227 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			227 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
 | |
|  */
 | |
| 
 | |
| #include "peerlookup.h"
 | |
| #include "peer.h"
 | |
| #include "noise.h"
 | |
| 
 | |
| static struct hlist_head *pubkey_bucket(struct pubkey_hashtable *table,
 | |
| 					const u8 pubkey[NOISE_PUBLIC_KEY_LEN])
 | |
| {
 | |
| 	/* siphash gives us a secure 64bit number based on a random key. Since
 | |
| 	 * the bits are uniformly distributed, we can then mask off to get the
 | |
| 	 * bits we need.
 | |
| 	 */
 | |
| 	const u64 hash = siphash(pubkey, NOISE_PUBLIC_KEY_LEN, &table->key);
 | |
| 
 | |
| 	return &table->hashtable[hash & (HASH_SIZE(table->hashtable) - 1)];
 | |
| }
 | |
| 
 | |
| struct pubkey_hashtable *wg_pubkey_hashtable_alloc(void)
 | |
| {
 | |
| 	struct pubkey_hashtable *table = kvmalloc(sizeof(*table), GFP_KERNEL);
 | |
| 
 | |
| 	if (!table)
 | |
| 		return NULL;
 | |
| 
 | |
| 	get_random_bytes(&table->key, sizeof(table->key));
 | |
| 	hash_init(table->hashtable);
 | |
| 	mutex_init(&table->lock);
 | |
| 	return table;
 | |
| }
 | |
| 
 | |
| void wg_pubkey_hashtable_add(struct pubkey_hashtable *table,
 | |
| 			     struct wg_peer *peer)
 | |
| {
 | |
| 	mutex_lock(&table->lock);
 | |
| 	hlist_add_head_rcu(&peer->pubkey_hash,
 | |
| 			   pubkey_bucket(table, peer->handshake.remote_static));
 | |
| 	mutex_unlock(&table->lock);
 | |
| }
 | |
| 
 | |
| void wg_pubkey_hashtable_remove(struct pubkey_hashtable *table,
 | |
| 				struct wg_peer *peer)
 | |
| {
 | |
| 	mutex_lock(&table->lock);
 | |
| 	hlist_del_init_rcu(&peer->pubkey_hash);
 | |
| 	mutex_unlock(&table->lock);
 | |
| }
 | |
| 
 | |
| /* Returns a strong reference to a peer */
 | |
| struct wg_peer *
 | |
| wg_pubkey_hashtable_lookup(struct pubkey_hashtable *table,
 | |
| 			   const u8 pubkey[NOISE_PUBLIC_KEY_LEN])
 | |
| {
 | |
| 	struct wg_peer *iter_peer, *peer = NULL;
 | |
| 
 | |
| 	rcu_read_lock_bh();
 | |
| 	hlist_for_each_entry_rcu_bh(iter_peer, pubkey_bucket(table, pubkey),
 | |
| 				    pubkey_hash) {
 | |
| 		if (!memcmp(pubkey, iter_peer->handshake.remote_static,
 | |
| 			    NOISE_PUBLIC_KEY_LEN)) {
 | |
| 			peer = iter_peer;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	peer = wg_peer_get_maybe_zero(peer);
 | |
| 	rcu_read_unlock_bh();
 | |
| 	return peer;
 | |
| }
 | |
| 
 | |
| static struct hlist_head *index_bucket(struct index_hashtable *table,
 | |
| 				       const __le32 index)
 | |
| {
 | |
| 	/* Since the indices are random and thus all bits are uniformly
 | |
| 	 * distributed, we can find its bucket simply by masking.
 | |
| 	 */
 | |
| 	return &table->hashtable[(__force u32)index &
 | |
| 				 (HASH_SIZE(table->hashtable) - 1)];
 | |
| }
 | |
| 
 | |
| struct index_hashtable *wg_index_hashtable_alloc(void)
 | |
| {
 | |
| 	struct index_hashtable *table = kvmalloc(sizeof(*table), GFP_KERNEL);
 | |
| 
 | |
| 	if (!table)
 | |
| 		return NULL;
 | |
| 
 | |
| 	hash_init(table->hashtable);
 | |
| 	spin_lock_init(&table->lock);
 | |
| 	return table;
 | |
| }
 | |
| 
 | |
| /* At the moment, we limit ourselves to 2^20 total peers, which generally might
 | |
|  * amount to 2^20*3 items in this hashtable. The algorithm below works by
 | |
|  * picking a random number and testing it. We can see that these limits mean we
 | |
|  * usually succeed pretty quickly:
 | |
|  *
 | |
|  * >>> def calculation(tries, size):
 | |
|  * ...     return (size / 2**32)**(tries - 1) *  (1 - (size / 2**32))
 | |
|  * ...
 | |
|  * >>> calculation(1, 2**20 * 3)
 | |
|  * 0.999267578125
 | |
|  * >>> calculation(2, 2**20 * 3)
 | |
|  * 0.0007318854331970215
 | |
|  * >>> calculation(3, 2**20 * 3)
 | |
|  * 5.360489012673497e-07
 | |
|  * >>> calculation(4, 2**20 * 3)
 | |
|  * 3.9261394135792216e-10
 | |
|  *
 | |
|  * At the moment, we don't do any masking, so this algorithm isn't exactly
 | |
|  * constant time in either the random guessing or in the hash list lookup. We
 | |
|  * could require a minimum of 3 tries, which would successfully mask the
 | |
|  * guessing. this would not, however, help with the growing hash lengths, which
 | |
|  * is another thing to consider moving forward.
 | |
|  */
 | |
| 
 | |
| __le32 wg_index_hashtable_insert(struct index_hashtable *table,
 | |
| 				 struct index_hashtable_entry *entry)
 | |
| {
 | |
| 	struct index_hashtable_entry *existing_entry;
 | |
| 
 | |
| 	spin_lock_bh(&table->lock);
 | |
| 	hlist_del_init_rcu(&entry->index_hash);
 | |
| 	spin_unlock_bh(&table->lock);
 | |
| 
 | |
| 	rcu_read_lock_bh();
 | |
| 
 | |
| search_unused_slot:
 | |
| 	/* First we try to find an unused slot, randomly, while unlocked. */
 | |
| 	entry->index = (__force __le32)get_random_u32();
 | |
| 	hlist_for_each_entry_rcu_bh(existing_entry,
 | |
| 				    index_bucket(table, entry->index),
 | |
| 				    index_hash) {
 | |
| 		if (existing_entry->index == entry->index)
 | |
| 			/* If it's already in use, we continue searching. */
 | |
| 			goto search_unused_slot;
 | |
| 	}
 | |
| 
 | |
| 	/* Once we've found an unused slot, we lock it, and then double-check
 | |
| 	 * that nobody else stole it from us.
 | |
| 	 */
 | |
| 	spin_lock_bh(&table->lock);
 | |
| 	hlist_for_each_entry_rcu_bh(existing_entry,
 | |
| 				    index_bucket(table, entry->index),
 | |
| 				    index_hash) {
 | |
| 		if (existing_entry->index == entry->index) {
 | |
| 			spin_unlock_bh(&table->lock);
 | |
| 			/* If it was stolen, we start over. */
 | |
| 			goto search_unused_slot;
 | |
| 		}
 | |
| 	}
 | |
| 	/* Otherwise, we know we have it exclusively (since we're locked),
 | |
| 	 * so we insert.
 | |
| 	 */
 | |
| 	hlist_add_head_rcu(&entry->index_hash,
 | |
| 			   index_bucket(table, entry->index));
 | |
| 	spin_unlock_bh(&table->lock);
 | |
| 
 | |
| 	rcu_read_unlock_bh();
 | |
| 
 | |
| 	return entry->index;
 | |
| }
 | |
| 
 | |
| bool wg_index_hashtable_replace(struct index_hashtable *table,
 | |
| 				struct index_hashtable_entry *old,
 | |
| 				struct index_hashtable_entry *new)
 | |
| {
 | |
| 	bool ret;
 | |
| 
 | |
| 	spin_lock_bh(&table->lock);
 | |
| 	ret = !hlist_unhashed(&old->index_hash);
 | |
| 	if (unlikely(!ret))
 | |
| 		goto out;
 | |
| 
 | |
| 	new->index = old->index;
 | |
| 	hlist_replace_rcu(&old->index_hash, &new->index_hash);
 | |
| 
 | |
| 	/* Calling init here NULLs out index_hash, and in fact after this
 | |
| 	 * function returns, it's theoretically possible for this to get
 | |
| 	 * reinserted elsewhere. That means the RCU lookup below might either
 | |
| 	 * terminate early or jump between buckets, in which case the packet
 | |
| 	 * simply gets dropped, which isn't terrible.
 | |
| 	 */
 | |
| 	INIT_HLIST_NODE(&old->index_hash);
 | |
| out:
 | |
| 	spin_unlock_bh(&table->lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void wg_index_hashtable_remove(struct index_hashtable *table,
 | |
| 			       struct index_hashtable_entry *entry)
 | |
| {
 | |
| 	spin_lock_bh(&table->lock);
 | |
| 	hlist_del_init_rcu(&entry->index_hash);
 | |
| 	spin_unlock_bh(&table->lock);
 | |
| }
 | |
| 
 | |
| /* Returns a strong reference to a entry->peer */
 | |
| struct index_hashtable_entry *
 | |
| wg_index_hashtable_lookup(struct index_hashtable *table,
 | |
| 			  const enum index_hashtable_type type_mask,
 | |
| 			  const __le32 index, struct wg_peer **peer)
 | |
| {
 | |
| 	struct index_hashtable_entry *iter_entry, *entry = NULL;
 | |
| 
 | |
| 	rcu_read_lock_bh();
 | |
| 	hlist_for_each_entry_rcu_bh(iter_entry, index_bucket(table, index),
 | |
| 				    index_hash) {
 | |
| 		if (iter_entry->index == index) {
 | |
| 			if (likely(iter_entry->type & type_mask))
 | |
| 				entry = iter_entry;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (likely(entry)) {
 | |
| 		entry->peer = wg_peer_get_maybe_zero(entry->peer);
 | |
| 		if (likely(entry->peer))
 | |
| 			*peer = entry->peer;
 | |
| 		else
 | |
| 			entry = NULL;
 | |
| 	}
 | |
| 	rcu_read_unlock_bh();
 | |
| 	return entry;
 | |
| }
 |