688 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			688 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (c) 2008-2011 Atheros Communications Inc.
 | 
						|
 *
 | 
						|
 * Permission to use, copy, modify, and/or distribute this software for any
 | 
						|
 * purpose with or without fee is hereby granted, provided that the above
 | 
						|
 * copyright notice and this permission notice appear in all copies.
 | 
						|
 *
 | 
						|
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 | 
						|
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 | 
						|
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 | 
						|
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 | 
						|
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 | 
						|
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 | 
						|
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 | 
						|
 */
 | 
						|
 | 
						|
#include "hw.h"
 | 
						|
#include <linux/ath9k_platform.h>
 | 
						|
 | 
						|
void ath9k_hw_analog_shift_regwrite(struct ath_hw *ah, u32 reg, u32 val)
 | 
						|
{
 | 
						|
        REG_WRITE(ah, reg, val);
 | 
						|
 | 
						|
        if (ah->config.analog_shiftreg)
 | 
						|
		udelay(100);
 | 
						|
}
 | 
						|
 | 
						|
void ath9k_hw_analog_shift_rmw(struct ath_hw *ah, u32 reg, u32 mask,
 | 
						|
			       u32 shift, u32 val)
 | 
						|
{
 | 
						|
	REG_RMW(ah, reg, ((val << shift) & mask), mask);
 | 
						|
 | 
						|
	if (ah->config.analog_shiftreg)
 | 
						|
		udelay(100);
 | 
						|
}
 | 
						|
 | 
						|
int16_t ath9k_hw_interpolate(u16 target, u16 srcLeft, u16 srcRight,
 | 
						|
			     int16_t targetLeft, int16_t targetRight)
 | 
						|
{
 | 
						|
	int16_t rv;
 | 
						|
 | 
						|
	if (srcRight == srcLeft) {
 | 
						|
		rv = targetLeft;
 | 
						|
	} else {
 | 
						|
		rv = (int16_t) (((target - srcLeft) * targetRight +
 | 
						|
				 (srcRight - target) * targetLeft) /
 | 
						|
				(srcRight - srcLeft));
 | 
						|
	}
 | 
						|
	return rv;
 | 
						|
}
 | 
						|
 | 
						|
bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList, u16 listSize,
 | 
						|
				    u16 *indexL, u16 *indexR)
 | 
						|
{
 | 
						|
	u16 i;
 | 
						|
 | 
						|
	if (target <= pList[0]) {
 | 
						|
		*indexL = *indexR = 0;
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
	if (target >= pList[listSize - 1]) {
 | 
						|
		*indexL = *indexR = (u16) (listSize - 1);
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < listSize - 1; i++) {
 | 
						|
		if (pList[i] == target) {
 | 
						|
			*indexL = *indexR = i;
 | 
						|
			return true;
 | 
						|
		}
 | 
						|
		if (target < pList[i + 1]) {
 | 
						|
			*indexL = i;
 | 
						|
			*indexR = (u16) (i + 1);
 | 
						|
			return false;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
void ath9k_hw_usb_gen_fill_eeprom(struct ath_hw *ah, u16 *eep_data,
 | 
						|
				  int eep_start_loc, int size)
 | 
						|
{
 | 
						|
	int i = 0, j, addr;
 | 
						|
	u32 addrdata[8];
 | 
						|
	u32 data[8];
 | 
						|
 | 
						|
	for (addr = 0; addr < size; addr++) {
 | 
						|
		addrdata[i] = AR5416_EEPROM_OFFSET +
 | 
						|
			((addr + eep_start_loc) << AR5416_EEPROM_S);
 | 
						|
		i++;
 | 
						|
		if (i == 8) {
 | 
						|
			REG_READ_MULTI(ah, addrdata, data, i);
 | 
						|
 | 
						|
			for (j = 0; j < i; j++) {
 | 
						|
				*eep_data = data[j];
 | 
						|
				eep_data++;
 | 
						|
			}
 | 
						|
			i = 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (i != 0) {
 | 
						|
		REG_READ_MULTI(ah, addrdata, data, i);
 | 
						|
 | 
						|
		for (j = 0; j < i; j++) {
 | 
						|
			*eep_data = data[j];
 | 
						|
			eep_data++;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static bool ath9k_hw_nvram_read_array(u16 *blob, size_t blob_size,
 | 
						|
				      off_t offset, u16 *data)
 | 
						|
{
 | 
						|
	if (offset >= blob_size)
 | 
						|
		return false;
 | 
						|
 | 
						|
	*data =  blob[offset];
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool ath9k_hw_nvram_read_pdata(struct ath9k_platform_data *pdata,
 | 
						|
				      off_t offset, u16 *data)
 | 
						|
{
 | 
						|
	return ath9k_hw_nvram_read_array(pdata->eeprom_data,
 | 
						|
					 ARRAY_SIZE(pdata->eeprom_data),
 | 
						|
					 offset, data);
 | 
						|
}
 | 
						|
 | 
						|
static bool ath9k_hw_nvram_read_firmware(const struct firmware *eeprom_blob,
 | 
						|
					 off_t offset, u16 *data)
 | 
						|
{
 | 
						|
	return ath9k_hw_nvram_read_array((u16 *) eeprom_blob->data,
 | 
						|
					 eeprom_blob->size / sizeof(u16),
 | 
						|
					 offset, data);
 | 
						|
}
 | 
						|
 | 
						|
static bool ath9k_hw_nvram_read_nvmem(struct ath_hw *ah, off_t offset,
 | 
						|
				      u16 *data)
 | 
						|
{
 | 
						|
	return ath9k_hw_nvram_read_array(ah->nvmem_blob,
 | 
						|
					 ah->nvmem_blob_len / sizeof(u16),
 | 
						|
					 offset, data);
 | 
						|
}
 | 
						|
 | 
						|
bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
 | 
						|
{
 | 
						|
	struct ath_common *common = ath9k_hw_common(ah);
 | 
						|
	struct ath9k_platform_data *pdata = ah->dev->platform_data;
 | 
						|
	bool ret;
 | 
						|
 | 
						|
	if (ah->nvmem_blob)
 | 
						|
		ret = ath9k_hw_nvram_read_nvmem(ah, off, data);
 | 
						|
	else if (ah->eeprom_blob)
 | 
						|
		ret = ath9k_hw_nvram_read_firmware(ah->eeprom_blob, off, data);
 | 
						|
	else if (pdata && !pdata->use_eeprom)
 | 
						|
		ret = ath9k_hw_nvram_read_pdata(pdata, off, data);
 | 
						|
	else
 | 
						|
		ret = common->bus_ops->eeprom_read(common, off, data);
 | 
						|
 | 
						|
	if (!ret)
 | 
						|
		ath_dbg(common, EEPROM,
 | 
						|
			"unable to read eeprom region at offset %u\n", off);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int ath9k_hw_nvram_swap_data(struct ath_hw *ah, bool *swap_needed, int size)
 | 
						|
{
 | 
						|
	u16 magic;
 | 
						|
	u16 *eepdata;
 | 
						|
	int i;
 | 
						|
	bool needs_byteswap = false;
 | 
						|
	struct ath_common *common = ath9k_hw_common(ah);
 | 
						|
 | 
						|
	if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
 | 
						|
		ath_err(common, "Reading Magic # failed\n");
 | 
						|
		return -EIO;
 | 
						|
	}
 | 
						|
 | 
						|
	if (swab16(magic) == AR5416_EEPROM_MAGIC) {
 | 
						|
		needs_byteswap = true;
 | 
						|
		ath_dbg(common, EEPROM,
 | 
						|
			"EEPROM needs byte-swapping to correct endianness.\n");
 | 
						|
	} else if (magic != AR5416_EEPROM_MAGIC) {
 | 
						|
		if (ath9k_hw_use_flash(ah)) {
 | 
						|
			ath_dbg(common, EEPROM,
 | 
						|
				"Ignoring invalid EEPROM magic (0x%04x).\n",
 | 
						|
				magic);
 | 
						|
		} else {
 | 
						|
			ath_err(common,
 | 
						|
				"Invalid EEPROM magic (0x%04x).\n", magic);
 | 
						|
			return -EINVAL;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (needs_byteswap) {
 | 
						|
		if (ah->ah_flags & AH_NO_EEP_SWAP) {
 | 
						|
			ath_info(common,
 | 
						|
				 "Ignoring endianness difference in EEPROM magic bytes.\n");
 | 
						|
		} else {
 | 
						|
			eepdata = (u16 *)(&ah->eeprom);
 | 
						|
 | 
						|
			for (i = 0; i < size; i++)
 | 
						|
				eepdata[i] = swab16(eepdata[i]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (ah->eep_ops->get_eepmisc(ah) & AR5416_EEPMISC_BIG_ENDIAN) {
 | 
						|
		*swap_needed = true;
 | 
						|
		ath_dbg(common, EEPROM,
 | 
						|
			"Big Endian EEPROM detected according to EEPMISC register.\n");
 | 
						|
	} else {
 | 
						|
		*swap_needed = false;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
bool ath9k_hw_nvram_validate_checksum(struct ath_hw *ah, int size)
 | 
						|
{
 | 
						|
	u32 i, sum = 0;
 | 
						|
	u16 *eepdata = (u16 *)(&ah->eeprom);
 | 
						|
	struct ath_common *common = ath9k_hw_common(ah);
 | 
						|
 | 
						|
	for (i = 0; i < size; i++)
 | 
						|
		sum ^= eepdata[i];
 | 
						|
 | 
						|
	if (sum != 0xffff) {
 | 
						|
		ath_err(common, "Bad EEPROM checksum 0x%x\n", sum);
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
bool ath9k_hw_nvram_check_version(struct ath_hw *ah, int version, int minrev)
 | 
						|
{
 | 
						|
	struct ath_common *common = ath9k_hw_common(ah);
 | 
						|
 | 
						|
	if (ah->eep_ops->get_eeprom_ver(ah) != version ||
 | 
						|
	    ah->eep_ops->get_eeprom_rev(ah) < minrev) {
 | 
						|
		ath_err(common, "Bad EEPROM VER 0x%04x or REV 0x%04x\n",
 | 
						|
			ah->eep_ops->get_eeprom_ver(ah),
 | 
						|
			ah->eep_ops->get_eeprom_rev(ah));
 | 
						|
		return false;
 | 
						|
	}
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
void ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
 | 
						|
			     u8 *pVpdList, u16 numIntercepts,
 | 
						|
			     u8 *pRetVpdList)
 | 
						|
{
 | 
						|
	u16 i, k;
 | 
						|
	u8 currPwr = pwrMin;
 | 
						|
	u16 idxL = 0, idxR = 0;
 | 
						|
 | 
						|
	for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
 | 
						|
		ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
 | 
						|
					       numIntercepts, &(idxL),
 | 
						|
					       &(idxR));
 | 
						|
		if (idxR < 1)
 | 
						|
			idxR = 1;
 | 
						|
		if (idxL == numIntercepts - 1)
 | 
						|
			idxL = (u16) (numIntercepts - 2);
 | 
						|
		if (pPwrList[idxL] == pPwrList[idxR])
 | 
						|
			k = pVpdList[idxL];
 | 
						|
		else
 | 
						|
			k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
 | 
						|
				   (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
 | 
						|
				  (pPwrList[idxR] - pPwrList[idxL]));
 | 
						|
		pRetVpdList[i] = (u8) k;
 | 
						|
		currPwr += 2;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
 | 
						|
				       struct ath9k_channel *chan,
 | 
						|
				       struct cal_target_power_leg *powInfo,
 | 
						|
				       u16 numChannels,
 | 
						|
				       struct cal_target_power_leg *pNewPower,
 | 
						|
				       u16 numRates, bool isExtTarget)
 | 
						|
{
 | 
						|
	struct chan_centers centers;
 | 
						|
	u16 clo, chi;
 | 
						|
	int i;
 | 
						|
	int matchIndex = -1, lowIndex = -1;
 | 
						|
	u16 freq;
 | 
						|
 | 
						|
	ath9k_hw_get_channel_centers(ah, chan, ¢ers);
 | 
						|
	freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
 | 
						|
 | 
						|
	if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
 | 
						|
				       IS_CHAN_2GHZ(chan))) {
 | 
						|
		matchIndex = 0;
 | 
						|
	} else {
 | 
						|
		for (i = 0; (i < numChannels) &&
 | 
						|
			     (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
 | 
						|
			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
 | 
						|
						       IS_CHAN_2GHZ(chan))) {
 | 
						|
				matchIndex = i;
 | 
						|
				break;
 | 
						|
			} else if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
 | 
						|
						IS_CHAN_2GHZ(chan)) && i > 0 &&
 | 
						|
				   freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
 | 
						|
						IS_CHAN_2GHZ(chan))) {
 | 
						|
				lowIndex = i - 1;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if ((matchIndex == -1) && (lowIndex == -1))
 | 
						|
			matchIndex = i - 1;
 | 
						|
	}
 | 
						|
 | 
						|
	if (matchIndex != -1) {
 | 
						|
		*pNewPower = powInfo[matchIndex];
 | 
						|
	} else {
 | 
						|
		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
 | 
						|
					 IS_CHAN_2GHZ(chan));
 | 
						|
		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
 | 
						|
					 IS_CHAN_2GHZ(chan));
 | 
						|
 | 
						|
		for (i = 0; i < numRates; i++) {
 | 
						|
			pNewPower->tPow2x[i] =
 | 
						|
				(u8)ath9k_hw_interpolate(freq, clo, chi,
 | 
						|
						powInfo[lowIndex].tPow2x[i],
 | 
						|
						powInfo[lowIndex + 1].tPow2x[i]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void ath9k_hw_get_target_powers(struct ath_hw *ah,
 | 
						|
				struct ath9k_channel *chan,
 | 
						|
				struct cal_target_power_ht *powInfo,
 | 
						|
				u16 numChannels,
 | 
						|
				struct cal_target_power_ht *pNewPower,
 | 
						|
				u16 numRates, bool isHt40Target)
 | 
						|
{
 | 
						|
	struct chan_centers centers;
 | 
						|
	u16 clo, chi;
 | 
						|
	int i;
 | 
						|
	int matchIndex = -1, lowIndex = -1;
 | 
						|
	u16 freq;
 | 
						|
 | 
						|
	ath9k_hw_get_channel_centers(ah, chan, ¢ers);
 | 
						|
	freq = isHt40Target ? centers.synth_center : centers.ctl_center;
 | 
						|
 | 
						|
	if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
 | 
						|
		matchIndex = 0;
 | 
						|
	} else {
 | 
						|
		for (i = 0; (i < numChannels) &&
 | 
						|
			     (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
 | 
						|
			if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
 | 
						|
						       IS_CHAN_2GHZ(chan))) {
 | 
						|
				matchIndex = i;
 | 
						|
				break;
 | 
						|
			} else
 | 
						|
				if (freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
 | 
						|
						IS_CHAN_2GHZ(chan)) && i > 0 &&
 | 
						|
				    freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
 | 
						|
						IS_CHAN_2GHZ(chan))) {
 | 
						|
					lowIndex = i - 1;
 | 
						|
					break;
 | 
						|
				}
 | 
						|
		}
 | 
						|
		if ((matchIndex == -1) && (lowIndex == -1))
 | 
						|
			matchIndex = i - 1;
 | 
						|
	}
 | 
						|
 | 
						|
	if (matchIndex != -1) {
 | 
						|
		*pNewPower = powInfo[matchIndex];
 | 
						|
	} else {
 | 
						|
		clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
 | 
						|
					 IS_CHAN_2GHZ(chan));
 | 
						|
		chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
 | 
						|
					 IS_CHAN_2GHZ(chan));
 | 
						|
 | 
						|
		for (i = 0; i < numRates; i++) {
 | 
						|
			pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
 | 
						|
						clo, chi,
 | 
						|
						powInfo[lowIndex].tPow2x[i],
 | 
						|
						powInfo[lowIndex + 1].tPow2x[i]);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
u16 ath9k_hw_get_max_edge_power(u16 freq, struct cal_ctl_edges *pRdEdgesPower,
 | 
						|
				bool is2GHz, int num_band_edges)
 | 
						|
{
 | 
						|
	u16 twiceMaxEdgePower = MAX_RATE_POWER;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; (i < num_band_edges) &&
 | 
						|
		     (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
 | 
						|
		if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
 | 
						|
			twiceMaxEdgePower = CTL_EDGE_TPOWER(pRdEdgesPower[i].ctl);
 | 
						|
			break;
 | 
						|
		} else if ((i > 0) &&
 | 
						|
			   (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
 | 
						|
						      is2GHz))) {
 | 
						|
			if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
 | 
						|
					       is2GHz) < freq &&
 | 
						|
			    CTL_EDGE_FLAGS(pRdEdgesPower[i - 1].ctl)) {
 | 
						|
				twiceMaxEdgePower =
 | 
						|
					CTL_EDGE_TPOWER(pRdEdgesPower[i - 1].ctl);
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return twiceMaxEdgePower;
 | 
						|
}
 | 
						|
 | 
						|
u16 ath9k_hw_get_scaled_power(struct ath_hw *ah, u16 power_limit,
 | 
						|
			      u8 antenna_reduction)
 | 
						|
{
 | 
						|
	u16 reduction = antenna_reduction;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Reduce scaled Power by number of chains active
 | 
						|
	 * to get the per chain tx power level.
 | 
						|
	 */
 | 
						|
	switch (ar5416_get_ntxchains(ah->txchainmask)) {
 | 
						|
	case 1:
 | 
						|
		break;
 | 
						|
	case 2:
 | 
						|
		reduction += POWER_CORRECTION_FOR_TWO_CHAIN;
 | 
						|
		break;
 | 
						|
	case 3:
 | 
						|
		reduction += POWER_CORRECTION_FOR_THREE_CHAIN;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	if (power_limit > reduction)
 | 
						|
		power_limit -= reduction;
 | 
						|
	else
 | 
						|
		power_limit = 0;
 | 
						|
 | 
						|
	return min_t(u16, power_limit, MAX_RATE_POWER);
 | 
						|
}
 | 
						|
 | 
						|
void ath9k_hw_update_regulatory_maxpower(struct ath_hw *ah)
 | 
						|
{
 | 
						|
	struct ath_common *common = ath9k_hw_common(ah);
 | 
						|
	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
 | 
						|
 | 
						|
	switch (ar5416_get_ntxchains(ah->txchainmask)) {
 | 
						|
	case 1:
 | 
						|
		break;
 | 
						|
	case 2:
 | 
						|
		regulatory->max_power_level += POWER_CORRECTION_FOR_TWO_CHAIN;
 | 
						|
		break;
 | 
						|
	case 3:
 | 
						|
		regulatory->max_power_level += POWER_CORRECTION_FOR_THREE_CHAIN;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		ath_dbg(common, EEPROM, "Invalid chainmask configuration\n");
 | 
						|
		break;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void ath9k_hw_get_gain_boundaries_pdadcs(struct ath_hw *ah,
 | 
						|
				struct ath9k_channel *chan,
 | 
						|
				void *pRawDataSet,
 | 
						|
				u8 *bChans, u16 availPiers,
 | 
						|
				u16 tPdGainOverlap,
 | 
						|
				u16 *pPdGainBoundaries, u8 *pPDADCValues,
 | 
						|
				u16 numXpdGains)
 | 
						|
{
 | 
						|
	int i, j, k;
 | 
						|
	int16_t ss;
 | 
						|
	u16 idxL = 0, idxR = 0, numPiers;
 | 
						|
	static u8 vpdTableL[AR5416_NUM_PD_GAINS]
 | 
						|
		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
 | 
						|
	static u8 vpdTableR[AR5416_NUM_PD_GAINS]
 | 
						|
		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
 | 
						|
	static u8 vpdTableI[AR5416_NUM_PD_GAINS]
 | 
						|
		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
 | 
						|
 | 
						|
	u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
 | 
						|
	u8 minPwrT4[AR5416_NUM_PD_GAINS];
 | 
						|
	u8 maxPwrT4[AR5416_NUM_PD_GAINS];
 | 
						|
	int16_t vpdStep;
 | 
						|
	int16_t tmpVal;
 | 
						|
	u16 sizeCurrVpdTable, maxIndex, tgtIndex;
 | 
						|
	bool match;
 | 
						|
	int16_t minDelta = 0;
 | 
						|
	struct chan_centers centers;
 | 
						|
	int pdgain_boundary_default;
 | 
						|
	struct cal_data_per_freq *data_def = pRawDataSet;
 | 
						|
	struct cal_data_per_freq_4k *data_4k = pRawDataSet;
 | 
						|
	struct cal_data_per_freq_ar9287 *data_9287 = pRawDataSet;
 | 
						|
	bool eeprom_4k = AR_SREV_9285(ah) || AR_SREV_9271(ah);
 | 
						|
	int intercepts;
 | 
						|
 | 
						|
	if (AR_SREV_9287(ah))
 | 
						|
		intercepts = AR9287_PD_GAIN_ICEPTS;
 | 
						|
	else
 | 
						|
		intercepts = AR5416_PD_GAIN_ICEPTS;
 | 
						|
 | 
						|
	memset(&minPwrT4, 0, AR5416_NUM_PD_GAINS);
 | 
						|
	ath9k_hw_get_channel_centers(ah, chan, ¢ers);
 | 
						|
 | 
						|
	for (numPiers = 0; numPiers < availPiers; numPiers++) {
 | 
						|
		if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
 | 
						|
							     IS_CHAN_2GHZ(chan)),
 | 
						|
					       bChans, numPiers, &idxL, &idxR);
 | 
						|
 | 
						|
	if (match) {
 | 
						|
		if (AR_SREV_9287(ah)) {
 | 
						|
			for (i = 0; i < numXpdGains; i++) {
 | 
						|
				minPwrT4[i] = data_9287[idxL].pwrPdg[i][0];
 | 
						|
				maxPwrT4[i] = data_9287[idxL].pwrPdg[i][intercepts - 1];
 | 
						|
				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
 | 
						|
						data_9287[idxL].pwrPdg[i],
 | 
						|
						data_9287[idxL].vpdPdg[i],
 | 
						|
						intercepts,
 | 
						|
						vpdTableI[i]);
 | 
						|
			}
 | 
						|
		} else if (eeprom_4k) {
 | 
						|
			for (i = 0; i < numXpdGains; i++) {
 | 
						|
				minPwrT4[i] = data_4k[idxL].pwrPdg[i][0];
 | 
						|
				maxPwrT4[i] = data_4k[idxL].pwrPdg[i][intercepts - 1];
 | 
						|
				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
 | 
						|
						data_4k[idxL].pwrPdg[i],
 | 
						|
						data_4k[idxL].vpdPdg[i],
 | 
						|
						intercepts,
 | 
						|
						vpdTableI[i]);
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			for (i = 0; i < numXpdGains; i++) {
 | 
						|
				minPwrT4[i] = data_def[idxL].pwrPdg[i][0];
 | 
						|
				maxPwrT4[i] = data_def[idxL].pwrPdg[i][intercepts - 1];
 | 
						|
				ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
 | 
						|
						data_def[idxL].pwrPdg[i],
 | 
						|
						data_def[idxL].vpdPdg[i],
 | 
						|
						intercepts,
 | 
						|
						vpdTableI[i]);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	} else {
 | 
						|
		for (i = 0; i < numXpdGains; i++) {
 | 
						|
			if (AR_SREV_9287(ah)) {
 | 
						|
				pVpdL = data_9287[idxL].vpdPdg[i];
 | 
						|
				pPwrL = data_9287[idxL].pwrPdg[i];
 | 
						|
				pVpdR = data_9287[idxR].vpdPdg[i];
 | 
						|
				pPwrR = data_9287[idxR].pwrPdg[i];
 | 
						|
			} else if (eeprom_4k) {
 | 
						|
				pVpdL = data_4k[idxL].vpdPdg[i];
 | 
						|
				pPwrL = data_4k[idxL].pwrPdg[i];
 | 
						|
				pVpdR = data_4k[idxR].vpdPdg[i];
 | 
						|
				pPwrR = data_4k[idxR].pwrPdg[i];
 | 
						|
			} else {
 | 
						|
				pVpdL = data_def[idxL].vpdPdg[i];
 | 
						|
				pPwrL = data_def[idxL].pwrPdg[i];
 | 
						|
				pVpdR = data_def[idxR].vpdPdg[i];
 | 
						|
				pPwrR = data_def[idxR].pwrPdg[i];
 | 
						|
			}
 | 
						|
 | 
						|
			minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
 | 
						|
 | 
						|
			maxPwrT4[i] =
 | 
						|
				min(pPwrL[intercepts - 1],
 | 
						|
				    pPwrR[intercepts - 1]);
 | 
						|
 | 
						|
 | 
						|
			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
 | 
						|
						pPwrL, pVpdL,
 | 
						|
						intercepts,
 | 
						|
						vpdTableL[i]);
 | 
						|
			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
 | 
						|
						pPwrR, pVpdR,
 | 
						|
						intercepts,
 | 
						|
						vpdTableR[i]);
 | 
						|
 | 
						|
			for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
 | 
						|
				vpdTableI[i][j] =
 | 
						|
					(u8)(ath9k_hw_interpolate((u16)
 | 
						|
					     FREQ2FBIN(centers.
 | 
						|
						       synth_center,
 | 
						|
						       IS_CHAN_2GHZ
 | 
						|
						       (chan)),
 | 
						|
					     bChans[idxL], bChans[idxR],
 | 
						|
					     vpdTableL[i][j], vpdTableR[i][j]));
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	k = 0;
 | 
						|
 | 
						|
	for (i = 0; i < numXpdGains; i++) {
 | 
						|
		if (i == (numXpdGains - 1))
 | 
						|
			pPdGainBoundaries[i] =
 | 
						|
				(u16)(maxPwrT4[i] / 2);
 | 
						|
		else
 | 
						|
			pPdGainBoundaries[i] =
 | 
						|
				(u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
 | 
						|
 | 
						|
		pPdGainBoundaries[i] =
 | 
						|
			min((u16)MAX_RATE_POWER, pPdGainBoundaries[i]);
 | 
						|
 | 
						|
		minDelta = 0;
 | 
						|
 | 
						|
		if (i == 0) {
 | 
						|
			if (AR_SREV_9280_20_OR_LATER(ah))
 | 
						|
				ss = (int16_t)(0 - (minPwrT4[i] / 2));
 | 
						|
			else
 | 
						|
				ss = 0;
 | 
						|
		} else {
 | 
						|
			ss = (int16_t)((pPdGainBoundaries[i - 1] -
 | 
						|
					(minPwrT4[i] / 2)) -
 | 
						|
				       tPdGainOverlap + 1 + minDelta);
 | 
						|
		}
 | 
						|
		vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
 | 
						|
		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
 | 
						|
 | 
						|
		while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
 | 
						|
			tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
 | 
						|
			pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
 | 
						|
			ss++;
 | 
						|
		}
 | 
						|
 | 
						|
		sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
 | 
						|
		tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
 | 
						|
				(minPwrT4[i] / 2));
 | 
						|
		maxIndex = (tgtIndex < sizeCurrVpdTable) ?
 | 
						|
			tgtIndex : sizeCurrVpdTable;
 | 
						|
 | 
						|
		while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
 | 
						|
			pPDADCValues[k++] = vpdTableI[i][ss++];
 | 
						|
		}
 | 
						|
 | 
						|
		vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
 | 
						|
				    vpdTableI[i][sizeCurrVpdTable - 2]);
 | 
						|
		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
 | 
						|
 | 
						|
		if (tgtIndex >= maxIndex) {
 | 
						|
			while ((ss <= tgtIndex) &&
 | 
						|
			       (k < (AR5416_NUM_PDADC_VALUES - 1))) {
 | 
						|
				tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
 | 
						|
						    (ss - maxIndex + 1) * vpdStep));
 | 
						|
				pPDADCValues[k++] = (u8)((tmpVal > 255) ?
 | 
						|
							 255 : tmpVal);
 | 
						|
				ss++;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (eeprom_4k)
 | 
						|
		pdgain_boundary_default = 58;
 | 
						|
	else
 | 
						|
		pdgain_boundary_default = pPdGainBoundaries[i - 1];
 | 
						|
 | 
						|
	while (i < AR5416_PD_GAINS_IN_MASK) {
 | 
						|
		pPdGainBoundaries[i] = pdgain_boundary_default;
 | 
						|
		i++;
 | 
						|
	}
 | 
						|
 | 
						|
	while (k < AR5416_NUM_PDADC_VALUES) {
 | 
						|
		pPDADCValues[k] = pPDADCValues[k - 1];
 | 
						|
		k++;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
int ath9k_hw_eeprom_init(struct ath_hw *ah)
 | 
						|
{
 | 
						|
	if (AR_SREV_9300_20_OR_LATER(ah))
 | 
						|
		ah->eep_ops = &eep_ar9300_ops;
 | 
						|
	else if (AR_SREV_9287(ah)) {
 | 
						|
		ah->eep_ops = &eep_ar9287_ops;
 | 
						|
	} else if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) {
 | 
						|
		ah->eep_ops = &eep_4k_ops;
 | 
						|
	} else {
 | 
						|
		ah->eep_ops = &eep_def_ops;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!ah->eep_ops->fill_eeprom(ah))
 | 
						|
		return -EIO;
 | 
						|
 | 
						|
	return ah->eep_ops->check_eeprom(ah);
 | 
						|
}
 |