978 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			978 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * VMware VMCI Driver
 | |
|  *
 | |
|  * Copyright (C) 2012 VMware, Inc. All rights reserved.
 | |
|  */
 | |
| 
 | |
| #include <linux/vmw_vmci_defs.h>
 | |
| #include <linux/vmw_vmci_api.h>
 | |
| #include <linux/moduleparam.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/processor.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/vmalloc.h>
 | |
| 
 | |
| #include "vmci_datagram.h"
 | |
| #include "vmci_doorbell.h"
 | |
| #include "vmci_context.h"
 | |
| #include "vmci_driver.h"
 | |
| #include "vmci_event.h"
 | |
| 
 | |
| #define PCI_DEVICE_ID_VMWARE_VMCI	0x0740
 | |
| 
 | |
| #define VMCI_UTIL_NUM_RESOURCES 1
 | |
| 
 | |
| /*
 | |
|  * Datagram buffers for DMA send/receive must accommodate at least
 | |
|  * a maximum sized datagram and the header.
 | |
|  */
 | |
| #define VMCI_DMA_DG_BUFFER_SIZE (VMCI_MAX_DG_SIZE + PAGE_SIZE)
 | |
| 
 | |
| static bool vmci_disable_msi;
 | |
| module_param_named(disable_msi, vmci_disable_msi, bool, 0);
 | |
| MODULE_PARM_DESC(disable_msi, "Disable MSI use in driver - (default=0)");
 | |
| 
 | |
| static bool vmci_disable_msix;
 | |
| module_param_named(disable_msix, vmci_disable_msix, bool, 0);
 | |
| MODULE_PARM_DESC(disable_msix, "Disable MSI-X use in driver - (default=0)");
 | |
| 
 | |
| static u32 ctx_update_sub_id = VMCI_INVALID_ID;
 | |
| static u32 vm_context_id = VMCI_INVALID_ID;
 | |
| 
 | |
| struct vmci_guest_device {
 | |
| 	struct device *dev;	/* PCI device we are attached to */
 | |
| 	void __iomem *iobase;
 | |
| 	void __iomem *mmio_base;
 | |
| 
 | |
| 	bool exclusive_vectors;
 | |
| 
 | |
| 	struct wait_queue_head inout_wq;
 | |
| 
 | |
| 	void *data_buffer;
 | |
| 	dma_addr_t data_buffer_base;
 | |
| 	void *tx_buffer;
 | |
| 	dma_addr_t tx_buffer_base;
 | |
| 	void *notification_bitmap;
 | |
| 	dma_addr_t notification_base;
 | |
| };
 | |
| 
 | |
| static bool use_ppn64;
 | |
| 
 | |
| bool vmci_use_ppn64(void)
 | |
| {
 | |
| 	return use_ppn64;
 | |
| }
 | |
| 
 | |
| /* vmci_dev singleton device and supporting data*/
 | |
| struct pci_dev *vmci_pdev;
 | |
| static struct vmci_guest_device *vmci_dev_g;
 | |
| static DEFINE_SPINLOCK(vmci_dev_spinlock);
 | |
| 
 | |
| static atomic_t vmci_num_guest_devices = ATOMIC_INIT(0);
 | |
| 
 | |
| bool vmci_guest_code_active(void)
 | |
| {
 | |
| 	return atomic_read(&vmci_num_guest_devices) != 0;
 | |
| }
 | |
| 
 | |
| u32 vmci_get_vm_context_id(void)
 | |
| {
 | |
| 	if (vm_context_id == VMCI_INVALID_ID) {
 | |
| 		struct vmci_datagram get_cid_msg;
 | |
| 		get_cid_msg.dst =
 | |
| 		    vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
 | |
| 				     VMCI_GET_CONTEXT_ID);
 | |
| 		get_cid_msg.src = VMCI_ANON_SRC_HANDLE;
 | |
| 		get_cid_msg.payload_size = 0;
 | |
| 		vm_context_id = vmci_send_datagram(&get_cid_msg);
 | |
| 	}
 | |
| 	return vm_context_id;
 | |
| }
 | |
| 
 | |
| static unsigned int vmci_read_reg(struct vmci_guest_device *dev, u32 reg)
 | |
| {
 | |
| 	if (dev->mmio_base != NULL)
 | |
| 		return readl(dev->mmio_base + reg);
 | |
| 	return ioread32(dev->iobase + reg);
 | |
| }
 | |
| 
 | |
| static void vmci_write_reg(struct vmci_guest_device *dev, u32 val, u32 reg)
 | |
| {
 | |
| 	if (dev->mmio_base != NULL)
 | |
| 		writel(val, dev->mmio_base + reg);
 | |
| 	else
 | |
| 		iowrite32(val, dev->iobase + reg);
 | |
| }
 | |
| 
 | |
| static void vmci_read_data(struct vmci_guest_device *vmci_dev,
 | |
| 			   void *dest, size_t size)
 | |
| {
 | |
| 	if (vmci_dev->mmio_base == NULL)
 | |
| 		ioread8_rep(vmci_dev->iobase + VMCI_DATA_IN_ADDR,
 | |
| 			    dest, size);
 | |
| 	else {
 | |
| 		/*
 | |
| 		 * For DMA datagrams, the data_buffer will contain the header on the
 | |
| 		 * first page, followed by the incoming datagram(s) on the following
 | |
| 		 * pages. The header uses an S/G element immediately following the
 | |
| 		 * header on the first page to point to the data area.
 | |
| 		 */
 | |
| 		struct vmci_data_in_out_header *buffer_header = vmci_dev->data_buffer;
 | |
| 		struct vmci_sg_elem *sg_array = (struct vmci_sg_elem *)(buffer_header + 1);
 | |
| 		size_t buffer_offset = dest - vmci_dev->data_buffer;
 | |
| 
 | |
| 		buffer_header->opcode = 1;
 | |
| 		buffer_header->size = 1;
 | |
| 		buffer_header->busy = 0;
 | |
| 		sg_array[0].addr = vmci_dev->data_buffer_base + buffer_offset;
 | |
| 		sg_array[0].size = size;
 | |
| 
 | |
| 		vmci_write_reg(vmci_dev, lower_32_bits(vmci_dev->data_buffer_base),
 | |
| 			       VMCI_DATA_IN_LOW_ADDR);
 | |
| 
 | |
| 		wait_event(vmci_dev->inout_wq, buffer_header->busy == 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int vmci_write_data(struct vmci_guest_device *dev,
 | |
| 			   struct vmci_datagram *dg)
 | |
| {
 | |
| 	int result;
 | |
| 
 | |
| 	if (dev->mmio_base != NULL) {
 | |
| 		struct vmci_data_in_out_header *buffer_header = dev->tx_buffer;
 | |
| 		u8 *dg_out_buffer = (u8 *)(buffer_header + 1);
 | |
| 
 | |
| 		if (VMCI_DG_SIZE(dg) > VMCI_MAX_DG_SIZE)
 | |
| 			return VMCI_ERROR_INVALID_ARGS;
 | |
| 
 | |
| 		/*
 | |
| 		 * Initialize send buffer with outgoing datagram
 | |
| 		 * and set up header for inline data. Device will
 | |
| 		 * not access buffer asynchronously - only after
 | |
| 		 * the write to VMCI_DATA_OUT_LOW_ADDR.
 | |
| 		 */
 | |
| 		memcpy(dg_out_buffer, dg, VMCI_DG_SIZE(dg));
 | |
| 		buffer_header->opcode = 0;
 | |
| 		buffer_header->size = VMCI_DG_SIZE(dg);
 | |
| 		buffer_header->busy = 1;
 | |
| 
 | |
| 		vmci_write_reg(dev, lower_32_bits(dev->tx_buffer_base),
 | |
| 			       VMCI_DATA_OUT_LOW_ADDR);
 | |
| 
 | |
| 		/* Caller holds a spinlock, so cannot block. */
 | |
| 		spin_until_cond(buffer_header->busy == 0);
 | |
| 
 | |
| 		result = vmci_read_reg(vmci_dev_g, VMCI_RESULT_LOW_ADDR);
 | |
| 		if (result == VMCI_SUCCESS)
 | |
| 			result = (int)buffer_header->result;
 | |
| 	} else {
 | |
| 		iowrite8_rep(dev->iobase + VMCI_DATA_OUT_ADDR,
 | |
| 			     dg, VMCI_DG_SIZE(dg));
 | |
| 		result = vmci_read_reg(vmci_dev_g, VMCI_RESULT_LOW_ADDR);
 | |
| 	}
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * VM to hypervisor call mechanism. We use the standard VMware naming
 | |
|  * convention since shared code is calling this function as well.
 | |
|  */
 | |
| int vmci_send_datagram(struct vmci_datagram *dg)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int result;
 | |
| 
 | |
| 	/* Check args. */
 | |
| 	if (dg == NULL)
 | |
| 		return VMCI_ERROR_INVALID_ARGS;
 | |
| 
 | |
| 	/*
 | |
| 	 * Need to acquire spinlock on the device because the datagram
 | |
| 	 * data may be spread over multiple pages and the monitor may
 | |
| 	 * interleave device user rpc calls from multiple
 | |
| 	 * VCPUs. Acquiring the spinlock precludes that
 | |
| 	 * possibility. Disabling interrupts to avoid incoming
 | |
| 	 * datagrams during a "rep out" and possibly landing up in
 | |
| 	 * this function.
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&vmci_dev_spinlock, flags);
 | |
| 
 | |
| 	if (vmci_dev_g) {
 | |
| 		vmci_write_data(vmci_dev_g, dg);
 | |
| 		result = vmci_read_reg(vmci_dev_g, VMCI_RESULT_LOW_ADDR);
 | |
| 	} else {
 | |
| 		result = VMCI_ERROR_UNAVAILABLE;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&vmci_dev_spinlock, flags);
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(vmci_send_datagram);
 | |
| 
 | |
| /*
 | |
|  * Gets called with the new context id if updated or resumed.
 | |
|  * Context id.
 | |
|  */
 | |
| static void vmci_guest_cid_update(u32 sub_id,
 | |
| 				  const struct vmci_event_data *event_data,
 | |
| 				  void *client_data)
 | |
| {
 | |
| 	const struct vmci_event_payld_ctx *ev_payload =
 | |
| 				vmci_event_data_const_payload(event_data);
 | |
| 
 | |
| 	if (sub_id != ctx_update_sub_id) {
 | |
| 		pr_devel("Invalid subscriber (ID=0x%x)\n", sub_id);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!event_data || ev_payload->context_id == VMCI_INVALID_ID) {
 | |
| 		pr_devel("Invalid event data\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	pr_devel("Updating context from (ID=0x%x) to (ID=0x%x) on event (type=%d)\n",
 | |
| 		 vm_context_id, ev_payload->context_id, event_data->event);
 | |
| 
 | |
| 	vm_context_id = ev_payload->context_id;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Verify that the host supports the hypercalls we need. If it does not,
 | |
|  * try to find fallback hypercalls and use those instead.  Returns 0 if
 | |
|  * required hypercalls (or fallback hypercalls) are supported by the host,
 | |
|  * an error code otherwise.
 | |
|  */
 | |
| static int vmci_check_host_caps(struct pci_dev *pdev)
 | |
| {
 | |
| 	bool result;
 | |
| 	struct vmci_resource_query_msg *msg;
 | |
| 	u32 msg_size = sizeof(struct vmci_resource_query_hdr) +
 | |
| 				VMCI_UTIL_NUM_RESOURCES * sizeof(u32);
 | |
| 	struct vmci_datagram *check_msg;
 | |
| 
 | |
| 	check_msg = kzalloc(msg_size, GFP_KERNEL);
 | |
| 	if (!check_msg) {
 | |
| 		dev_err(&pdev->dev, "%s: Insufficient memory\n", __func__);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	check_msg->dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
 | |
| 					  VMCI_RESOURCES_QUERY);
 | |
| 	check_msg->src = VMCI_ANON_SRC_HANDLE;
 | |
| 	check_msg->payload_size = msg_size - VMCI_DG_HEADERSIZE;
 | |
| 	msg = (struct vmci_resource_query_msg *)VMCI_DG_PAYLOAD(check_msg);
 | |
| 
 | |
| 	msg->num_resources = VMCI_UTIL_NUM_RESOURCES;
 | |
| 	msg->resources[0] = VMCI_GET_CONTEXT_ID;
 | |
| 
 | |
| 	/* Checks that hyper calls are supported */
 | |
| 	result = vmci_send_datagram(check_msg) == 0x01;
 | |
| 	kfree(check_msg);
 | |
| 
 | |
| 	dev_dbg(&pdev->dev, "%s: Host capability check: %s\n",
 | |
| 		__func__, result ? "PASSED" : "FAILED");
 | |
| 
 | |
| 	/* We need the vector. There are no fallbacks. */
 | |
| 	return result ? 0 : -ENXIO;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reads datagrams from the device and dispatches them. For IO port
 | |
|  * based access to the device, we always start reading datagrams into
 | |
|  * only the first page of the datagram buffer. If the datagrams don't
 | |
|  * fit into one page, we use the maximum datagram buffer size for the
 | |
|  * remainder of the invocation. This is a simple heuristic for not
 | |
|  * penalizing small datagrams. For DMA-based datagrams, we always
 | |
|  * use the maximum datagram buffer size, since there is no performance
 | |
|  * penalty for doing so.
 | |
|  *
 | |
|  * This function assumes that it has exclusive access to the data
 | |
|  * in register(s) for the duration of the call.
 | |
|  */
 | |
| static void vmci_dispatch_dgs(struct vmci_guest_device *vmci_dev)
 | |
| {
 | |
| 	u8 *dg_in_buffer = vmci_dev->data_buffer;
 | |
| 	struct vmci_datagram *dg;
 | |
| 	size_t dg_in_buffer_size = VMCI_MAX_DG_SIZE;
 | |
| 	size_t current_dg_in_buffer_size;
 | |
| 	size_t remaining_bytes;
 | |
| 	bool is_io_port = vmci_dev->mmio_base == NULL;
 | |
| 
 | |
| 	BUILD_BUG_ON(VMCI_MAX_DG_SIZE < PAGE_SIZE);
 | |
| 
 | |
| 	if (!is_io_port) {
 | |
| 		/* For mmio, the first page is used for the header. */
 | |
| 		dg_in_buffer += PAGE_SIZE;
 | |
| 
 | |
| 		/*
 | |
| 		 * For DMA-based datagram operations, there is no performance
 | |
| 		 * penalty for reading the maximum buffer size.
 | |
| 		 */
 | |
| 		current_dg_in_buffer_size = VMCI_MAX_DG_SIZE;
 | |
| 	} else {
 | |
| 		current_dg_in_buffer_size = PAGE_SIZE;
 | |
| 	}
 | |
| 	vmci_read_data(vmci_dev, dg_in_buffer, current_dg_in_buffer_size);
 | |
| 	dg = (struct vmci_datagram *)dg_in_buffer;
 | |
| 	remaining_bytes = current_dg_in_buffer_size;
 | |
| 
 | |
| 	/*
 | |
| 	 * Read through the buffer until an invalid datagram header is
 | |
| 	 * encountered. The exit condition for datagrams read through
 | |
| 	 * VMCI_DATA_IN_ADDR is a bit more complicated, since a datagram
 | |
| 	 * can start on any page boundary in the buffer.
 | |
| 	 */
 | |
| 	while (dg->dst.resource != VMCI_INVALID_ID ||
 | |
| 	       (is_io_port && remaining_bytes > PAGE_SIZE)) {
 | |
| 		unsigned dg_in_size;
 | |
| 
 | |
| 		/*
 | |
| 		 * If using VMCI_DATA_IN_ADDR, skip to the next page
 | |
| 		 * as a datagram can start on any page boundary.
 | |
| 		 */
 | |
| 		if (dg->dst.resource == VMCI_INVALID_ID) {
 | |
| 			dg = (struct vmci_datagram *)roundup(
 | |
| 				(uintptr_t)dg + 1, PAGE_SIZE);
 | |
| 			remaining_bytes =
 | |
| 				(size_t)(dg_in_buffer +
 | |
| 					 current_dg_in_buffer_size -
 | |
| 					 (u8 *)dg);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		dg_in_size = VMCI_DG_SIZE_ALIGNED(dg);
 | |
| 
 | |
| 		if (dg_in_size <= dg_in_buffer_size) {
 | |
| 			int result;
 | |
| 
 | |
| 			/*
 | |
| 			 * If the remaining bytes in the datagram
 | |
| 			 * buffer doesn't contain the complete
 | |
| 			 * datagram, we first make sure we have enough
 | |
| 			 * room for it and then we read the reminder
 | |
| 			 * of the datagram and possibly any following
 | |
| 			 * datagrams.
 | |
| 			 */
 | |
| 			if (dg_in_size > remaining_bytes) {
 | |
| 				if (remaining_bytes !=
 | |
| 				    current_dg_in_buffer_size) {
 | |
| 
 | |
| 					/*
 | |
| 					 * We move the partial
 | |
| 					 * datagram to the front and
 | |
| 					 * read the reminder of the
 | |
| 					 * datagram and possibly
 | |
| 					 * following calls into the
 | |
| 					 * following bytes.
 | |
| 					 */
 | |
| 					memmove(dg_in_buffer, dg_in_buffer +
 | |
| 						current_dg_in_buffer_size -
 | |
| 						remaining_bytes,
 | |
| 						remaining_bytes);
 | |
| 					dg = (struct vmci_datagram *)
 | |
| 					    dg_in_buffer;
 | |
| 				}
 | |
| 
 | |
| 				if (current_dg_in_buffer_size !=
 | |
| 				    dg_in_buffer_size)
 | |
| 					current_dg_in_buffer_size =
 | |
| 					    dg_in_buffer_size;
 | |
| 
 | |
| 				vmci_read_data(vmci_dev,
 | |
| 					       dg_in_buffer +
 | |
| 						remaining_bytes,
 | |
| 					       current_dg_in_buffer_size -
 | |
| 						remaining_bytes);
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * We special case event datagrams from the
 | |
| 			 * hypervisor.
 | |
| 			 */
 | |
| 			if (dg->src.context == VMCI_HYPERVISOR_CONTEXT_ID &&
 | |
| 			    dg->dst.resource == VMCI_EVENT_HANDLER) {
 | |
| 				result = vmci_event_dispatch(dg);
 | |
| 			} else {
 | |
| 				result = vmci_datagram_invoke_guest_handler(dg);
 | |
| 			}
 | |
| 			if (result < VMCI_SUCCESS)
 | |
| 				dev_dbg(vmci_dev->dev,
 | |
| 					"Datagram with resource (ID=0x%x) failed (err=%d)\n",
 | |
| 					 dg->dst.resource, result);
 | |
| 
 | |
| 			/* On to the next datagram. */
 | |
| 			dg = (struct vmci_datagram *)((u8 *)dg +
 | |
| 						      dg_in_size);
 | |
| 		} else {
 | |
| 			size_t bytes_to_skip;
 | |
| 
 | |
| 			/*
 | |
| 			 * Datagram doesn't fit in datagram buffer of maximal
 | |
| 			 * size. We drop it.
 | |
| 			 */
 | |
| 			dev_dbg(vmci_dev->dev,
 | |
| 				"Failed to receive datagram (size=%u bytes)\n",
 | |
| 				 dg_in_size);
 | |
| 
 | |
| 			bytes_to_skip = dg_in_size - remaining_bytes;
 | |
| 			if (current_dg_in_buffer_size != dg_in_buffer_size)
 | |
| 				current_dg_in_buffer_size = dg_in_buffer_size;
 | |
| 
 | |
| 			for (;;) {
 | |
| 				vmci_read_data(vmci_dev, dg_in_buffer,
 | |
| 					       current_dg_in_buffer_size);
 | |
| 				if (bytes_to_skip <= current_dg_in_buffer_size)
 | |
| 					break;
 | |
| 
 | |
| 				bytes_to_skip -= current_dg_in_buffer_size;
 | |
| 			}
 | |
| 			dg = (struct vmci_datagram *)(dg_in_buffer +
 | |
| 						      bytes_to_skip);
 | |
| 		}
 | |
| 
 | |
| 		remaining_bytes =
 | |
| 		    (size_t) (dg_in_buffer + current_dg_in_buffer_size -
 | |
| 			      (u8 *)dg);
 | |
| 
 | |
| 		if (remaining_bytes < VMCI_DG_HEADERSIZE) {
 | |
| 			/* Get the next batch of datagrams. */
 | |
| 
 | |
| 			vmci_read_data(vmci_dev, dg_in_buffer,
 | |
| 				    current_dg_in_buffer_size);
 | |
| 			dg = (struct vmci_datagram *)dg_in_buffer;
 | |
| 			remaining_bytes = current_dg_in_buffer_size;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Scans the notification bitmap for raised flags, clears them
 | |
|  * and handles the notifications.
 | |
|  */
 | |
| static void vmci_process_bitmap(struct vmci_guest_device *dev)
 | |
| {
 | |
| 	if (!dev->notification_bitmap) {
 | |
| 		dev_dbg(dev->dev, "No bitmap present in %s\n", __func__);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	vmci_dbell_scan_notification_entries(dev->notification_bitmap);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Interrupt handler for legacy or MSI interrupt, or for first MSI-X
 | |
|  * interrupt (vector VMCI_INTR_DATAGRAM).
 | |
|  */
 | |
| static irqreturn_t vmci_interrupt(int irq, void *_dev)
 | |
| {
 | |
| 	struct vmci_guest_device *dev = _dev;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are using MSI-X with exclusive vectors then we simply call
 | |
| 	 * vmci_dispatch_dgs(), since we know the interrupt was meant for us.
 | |
| 	 * Otherwise we must read the ICR to determine what to do.
 | |
| 	 */
 | |
| 
 | |
| 	if (dev->exclusive_vectors) {
 | |
| 		vmci_dispatch_dgs(dev);
 | |
| 	} else {
 | |
| 		unsigned int icr;
 | |
| 
 | |
| 		/* Acknowledge interrupt and determine what needs doing. */
 | |
| 		icr = vmci_read_reg(dev, VMCI_ICR_ADDR);
 | |
| 		if (icr == 0 || icr == ~0)
 | |
| 			return IRQ_NONE;
 | |
| 
 | |
| 		if (icr & VMCI_ICR_DATAGRAM) {
 | |
| 			vmci_dispatch_dgs(dev);
 | |
| 			icr &= ~VMCI_ICR_DATAGRAM;
 | |
| 		}
 | |
| 
 | |
| 		if (icr & VMCI_ICR_NOTIFICATION) {
 | |
| 			vmci_process_bitmap(dev);
 | |
| 			icr &= ~VMCI_ICR_NOTIFICATION;
 | |
| 		}
 | |
| 
 | |
| 
 | |
| 		if (icr & VMCI_ICR_DMA_DATAGRAM) {
 | |
| 			wake_up_all(&dev->inout_wq);
 | |
| 			icr &= ~VMCI_ICR_DMA_DATAGRAM;
 | |
| 		}
 | |
| 
 | |
| 		if (icr != 0)
 | |
| 			dev_warn(dev->dev,
 | |
| 				 "Ignoring unknown interrupt cause (%d)\n",
 | |
| 				 icr);
 | |
| 	}
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Interrupt handler for MSI-X interrupt vector VMCI_INTR_NOTIFICATION,
 | |
|  * which is for the notification bitmap.  Will only get called if we are
 | |
|  * using MSI-X with exclusive vectors.
 | |
|  */
 | |
| static irqreturn_t vmci_interrupt_bm(int irq, void *_dev)
 | |
| {
 | |
| 	struct vmci_guest_device *dev = _dev;
 | |
| 
 | |
| 	/* For MSI-X we can just assume it was meant for us. */
 | |
| 	vmci_process_bitmap(dev);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Interrupt handler for MSI-X interrupt vector VMCI_INTR_DMA_DATAGRAM,
 | |
|  * which is for the completion of a DMA datagram send or receive operation.
 | |
|  * Will only get called if we are using MSI-X with exclusive vectors.
 | |
|  */
 | |
| static irqreturn_t vmci_interrupt_dma_datagram(int irq, void *_dev)
 | |
| {
 | |
| 	struct vmci_guest_device *dev = _dev;
 | |
| 
 | |
| 	wake_up_all(&dev->inout_wq);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static void vmci_free_dg_buffers(struct vmci_guest_device *vmci_dev)
 | |
| {
 | |
| 	if (vmci_dev->mmio_base != NULL) {
 | |
| 		if (vmci_dev->tx_buffer != NULL)
 | |
| 			dma_free_coherent(vmci_dev->dev,
 | |
| 					  VMCI_DMA_DG_BUFFER_SIZE,
 | |
| 					  vmci_dev->tx_buffer,
 | |
| 					  vmci_dev->tx_buffer_base);
 | |
| 		if (vmci_dev->data_buffer != NULL)
 | |
| 			dma_free_coherent(vmci_dev->dev,
 | |
| 					  VMCI_DMA_DG_BUFFER_SIZE,
 | |
| 					  vmci_dev->data_buffer,
 | |
| 					  vmci_dev->data_buffer_base);
 | |
| 	} else {
 | |
| 		vfree(vmci_dev->data_buffer);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Most of the initialization at module load time is done here.
 | |
|  */
 | |
| static int vmci_guest_probe_device(struct pci_dev *pdev,
 | |
| 				   const struct pci_device_id *id)
 | |
| {
 | |
| 	struct vmci_guest_device *vmci_dev;
 | |
| 	void __iomem *iobase = NULL;
 | |
| 	void __iomem *mmio_base = NULL;
 | |
| 	unsigned int num_irq_vectors;
 | |
| 	unsigned int capabilities;
 | |
| 	unsigned int caps_in_use;
 | |
| 	unsigned long cmd;
 | |
| 	int vmci_err;
 | |
| 	int error;
 | |
| 
 | |
| 	dev_dbg(&pdev->dev, "Probing for vmci/PCI guest device\n");
 | |
| 
 | |
| 	error = pcim_enable_device(pdev);
 | |
| 	if (error) {
 | |
| 		dev_err(&pdev->dev,
 | |
| 			"Failed to enable VMCI device: %d\n", error);
 | |
| 		return error;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The VMCI device with mmio access to registers requests 256KB
 | |
| 	 * for BAR1. If present, driver will use new VMCI device
 | |
| 	 * functionality for register access and datagram send/recv.
 | |
| 	 */
 | |
| 
 | |
| 	if (pci_resource_len(pdev, 1) == VMCI_WITH_MMIO_ACCESS_BAR_SIZE) {
 | |
| 		dev_info(&pdev->dev, "MMIO register access is available\n");
 | |
| 		mmio_base = pci_iomap_range(pdev, 1, VMCI_MMIO_ACCESS_OFFSET,
 | |
| 					    VMCI_MMIO_ACCESS_SIZE);
 | |
| 		/* If the map fails, we fall back to IOIO access. */
 | |
| 		if (!mmio_base)
 | |
| 			dev_warn(&pdev->dev, "Failed to map MMIO register access\n");
 | |
| 	}
 | |
| 
 | |
| 	if (!mmio_base) {
 | |
| 		if (IS_ENABLED(CONFIG_ARM64)) {
 | |
| 			dev_err(&pdev->dev, "MMIO base is invalid\n");
 | |
| 			return -ENXIO;
 | |
| 		}
 | |
| 		error = pcim_iomap_regions(pdev, BIT(0), KBUILD_MODNAME);
 | |
| 		if (error) {
 | |
| 			dev_err(&pdev->dev, "Failed to reserve/map IO regions\n");
 | |
| 			return error;
 | |
| 		}
 | |
| 		iobase = pcim_iomap_table(pdev)[0];
 | |
| 	}
 | |
| 
 | |
| 	vmci_dev = devm_kzalloc(&pdev->dev, sizeof(*vmci_dev), GFP_KERNEL);
 | |
| 	if (!vmci_dev) {
 | |
| 		dev_err(&pdev->dev,
 | |
| 			"Can't allocate memory for VMCI device\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	vmci_dev->dev = &pdev->dev;
 | |
| 	vmci_dev->exclusive_vectors = false;
 | |
| 	vmci_dev->iobase = iobase;
 | |
| 	vmci_dev->mmio_base = mmio_base;
 | |
| 
 | |
| 	init_waitqueue_head(&vmci_dev->inout_wq);
 | |
| 
 | |
| 	if (mmio_base != NULL) {
 | |
| 		vmci_dev->tx_buffer = dma_alloc_coherent(&pdev->dev, VMCI_DMA_DG_BUFFER_SIZE,
 | |
| 							 &vmci_dev->tx_buffer_base,
 | |
| 							 GFP_KERNEL);
 | |
| 		if (!vmci_dev->tx_buffer) {
 | |
| 			dev_err(&pdev->dev,
 | |
| 				"Can't allocate memory for datagram tx buffer\n");
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		vmci_dev->data_buffer = dma_alloc_coherent(&pdev->dev, VMCI_DMA_DG_BUFFER_SIZE,
 | |
| 							   &vmci_dev->data_buffer_base,
 | |
| 							   GFP_KERNEL);
 | |
| 	} else {
 | |
| 		vmci_dev->data_buffer = vmalloc(VMCI_MAX_DG_SIZE);
 | |
| 	}
 | |
| 	if (!vmci_dev->data_buffer) {
 | |
| 		dev_err(&pdev->dev,
 | |
| 			"Can't allocate memory for datagram buffer\n");
 | |
| 		error = -ENOMEM;
 | |
| 		goto err_free_data_buffers;
 | |
| 	}
 | |
| 
 | |
| 	pci_set_master(pdev);	/* To enable queue_pair functionality. */
 | |
| 
 | |
| 	/*
 | |
| 	 * Verify that the VMCI Device supports the capabilities that
 | |
| 	 * we need. If the device is missing capabilities that we would
 | |
| 	 * like to use, check for fallback capabilities and use those
 | |
| 	 * instead (so we can run a new VM on old hosts). Fail the load if
 | |
| 	 * a required capability is missing and there is no fallback.
 | |
| 	 *
 | |
| 	 * Right now, we need datagrams. There are no fallbacks.
 | |
| 	 */
 | |
| 	capabilities = vmci_read_reg(vmci_dev, VMCI_CAPS_ADDR);
 | |
| 	if (!(capabilities & VMCI_CAPS_DATAGRAM)) {
 | |
| 		dev_err(&pdev->dev, "Device does not support datagrams\n");
 | |
| 		error = -ENXIO;
 | |
| 		goto err_free_data_buffers;
 | |
| 	}
 | |
| 	caps_in_use = VMCI_CAPS_DATAGRAM;
 | |
| 
 | |
| 	/*
 | |
| 	 * Use 64-bit PPNs if the device supports.
 | |
| 	 *
 | |
| 	 * There is no check for the return value of dma_set_mask_and_coherent
 | |
| 	 * since this driver can handle the default mask values if
 | |
| 	 * dma_set_mask_and_coherent fails.
 | |
| 	 */
 | |
| 	if (capabilities & VMCI_CAPS_PPN64) {
 | |
| 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
 | |
| 		use_ppn64 = true;
 | |
| 		caps_in_use |= VMCI_CAPS_PPN64;
 | |
| 	} else {
 | |
| 		dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(44));
 | |
| 		use_ppn64 = false;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the hardware supports notifications, we will use that as
 | |
| 	 * well.
 | |
| 	 */
 | |
| 	if (capabilities & VMCI_CAPS_NOTIFICATIONS) {
 | |
| 		vmci_dev->notification_bitmap = dma_alloc_coherent(
 | |
| 			&pdev->dev, PAGE_SIZE, &vmci_dev->notification_base,
 | |
| 			GFP_KERNEL);
 | |
| 		if (!vmci_dev->notification_bitmap)
 | |
| 			dev_warn(&pdev->dev,
 | |
| 				 "Unable to allocate notification bitmap\n");
 | |
| 		else
 | |
| 			caps_in_use |= VMCI_CAPS_NOTIFICATIONS;
 | |
| 	}
 | |
| 
 | |
| 	if (mmio_base != NULL) {
 | |
| 		if (capabilities & VMCI_CAPS_DMA_DATAGRAM) {
 | |
| 			caps_in_use |= VMCI_CAPS_DMA_DATAGRAM;
 | |
| 		} else {
 | |
| 			dev_err(&pdev->dev,
 | |
| 				"Missing capability: VMCI_CAPS_DMA_DATAGRAM\n");
 | |
| 			error = -ENXIO;
 | |
| 			goto err_free_notification_bitmap;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	dev_info(&pdev->dev, "Using capabilities 0x%x\n", caps_in_use);
 | |
| 
 | |
| 	/* Let the host know which capabilities we intend to use. */
 | |
| 	vmci_write_reg(vmci_dev, caps_in_use, VMCI_CAPS_ADDR);
 | |
| 
 | |
| 	if (caps_in_use & VMCI_CAPS_DMA_DATAGRAM) {
 | |
| 		/* Let the device know the size for pages passed down. */
 | |
| 		vmci_write_reg(vmci_dev, PAGE_SHIFT, VMCI_GUEST_PAGE_SHIFT);
 | |
| 
 | |
| 		/* Configure the high order parts of the data in/out buffers. */
 | |
| 		vmci_write_reg(vmci_dev, upper_32_bits(vmci_dev->data_buffer_base),
 | |
| 			       VMCI_DATA_IN_HIGH_ADDR);
 | |
| 		vmci_write_reg(vmci_dev, upper_32_bits(vmci_dev->tx_buffer_base),
 | |
| 			       VMCI_DATA_OUT_HIGH_ADDR);
 | |
| 	}
 | |
| 
 | |
| 	/* Set up global device so that we can start sending datagrams */
 | |
| 	spin_lock_irq(&vmci_dev_spinlock);
 | |
| 	vmci_dev_g = vmci_dev;
 | |
| 	vmci_pdev = pdev;
 | |
| 	spin_unlock_irq(&vmci_dev_spinlock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Register notification bitmap with device if that capability is
 | |
| 	 * used.
 | |
| 	 */
 | |
| 	if (caps_in_use & VMCI_CAPS_NOTIFICATIONS) {
 | |
| 		unsigned long bitmap_ppn =
 | |
| 			vmci_dev->notification_base >> PAGE_SHIFT;
 | |
| 		if (!vmci_dbell_register_notification_bitmap(bitmap_ppn)) {
 | |
| 			dev_warn(&pdev->dev,
 | |
| 				 "VMCI device unable to register notification bitmap with PPN 0x%lx\n",
 | |
| 				 bitmap_ppn);
 | |
| 			error = -ENXIO;
 | |
| 			goto err_remove_vmci_dev_g;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Check host capabilities. */
 | |
| 	error = vmci_check_host_caps(pdev);
 | |
| 	if (error)
 | |
| 		goto err_remove_vmci_dev_g;
 | |
| 
 | |
| 	/* Enable device. */
 | |
| 
 | |
| 	/*
 | |
| 	 * We subscribe to the VMCI_EVENT_CTX_ID_UPDATE here so we can
 | |
| 	 * update the internal context id when needed.
 | |
| 	 */
 | |
| 	vmci_err = vmci_event_subscribe(VMCI_EVENT_CTX_ID_UPDATE,
 | |
| 					vmci_guest_cid_update, NULL,
 | |
| 					&ctx_update_sub_id);
 | |
| 	if (vmci_err < VMCI_SUCCESS)
 | |
| 		dev_warn(&pdev->dev,
 | |
| 			 "Failed to subscribe to event (type=%d): %d\n",
 | |
| 			 VMCI_EVENT_CTX_ID_UPDATE, vmci_err);
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable interrupts.  Try MSI-X first, then MSI, and then fallback on
 | |
| 	 * legacy interrupts.
 | |
| 	 */
 | |
| 	if (vmci_dev->mmio_base != NULL)
 | |
| 		num_irq_vectors = VMCI_MAX_INTRS;
 | |
| 	else
 | |
| 		num_irq_vectors = VMCI_MAX_INTRS_NOTIFICATION;
 | |
| 	error = pci_alloc_irq_vectors(pdev, num_irq_vectors, num_irq_vectors,
 | |
| 				      PCI_IRQ_MSIX);
 | |
| 	if (error < 0) {
 | |
| 		error = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
 | |
| 		if (error < 0)
 | |
| 			goto err_unsubscribe_event;
 | |
| 	} else {
 | |
| 		vmci_dev->exclusive_vectors = true;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Request IRQ for legacy or MSI interrupts, or for first
 | |
| 	 * MSI-X vector.
 | |
| 	 */
 | |
| 	error = request_threaded_irq(pci_irq_vector(pdev, 0), NULL,
 | |
| 				     vmci_interrupt, IRQF_SHARED,
 | |
| 				     KBUILD_MODNAME, vmci_dev);
 | |
| 	if (error) {
 | |
| 		dev_err(&pdev->dev, "Irq %u in use: %d\n",
 | |
| 			pci_irq_vector(pdev, 0), error);
 | |
| 		goto err_disable_msi;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For MSI-X with exclusive vectors we need to request an
 | |
| 	 * interrupt for each vector so that we get a separate
 | |
| 	 * interrupt handler routine.  This allows us to distinguish
 | |
| 	 * between the vectors.
 | |
| 	 */
 | |
| 	if (vmci_dev->exclusive_vectors) {
 | |
| 		error = request_threaded_irq(pci_irq_vector(pdev, 1), NULL,
 | |
| 					     vmci_interrupt_bm, 0,
 | |
| 					     KBUILD_MODNAME, vmci_dev);
 | |
| 		if (error) {
 | |
| 			dev_err(&pdev->dev,
 | |
| 				"Failed to allocate irq %u: %d\n",
 | |
| 				pci_irq_vector(pdev, 1), error);
 | |
| 			goto err_free_irq;
 | |
| 		}
 | |
| 		if (caps_in_use & VMCI_CAPS_DMA_DATAGRAM) {
 | |
| 			error = request_threaded_irq(pci_irq_vector(pdev, 2),
 | |
| 						     NULL,
 | |
| 						    vmci_interrupt_dma_datagram,
 | |
| 						     0, KBUILD_MODNAME,
 | |
| 						     vmci_dev);
 | |
| 			if (error) {
 | |
| 				dev_err(&pdev->dev,
 | |
| 					"Failed to allocate irq %u: %d\n",
 | |
| 					pci_irq_vector(pdev, 2), error);
 | |
| 				goto err_free_bm_irq;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(&pdev->dev, "Registered device\n");
 | |
| 
 | |
| 	atomic_inc(&vmci_num_guest_devices);
 | |
| 
 | |
| 	/* Enable specific interrupt bits. */
 | |
| 	cmd = VMCI_IMR_DATAGRAM;
 | |
| 	if (caps_in_use & VMCI_CAPS_NOTIFICATIONS)
 | |
| 		cmd |= VMCI_IMR_NOTIFICATION;
 | |
| 	if (caps_in_use & VMCI_CAPS_DMA_DATAGRAM)
 | |
| 		cmd |= VMCI_IMR_DMA_DATAGRAM;
 | |
| 	vmci_write_reg(vmci_dev, cmd, VMCI_IMR_ADDR);
 | |
| 
 | |
| 	/* Enable interrupts. */
 | |
| 	vmci_write_reg(vmci_dev, VMCI_CONTROL_INT_ENABLE, VMCI_CONTROL_ADDR);
 | |
| 
 | |
| 	pci_set_drvdata(pdev, vmci_dev);
 | |
| 
 | |
| 	vmci_call_vsock_callback(false);
 | |
| 	return 0;
 | |
| 
 | |
| err_free_bm_irq:
 | |
| 	if (vmci_dev->exclusive_vectors)
 | |
| 		free_irq(pci_irq_vector(pdev, 1), vmci_dev);
 | |
| 
 | |
| err_free_irq:
 | |
| 	free_irq(pci_irq_vector(pdev, 0), vmci_dev);
 | |
| 
 | |
| err_disable_msi:
 | |
| 	pci_free_irq_vectors(pdev);
 | |
| 
 | |
| err_unsubscribe_event:
 | |
| 	vmci_err = vmci_event_unsubscribe(ctx_update_sub_id);
 | |
| 	if (vmci_err < VMCI_SUCCESS)
 | |
| 		dev_warn(&pdev->dev,
 | |
| 			 "Failed to unsubscribe from event (type=%d) with subscriber (ID=0x%x): %d\n",
 | |
| 			 VMCI_EVENT_CTX_ID_UPDATE, ctx_update_sub_id, vmci_err);
 | |
| 
 | |
| err_remove_vmci_dev_g:
 | |
| 	spin_lock_irq(&vmci_dev_spinlock);
 | |
| 	vmci_pdev = NULL;
 | |
| 	vmci_dev_g = NULL;
 | |
| 	spin_unlock_irq(&vmci_dev_spinlock);
 | |
| 
 | |
| err_free_notification_bitmap:
 | |
| 	if (vmci_dev->notification_bitmap) {
 | |
| 		vmci_write_reg(vmci_dev, VMCI_CONTROL_RESET, VMCI_CONTROL_ADDR);
 | |
| 		dma_free_coherent(&pdev->dev, PAGE_SIZE,
 | |
| 				  vmci_dev->notification_bitmap,
 | |
| 				  vmci_dev->notification_base);
 | |
| 	}
 | |
| 
 | |
| err_free_data_buffers:
 | |
| 	vmci_free_dg_buffers(vmci_dev);
 | |
| 
 | |
| 	/* The rest are managed resources and will be freed by PCI core */
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| static void vmci_guest_remove_device(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct vmci_guest_device *vmci_dev = pci_get_drvdata(pdev);
 | |
| 	int vmci_err;
 | |
| 
 | |
| 	dev_dbg(&pdev->dev, "Removing device\n");
 | |
| 
 | |
| 	atomic_dec(&vmci_num_guest_devices);
 | |
| 
 | |
| 	vmci_qp_guest_endpoints_exit();
 | |
| 
 | |
| 	vmci_err = vmci_event_unsubscribe(ctx_update_sub_id);
 | |
| 	if (vmci_err < VMCI_SUCCESS)
 | |
| 		dev_warn(&pdev->dev,
 | |
| 			 "Failed to unsubscribe from event (type=%d) with subscriber (ID=0x%x): %d\n",
 | |
| 			 VMCI_EVENT_CTX_ID_UPDATE, ctx_update_sub_id, vmci_err);
 | |
| 
 | |
| 	spin_lock_irq(&vmci_dev_spinlock);
 | |
| 	vmci_dev_g = NULL;
 | |
| 	vmci_pdev = NULL;
 | |
| 	spin_unlock_irq(&vmci_dev_spinlock);
 | |
| 
 | |
| 	dev_dbg(&pdev->dev, "Resetting vmci device\n");
 | |
| 	vmci_write_reg(vmci_dev, VMCI_CONTROL_RESET, VMCI_CONTROL_ADDR);
 | |
| 
 | |
| 	/*
 | |
| 	 * Free IRQ and then disable MSI/MSI-X as appropriate.  For
 | |
| 	 * MSI-X, we might have multiple vectors, each with their own
 | |
| 	 * IRQ, which we must free too.
 | |
| 	 */
 | |
| 	if (vmci_dev->exclusive_vectors) {
 | |
| 		free_irq(pci_irq_vector(pdev, 1), vmci_dev);
 | |
| 		if (vmci_dev->mmio_base != NULL)
 | |
| 			free_irq(pci_irq_vector(pdev, 2), vmci_dev);
 | |
| 	}
 | |
| 	free_irq(pci_irq_vector(pdev, 0), vmci_dev);
 | |
| 	pci_free_irq_vectors(pdev);
 | |
| 
 | |
| 	if (vmci_dev->notification_bitmap) {
 | |
| 		/*
 | |
| 		 * The device reset above cleared the bitmap state of the
 | |
| 		 * device, so we can safely free it here.
 | |
| 		 */
 | |
| 
 | |
| 		dma_free_coherent(&pdev->dev, PAGE_SIZE,
 | |
| 				  vmci_dev->notification_bitmap,
 | |
| 				  vmci_dev->notification_base);
 | |
| 	}
 | |
| 
 | |
| 	vmci_free_dg_buffers(vmci_dev);
 | |
| 
 | |
| 	if (vmci_dev->mmio_base != NULL)
 | |
| 		pci_iounmap(pdev, vmci_dev->mmio_base);
 | |
| 
 | |
| 	/* The rest are managed resources and will be freed by PCI core */
 | |
| }
 | |
| 
 | |
| static const struct pci_device_id vmci_ids[] = {
 | |
| 	{ PCI_DEVICE(PCI_VENDOR_ID_VMWARE, PCI_DEVICE_ID_VMWARE_VMCI), },
 | |
| 	{ 0 },
 | |
| };
 | |
| MODULE_DEVICE_TABLE(pci, vmci_ids);
 | |
| 
 | |
| static struct pci_driver vmci_guest_driver = {
 | |
| 	.name		= KBUILD_MODNAME,
 | |
| 	.id_table	= vmci_ids,
 | |
| 	.probe		= vmci_guest_probe_device,
 | |
| 	.remove		= vmci_guest_remove_device,
 | |
| };
 | |
| 
 | |
| int __init vmci_guest_init(void)
 | |
| {
 | |
| 	return pci_register_driver(&vmci_guest_driver);
 | |
| }
 | |
| 
 | |
| void __exit vmci_guest_exit(void)
 | |
| {
 | |
| 	pci_unregister_driver(&vmci_guest_driver);
 | |
| }
 |