf *epf_vf;
 | |
| 	u8 func_no, vfunc_no;
 | |
| 	struct pci_epc *epc;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!epf->driver) {
 | |
| 		dev_WARN(dev, "epf device not bound to driver\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!try_module_get(epf->driver->owner))
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	mutex_lock(&epf->lock);
 | |
| 	list_for_each_entry(epf_vf, &epf->pci_vepf, list) {
 | |
| 		vfunc_no = epf_vf->vfunc_no;
 | |
| 
 | |
| 		if (vfunc_no < 1) {
 | |
| 			dev_err(dev, "Invalid virtual function number\n");
 | |
| 			ret = -EINVAL;
 | |
| 			goto ret;
 | |
| 		}
 | |
| 
 | |
| 		epc = epf->epc;
 | |
| 		func_no = epf->func_no;
 | |
| 		if (!IS_ERR_OR_NULL(epc)) {
 | |
| 			if (!epc->max_vfs) {
 | |
| 				dev_err(dev, "No support for virt function\n");
 | |
| 				ret = -EINVAL;
 | |
| 				goto ret;
 | |
| 			}
 | |
| 
 | |
| 			if (vfunc_no > epc->max_vfs[func_no]) {
 | |
| 				dev_err(dev, "PF%d: Exceeds max vfunc number\n",
 | |
| 					func_no);
 | |
| 				ret = -EINVAL;
 | |
| 				goto ret;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		epc = epf->sec_epc;
 | |
| 		func_no = epf->sec_epc_func_no;
 | |
| 		if (!IS_ERR_OR_NULL(epc)) {
 | |
| 			if (!epc->max_vfs) {
 | |
| 				dev_err(dev, "No support for virt function\n");
 | |
| 				ret = -EINVAL;
 | |
| 				goto ret;
 | |
| 			}
 | |
| 
 | |
| 			if (vfunc_no > epc->max_vfs[func_no]) {
 | |
| 				dev_err(dev, "PF%d: Exceeds max vfunc number\n",
 | |
| 					func_no);
 | |
| 				ret = -EINVAL;
 | |
| 				goto ret;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		epf_vf->func_no = epf->func_no;
 | |
| 		epf_vf->sec_epc_func_no = epf->sec_epc_func_no;
 | |
| 		epf_vf->epc = epf->epc;
 | |
| 		epf_vf->sec_epc = epf->sec_epc;
 | |
| 		ret = epf_vf->driver->ops->bind(epf_vf);
 | |
| 		if (ret)
 | |
| 			goto ret;
 | |
| 		epf_vf->is_bound = true;
 | |
| 	}
 | |
| 
 | |
| 	ret = epf->driver->ops->bind(epf);
 | |
| 	if (ret)
 | |
| 		goto ret;
 | |
| 	epf->is_bound = true;
 | |
| 
 | |
| 	mutex_unlock(&epf->lock);
 | |
| 	return 0;
 | |
| 
 | |
| ret:
 | |
| 	mutex_unlock(&epf->lock);
 | |
| 	pci_epf_unbind(epf);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(pci_epf_bind);
 | |
| 
 | |
| /**
 | |
|  * pci_epf_add_vepf() - associate virtual EP function to physical EP function
 | |
|  * @epf_pf: the physical EP function to which the virtual EP function should be
 | |
|  *   associated
 | |
|  * @epf_vf: the virtual EP function to be added
 | |
|  *
 | |
|  * A physical endpoint function can be associated with multiple virtual
 | |
|  * endpoint functions. Invoke pci_epf_add_epf() to add a virtual PCI endpoint
 | |
|  * function to a physical PCI endpoint function.
 | |
|  */
 | |
| int pci_epf_add_vepf(struct pci_epf *epf_pf, struct pci_epf *epf_vf)
 | |
| {
 | |
| 	u32 vfunc_no;
 | |
| 
 | |
| 	if (IS_ERR_OR_NULL(epf_pf) || IS_ERR_OR_NULL(epf_vf))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (epf_pf->epc || epf_vf->epc || epf_vf->epf_pf)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	if (epf_pf->sec_epc || epf_vf->sec_epc)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	mutex_lock(&epf_pf->lock);
 | |
| 	vfunc_no = find_first_zero_bit(&epf_pf->vfunction_num_map,
 | |
| 				       BITS_PER_LONG);
 | |
| 	if (vfunc_no >= BITS_PER_LONG) {
 | |
| 		mutex_unlock(&epf_pf->lock);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	set_bit(vfunc_no, &epf_pf->vfunction_num_map);
 | |
| 	epf_vf->vfunc_no = vfunc_no;
 | |
| 
 | |
| 	epf_vf->epf_pf = epf_pf;
 | |
| 	epf_vf->is_vf = true;
 | |
| 
 | |
| 	list_add_tail(&epf_vf->list, &epf_pf->pci_vepf);
 | |
| 	mutex_unlock(&epf_pf->lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(pci_epf_add_vepf);
 | |
| 
 | |
| /**
 | |
|  * pci_epf_remove_vepf() - remove virtual EP function from physical EP function
 | |
|  * @epf_pf: the physical EP function from which the virtual EP function should
 | |
|  *   be removed
 | |
|  * @epf_vf: the virtual EP function to be removed
 | |
|  *
 | |
|  * Invoke to remove a virtual endpoint function from the physical endpoint
 | |
|  * function.
 | |
|  */
 | |
| void pci_epf_remove_vepf(struct pci_epf *epf_pf, struct pci_epf *epf_vf)
 | |
| {
 | |
| 	if (IS_ERR_OR_NULL(epf_pf) || IS_ERR_OR_NULL(epf_vf))
 | |
| 		return;
 | |
| 
 | |
| 	mutex_lock(&epf_pf->lock);
 | |
| 	clear_bit(epf_vf->vfunc_no, &epf_pf->vfunction_num_map);
 | |
| 	list_del(&epf_vf->list);
 | |
| 	mutex_unlock(&epf_pf->lock);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(pci_epf_remove_vepf);
 | |
| 
 | |
| /**
 | |
|  * pci_epf_free_space() - free the allocated PCI EPF register space
 | |
|  * @epf: the EPF device from whom to free the memory
 | |
|  * @addr: the virtual address of the PCI EPF register space
 | |
|  * @bar: the BAR number corresponding to the register space
 | |
|  * @type: Identifies if the allocated space is for primary EPC or secondary EPC
 | |
|  *
 | |
|  * Invoke to free the allocated PCI EPF register space.
 | |
|  */
 | |
| void pci_epf_free_space(struct pci_epf *epf, void *addr, enum pci_barno bar,
 | |
| 			enum pci_epc_interface_type type)
 | |
| {
 | |
| 	struct device *dev;
 | |
| 	struct pci_epf_bar *epf_bar;
 | |
| 	struct pci_epc *epc;
 | |
| 
 | |
| 	if (!addr)
 | |
| 		return;
 | |
| 
 | |
| 	if (type == PRIMARY_INTERFACE) {
 | |
| 		epc = epf->epc;
 | |
| 		epf_bar = epf->bar;
 | |
| 	} else {
 | |
| 		epc = epf->sec_epc;
 | |
| 		epf_bar = epf->sec_epc_bar;
 | |
| 	}
 | |
| 
 | |
| 	dev = epc->dev.parent;
 | |
| 	dma_free_coherent(dev, epf_bar[bar].size, addr,
 | |
| 			  epf_bar[bar].phys_addr);
 | |
| 
 | |
| 	epf_bar[bar].phys_addr = 0;
 | |
| 	epf_bar[bar].addr = NULL;
 | |
| 	epf_bar[bar].size = 0;
 | |
| 	epf_bar[bar].barno = 0;
 | |
| 	epf_bar[bar].flags = 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(pci_epf_free_space);
 | |
| 
 | |
| /**
 | |
|  * pci_epf_alloc_space() - allocate memory for the PCI EPF register space
 | |
|  * @epf: the EPF device to whom allocate the memory
 | |
|  * @size: the size of the memory that has to be allocated
 | |
|  * @bar: the BAR number corresponding to the allocated register space
 | |
|  * @epc_features: the features provided by the EPC specific to this EPF
 | |
|  * @type: Identifies if the allocation is for primary EPC or secondary EPC
 | |
|  *
 | |
|  * Invoke to allocate memory for the PCI EPF register space.
 | |
|  * Flag PCI_BASE_ADDRESS_MEM_TYPE_64 will automatically get set if the BAR
 | |
|  * can only be a 64-bit BAR, or if the requested size is larger than 2 GB.
 | |
|  */
 | |
| void *pci_epf_alloc_space(struct pci_epf *epf, size_t size, enum pci_barno bar,
 | |
| 			  const struct pci_epc_features *epc_features,
 | |
| 			  enum pci_epc_interface_type type)
 | |
| {
 | |
| 	u64 bar_fixed_size = epc_features->bar[bar].fixed_size;
 | |
| 	size_t align = epc_features->align;
 | |
| 	struct pci_epf_bar *epf_bar;
 | |
| 	dma_addr_t phys_addr;
 | |
| 	struct pci_epc *epc;
 | |
| 	struct device *dev;
 | |
| 	void *space;
 | |
| 
 | |
| 	if (size < 128)
 | |
| 		size = 128;
 | |
| 
 | |
| 	if (epc_features->bar[bar].type == BAR_FIXED && bar_fixed_size) {
 | |
| 		if (size > bar_fixed_size) {
 | |
| 			dev_err(&epf->dev,
 | |
| 				"requested BAR size is larger than fixed size\n");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		size = bar_fixed_size;
 | |
| 	}
 | |
| 
 | |
| 	if (align)
 | |
| 		size = ALIGN(size, align);
 | |
| 	else
 | |
| 		size = roundup_pow_of_two(size);
 | |
| 
 | |
| 	if (type == PRIMARY_INTERFACE) {
 | |
| 		epc = epf->epc;
 | |
| 		epf_bar = epf->bar;
 | |
| 	} else {
 | |
| 		epc = epf->sec_epc;
 | |
| 		epf_bar = epf->sec_epc_bar;
 | |
| 	}
 | |
| 
 | |
| 	dev = epc->dev.parent;
 | |
| 	space = dma_alloc_coherent(dev, size, &phys_addr, GFP_KERNEL);
 | |
| 	if (!space) {
 | |
| 		dev_err(dev, "failed to allocate mem space\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	epf_bar[bar].phys_addr = phys_addr;
 | |
| 	epf_bar[bar].addr = space;
 | |
| 	epf_bar[bar].size = size;
 | |
| 	epf_bar[bar].barno = bar;
 | |
| 	if (upper_32_bits(size) || epc_features->bar[bar].only_64bit)
 | |
| 		epf_bar[bar].flags |= PCI_BASE_ADDRESS_MEM_TYPE_64;
 | |
| 	else
 | |
| 		epf_bar[bar].flags |= PCI_BASE_ADDRESS_MEM_TYPE_32;
 | |
| 
 | |
| 	return space;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(pci_epf_alloc_space);
 | |
| 
 | |
| static void pci_epf_remove_cfs(struct pci_epf_driver *driver)
 | |
| {
 | |
| 	struct config_group *group, *tmp;
 | |
| 
 | |
| 	if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS))
 | |
| 		return;
 | |
| 
 | |
| 	mutex_lock(&pci_epf_mutex);
 | |
| 	list_for_each_entry_safe(group, tmp, &driver->epf_group, group_entry)
 | |
| 		pci_ep_cfs_remove_epf_group(group);
 | |
| 	list_del(&driver->epf_group);
 | |
| 	mutex_unlock(&pci_epf_mutex);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pci_epf_unregister_driver() - unregister the PCI EPF driver
 | |
|  * @driver: the PCI EPF driver that has to be unregistered
 | |
|  *
 | |
|  * Invoke to unregister the PCI EPF driver.
 | |
|  */
 | |
| void pci_epf_unregister_driver(struct pci_epf_driver *driver)
 | |
| {
 | |
| 	pci_epf_remove_cfs(driver);
 | |
| 	driver_unregister(&driver->driver);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(pci_epf_unregister_driver);
 | |
| 
 | |
| static int pci_epf_add_cfs(struct pci_epf_driver *driver)
 | |
| {
 | |
| 	struct config_group *group;
 | |
| 	const struct pci_epf_device_id *id;
 | |
| 
 | |
| 	if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS))
 | |
| 		return 0;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&driver->epf_group);
 | |
| 
 | |
| 	id = driver->id_table;
 | |
| 	while (id->name[0]) {
 | |
| 		group = pci_ep_cfs_add_epf_group(id->name);
 | |
| 		if (IS_ERR(group)) {
 | |
| 			pci_epf_remove_cfs(driver);
 | |
| 			return PTR_ERR(group);
 | |
| 		}
 | |
| 
 | |
| 		mutex_lock(&pci_epf_mutex);
 | |
| 		list_add_tail(&group->group_entry, &driver->epf_group);
 | |
| 		mutex_unlock(&pci_epf_mutex);
 | |
| 		id++;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __pci_epf_register_driver() - register a new PCI EPF driver
 | |
|  * @driver: structure representing PCI EPF driver
 | |
|  * @owner: the owner of the module that registers the PCI EPF driver
 | |
|  *
 | |
|  * Invoke to register a new PCI EPF driver.
 | |
|  */
 | |
| int __pci_epf_register_driver(struct pci_epf_driver *driver,
 | |
| 			      struct module *owner)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!driver->ops)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!driver->ops->bind || !driver->ops->unbind)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	driver->driver.bus = &pci_epf_bus_type;
 | |
| 	driver->driver.owner = owner;
 | |
| 
 | |
| 	ret = driver_register(&driver->driver);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	pci_epf_add_cfs(driver);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__pci_epf_register_driver);
 | |
| 
 | |
| /**
 | |
|  * pci_epf_destroy() - destroy the created PCI EPF device
 | |
|  * @epf: the PCI EPF device that has to be destroyed.
 | |
|  *
 | |
|  * Invoke to destroy the PCI EPF device created by invoking pci_epf_create().
 | |
|  */
 | |
| void pci_epf_destroy(struct pci_epf *epf)
 | |
| {
 | |
| 	device_unregister(&epf->dev);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(pci_epf_destroy);
 | |
| 
 | |
| /**
 | |
|  * pci_epf_create() - create a new PCI EPF device
 | |
|  * @name: the name of the PCI EPF device. This name will be used to bind the
 | |
|  *	  EPF device to a EPF driver
 | |
|  *
 | |
|  * Invoke to create a new PCI EPF device by providing the name of the function
 | |
|  * device.
 | |
|  */
 | |
| struct pci_epf *pci_epf_create(const char *name)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct pci_epf *epf;
 | |
| 	struct device *dev;
 | |
| 	int len;
 | |
| 
 | |
| 	epf = kzalloc(sizeof(*epf), GFP_KERNEL);
 | |
| 	if (!epf)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	len = strchrnul(name, '.') - name;
 | |
| 	epf->name = kstrndup(name, len, GFP_KERNEL);
 | |
| 	if (!epf->name) {
 | |
| 		kfree(epf);
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	}
 | |
| 
 | |
| 	/* VFs are numbered starting with 1. So set BIT(0) by default */
 | |
| 	epf->vfunction_num_map = 1;
 | |
| 	INIT_LIST_HEAD(&epf->pci_vepf);
 | |
| 
 | |
| 	dev = &epf->dev;
 | |
| 	device_initialize(dev);
 | |
| 	dev->bus = &pci_epf_bus_type;
 | |
| 	dev->type = &pci_epf_type;
 | |
| 	mutex_init(&epf->lock);
 | |
| 
 | |
| 	ret = dev_set_name(dev, "%s", name);
 | |
| 	if (ret) {
 | |
| 		put_device(dev);
 | |
| 		return ERR_PTR(ret);
 | |
| 	}
 | |
| 
 | |
| 	ret = device_add(dev);
 | |
| 	if (ret) {
 | |
| 		put_device(dev);
 | |
| 		return ERR_PTR(ret);
 | |
| 	}
 | |
| 
 | |
| 	return epf;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(pci_epf_create);
 | |
| 
 | |
| static void pci_epf_dev_release(struct device *dev)
 | |
| {
 | |
| 	struct pci_epf *epf = to_pci_epf(dev);
 | |
| 
 | |
| 	kfree(epf->name);
 | |
| 	kfree(epf);
 | |
| }
 | |
| 
 | |
| static const struct device_type pci_epf_type = {
 | |
| 	.release	= pci_epf_dev_release,
 | |
| };
 | |
| 
 | |
| static const struct pci_epf_device_id *
 | |
| pci_epf_match_id(const struct pci_epf_device_id *id, const struct pci_epf *epf)
 | |
| {
 | |
| 	while (id->name[0]) {
 | |
| 		if (strcmp(epf->name, id->name) == 0)
 | |
| 			return id;
 | |
| 		id++;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int pci_epf_device_match(struct device *dev, struct device_driver *drv)
 | |
| {
 | |
| 	struct pci_epf *epf = to_pci_epf(dev);
 | |
| 	struct pci_epf_driver *driver = to_pci_epf_driver(drv);
 | |
| 
 | |
| 	if (driver->id_table)
 | |
| 		return !!pci_epf_match_id(driver->id_table, epf);
 | |
| 
 | |
| 	return !strcmp(epf->name, drv->name);
 | |
| }
 | |
| 
 | |
| static int pci_epf_device_probe(struct device *dev)
 | |
| {
 | |
| 	struct pci_epf *epf = to_pci_epf(dev);
 | |
| 	struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver);
 | |
| 
 | |
| 	if (!driver->probe)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	epf->driver = driver;
 | |
| 
 | |
| 	return driver->probe(epf, pci_epf_match_id(driver->id_table, epf));
 | |
| }
 | |
| 
 | |
| static void pci_epf_device_remove(struct device *dev)
 | |
| {
 | |
| 	struct pci_epf *epf = to_pci_epf(dev);
 | |
| 	struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver);
 | |
| 
 | |
| 	if (driver->remove)
 | |
| 		driver->remove(epf);
 | |
| 	epf->driver = NULL;
 | |
| }
 | |
| 
 | |
| static const struct bus_type pci_epf_bus_type = {
 | |
| 	.name		= "pci-epf",
 | |
| 	.match		= pci_epf_device_match,
 | |
| 	.probe		= pci_epf_device_probe,
 | |
| 	.remove		= pci_epf_device_remove,
 | |
| };
 | |
| 
 | |
| static int __init pci_epf_init(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = bus_register(&pci_epf_bus_type);
 | |
| 	if (ret) {
 | |
| 		pr_err("failed to register pci epf bus --> %d\n", ret);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| module_init(pci_epf_init);
 | |
| 
 | |
| static void __exit pci_epf_exit(void)
 | |
| {
 | |
| 	bus_unregister(&pci_epf_bus_type);
 | |
| }
 | |
| module_exit(pci_epf_exit);
 | |
| 
 | |
| MODULE_DESCRIPTION("PCI EPF Library");
 | |
| MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");
 |