660 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			660 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /*
 | |
|  * This file contains an ECC algorithm that detects and corrects 1 bit
 | |
|  * errors in a 256 byte block of data.
 | |
|  *
 | |
|  * Copyright © 2008 Koninklijke Philips Electronics NV.
 | |
|  *                  Author: Frans Meulenbroeks
 | |
|  *
 | |
|  * Completely replaces the previous ECC implementation which was written by:
 | |
|  *   Steven J. Hill (sjhill@realitydiluted.com)
 | |
|  *   Thomas Gleixner (tglx@linutronix.de)
 | |
|  *
 | |
|  * Information on how this algorithm works and how it was developed
 | |
|  * can be found in Documentation/driver-api/mtd/nand_ecc.rst
 | |
|  */
 | |
| 
 | |
| #include <linux/types.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/mtd/nand.h>
 | |
| #include <linux/mtd/nand-ecc-sw-hamming.h>
 | |
| #include <linux/slab.h>
 | |
| #include <asm/byteorder.h>
 | |
| 
 | |
| /*
 | |
|  * invparity is a 256 byte table that contains the odd parity
 | |
|  * for each byte. So if the number of bits in a byte is even,
 | |
|  * the array element is 1, and when the number of bits is odd
 | |
|  * the array eleemnt is 0.
 | |
|  */
 | |
| static const char invparity[256] = {
 | |
| 	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
 | |
| 	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
 | |
| 	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
 | |
| 	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
 | |
| 	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
 | |
| 	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
 | |
| 	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
 | |
| 	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
 | |
| 	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
 | |
| 	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
 | |
| 	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
 | |
| 	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
 | |
| 	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
 | |
| 	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
 | |
| 	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
 | |
| 	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * bitsperbyte contains the number of bits per byte
 | |
|  * this is only used for testing and repairing parity
 | |
|  * (a precalculated value slightly improves performance)
 | |
|  */
 | |
| static const char bitsperbyte[256] = {
 | |
| 	0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
 | |
| 	1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
 | |
| 	1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
 | |
| 	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
 | |
| 	1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
 | |
| 	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
 | |
| 	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
 | |
| 	3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
 | |
| 	1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
 | |
| 	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
 | |
| 	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
 | |
| 	3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
 | |
| 	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
 | |
| 	3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
 | |
| 	3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
 | |
| 	4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * addressbits is a lookup table to filter out the bits from the xor-ed
 | |
|  * ECC data that identify the faulty location.
 | |
|  * this is only used for repairing parity
 | |
|  * see the comments in nand_ecc_sw_hamming_correct for more details
 | |
|  */
 | |
| static const char addressbits[256] = {
 | |
| 	0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
 | |
| 	0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
 | |
| 	0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
 | |
| 	0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
 | |
| 	0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
 | |
| 	0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
 | |
| 	0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
 | |
| 	0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
 | |
| 	0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
 | |
| 	0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
 | |
| 	0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
 | |
| 	0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
 | |
| 	0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
 | |
| 	0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
 | |
| 	0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
 | |
| 	0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
 | |
| 	0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
 | |
| 	0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
 | |
| 	0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
 | |
| 	0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
 | |
| 	0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
 | |
| 	0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
 | |
| 	0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
 | |
| 	0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
 | |
| 	0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
 | |
| 	0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
 | |
| 	0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
 | |
| 	0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
 | |
| 	0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
 | |
| 	0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
 | |
| 	0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
 | |
| 	0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f
 | |
| };
 | |
| 
 | |
| int ecc_sw_hamming_calculate(const unsigned char *buf, unsigned int step_size,
 | |
| 			     unsigned char *code, bool sm_order)
 | |
| {
 | |
| 	const u32 *bp = (uint32_t *)buf;
 | |
| 	const u32 eccsize_mult = (step_size == 256) ? 1 : 2;
 | |
| 	/* current value in buffer */
 | |
| 	u32 cur;
 | |
| 	/* rp0..rp17 are the various accumulated parities (per byte) */
 | |
| 	u32 rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7, rp8, rp9, rp10, rp11, rp12,
 | |
| 		rp13, rp14, rp15, rp16, rp17;
 | |
| 	/* Cumulative parity for all data */
 | |
| 	u32 par;
 | |
| 	/* Cumulative parity at the end of the loop (rp12, rp14, rp16) */
 | |
| 	u32 tmppar;
 | |
| 	int i;
 | |
| 
 | |
| 	par = 0;
 | |
| 	rp4 = 0;
 | |
| 	rp6 = 0;
 | |
| 	rp8 = 0;
 | |
| 	rp10 = 0;
 | |
| 	rp12 = 0;
 | |
| 	rp14 = 0;
 | |
| 	rp16 = 0;
 | |
| 	rp17 = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * The loop is unrolled a number of times;
 | |
| 	 * This avoids if statements to decide on which rp value to update
 | |
| 	 * Also we process the data by longwords.
 | |
| 	 * Note: passing unaligned data might give a performance penalty.
 | |
| 	 * It is assumed that the buffers are aligned.
 | |
| 	 * tmppar is the cumulative sum of this iteration.
 | |
| 	 * needed for calculating rp12, rp14, rp16 and par
 | |
| 	 * also used as a performance improvement for rp6, rp8 and rp10
 | |
| 	 */
 | |
| 	for (i = 0; i < eccsize_mult << 2; i++) {
 | |
| 		cur = *bp++;
 | |
| 		tmppar = cur;
 | |
| 		rp4 ^= cur;
 | |
| 		cur = *bp++;
 | |
| 		tmppar ^= cur;
 | |
| 		rp6 ^= tmppar;
 | |
| 		cur = *bp++;
 | |
| 		tmppar ^= cur;
 | |
| 		rp4 ^= cur;
 | |
| 		cur = *bp++;
 | |
| 		tmppar ^= cur;
 | |
| 		rp8 ^= tmppar;
 | |
| 
 | |
| 		cur = *bp++;
 | |
| 		tmppar ^= cur;
 | |
| 		rp4 ^= cur;
 | |
| 		rp6 ^= cur;
 | |
| 		cur = *bp++;
 | |
| 		tmppar ^= cur;
 | |
| 		rp6 ^= cur;
 | |
| 		cur = *bp++;
 | |
| 		tmppar ^= cur;
 | |
| 		rp4 ^= cur;
 | |
| 		cur = *bp++;
 | |
| 		tmppar ^= cur;
 | |
| 		rp10 ^= tmppar;
 | |
| 
 | |
| 		cur = *bp++;
 | |
| 		tmppar ^= cur;
 | |
| 		rp4 ^= cur;
 | |
| 		rp6 ^= cur;
 | |
| 		rp8 ^= cur;
 | |
| 		cur = *bp++;
 | |
| 		tmppar ^= cur;
 | |
| 		rp6 ^= cur;
 | |
| 		rp8 ^= cur;
 | |
| 		cur = *bp++;
 | |
| 		tmppar ^= cur;
 | |
| 		rp4 ^= cur;
 | |
| 		rp8 ^= cur;
 | |
| 		cur = *bp++;
 | |
| 		tmppar ^= cur;
 | |
| 		rp8 ^= cur;
 | |
| 
 | |
| 		cur = *bp++;
 | |
| 		tmppar ^= cur;
 | |
| 		rp4 ^= cur;
 | |
| 		rp6 ^= cur;
 | |
| 		cur = *bp++;
 | |
| 		tmppar ^= cur;
 | |
| 		rp6 ^= cur;
 | |
| 		cur = *bp++;
 | |
| 		tmppar ^= cur;
 | |
| 		rp4 ^= cur;
 | |
| 		cur = *bp++;
 | |
| 		tmppar ^= cur;
 | |
| 
 | |
| 		par ^= tmppar;
 | |
| 		if ((i & 0x1) == 0)
 | |
| 			rp12 ^= tmppar;
 | |
| 		if ((i & 0x2) == 0)
 | |
| 			rp14 ^= tmppar;
 | |
| 		if (eccsize_mult == 2 && (i & 0x4) == 0)
 | |
| 			rp16 ^= tmppar;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * handle the fact that we use longword operations
 | |
| 	 * we'll bring rp4..rp14..rp16 back to single byte entities by
 | |
| 	 * shifting and xoring first fold the upper and lower 16 bits,
 | |
| 	 * then the upper and lower 8 bits.
 | |
| 	 */
 | |
| 	rp4 ^= (rp4 >> 16);
 | |
| 	rp4 ^= (rp4 >> 8);
 | |
| 	rp4 &= 0xff;
 | |
| 	rp6 ^= (rp6 >> 16);
 | |
| 	rp6 ^= (rp6 >> 8);
 | |
| 	rp6 &= 0xff;
 | |
| 	rp8 ^= (rp8 >> 16);
 | |
| 	rp8 ^= (rp8 >> 8);
 | |
| 	rp8 &= 0xff;
 | |
| 	rp10 ^= (rp10 >> 16);
 | |
| 	rp10 ^= (rp10 >> 8);
 | |
| 	rp10 &= 0xff;
 | |
| 	rp12 ^= (rp12 >> 16);
 | |
| 	rp12 ^= (rp12 >> 8);
 | |
| 	rp12 &= 0xff;
 | |
| 	rp14 ^= (rp14 >> 16);
 | |
| 	rp14 ^= (rp14 >> 8);
 | |
| 	rp14 &= 0xff;
 | |
| 	if (eccsize_mult == 2) {
 | |
| 		rp16 ^= (rp16 >> 16);
 | |
| 		rp16 ^= (rp16 >> 8);
 | |
| 		rp16 &= 0xff;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * we also need to calculate the row parity for rp0..rp3
 | |
| 	 * This is present in par, because par is now
 | |
| 	 * rp3 rp3 rp2 rp2 in little endian and
 | |
| 	 * rp2 rp2 rp3 rp3 in big endian
 | |
| 	 * as well as
 | |
| 	 * rp1 rp0 rp1 rp0 in little endian and
 | |
| 	 * rp0 rp1 rp0 rp1 in big endian
 | |
| 	 * First calculate rp2 and rp3
 | |
| 	 */
 | |
| #ifdef __BIG_ENDIAN
 | |
| 	rp2 = (par >> 16);
 | |
| 	rp2 ^= (rp2 >> 8);
 | |
| 	rp2 &= 0xff;
 | |
| 	rp3 = par & 0xffff;
 | |
| 	rp3 ^= (rp3 >> 8);
 | |
| 	rp3 &= 0xff;
 | |
| #else
 | |
| 	rp3 = (par >> 16);
 | |
| 	rp3 ^= (rp3 >> 8);
 | |
| 	rp3 &= 0xff;
 | |
| 	rp2 = par & 0xffff;
 | |
| 	rp2 ^= (rp2 >> 8);
 | |
| 	rp2 &= 0xff;
 | |
| #endif
 | |
| 
 | |
| 	/* reduce par to 16 bits then calculate rp1 and rp0 */
 | |
| 	par ^= (par >> 16);
 | |
| #ifdef __BIG_ENDIAN
 | |
| 	rp0 = (par >> 8) & 0xff;
 | |
| 	rp1 = (par & 0xff);
 | |
| #else
 | |
| 	rp1 = (par >> 8) & 0xff;
 | |
| 	rp0 = (par & 0xff);
 | |
| #endif
 | |
| 
 | |
| 	/* finally reduce par to 8 bits */
 | |
| 	par ^= (par >> 8);
 | |
| 	par &= 0xff;
 | |
| 
 | |
| 	/*
 | |
| 	 * and calculate rp5..rp15..rp17
 | |
| 	 * note that par = rp4 ^ rp5 and due to the commutative property
 | |
| 	 * of the ^ operator we can say:
 | |
| 	 * rp5 = (par ^ rp4);
 | |
| 	 * The & 0xff seems superfluous, but benchmarking learned that
 | |
| 	 * leaving it out gives slightly worse results. No idea why, probably
 | |
| 	 * it has to do with the way the pipeline in pentium is organized.
 | |
| 	 */
 | |
| 	rp5 = (par ^ rp4) & 0xff;
 | |
| 	rp7 = (par ^ rp6) & 0xff;
 | |
| 	rp9 = (par ^ rp8) & 0xff;
 | |
| 	rp11 = (par ^ rp10) & 0xff;
 | |
| 	rp13 = (par ^ rp12) & 0xff;
 | |
| 	rp15 = (par ^ rp14) & 0xff;
 | |
| 	if (eccsize_mult == 2)
 | |
| 		rp17 = (par ^ rp16) & 0xff;
 | |
| 
 | |
| 	/*
 | |
| 	 * Finally calculate the ECC bits.
 | |
| 	 * Again here it might seem that there are performance optimisations
 | |
| 	 * possible, but benchmarks showed that on the system this is developed
 | |
| 	 * the code below is the fastest
 | |
| 	 */
 | |
| 	if (sm_order) {
 | |
| 		code[0] = (invparity[rp7] << 7) | (invparity[rp6] << 6) |
 | |
| 			  (invparity[rp5] << 5) | (invparity[rp4] << 4) |
 | |
| 			  (invparity[rp3] << 3) | (invparity[rp2] << 2) |
 | |
| 			  (invparity[rp1] << 1) | (invparity[rp0]);
 | |
| 		code[1] = (invparity[rp15] << 7) | (invparity[rp14] << 6) |
 | |
| 			  (invparity[rp13] << 5) | (invparity[rp12] << 4) |
 | |
| 			  (invparity[rp11] << 3) | (invparity[rp10] << 2) |
 | |
| 			  (invparity[rp9] << 1) | (invparity[rp8]);
 | |
| 	} else {
 | |
| 		code[1] = (invparity[rp7] << 7) | (invparity[rp6] << 6) |
 | |
| 			  (invparity[rp5] << 5) | (invparity[rp4] << 4) |
 | |
| 			  (invparity[rp3] << 3) | (invparity[rp2] << 2) |
 | |
| 			  (invparity[rp1] << 1) | (invparity[rp0]);
 | |
| 		code[0] = (invparity[rp15] << 7) | (invparity[rp14] << 6) |
 | |
| 			  (invparity[rp13] << 5) | (invparity[rp12] << 4) |
 | |
| 			  (invparity[rp11] << 3) | (invparity[rp10] << 2) |
 | |
| 			  (invparity[rp9] << 1) | (invparity[rp8]);
 | |
| 	}
 | |
| 
 | |
| 	if (eccsize_mult == 1)
 | |
| 		code[2] =
 | |
| 		    (invparity[par & 0xf0] << 7) |
 | |
| 		    (invparity[par & 0x0f] << 6) |
 | |
| 		    (invparity[par & 0xcc] << 5) |
 | |
| 		    (invparity[par & 0x33] << 4) |
 | |
| 		    (invparity[par & 0xaa] << 3) |
 | |
| 		    (invparity[par & 0x55] << 2) |
 | |
| 		    3;
 | |
| 	else
 | |
| 		code[2] =
 | |
| 		    (invparity[par & 0xf0] << 7) |
 | |
| 		    (invparity[par & 0x0f] << 6) |
 | |
| 		    (invparity[par & 0xcc] << 5) |
 | |
| 		    (invparity[par & 0x33] << 4) |
 | |
| 		    (invparity[par & 0xaa] << 3) |
 | |
| 		    (invparity[par & 0x55] << 2) |
 | |
| 		    (invparity[rp17] << 1) |
 | |
| 		    (invparity[rp16] << 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(ecc_sw_hamming_calculate);
 | |
| 
 | |
| /**
 | |
|  * nand_ecc_sw_hamming_calculate - Calculate 3-byte ECC for 256/512-byte block
 | |
|  * @nand: NAND device
 | |
|  * @buf: Input buffer with raw data
 | |
|  * @code: Output buffer with ECC
 | |
|  */
 | |
| int nand_ecc_sw_hamming_calculate(struct nand_device *nand,
 | |
| 				  const unsigned char *buf, unsigned char *code)
 | |
| {
 | |
| 	struct nand_ecc_sw_hamming_conf *engine_conf = nand->ecc.ctx.priv;
 | |
| 	unsigned int step_size = nand->ecc.ctx.conf.step_size;
 | |
| 
 | |
| 	return ecc_sw_hamming_calculate(buf, step_size, code,
 | |
| 					engine_conf->sm_order);
 | |
| }
 | |
| EXPORT_SYMBOL(nand_ecc_sw_hamming_calculate);
 | |
| 
 | |
| int ecc_sw_hamming_correct(unsigned char *buf, unsigned char *read_ecc,
 | |
| 			   unsigned char *calc_ecc, unsigned int step_size,
 | |
| 			   bool sm_order)
 | |
| {
 | |
| 	const u32 eccsize_mult = step_size >> 8;
 | |
| 	unsigned char b0, b1, b2, bit_addr;
 | |
| 	unsigned int byte_addr;
 | |
| 
 | |
| 	/*
 | |
| 	 * b0 to b2 indicate which bit is faulty (if any)
 | |
| 	 * we might need the xor result  more than once,
 | |
| 	 * so keep them in a local var
 | |
| 	*/
 | |
| 	if (sm_order) {
 | |
| 		b0 = read_ecc[0] ^ calc_ecc[0];
 | |
| 		b1 = read_ecc[1] ^ calc_ecc[1];
 | |
| 	} else {
 | |
| 		b0 = read_ecc[1] ^ calc_ecc[1];
 | |
| 		b1 = read_ecc[0] ^ calc_ecc[0];
 | |
| 	}
 | |
| 
 | |
| 	b2 = read_ecc[2] ^ calc_ecc[2];
 | |
| 
 | |
| 	/* check if there are any bitfaults */
 | |
| 
 | |
| 	/* repeated if statements are slightly more efficient than switch ... */
 | |
| 	/* ordered in order of likelihood */
 | |
| 
 | |
| 	if ((b0 | b1 | b2) == 0)
 | |
| 		return 0;	/* no error */
 | |
| 
 | |
| 	if ((((b0 ^ (b0 >> 1)) & 0x55) == 0x55) &&
 | |
| 	    (((b1 ^ (b1 >> 1)) & 0x55) == 0x55) &&
 | |
| 	    ((eccsize_mult == 1 && ((b2 ^ (b2 >> 1)) & 0x54) == 0x54) ||
 | |
| 	     (eccsize_mult == 2 && ((b2 ^ (b2 >> 1)) & 0x55) == 0x55))) {
 | |
| 	/* single bit error */
 | |
| 		/*
 | |
| 		 * rp17/rp15/13/11/9/7/5/3/1 indicate which byte is the faulty
 | |
| 		 * byte, cp 5/3/1 indicate the faulty bit.
 | |
| 		 * A lookup table (called addressbits) is used to filter
 | |
| 		 * the bits from the byte they are in.
 | |
| 		 * A marginal optimisation is possible by having three
 | |
| 		 * different lookup tables.
 | |
| 		 * One as we have now (for b0), one for b2
 | |
| 		 * (that would avoid the >> 1), and one for b1 (with all values
 | |
| 		 * << 4). However it was felt that introducing two more tables
 | |
| 		 * hardly justify the gain.
 | |
| 		 *
 | |
| 		 * The b2 shift is there to get rid of the lowest two bits.
 | |
| 		 * We could also do addressbits[b2] >> 1 but for the
 | |
| 		 * performance it does not make any difference
 | |
| 		 */
 | |
| 		if (eccsize_mult == 1)
 | |
| 			byte_addr = (addressbits[b1] << 4) + addressbits[b0];
 | |
| 		else
 | |
| 			byte_addr = (addressbits[b2 & 0x3] << 8) +
 | |
| 				    (addressbits[b1] << 4) + addressbits[b0];
 | |
| 		bit_addr = addressbits[b2 >> 2];
 | |
| 		/* flip the bit */
 | |
| 		buf[byte_addr] ^= (1 << bit_addr);
 | |
| 		return 1;
 | |
| 
 | |
| 	}
 | |
| 	/* count nr of bits; use table lookup, faster than calculating it */
 | |
| 	if ((bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2]) == 1)
 | |
| 		return 1;	/* error in ECC data; no action needed */
 | |
| 
 | |
| 	pr_err("%s: uncorrectable ECC error\n", __func__);
 | |
| 	return -EBADMSG;
 | |
| }
 | |
| EXPORT_SYMBOL(ecc_sw_hamming_correct);
 | |
| 
 | |
| /**
 | |
|  * nand_ecc_sw_hamming_correct - Detect and correct bit error(s)
 | |
|  * @nand: NAND device
 | |
|  * @buf: Raw data read from the chip
 | |
|  * @read_ecc: ECC bytes read from the chip
 | |
|  * @calc_ecc: ECC calculated from the raw data
 | |
|  *
 | |
|  * Detect and correct up to 1 bit error per 256/512-byte block.
 | |
|  */
 | |
| int nand_ecc_sw_hamming_correct(struct nand_device *nand, unsigned char *buf,
 | |
| 				unsigned char *read_ecc,
 | |
| 				unsigned char *calc_ecc)
 | |
| {
 | |
| 	struct nand_ecc_sw_hamming_conf *engine_conf = nand->ecc.ctx.priv;
 | |
| 	unsigned int step_size = nand->ecc.ctx.conf.step_size;
 | |
| 
 | |
| 	return ecc_sw_hamming_correct(buf, read_ecc, calc_ecc, step_size,
 | |
| 				      engine_conf->sm_order);
 | |
| }
 | |
| EXPORT_SYMBOL(nand_ecc_sw_hamming_correct);
 | |
| 
 | |
| int nand_ecc_sw_hamming_init_ctx(struct nand_device *nand)
 | |
| {
 | |
| 	struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
 | |
| 	struct nand_ecc_sw_hamming_conf *engine_conf;
 | |
| 	struct mtd_info *mtd = nanddev_to_mtd(nand);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!mtd->ooblayout) {
 | |
| 		switch (mtd->oobsize) {
 | |
| 		case 8:
 | |
| 		case 16:
 | |
| 			mtd_set_ooblayout(mtd, nand_get_small_page_ooblayout());
 | |
| 			break;
 | |
| 		case 64:
 | |
| 		case 128:
 | |
| 			mtd_set_ooblayout(mtd,
 | |
| 					  nand_get_large_page_hamming_ooblayout());
 | |
| 			break;
 | |
| 		default:
 | |
| 			return -ENOTSUPP;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	conf->engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
 | |
| 	conf->algo = NAND_ECC_ALGO_HAMMING;
 | |
| 	conf->step_size = nand->ecc.user_conf.step_size;
 | |
| 	conf->strength = 1;
 | |
| 
 | |
| 	/* Use the strongest configuration by default */
 | |
| 	if (conf->step_size != 256 && conf->step_size != 512)
 | |
| 		conf->step_size = 256;
 | |
| 
 | |
| 	engine_conf = kzalloc(sizeof(*engine_conf), GFP_KERNEL);
 | |
| 	if (!engine_conf)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ret = nand_ecc_init_req_tweaking(&engine_conf->req_ctx, nand);
 | |
| 	if (ret)
 | |
| 		goto free_engine_conf;
 | |
| 
 | |
| 	engine_conf->code_size = 3;
 | |
| 	engine_conf->calc_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
 | |
| 	engine_conf->code_buf = kzalloc(mtd->oobsize, GFP_KERNEL);
 | |
| 	if (!engine_conf->calc_buf || !engine_conf->code_buf) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto free_bufs;
 | |
| 	}
 | |
| 
 | |
| 	nand->ecc.ctx.priv = engine_conf;
 | |
| 	nand->ecc.ctx.nsteps = mtd->writesize / conf->step_size;
 | |
| 	nand->ecc.ctx.total = nand->ecc.ctx.nsteps * engine_conf->code_size;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| free_bufs:
 | |
| 	nand_ecc_cleanup_req_tweaking(&engine_conf->req_ctx);
 | |
| 	kfree(engine_conf->calc_buf);
 | |
| 	kfree(engine_conf->code_buf);
 | |
| free_engine_conf:
 | |
| 	kfree(engine_conf);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(nand_ecc_sw_hamming_init_ctx);
 | |
| 
 | |
| void nand_ecc_sw_hamming_cleanup_ctx(struct nand_device *nand)
 | |
| {
 | |
| 	struct nand_ecc_sw_hamming_conf *engine_conf = nand->ecc.ctx.priv;
 | |
| 
 | |
| 	if (engine_conf) {
 | |
| 		nand_ecc_cleanup_req_tweaking(&engine_conf->req_ctx);
 | |
| 		kfree(engine_conf->calc_buf);
 | |
| 		kfree(engine_conf->code_buf);
 | |
| 		kfree(engine_conf);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(nand_ecc_sw_hamming_cleanup_ctx);
 | |
| 
 | |
| static int nand_ecc_sw_hamming_prepare_io_req(struct nand_device *nand,
 | |
| 					      struct nand_page_io_req *req)
 | |
| {
 | |
| 	struct nand_ecc_sw_hamming_conf *engine_conf = nand->ecc.ctx.priv;
 | |
| 	struct mtd_info *mtd = nanddev_to_mtd(nand);
 | |
| 	int eccsize = nand->ecc.ctx.conf.step_size;
 | |
| 	int eccbytes = engine_conf->code_size;
 | |
| 	int eccsteps = nand->ecc.ctx.nsteps;
 | |
| 	int total = nand->ecc.ctx.total;
 | |
| 	u8 *ecccalc = engine_conf->calc_buf;
 | |
| 	const u8 *data;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Nothing to do for a raw operation */
 | |
| 	if (req->mode == MTD_OPS_RAW)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* This engine does not provide BBM/free OOB bytes protection */
 | |
| 	if (!req->datalen)
 | |
| 		return 0;
 | |
| 
 | |
| 	nand_ecc_tweak_req(&engine_conf->req_ctx, req);
 | |
| 
 | |
| 	/* No more preparation for page read */
 | |
| 	if (req->type == NAND_PAGE_READ)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Preparation for page write: derive the ECC bytes and place them */
 | |
| 	for (i = 0, data = req->databuf.out;
 | |
| 	     eccsteps;
 | |
| 	     eccsteps--, i += eccbytes, data += eccsize)
 | |
| 		nand_ecc_sw_hamming_calculate(nand, data, &ecccalc[i]);
 | |
| 
 | |
| 	return mtd_ooblayout_set_eccbytes(mtd, ecccalc, (void *)req->oobbuf.out,
 | |
| 					  0, total);
 | |
| }
 | |
| 
 | |
| static int nand_ecc_sw_hamming_finish_io_req(struct nand_device *nand,
 | |
| 					     struct nand_page_io_req *req)
 | |
| {
 | |
| 	struct nand_ecc_sw_hamming_conf *engine_conf = nand->ecc.ctx.priv;
 | |
| 	struct mtd_info *mtd = nanddev_to_mtd(nand);
 | |
| 	int eccsize = nand->ecc.ctx.conf.step_size;
 | |
| 	int total = nand->ecc.ctx.total;
 | |
| 	int eccbytes = engine_conf->code_size;
 | |
| 	int eccsteps = nand->ecc.ctx.nsteps;
 | |
| 	u8 *ecccalc = engine_conf->calc_buf;
 | |
| 	u8 *ecccode = engine_conf->code_buf;
 | |
| 	unsigned int max_bitflips = 0;
 | |
| 	u8 *data = req->databuf.in;
 | |
| 	int i, ret;
 | |
| 
 | |
| 	/* Nothing to do for a raw operation */
 | |
| 	if (req->mode == MTD_OPS_RAW)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* This engine does not provide BBM/free OOB bytes protection */
 | |
| 	if (!req->datalen)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* No more preparation for page write */
 | |
| 	if (req->type == NAND_PAGE_WRITE) {
 | |
| 		nand_ecc_restore_req(&engine_conf->req_ctx, req);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Finish a page read: retrieve the (raw) ECC bytes*/
 | |
| 	ret = mtd_ooblayout_get_eccbytes(mtd, ecccode, req->oobbuf.in, 0,
 | |
| 					 total);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Calculate the ECC bytes */
 | |
| 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, data += eccsize)
 | |
| 		nand_ecc_sw_hamming_calculate(nand, data, &ecccalc[i]);
 | |
| 
 | |
| 	/* Finish a page read: compare and correct */
 | |
| 	for (eccsteps = nand->ecc.ctx.nsteps, i = 0, data = req->databuf.in;
 | |
| 	     eccsteps;
 | |
| 	     eccsteps--, i += eccbytes, data += eccsize) {
 | |
| 		int stat =  nand_ecc_sw_hamming_correct(nand, data,
 | |
| 							&ecccode[i],
 | |
| 							&ecccalc[i]);
 | |
| 		if (stat < 0) {
 | |
| 			mtd->ecc_stats.failed++;
 | |
| 		} else {
 | |
| 			mtd->ecc_stats.corrected += stat;
 | |
| 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	nand_ecc_restore_req(&engine_conf->req_ctx, req);
 | |
| 
 | |
| 	return max_bitflips;
 | |
| }
 | |
| 
 | |
| static struct nand_ecc_engine_ops nand_ecc_sw_hamming_engine_ops = {
 | |
| 	.init_ctx = nand_ecc_sw_hamming_init_ctx,
 | |
| 	.cleanup_ctx = nand_ecc_sw_hamming_cleanup_ctx,
 | |
| 	.prepare_io_req = nand_ecc_sw_hamming_prepare_io_req,
 | |
| 	.finish_io_req = nand_ecc_sw_hamming_finish_io_req,
 | |
| };
 | |
| 
 | |
| static struct nand_ecc_engine nand_ecc_sw_hamming_engine = {
 | |
| 	.ops = &nand_ecc_sw_hamming_engine_ops,
 | |
| };
 | |
| 
 | |
| struct nand_ecc_engine *nand_ecc_sw_hamming_get_engine(void)
 | |
| {
 | |
| 	return &nand_ecc_sw_hamming_engine;
 | |
| }
 | |
| EXPORT_SYMBOL(nand_ecc_sw_hamming_get_engine);
 | |
| 
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_AUTHOR("Frans Meulenbroeks <fransmeulenbroeks@gmail.com>");
 | |
| MODULE_DESCRIPTION("NAND software Hamming ECC support");
 |