540 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			540 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /*
 | |
|  *  Driver for Microtune MT2060 "Single chip dual conversion broadband tuner"
 | |
|  *
 | |
|  *  Copyright (c) 2006 Olivier DANET <odanet@caramail.com>
 | |
|  */
 | |
| 
 | |
| /* In that file, frequencies are expressed in kiloHertz to avoid 32 bits overflows */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/dvb/frontend.h>
 | |
| #include <linux/i2c.h>
 | |
| #include <linux/slab.h>
 | |
| 
 | |
| #include <media/dvb_frontend.h>
 | |
| 
 | |
| #include "mt2060.h"
 | |
| #include "mt2060_priv.h"
 | |
| 
 | |
| static int debug;
 | |
| module_param(debug, int, 0644);
 | |
| MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
 | |
| 
 | |
| #define dprintk(args...) do { if (debug) {printk(KERN_DEBUG "MT2060: " args); printk("\n"); }} while (0)
 | |
| 
 | |
| // Reads a single register
 | |
| static int mt2060_readreg(struct mt2060_priv *priv, u8 reg, u8 *val)
 | |
| {
 | |
| 	struct i2c_msg msg[2] = {
 | |
| 		{ .addr = priv->cfg->i2c_address, .flags = 0, .len = 1 },
 | |
| 		{ .addr = priv->cfg->i2c_address, .flags = I2C_M_RD, .len = 1 },
 | |
| 	};
 | |
| 	int rc = 0;
 | |
| 	u8 *b;
 | |
| 
 | |
| 	b = kmalloc(2, GFP_KERNEL);
 | |
| 	if (!b)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	b[0] = reg;
 | |
| 	b[1] = 0;
 | |
| 
 | |
| 	msg[0].buf = b;
 | |
| 	msg[1].buf = b + 1;
 | |
| 
 | |
| 	if (i2c_transfer(priv->i2c, msg, 2) != 2) {
 | |
| 		printk(KERN_WARNING "mt2060 I2C read failed\n");
 | |
| 		rc = -EREMOTEIO;
 | |
| 	}
 | |
| 	*val = b[1];
 | |
| 	kfree(b);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| // Writes a single register
 | |
| static int mt2060_writereg(struct mt2060_priv *priv, u8 reg, u8 val)
 | |
| {
 | |
| 	struct i2c_msg msg = {
 | |
| 		.addr = priv->cfg->i2c_address, .flags = 0, .len = 2
 | |
| 	};
 | |
| 	u8 *buf;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	buf = kmalloc(2, GFP_KERNEL);
 | |
| 	if (!buf)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	buf[0] = reg;
 | |
| 	buf[1] = val;
 | |
| 
 | |
| 	msg.buf = buf;
 | |
| 
 | |
| 	if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
 | |
| 		printk(KERN_WARNING "mt2060 I2C write failed\n");
 | |
| 		rc = -EREMOTEIO;
 | |
| 	}
 | |
| 	kfree(buf);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| // Writes a set of consecutive registers
 | |
| static int mt2060_writeregs(struct mt2060_priv *priv,u8 *buf, u8 len)
 | |
| {
 | |
| 	int rem, val_len;
 | |
| 	u8 *xfer_buf;
 | |
| 	int rc = 0;
 | |
| 	struct i2c_msg msg = {
 | |
| 		.addr = priv->cfg->i2c_address, .flags = 0
 | |
| 	};
 | |
| 
 | |
| 	xfer_buf = kmalloc(16, GFP_KERNEL);
 | |
| 	if (!xfer_buf)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	msg.buf = xfer_buf;
 | |
| 
 | |
| 	for (rem = len - 1; rem > 0; rem -= priv->i2c_max_regs) {
 | |
| 		val_len = min_t(int, rem, priv->i2c_max_regs);
 | |
| 		msg.len = 1 + val_len;
 | |
| 		xfer_buf[0] = buf[0] + len - 1 - rem;
 | |
| 		memcpy(&xfer_buf[1], &buf[1 + len - 1 - rem], val_len);
 | |
| 
 | |
| 		if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
 | |
| 			printk(KERN_WARNING "mt2060 I2C write failed (len=%i)\n", val_len);
 | |
| 			rc = -EREMOTEIO;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	kfree(xfer_buf);
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| // Initialisation sequences
 | |
| // LNABAND=3, NUM1=0x3C, DIV1=0x74, NUM2=0x1080, DIV2=0x49
 | |
| static u8 mt2060_config1[] = {
 | |
| 	REG_LO1C1,
 | |
| 	0x3F,	0x74,	0x00,	0x08,	0x93
 | |
| };
 | |
| 
 | |
| // FMCG=2, GP2=0, GP1=0
 | |
| static u8 mt2060_config2[] = {
 | |
| 	REG_MISC_CTRL,
 | |
| 	0x20,	0x1E,	0x30,	0xff,	0x80,	0xff,	0x00,	0x2c,	0x42
 | |
| };
 | |
| 
 | |
| //  VGAG=3, V1CSE=1
 | |
| 
 | |
| #ifdef  MT2060_SPURCHECK
 | |
| /* The function below calculates the frequency offset between the output frequency if2
 | |
|  and the closer cross modulation subcarrier between lo1 and lo2 up to the tenth harmonic */
 | |
| static int mt2060_spurcalc(u32 lo1,u32 lo2,u32 if2)
 | |
| {
 | |
| 	int I,J;
 | |
| 	int dia,diamin,diff;
 | |
| 	diamin=1000000;
 | |
| 	for (I = 1; I < 10; I++) {
 | |
| 		J = ((2*I*lo1)/lo2+1)/2;
 | |
| 		diff = I*(int)lo1-J*(int)lo2;
 | |
| 		if (diff < 0) diff=-diff;
 | |
| 		dia = (diff-(int)if2);
 | |
| 		if (dia < 0) dia=-dia;
 | |
| 		if (diamin > dia) diamin=dia;
 | |
| 	}
 | |
| 	return diamin;
 | |
| }
 | |
| 
 | |
| #define BANDWIDTH 4000 // kHz
 | |
| 
 | |
| /* Calculates the frequency offset to add to avoid spurs. Returns 0 if no offset is needed */
 | |
| static int mt2060_spurcheck(u32 lo1,u32 lo2,u32 if2)
 | |
| {
 | |
| 	u32 Spur,Sp1,Sp2;
 | |
| 	int I,J;
 | |
| 	I=0;
 | |
| 	J=1000;
 | |
| 
 | |
| 	Spur=mt2060_spurcalc(lo1,lo2,if2);
 | |
| 	if (Spur < BANDWIDTH) {
 | |
| 		/* Potential spurs detected */
 | |
| 		dprintk("Spurs before : f_lo1: %d  f_lo2: %d  (kHz)",
 | |
| 			(int)lo1,(int)lo2);
 | |
| 		I=1000;
 | |
| 		Sp1 = mt2060_spurcalc(lo1+I,lo2+I,if2);
 | |
| 		Sp2 = mt2060_spurcalc(lo1-I,lo2-I,if2);
 | |
| 
 | |
| 		if (Sp1 < Sp2) {
 | |
| 			J=-J; I=-I; Spur=Sp2;
 | |
| 		} else
 | |
| 			Spur=Sp1;
 | |
| 
 | |
| 		while (Spur < BANDWIDTH) {
 | |
| 			I += J;
 | |
| 			Spur = mt2060_spurcalc(lo1+I,lo2+I,if2);
 | |
| 		}
 | |
| 		dprintk("Spurs after  : f_lo1: %d  f_lo2: %d  (kHz)",
 | |
| 			(int)(lo1+I),(int)(lo2+I));
 | |
| 	}
 | |
| 	return I;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #define IF2  36150       // IF2 frequency = 36.150 MHz
 | |
| #define FREF 16000       // Quartz oscillator 16 MHz
 | |
| 
 | |
| static int mt2060_set_params(struct dvb_frontend *fe)
 | |
| {
 | |
| 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
 | |
| 	struct mt2060_priv *priv;
 | |
| 	int i=0;
 | |
| 	u32 freq;
 | |
| 	u8  lnaband;
 | |
| 	u32 f_lo1,f_lo2;
 | |
| 	u32 div1,num1,div2,num2;
 | |
| 	u8  b[8];
 | |
| 	u32 if1;
 | |
| 
 | |
| 	priv = fe->tuner_priv;
 | |
| 
 | |
| 	if1 = priv->if1_freq;
 | |
| 	b[0] = REG_LO1B1;
 | |
| 	b[1] = 0xFF;
 | |
| 
 | |
| 	if (fe->ops.i2c_gate_ctrl)
 | |
| 		fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
 | |
| 
 | |
| 	mt2060_writeregs(priv,b,2);
 | |
| 
 | |
| 	freq = c->frequency / 1000; /* Hz -> kHz */
 | |
| 
 | |
| 	f_lo1 = freq + if1 * 1000;
 | |
| 	f_lo1 = (f_lo1 / 250) * 250;
 | |
| 	f_lo2 = f_lo1 - freq - IF2;
 | |
| 	// From the Comtech datasheet, the step used is 50kHz. The tuner chip could be more precise
 | |
| 	f_lo2 = ((f_lo2 + 25) / 50) * 50;
 | |
| 	priv->frequency =  (f_lo1 - f_lo2 - IF2) * 1000;
 | |
| 
 | |
| #ifdef MT2060_SPURCHECK
 | |
| 	// LO-related spurs detection and correction
 | |
| 	num1   = mt2060_spurcheck(f_lo1,f_lo2,IF2);
 | |
| 	f_lo1 += num1;
 | |
| 	f_lo2 += num1;
 | |
| #endif
 | |
| 	//Frequency LO1 = 16MHz * (DIV1 + NUM1/64 )
 | |
| 	num1 = f_lo1 / (FREF / 64);
 | |
| 	div1 = num1 / 64;
 | |
| 	num1 &= 0x3f;
 | |
| 
 | |
| 	// Frequency LO2 = 16MHz * (DIV2 + NUM2/8192 )
 | |
| 	num2 = f_lo2 * 64 / (FREF / 128);
 | |
| 	div2 = num2 / 8192;
 | |
| 	num2 &= 0x1fff;
 | |
| 
 | |
| 	if (freq <=  95000) lnaband = 0xB0; else
 | |
| 	if (freq <= 180000) lnaband = 0xA0; else
 | |
| 	if (freq <= 260000) lnaband = 0x90; else
 | |
| 	if (freq <= 335000) lnaband = 0x80; else
 | |
| 	if (freq <= 425000) lnaband = 0x70; else
 | |
| 	if (freq <= 480000) lnaband = 0x60; else
 | |
| 	if (freq <= 570000) lnaband = 0x50; else
 | |
| 	if (freq <= 645000) lnaband = 0x40; else
 | |
| 	if (freq <= 730000) lnaband = 0x30; else
 | |
| 	if (freq <= 810000) lnaband = 0x20; else lnaband = 0x10;
 | |
| 
 | |
| 	b[0] = REG_LO1C1;
 | |
| 	b[1] = lnaband | ((num1 >>2) & 0x0F);
 | |
| 	b[2] = div1;
 | |
| 	b[3] = (num2 & 0x0F)  | ((num1 & 3) << 4);
 | |
| 	b[4] = num2 >> 4;
 | |
| 	b[5] = ((num2 >>12) & 1) | (div2 << 1);
 | |
| 
 | |
| 	dprintk("IF1: %dMHz",(int)if1);
 | |
| 	dprintk("PLL freq=%dkHz  f_lo1=%dkHz  f_lo2=%dkHz",(int)freq,(int)f_lo1,(int)f_lo2);
 | |
| 	dprintk("PLL div1=%d  num1=%d  div2=%d  num2=%d",(int)div1,(int)num1,(int)div2,(int)num2);
 | |
| 	dprintk("PLL [1..5]: %2x %2x %2x %2x %2x",(int)b[1],(int)b[2],(int)b[3],(int)b[4],(int)b[5]);
 | |
| 
 | |
| 	mt2060_writeregs(priv,b,6);
 | |
| 
 | |
| 	//Waits for pll lock or timeout
 | |
| 	i = 0;
 | |
| 	do {
 | |
| 		mt2060_readreg(priv,REG_LO_STATUS,b);
 | |
| 		if ((b[0] & 0x88)==0x88)
 | |
| 			break;
 | |
| 		msleep(4);
 | |
| 		i++;
 | |
| 	} while (i<10);
 | |
| 
 | |
| 	if (fe->ops.i2c_gate_ctrl)
 | |
| 		fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void mt2060_calibrate(struct mt2060_priv *priv)
 | |
| {
 | |
| 	u8 b = 0;
 | |
| 	int i = 0;
 | |
| 
 | |
| 	if (mt2060_writeregs(priv,mt2060_config1,sizeof(mt2060_config1)))
 | |
| 		return;
 | |
| 	if (mt2060_writeregs(priv,mt2060_config2,sizeof(mt2060_config2)))
 | |
| 		return;
 | |
| 
 | |
| 	/* initialize the clock output */
 | |
| 	mt2060_writereg(priv, REG_VGAG, (priv->cfg->clock_out << 6) | 0x30);
 | |
| 
 | |
| 	do {
 | |
| 		b |= (1 << 6); // FM1SS;
 | |
| 		mt2060_writereg(priv, REG_LO2C1,b);
 | |
| 		msleep(20);
 | |
| 
 | |
| 		if (i == 0) {
 | |
| 			b |= (1 << 7); // FM1CA;
 | |
| 			mt2060_writereg(priv, REG_LO2C1,b);
 | |
| 			b &= ~(1 << 7); // FM1CA;
 | |
| 			msleep(20);
 | |
| 		}
 | |
| 
 | |
| 		b &= ~(1 << 6); // FM1SS
 | |
| 		mt2060_writereg(priv, REG_LO2C1,b);
 | |
| 
 | |
| 		msleep(20);
 | |
| 		i++;
 | |
| 	} while (i < 9);
 | |
| 
 | |
| 	i = 0;
 | |
| 	while (i++ < 10 && mt2060_readreg(priv, REG_MISC_STAT, &b) == 0 && (b & (1 << 6)) == 0)
 | |
| 		msleep(20);
 | |
| 
 | |
| 	if (i <= 10) {
 | |
| 		mt2060_readreg(priv, REG_FM_FREQ, &priv->fmfreq); // now find out, what is fmreq used for :)
 | |
| 		dprintk("calibration was successful: %d", (int)priv->fmfreq);
 | |
| 	} else
 | |
| 		dprintk("FMCAL timed out");
 | |
| }
 | |
| 
 | |
| static int mt2060_get_frequency(struct dvb_frontend *fe, u32 *frequency)
 | |
| {
 | |
| 	struct mt2060_priv *priv = fe->tuner_priv;
 | |
| 	*frequency = priv->frequency;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mt2060_get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
 | |
| {
 | |
| 	*frequency = IF2 * 1000;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mt2060_init(struct dvb_frontend *fe)
 | |
| {
 | |
| 	struct mt2060_priv *priv = fe->tuner_priv;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (fe->ops.i2c_gate_ctrl)
 | |
| 		fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
 | |
| 
 | |
| 	if (priv->sleep) {
 | |
| 		ret = mt2060_writereg(priv, REG_MISC_CTRL, 0x20);
 | |
| 		if (ret)
 | |
| 			goto err_i2c_gate_ctrl;
 | |
| 	}
 | |
| 
 | |
| 	ret = mt2060_writereg(priv, REG_VGAG,
 | |
| 			      (priv->cfg->clock_out << 6) | 0x33);
 | |
| 
 | |
| err_i2c_gate_ctrl:
 | |
| 	if (fe->ops.i2c_gate_ctrl)
 | |
| 		fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int mt2060_sleep(struct dvb_frontend *fe)
 | |
| {
 | |
| 	struct mt2060_priv *priv = fe->tuner_priv;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (fe->ops.i2c_gate_ctrl)
 | |
| 		fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
 | |
| 
 | |
| 	ret = mt2060_writereg(priv, REG_VGAG,
 | |
| 			      (priv->cfg->clock_out << 6) | 0x30);
 | |
| 	if (ret)
 | |
| 		goto err_i2c_gate_ctrl;
 | |
| 
 | |
| 	if (priv->sleep)
 | |
| 		ret = mt2060_writereg(priv, REG_MISC_CTRL, 0xe8);
 | |
| 
 | |
| err_i2c_gate_ctrl:
 | |
| 	if (fe->ops.i2c_gate_ctrl)
 | |
| 		fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void mt2060_release(struct dvb_frontend *fe)
 | |
| {
 | |
| 	kfree(fe->tuner_priv);
 | |
| 	fe->tuner_priv = NULL;
 | |
| }
 | |
| 
 | |
| static const struct dvb_tuner_ops mt2060_tuner_ops = {
 | |
| 	.info = {
 | |
| 		.name              = "Microtune MT2060",
 | |
| 		.frequency_min_hz  =  48 * MHz,
 | |
| 		.frequency_max_hz  = 860 * MHz,
 | |
| 		.frequency_step_hz =  50 * kHz,
 | |
| 	},
 | |
| 
 | |
| 	.release       = mt2060_release,
 | |
| 
 | |
| 	.init          = mt2060_init,
 | |
| 	.sleep         = mt2060_sleep,
 | |
| 
 | |
| 	.set_params    = mt2060_set_params,
 | |
| 	.get_frequency = mt2060_get_frequency,
 | |
| 	.get_if_frequency = mt2060_get_if_frequency,
 | |
| };
 | |
| 
 | |
| /* This functions tries to identify a MT2060 tuner by reading the PART/REV register. This is hasty. */
 | |
| struct dvb_frontend * mt2060_attach(struct dvb_frontend *fe, struct i2c_adapter *i2c, struct mt2060_config *cfg, u16 if1)
 | |
| {
 | |
| 	struct mt2060_priv *priv = NULL;
 | |
| 	u8 id = 0;
 | |
| 
 | |
| 	priv = kzalloc(sizeof(struct mt2060_priv), GFP_KERNEL);
 | |
| 	if (priv == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	priv->cfg      = cfg;
 | |
| 	priv->i2c      = i2c;
 | |
| 	priv->if1_freq = if1;
 | |
| 	priv->i2c_max_regs = ~0;
 | |
| 
 | |
| 	if (fe->ops.i2c_gate_ctrl)
 | |
| 		fe->ops.i2c_gate_ctrl(fe, 1); /* open i2c_gate */
 | |
| 
 | |
| 	if (mt2060_readreg(priv,REG_PART_REV,&id) != 0) {
 | |
| 		kfree(priv);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (id != PART_REV) {
 | |
| 		kfree(priv);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	printk(KERN_INFO "MT2060: successfully identified (IF1 = %d)\n", if1);
 | |
| 	memcpy(&fe->ops.tuner_ops, &mt2060_tuner_ops, sizeof(struct dvb_tuner_ops));
 | |
| 
 | |
| 	fe->tuner_priv = priv;
 | |
| 
 | |
| 	mt2060_calibrate(priv);
 | |
| 
 | |
| 	if (fe->ops.i2c_gate_ctrl)
 | |
| 		fe->ops.i2c_gate_ctrl(fe, 0); /* close i2c_gate */
 | |
| 
 | |
| 	return fe;
 | |
| }
 | |
| EXPORT_SYMBOL(mt2060_attach);
 | |
| 
 | |
| static int mt2060_probe(struct i2c_client *client,
 | |
| 			const struct i2c_device_id *id)
 | |
| {
 | |
| 	struct mt2060_platform_data *pdata = client->dev.platform_data;
 | |
| 	struct dvb_frontend *fe;
 | |
| 	struct mt2060_priv *dev;
 | |
| 	int ret;
 | |
| 	u8 chip_id;
 | |
| 
 | |
| 	dev_dbg(&client->dev, "\n");
 | |
| 
 | |
| 	if (!pdata) {
 | |
| 		dev_err(&client->dev, "Cannot proceed without platform data\n");
 | |
| 		ret = -EINVAL;
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	dev = devm_kzalloc(&client->dev, sizeof(*dev), GFP_KERNEL);
 | |
| 	if (!dev) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	fe = pdata->dvb_frontend;
 | |
| 	dev->config.i2c_address = client->addr;
 | |
| 	dev->config.clock_out = pdata->clock_out;
 | |
| 	dev->cfg = &dev->config;
 | |
| 	dev->i2c = client->adapter;
 | |
| 	dev->if1_freq = pdata->if1 ? pdata->if1 : 1220;
 | |
| 	dev->client = client;
 | |
| 	dev->i2c_max_regs = pdata->i2c_write_max ? pdata->i2c_write_max - 1 : ~0;
 | |
| 	dev->sleep = true;
 | |
| 
 | |
| 	ret = mt2060_readreg(dev, REG_PART_REV, &chip_id);
 | |
| 	if (ret) {
 | |
| 		ret = -ENODEV;
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(&client->dev, "chip id=%02x\n", chip_id);
 | |
| 
 | |
| 	if (chip_id != PART_REV) {
 | |
| 		ret = -ENODEV;
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	/* Power on, calibrate, sleep */
 | |
| 	ret = mt2060_writereg(dev, REG_MISC_CTRL, 0x20);
 | |
| 	if (ret)
 | |
| 		goto err;
 | |
| 	mt2060_calibrate(dev);
 | |
| 	ret = mt2060_writereg(dev, REG_MISC_CTRL, 0xe8);
 | |
| 	if (ret)
 | |
| 		goto err;
 | |
| 
 | |
| 	dev_info(&client->dev, "Microtune MT2060 successfully identified\n");
 | |
| 	memcpy(&fe->ops.tuner_ops, &mt2060_tuner_ops, sizeof(fe->ops.tuner_ops));
 | |
| 	fe->ops.tuner_ops.release = NULL;
 | |
| 	fe->tuner_priv = dev;
 | |
| 	i2c_set_clientdata(client, dev);
 | |
| 
 | |
| 	return 0;
 | |
| err:
 | |
| 	dev_dbg(&client->dev, "failed=%d\n", ret);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int mt2060_remove(struct i2c_client *client)
 | |
| {
 | |
| 	dev_dbg(&client->dev, "\n");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct i2c_device_id mt2060_id_table[] = {
 | |
| 	{"mt2060", 0},
 | |
| 	{}
 | |
| };
 | |
| MODULE_DEVICE_TABLE(i2c, mt2060_id_table);
 | |
| 
 | |
| static struct i2c_driver mt2060_driver = {
 | |
| 	.driver = {
 | |
| 		.name = "mt2060",
 | |
| 		.suppress_bind_attrs = true,
 | |
| 	},
 | |
| 	.probe		= mt2060_probe,
 | |
| 	.remove		= mt2060_remove,
 | |
| 	.id_table	= mt2060_id_table,
 | |
| };
 | |
| 
 | |
| module_i2c_driver(mt2060_driver);
 | |
| 
 | |
| MODULE_AUTHOR("Olivier DANET");
 | |
| MODULE_DESCRIPTION("Microtune MT2060 silicon tuner driver");
 | |
| MODULE_LICENSE("GPL");
 |