3175 lines
		
	
	
		
			87 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3175 lines
		
	
	
		
			87 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Copyright (C) 2015 Shaohua Li <shli@fb.com>
 | |
|  * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
 | |
|  */
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/wait.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/raid/md_p.h>
 | |
| #include <linux/crc32c.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/types.h>
 | |
| #include "md.h"
 | |
| #include "raid5.h"
 | |
| #include "md-bitmap.h"
 | |
| #include "raid5-log.h"
 | |
| 
 | |
| /*
 | |
|  * metadata/data stored in disk with 4k size unit (a block) regardless
 | |
|  * underneath hardware sector size. only works with PAGE_SIZE == 4096
 | |
|  */
 | |
| #define BLOCK_SECTORS (8)
 | |
| #define BLOCK_SECTOR_SHIFT (3)
 | |
| 
 | |
| /*
 | |
|  * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
 | |
|  *
 | |
|  * In write through mode, the reclaim runs every log->max_free_space.
 | |
|  * This can prevent the recovery scans for too long
 | |
|  */
 | |
| #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
 | |
| #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
 | |
| 
 | |
| /* wake up reclaim thread periodically */
 | |
| #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
 | |
| /* start flush with these full stripes */
 | |
| #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
 | |
| /* reclaim stripes in groups */
 | |
| #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
 | |
| 
 | |
| /*
 | |
|  * We only need 2 bios per I/O unit to make progress, but ensure we
 | |
|  * have a few more available to not get too tight.
 | |
|  */
 | |
| #define R5L_POOL_SIZE	4
 | |
| 
 | |
| static char *r5c_journal_mode_str[] = {"write-through",
 | |
| 				       "write-back"};
 | |
| /*
 | |
|  * raid5 cache state machine
 | |
|  *
 | |
|  * With the RAID cache, each stripe works in two phases:
 | |
|  *	- caching phase
 | |
|  *	- writing-out phase
 | |
|  *
 | |
|  * These two phases are controlled by bit STRIPE_R5C_CACHING:
 | |
|  *   if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
 | |
|  *   if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
 | |
|  *
 | |
|  * When there is no journal, or the journal is in write-through mode,
 | |
|  * the stripe is always in writing-out phase.
 | |
|  *
 | |
|  * For write-back journal, the stripe is sent to caching phase on write
 | |
|  * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
 | |
|  * the write-out phase by clearing STRIPE_R5C_CACHING.
 | |
|  *
 | |
|  * Stripes in caching phase do not write the raid disks. Instead, all
 | |
|  * writes are committed from the log device. Therefore, a stripe in
 | |
|  * caching phase handles writes as:
 | |
|  *	- write to log device
 | |
|  *	- return IO
 | |
|  *
 | |
|  * Stripes in writing-out phase handle writes as:
 | |
|  *	- calculate parity
 | |
|  *	- write pending data and parity to journal
 | |
|  *	- write data and parity to raid disks
 | |
|  *	- return IO for pending writes
 | |
|  */
 | |
| 
 | |
| struct r5l_log {
 | |
| 	struct md_rdev *rdev;
 | |
| 
 | |
| 	u32 uuid_checksum;
 | |
| 
 | |
| 	sector_t device_size;		/* log device size, round to
 | |
| 					 * BLOCK_SECTORS */
 | |
| 	sector_t max_free_space;	/* reclaim run if free space is at
 | |
| 					 * this size */
 | |
| 
 | |
| 	sector_t last_checkpoint;	/* log tail. where recovery scan
 | |
| 					 * starts from */
 | |
| 	u64 last_cp_seq;		/* log tail sequence */
 | |
| 
 | |
| 	sector_t log_start;		/* log head. where new data appends */
 | |
| 	u64 seq;			/* log head sequence */
 | |
| 
 | |
| 	sector_t next_checkpoint;
 | |
| 
 | |
| 	struct mutex io_mutex;
 | |
| 	struct r5l_io_unit *current_io;	/* current io_unit accepting new data */
 | |
| 
 | |
| 	spinlock_t io_list_lock;
 | |
| 	struct list_head running_ios;	/* io_units which are still running,
 | |
| 					 * and have not yet been completely
 | |
| 					 * written to the log */
 | |
| 	struct list_head io_end_ios;	/* io_units which have been completely
 | |
| 					 * written to the log but not yet written
 | |
| 					 * to the RAID */
 | |
| 	struct list_head flushing_ios;	/* io_units which are waiting for log
 | |
| 					 * cache flush */
 | |
| 	struct list_head finished_ios;	/* io_units which settle down in log disk */
 | |
| 	struct bio flush_bio;
 | |
| 
 | |
| 	struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
 | |
| 
 | |
| 	struct kmem_cache *io_kc;
 | |
| 	mempool_t io_pool;
 | |
| 	struct bio_set bs;
 | |
| 	mempool_t meta_pool;
 | |
| 
 | |
| 	struct md_thread __rcu *reclaim_thread;
 | |
| 	unsigned long reclaim_target;	/* number of space that need to be
 | |
| 					 * reclaimed.  if it's 0, reclaim spaces
 | |
| 					 * used by io_units which are in
 | |
| 					 * IO_UNIT_STRIPE_END state (eg, reclaim
 | |
| 					 * doesn't wait for specific io_unit
 | |
| 					 * switching to IO_UNIT_STRIPE_END
 | |
| 					 * state) */
 | |
| 	wait_queue_head_t iounit_wait;
 | |
| 
 | |
| 	struct list_head no_space_stripes; /* pending stripes, log has no space */
 | |
| 	spinlock_t no_space_stripes_lock;
 | |
| 
 | |
| 	bool need_cache_flush;
 | |
| 
 | |
| 	/* for r5c_cache */
 | |
| 	enum r5c_journal_mode r5c_journal_mode;
 | |
| 
 | |
| 	/* all stripes in r5cache, in the order of seq at sh->log_start */
 | |
| 	struct list_head stripe_in_journal_list;
 | |
| 
 | |
| 	spinlock_t stripe_in_journal_lock;
 | |
| 	atomic_t stripe_in_journal_count;
 | |
| 
 | |
| 	/* to submit async io_units, to fulfill ordering of flush */
 | |
| 	struct work_struct deferred_io_work;
 | |
| 	/* to disable write back during in degraded mode */
 | |
| 	struct work_struct disable_writeback_work;
 | |
| 
 | |
| 	/* to for chunk_aligned_read in writeback mode, details below */
 | |
| 	spinlock_t tree_lock;
 | |
| 	struct radix_tree_root big_stripe_tree;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Enable chunk_aligned_read() with write back cache.
 | |
|  *
 | |
|  * Each chunk may contain more than one stripe (for example, a 256kB
 | |
|  * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
 | |
|  * chunk_aligned_read, these stripes are grouped into one "big_stripe".
 | |
|  * For each big_stripe, we count how many stripes of this big_stripe
 | |
|  * are in the write back cache. These data are tracked in a radix tree
 | |
|  * (big_stripe_tree). We use radix_tree item pointer as the counter.
 | |
|  * r5c_tree_index() is used to calculate keys for the radix tree.
 | |
|  *
 | |
|  * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
 | |
|  * big_stripe of each chunk in the tree. If this big_stripe is in the
 | |
|  * tree, chunk_aligned_read() aborts. This look up is protected by
 | |
|  * rcu_read_lock().
 | |
|  *
 | |
|  * It is necessary to remember whether a stripe is counted in
 | |
|  * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
 | |
|  * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
 | |
|  * two flags are set, the stripe is counted in big_stripe_tree. This
 | |
|  * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
 | |
|  * r5c_try_caching_write(); and moving clear_bit of
 | |
|  * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
 | |
|  * r5c_finish_stripe_write_out().
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * radix tree requests lowest 2 bits of data pointer to be 2b'00.
 | |
|  * So it is necessary to left shift the counter by 2 bits before using it
 | |
|  * as data pointer of the tree.
 | |
|  */
 | |
| #define R5C_RADIX_COUNT_SHIFT 2
 | |
| 
 | |
| /*
 | |
|  * calculate key for big_stripe_tree
 | |
|  *
 | |
|  * sect: align_bi->bi_iter.bi_sector or sh->sector
 | |
|  */
 | |
| static inline sector_t r5c_tree_index(struct r5conf *conf,
 | |
| 				      sector_t sect)
 | |
| {
 | |
| 	sector_div(sect, conf->chunk_sectors);
 | |
| 	return sect;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * an IO range starts from a meta data block and end at the next meta data
 | |
|  * block. The io unit's the meta data block tracks data/parity followed it. io
 | |
|  * unit is written to log disk with normal write, as we always flush log disk
 | |
|  * first and then start move data to raid disks, there is no requirement to
 | |
|  * write io unit with FLUSH/FUA
 | |
|  */
 | |
| struct r5l_io_unit {
 | |
| 	struct r5l_log *log;
 | |
| 
 | |
| 	struct page *meta_page;	/* store meta block */
 | |
| 	int meta_offset;	/* current offset in meta_page */
 | |
| 
 | |
| 	struct bio *current_bio;/* current_bio accepting new data */
 | |
| 
 | |
| 	atomic_t pending_stripe;/* how many stripes not flushed to raid */
 | |
| 	u64 seq;		/* seq number of the metablock */
 | |
| 	sector_t log_start;	/* where the io_unit starts */
 | |
| 	sector_t log_end;	/* where the io_unit ends */
 | |
| 	struct list_head log_sibling; /* log->running_ios */
 | |
| 	struct list_head stripe_list; /* stripes added to the io_unit */
 | |
| 
 | |
| 	int state;
 | |
| 	bool need_split_bio;
 | |
| 	struct bio *split_bio;
 | |
| 
 | |
| 	unsigned int has_flush:1;		/* include flush request */
 | |
| 	unsigned int has_fua:1;			/* include fua request */
 | |
| 	unsigned int has_null_flush:1;		/* include null flush request */
 | |
| 	unsigned int has_flush_payload:1;	/* include flush payload  */
 | |
| 	/*
 | |
| 	 * io isn't sent yet, flush/fua request can only be submitted till it's
 | |
| 	 * the first IO in running_ios list
 | |
| 	 */
 | |
| 	unsigned int io_deferred:1;
 | |
| 
 | |
| 	struct bio_list flush_barriers;   /* size == 0 flush bios */
 | |
| };
 | |
| 
 | |
| /* r5l_io_unit state */
 | |
| enum r5l_io_unit_state {
 | |
| 	IO_UNIT_RUNNING = 0,	/* accepting new IO */
 | |
| 	IO_UNIT_IO_START = 1,	/* io_unit bio start writing to log,
 | |
| 				 * don't accepting new bio */
 | |
| 	IO_UNIT_IO_END = 2,	/* io_unit bio finish writing to log */
 | |
| 	IO_UNIT_STRIPE_END = 3,	/* stripes data finished writing to raid */
 | |
| };
 | |
| 
 | |
| bool r5c_is_writeback(struct r5l_log *log)
 | |
| {
 | |
| 	return (log != NULL &&
 | |
| 		log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
 | |
| }
 | |
| 
 | |
| static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
 | |
| {
 | |
| 	start += inc;
 | |
| 	if (start >= log->device_size)
 | |
| 		start = start - log->device_size;
 | |
| 	return start;
 | |
| }
 | |
| 
 | |
| static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
 | |
| 				  sector_t end)
 | |
| {
 | |
| 	if (end >= start)
 | |
| 		return end - start;
 | |
| 	else
 | |
| 		return end + log->device_size - start;
 | |
| }
 | |
| 
 | |
| static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
 | |
| {
 | |
| 	sector_t used_size;
 | |
| 
 | |
| 	used_size = r5l_ring_distance(log, log->last_checkpoint,
 | |
| 					log->log_start);
 | |
| 
 | |
| 	return log->device_size > used_size + size;
 | |
| }
 | |
| 
 | |
| static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
 | |
| 				    enum r5l_io_unit_state state)
 | |
| {
 | |
| 	if (WARN_ON(io->state >= state))
 | |
| 		return;
 | |
| 	io->state = state;
 | |
| }
 | |
| 
 | |
| static void
 | |
| r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
 | |
| {
 | |
| 	struct bio *wbi, *wbi2;
 | |
| 
 | |
| 	wbi = dev->written;
 | |
| 	dev->written = NULL;
 | |
| 	while (wbi && wbi->bi_iter.bi_sector <
 | |
| 	       dev->sector + RAID5_STRIPE_SECTORS(conf)) {
 | |
| 		wbi2 = r5_next_bio(conf, wbi, dev->sector);
 | |
| 		md_write_end(conf->mddev);
 | |
| 		bio_endio(wbi);
 | |
| 		wbi = wbi2;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void r5c_handle_cached_data_endio(struct r5conf *conf,
 | |
| 				  struct stripe_head *sh, int disks)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = sh->disks; i--; ) {
 | |
| 		if (sh->dev[i].written) {
 | |
| 			set_bit(R5_UPTODATE, &sh->dev[i].flags);
 | |
| 			r5c_return_dev_pending_writes(conf, &sh->dev[i]);
 | |
| 			conf->mddev->bitmap_ops->endwrite(conf->mddev,
 | |
| 					sh->sector, RAID5_STRIPE_SECTORS(conf),
 | |
| 					!test_bit(STRIPE_DEGRADED, &sh->state),
 | |
| 					false);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
 | |
| 
 | |
| /* Check whether we should flush some stripes to free up stripe cache */
 | |
| void r5c_check_stripe_cache_usage(struct r5conf *conf)
 | |
| {
 | |
| 	int total_cached;
 | |
| 	struct r5l_log *log = READ_ONCE(conf->log);
 | |
| 
 | |
| 	if (!r5c_is_writeback(log))
 | |
| 		return;
 | |
| 
 | |
| 	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
 | |
| 		atomic_read(&conf->r5c_cached_full_stripes);
 | |
| 
 | |
| 	/*
 | |
| 	 * The following condition is true for either of the following:
 | |
| 	 *   - stripe cache pressure high:
 | |
| 	 *          total_cached > 3/4 min_nr_stripes ||
 | |
| 	 *          empty_inactive_list_nr > 0
 | |
| 	 *   - stripe cache pressure moderate:
 | |
| 	 *          total_cached > 1/2 min_nr_stripes
 | |
| 	 */
 | |
| 	if (total_cached > conf->min_nr_stripes * 1 / 2 ||
 | |
| 	    atomic_read(&conf->empty_inactive_list_nr) > 0)
 | |
| 		r5l_wake_reclaim(log, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
 | |
|  * stripes in the cache
 | |
|  */
 | |
| void r5c_check_cached_full_stripe(struct r5conf *conf)
 | |
| {
 | |
| 	struct r5l_log *log = READ_ONCE(conf->log);
 | |
| 
 | |
| 	if (!r5c_is_writeback(log))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
 | |
| 	 * or a full stripe (chunk size / 4k stripes).
 | |
| 	 */
 | |
| 	if (atomic_read(&conf->r5c_cached_full_stripes) >=
 | |
| 	    min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
 | |
| 		conf->chunk_sectors >> RAID5_STRIPE_SHIFT(conf)))
 | |
| 		r5l_wake_reclaim(log, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Total log space (in sectors) needed to flush all data in cache
 | |
|  *
 | |
|  * To avoid deadlock due to log space, it is necessary to reserve log
 | |
|  * space to flush critical stripes (stripes that occupying log space near
 | |
|  * last_checkpoint). This function helps check how much log space is
 | |
|  * required to flush all cached stripes.
 | |
|  *
 | |
|  * To reduce log space requirements, two mechanisms are used to give cache
 | |
|  * flush higher priorities:
 | |
|  *    1. In handle_stripe_dirtying() and schedule_reconstruction(),
 | |
|  *       stripes ALREADY in journal can be flushed w/o pending writes;
 | |
|  *    2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
 | |
|  *       can be delayed (r5l_add_no_space_stripe).
 | |
|  *
 | |
|  * In cache flush, the stripe goes through 1 and then 2. For a stripe that
 | |
|  * already passed 1, flushing it requires at most (conf->max_degraded + 1)
 | |
|  * pages of journal space. For stripes that has not passed 1, flushing it
 | |
|  * requires (conf->raid_disks + 1) pages of journal space. There are at
 | |
|  * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
 | |
|  * required to flush all cached stripes (in pages) is:
 | |
|  *
 | |
|  *     (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
 | |
|  *     (group_cnt + 1) * (raid_disks + 1)
 | |
|  * or
 | |
|  *     (stripe_in_journal_count) * (max_degraded + 1) +
 | |
|  *     (group_cnt + 1) * (raid_disks - max_degraded)
 | |
|  */
 | |
| static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
 | |
| {
 | |
| 	struct r5l_log *log = READ_ONCE(conf->log);
 | |
| 
 | |
| 	if (!r5c_is_writeback(log))
 | |
| 		return 0;
 | |
| 
 | |
| 	return BLOCK_SECTORS *
 | |
| 		((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
 | |
| 		 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
 | |
|  *
 | |
|  * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
 | |
|  * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
 | |
|  * device is less than 2x of reclaim_required_space.
 | |
|  */
 | |
| static inline void r5c_update_log_state(struct r5l_log *log)
 | |
| {
 | |
| 	struct r5conf *conf = log->rdev->mddev->private;
 | |
| 	sector_t free_space;
 | |
| 	sector_t reclaim_space;
 | |
| 	bool wake_reclaim = false;
 | |
| 
 | |
| 	if (!r5c_is_writeback(log))
 | |
| 		return;
 | |
| 
 | |
| 	free_space = r5l_ring_distance(log, log->log_start,
 | |
| 				       log->last_checkpoint);
 | |
| 	reclaim_space = r5c_log_required_to_flush_cache(conf);
 | |
| 	if (free_space < 2 * reclaim_space)
 | |
| 		set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
 | |
| 	else {
 | |
| 		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
 | |
| 			wake_reclaim = true;
 | |
| 		clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
 | |
| 	}
 | |
| 	if (free_space < 3 * reclaim_space)
 | |
| 		set_bit(R5C_LOG_TIGHT, &conf->cache_state);
 | |
| 	else
 | |
| 		clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
 | |
| 
 | |
| 	if (wake_reclaim)
 | |
| 		r5l_wake_reclaim(log, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
 | |
|  * This function should only be called in write-back mode.
 | |
|  */
 | |
| void r5c_make_stripe_write_out(struct stripe_head *sh)
 | |
| {
 | |
| 	struct r5conf *conf = sh->raid_conf;
 | |
| 	struct r5l_log *log = READ_ONCE(conf->log);
 | |
| 
 | |
| 	BUG_ON(!r5c_is_writeback(log));
 | |
| 
 | |
| 	WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
 | |
| 	clear_bit(STRIPE_R5C_CACHING, &sh->state);
 | |
| 
 | |
| 	if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
 | |
| 		atomic_inc(&conf->preread_active_stripes);
 | |
| }
 | |
| 
 | |
| static void r5c_handle_data_cached(struct stripe_head *sh)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = sh->disks; i--; )
 | |
| 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
 | |
| 			set_bit(R5_InJournal, &sh->dev[i].flags);
 | |
| 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
 | |
| 		}
 | |
| 	clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * this journal write must contain full parity,
 | |
|  * it may also contain some data pages
 | |
|  */
 | |
| static void r5c_handle_parity_cached(struct stripe_head *sh)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = sh->disks; i--; )
 | |
| 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
 | |
| 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Setting proper flags after writing (or flushing) data and/or parity to the
 | |
|  * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
 | |
|  */
 | |
| static void r5c_finish_cache_stripe(struct stripe_head *sh)
 | |
| {
 | |
| 	struct r5l_log *log = READ_ONCE(sh->raid_conf->log);
 | |
| 
 | |
| 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
 | |
| 		BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
 | |
| 		/*
 | |
| 		 * Set R5_InJournal for parity dev[pd_idx]. This means
 | |
| 		 * all data AND parity in the journal. For RAID 6, it is
 | |
| 		 * NOT necessary to set the flag for dev[qd_idx], as the
 | |
| 		 * two parities are written out together.
 | |
| 		 */
 | |
| 		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
 | |
| 	} else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
 | |
| 		r5c_handle_data_cached(sh);
 | |
| 	} else {
 | |
| 		r5c_handle_parity_cached(sh);
 | |
| 		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void r5l_io_run_stripes(struct r5l_io_unit *io)
 | |
| {
 | |
| 	struct stripe_head *sh, *next;
 | |
| 
 | |
| 	list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
 | |
| 		list_del_init(&sh->log_list);
 | |
| 
 | |
| 		r5c_finish_cache_stripe(sh);
 | |
| 
 | |
| 		set_bit(STRIPE_HANDLE, &sh->state);
 | |
| 		raid5_release_stripe(sh);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void r5l_log_run_stripes(struct r5l_log *log)
 | |
| {
 | |
| 	struct r5l_io_unit *io, *next;
 | |
| 
 | |
| 	lockdep_assert_held(&log->io_list_lock);
 | |
| 
 | |
| 	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
 | |
| 		/* don't change list order */
 | |
| 		if (io->state < IO_UNIT_IO_END)
 | |
| 			break;
 | |
| 
 | |
| 		list_move_tail(&io->log_sibling, &log->finished_ios);
 | |
| 		r5l_io_run_stripes(io);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void r5l_move_to_end_ios(struct r5l_log *log)
 | |
| {
 | |
| 	struct r5l_io_unit *io, *next;
 | |
| 
 | |
| 	lockdep_assert_held(&log->io_list_lock);
 | |
| 
 | |
| 	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
 | |
| 		/* don't change list order */
 | |
| 		if (io->state < IO_UNIT_IO_END)
 | |
| 			break;
 | |
| 		list_move_tail(&io->log_sibling, &log->io_end_ios);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
 | |
| static void r5l_log_endio(struct bio *bio)
 | |
| {
 | |
| 	struct r5l_io_unit *io = bio->bi_private;
 | |
| 	struct r5l_io_unit *io_deferred;
 | |
| 	struct r5l_log *log = io->log;
 | |
| 	unsigned long flags;
 | |
| 	bool has_null_flush;
 | |
| 	bool has_flush_payload;
 | |
| 
 | |
| 	if (bio->bi_status)
 | |
| 		md_error(log->rdev->mddev, log->rdev);
 | |
| 
 | |
| 	bio_put(bio);
 | |
| 	mempool_free(io->meta_page, &log->meta_pool);
 | |
| 
 | |
| 	spin_lock_irqsave(&log->io_list_lock, flags);
 | |
| 	__r5l_set_io_unit_state(io, IO_UNIT_IO_END);
 | |
| 
 | |
| 	/*
 | |
| 	 * if the io doesn't not have null_flush or flush payload,
 | |
| 	 * it is not safe to access it after releasing io_list_lock.
 | |
| 	 * Therefore, it is necessary to check the condition with
 | |
| 	 * the lock held.
 | |
| 	 */
 | |
| 	has_null_flush = io->has_null_flush;
 | |
| 	has_flush_payload = io->has_flush_payload;
 | |
| 
 | |
| 	if (log->need_cache_flush && !list_empty(&io->stripe_list))
 | |
| 		r5l_move_to_end_ios(log);
 | |
| 	else
 | |
| 		r5l_log_run_stripes(log);
 | |
| 	if (!list_empty(&log->running_ios)) {
 | |
| 		/*
 | |
| 		 * FLUSH/FUA io_unit is deferred because of ordering, now we
 | |
| 		 * can dispatch it
 | |
| 		 */
 | |
| 		io_deferred = list_first_entry(&log->running_ios,
 | |
| 					       struct r5l_io_unit, log_sibling);
 | |
| 		if (io_deferred->io_deferred)
 | |
| 			schedule_work(&log->deferred_io_work);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&log->io_list_lock, flags);
 | |
| 
 | |
| 	if (log->need_cache_flush)
 | |
| 		md_wakeup_thread(log->rdev->mddev->thread);
 | |
| 
 | |
| 	/* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
 | |
| 	if (has_null_flush) {
 | |
| 		struct bio *bi;
 | |
| 
 | |
| 		WARN_ON(bio_list_empty(&io->flush_barriers));
 | |
| 		while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
 | |
| 			bio_endio(bi);
 | |
| 			if (atomic_dec_and_test(&io->pending_stripe)) {
 | |
| 				__r5l_stripe_write_finished(io);
 | |
| 				return;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	/* decrease pending_stripe for flush payload */
 | |
| 	if (has_flush_payload)
 | |
| 		if (atomic_dec_and_test(&io->pending_stripe))
 | |
| 			__r5l_stripe_write_finished(io);
 | |
| }
 | |
| 
 | |
| static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&log->io_list_lock, flags);
 | |
| 	__r5l_set_io_unit_state(io, IO_UNIT_IO_START);
 | |
| 	spin_unlock_irqrestore(&log->io_list_lock, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * In case of journal device failures, submit_bio will get error
 | |
| 	 * and calls endio, then active stripes will continue write
 | |
| 	 * process. Therefore, it is not necessary to check Faulty bit
 | |
| 	 * of journal device here.
 | |
| 	 *
 | |
| 	 * We can't check split_bio after current_bio is submitted. If
 | |
| 	 * io->split_bio is null, after current_bio is submitted, current_bio
 | |
| 	 * might already be completed and the io_unit is freed. We submit
 | |
| 	 * split_bio first to avoid the issue.
 | |
| 	 */
 | |
| 	if (io->split_bio) {
 | |
| 		if (io->has_flush)
 | |
| 			io->split_bio->bi_opf |= REQ_PREFLUSH;
 | |
| 		if (io->has_fua)
 | |
| 			io->split_bio->bi_opf |= REQ_FUA;
 | |
| 		submit_bio(io->split_bio);
 | |
| 	}
 | |
| 
 | |
| 	if (io->has_flush)
 | |
| 		io->current_bio->bi_opf |= REQ_PREFLUSH;
 | |
| 	if (io->has_fua)
 | |
| 		io->current_bio->bi_opf |= REQ_FUA;
 | |
| 	submit_bio(io->current_bio);
 | |
| }
 | |
| 
 | |
| /* deferred io_unit will be dispatched here */
 | |
| static void r5l_submit_io_async(struct work_struct *work)
 | |
| {
 | |
| 	struct r5l_log *log = container_of(work, struct r5l_log,
 | |
| 					   deferred_io_work);
 | |
| 	struct r5l_io_unit *io = NULL;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&log->io_list_lock, flags);
 | |
| 	if (!list_empty(&log->running_ios)) {
 | |
| 		io = list_first_entry(&log->running_ios, struct r5l_io_unit,
 | |
| 				      log_sibling);
 | |
| 		if (!io->io_deferred)
 | |
| 			io = NULL;
 | |
| 		else
 | |
| 			io->io_deferred = 0;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&log->io_list_lock, flags);
 | |
| 	if (io)
 | |
| 		r5l_do_submit_io(log, io);
 | |
| }
 | |
| 
 | |
| static void r5c_disable_writeback_async(struct work_struct *work)
 | |
| {
 | |
| 	struct r5l_log *log = container_of(work, struct r5l_log,
 | |
| 					   disable_writeback_work);
 | |
| 	struct mddev *mddev = log->rdev->mddev;
 | |
| 	struct r5conf *conf = mddev->private;
 | |
| 
 | |
| 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
 | |
| 		return;
 | |
| 	pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
 | |
| 		mdname(mddev));
 | |
| 
 | |
| 	/* wait superblock change before suspend */
 | |
| 	wait_event(mddev->sb_wait,
 | |
| 		   !READ_ONCE(conf->log) ||
 | |
| 		   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
 | |
| 
 | |
| 	log = READ_ONCE(conf->log);
 | |
| 	if (log) {
 | |
| 		mddev_suspend(mddev, false);
 | |
| 		log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
 | |
| 		mddev_resume(mddev);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void r5l_submit_current_io(struct r5l_log *log)
 | |
| {
 | |
| 	struct r5l_io_unit *io = log->current_io;
 | |
| 	struct r5l_meta_block *block;
 | |
| 	unsigned long flags;
 | |
| 	u32 crc;
 | |
| 	bool do_submit = true;
 | |
| 
 | |
| 	if (!io)
 | |
| 		return;
 | |
| 
 | |
| 	block = page_address(io->meta_page);
 | |
| 	block->meta_size = cpu_to_le32(io->meta_offset);
 | |
| 	crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
 | |
| 	block->checksum = cpu_to_le32(crc);
 | |
| 
 | |
| 	log->current_io = NULL;
 | |
| 	spin_lock_irqsave(&log->io_list_lock, flags);
 | |
| 	if (io->has_flush || io->has_fua) {
 | |
| 		if (io != list_first_entry(&log->running_ios,
 | |
| 					   struct r5l_io_unit, log_sibling)) {
 | |
| 			io->io_deferred = 1;
 | |
| 			do_submit = false;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&log->io_list_lock, flags);
 | |
| 	if (do_submit)
 | |
| 		r5l_do_submit_io(log, io);
 | |
| }
 | |
| 
 | |
| static struct bio *r5l_bio_alloc(struct r5l_log *log)
 | |
| {
 | |
| 	struct bio *bio = bio_alloc_bioset(log->rdev->bdev, BIO_MAX_VECS,
 | |
| 					   REQ_OP_WRITE, GFP_NOIO, &log->bs);
 | |
| 
 | |
| 	bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
 | |
| 
 | |
| 	return bio;
 | |
| }
 | |
| 
 | |
| static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
 | |
| {
 | |
| 	log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
 | |
| 
 | |
| 	r5c_update_log_state(log);
 | |
| 	/*
 | |
| 	 * If we filled up the log device start from the beginning again,
 | |
| 	 * which will require a new bio.
 | |
| 	 *
 | |
| 	 * Note: for this to work properly the log size needs to me a multiple
 | |
| 	 * of BLOCK_SECTORS.
 | |
| 	 */
 | |
| 	if (log->log_start == 0)
 | |
| 		io->need_split_bio = true;
 | |
| 
 | |
| 	io->log_end = log->log_start;
 | |
| }
 | |
| 
 | |
| static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
 | |
| {
 | |
| 	struct r5l_io_unit *io;
 | |
| 	struct r5l_meta_block *block;
 | |
| 
 | |
| 	io = mempool_alloc(&log->io_pool, GFP_ATOMIC);
 | |
| 	if (!io)
 | |
| 		return NULL;
 | |
| 	memset(io, 0, sizeof(*io));
 | |
| 
 | |
| 	io->log = log;
 | |
| 	INIT_LIST_HEAD(&io->log_sibling);
 | |
| 	INIT_LIST_HEAD(&io->stripe_list);
 | |
| 	bio_list_init(&io->flush_barriers);
 | |
| 	io->state = IO_UNIT_RUNNING;
 | |
| 
 | |
| 	io->meta_page = mempool_alloc(&log->meta_pool, GFP_NOIO);
 | |
| 	block = page_address(io->meta_page);
 | |
| 	clear_page(block);
 | |
| 	block->magic = cpu_to_le32(R5LOG_MAGIC);
 | |
| 	block->version = R5LOG_VERSION;
 | |
| 	block->seq = cpu_to_le64(log->seq);
 | |
| 	block->position = cpu_to_le64(log->log_start);
 | |
| 
 | |
| 	io->log_start = log->log_start;
 | |
| 	io->meta_offset = sizeof(struct r5l_meta_block);
 | |
| 	io->seq = log->seq++;
 | |
| 
 | |
| 	io->current_bio = r5l_bio_alloc(log);
 | |
| 	io->current_bio->bi_end_io = r5l_log_endio;
 | |
| 	io->current_bio->bi_private = io;
 | |
| 	__bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
 | |
| 
 | |
| 	r5_reserve_log_entry(log, io);
 | |
| 
 | |
| 	spin_lock_irq(&log->io_list_lock);
 | |
| 	list_add_tail(&io->log_sibling, &log->running_ios);
 | |
| 	spin_unlock_irq(&log->io_list_lock);
 | |
| 
 | |
| 	return io;
 | |
| }
 | |
| 
 | |
| static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
 | |
| {
 | |
| 	if (log->current_io &&
 | |
| 	    log->current_io->meta_offset + payload_size > PAGE_SIZE)
 | |
| 		r5l_submit_current_io(log);
 | |
| 
 | |
| 	if (!log->current_io) {
 | |
| 		log->current_io = r5l_new_meta(log);
 | |
| 		if (!log->current_io)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
 | |
| 				    sector_t location,
 | |
| 				    u32 checksum1, u32 checksum2,
 | |
| 				    bool checksum2_valid)
 | |
| {
 | |
| 	struct r5l_io_unit *io = log->current_io;
 | |
| 	struct r5l_payload_data_parity *payload;
 | |
| 
 | |
| 	payload = page_address(io->meta_page) + io->meta_offset;
 | |
| 	payload->header.type = cpu_to_le16(type);
 | |
| 	payload->header.flags = cpu_to_le16(0);
 | |
| 	payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
 | |
| 				    (PAGE_SHIFT - 9));
 | |
| 	payload->location = cpu_to_le64(location);
 | |
| 	payload->checksum[0] = cpu_to_le32(checksum1);
 | |
| 	if (checksum2_valid)
 | |
| 		payload->checksum[1] = cpu_to_le32(checksum2);
 | |
| 
 | |
| 	io->meta_offset += sizeof(struct r5l_payload_data_parity) +
 | |
| 		sizeof(__le32) * (1 + !!checksum2_valid);
 | |
| }
 | |
| 
 | |
| static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
 | |
| {
 | |
| 	struct r5l_io_unit *io = log->current_io;
 | |
| 
 | |
| 	if (io->need_split_bio) {
 | |
| 		BUG_ON(io->split_bio);
 | |
| 		io->split_bio = io->current_bio;
 | |
| 		io->current_bio = r5l_bio_alloc(log);
 | |
| 		bio_chain(io->current_bio, io->split_bio);
 | |
| 		io->need_split_bio = false;
 | |
| 	}
 | |
| 
 | |
| 	if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
 | |
| 		BUG();
 | |
| 
 | |
| 	r5_reserve_log_entry(log, io);
 | |
| }
 | |
| 
 | |
| static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
 | |
| {
 | |
| 	struct mddev *mddev = log->rdev->mddev;
 | |
| 	struct r5conf *conf = mddev->private;
 | |
| 	struct r5l_io_unit *io;
 | |
| 	struct r5l_payload_flush *payload;
 | |
| 	int meta_size;
 | |
| 
 | |
| 	/*
 | |
| 	 * payload_flush requires extra writes to the journal.
 | |
| 	 * To avoid handling the extra IO in quiesce, just skip
 | |
| 	 * flush_payload
 | |
| 	 */
 | |
| 	if (conf->quiesce)
 | |
| 		return;
 | |
| 
 | |
| 	mutex_lock(&log->io_mutex);
 | |
| 	meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
 | |
| 
 | |
| 	if (r5l_get_meta(log, meta_size)) {
 | |
| 		mutex_unlock(&log->io_mutex);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* current implementation is one stripe per flush payload */
 | |
| 	io = log->current_io;
 | |
| 	payload = page_address(io->meta_page) + io->meta_offset;
 | |
| 	payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
 | |
| 	payload->header.flags = cpu_to_le16(0);
 | |
| 	payload->size = cpu_to_le32(sizeof(__le64));
 | |
| 	payload->flush_stripes[0] = cpu_to_le64(sect);
 | |
| 	io->meta_offset += meta_size;
 | |
| 	/* multiple flush payloads count as one pending_stripe */
 | |
| 	if (!io->has_flush_payload) {
 | |
| 		io->has_flush_payload = 1;
 | |
| 		atomic_inc(&io->pending_stripe);
 | |
| 	}
 | |
| 	mutex_unlock(&log->io_mutex);
 | |
| }
 | |
| 
 | |
| static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
 | |
| 			   int data_pages, int parity_pages)
 | |
| {
 | |
| 	int i;
 | |
| 	int meta_size;
 | |
| 	int ret;
 | |
| 	struct r5l_io_unit *io;
 | |
| 
 | |
| 	meta_size =
 | |
| 		((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
 | |
| 		 * data_pages) +
 | |
| 		sizeof(struct r5l_payload_data_parity) +
 | |
| 		sizeof(__le32) * parity_pages;
 | |
| 
 | |
| 	ret = r5l_get_meta(log, meta_size);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	io = log->current_io;
 | |
| 
 | |
| 	if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
 | |
| 		io->has_flush = 1;
 | |
| 
 | |
| 	for (i = 0; i < sh->disks; i++) {
 | |
| 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
 | |
| 		    test_bit(R5_InJournal, &sh->dev[i].flags))
 | |
| 			continue;
 | |
| 		if (i == sh->pd_idx || i == sh->qd_idx)
 | |
| 			continue;
 | |
| 		if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
 | |
| 		    log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
 | |
| 			io->has_fua = 1;
 | |
| 			/*
 | |
| 			 * we need to flush journal to make sure recovery can
 | |
| 			 * reach the data with fua flag
 | |
| 			 */
 | |
| 			io->has_flush = 1;
 | |
| 		}
 | |
| 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
 | |
| 					raid5_compute_blocknr(sh, i, 0),
 | |
| 					sh->dev[i].log_checksum, 0, false);
 | |
| 		r5l_append_payload_page(log, sh->dev[i].page);
 | |
| 	}
 | |
| 
 | |
| 	if (parity_pages == 2) {
 | |
| 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
 | |
| 					sh->sector, sh->dev[sh->pd_idx].log_checksum,
 | |
| 					sh->dev[sh->qd_idx].log_checksum, true);
 | |
| 		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
 | |
| 		r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
 | |
| 	} else if (parity_pages == 1) {
 | |
| 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
 | |
| 					sh->sector, sh->dev[sh->pd_idx].log_checksum,
 | |
| 					0, false);
 | |
| 		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
 | |
| 	} else  /* Just writing data, not parity, in caching phase */
 | |
| 		BUG_ON(parity_pages != 0);
 | |
| 
 | |
| 	list_add_tail(&sh->log_list, &io->stripe_list);
 | |
| 	atomic_inc(&io->pending_stripe);
 | |
| 	sh->log_io = io;
 | |
| 
 | |
| 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (sh->log_start == MaxSector) {
 | |
| 		BUG_ON(!list_empty(&sh->r5c));
 | |
| 		sh->log_start = io->log_start;
 | |
| 		spin_lock_irq(&log->stripe_in_journal_lock);
 | |
| 		list_add_tail(&sh->r5c,
 | |
| 			      &log->stripe_in_journal_list);
 | |
| 		spin_unlock_irq(&log->stripe_in_journal_lock);
 | |
| 		atomic_inc(&log->stripe_in_journal_count);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* add stripe to no_space_stripes, and then wake up reclaim */
 | |
| static inline void r5l_add_no_space_stripe(struct r5l_log *log,
 | |
| 					   struct stripe_head *sh)
 | |
| {
 | |
| 	spin_lock(&log->no_space_stripes_lock);
 | |
| 	list_add_tail(&sh->log_list, &log->no_space_stripes);
 | |
| 	spin_unlock(&log->no_space_stripes_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * running in raid5d, where reclaim could wait for raid5d too (when it flushes
 | |
|  * data from log to raid disks), so we shouldn't wait for reclaim here
 | |
|  */
 | |
| int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
 | |
| {
 | |
| 	struct r5conf *conf = sh->raid_conf;
 | |
| 	int write_disks = 0;
 | |
| 	int data_pages, parity_pages;
 | |
| 	int reserve;
 | |
| 	int i;
 | |
| 	int ret = 0;
 | |
| 	bool wake_reclaim = false;
 | |
| 
 | |
| 	if (!log)
 | |
| 		return -EAGAIN;
 | |
| 	/* Don't support stripe batch */
 | |
| 	if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
 | |
| 	    test_bit(STRIPE_SYNCING, &sh->state)) {
 | |
| 		/* the stripe is written to log, we start writing it to raid */
 | |
| 		clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
 | |
| 
 | |
| 	for (i = 0; i < sh->disks; i++) {
 | |
| 		void *addr;
 | |
| 
 | |
| 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
 | |
| 		    test_bit(R5_InJournal, &sh->dev[i].flags))
 | |
| 			continue;
 | |
| 
 | |
| 		write_disks++;
 | |
| 		/* checksum is already calculated in last run */
 | |
| 		if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
 | |
| 			continue;
 | |
| 		addr = kmap_atomic(sh->dev[i].page);
 | |
| 		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
 | |
| 						    addr, PAGE_SIZE);
 | |
| 		kunmap_atomic(addr);
 | |
| 	}
 | |
| 	parity_pages = 1 + !!(sh->qd_idx >= 0);
 | |
| 	data_pages = write_disks - parity_pages;
 | |
| 
 | |
| 	set_bit(STRIPE_LOG_TRAPPED, &sh->state);
 | |
| 	/*
 | |
| 	 * The stripe must enter state machine again to finish the write, so
 | |
| 	 * don't delay.
 | |
| 	 */
 | |
| 	clear_bit(STRIPE_DELAYED, &sh->state);
 | |
| 	atomic_inc(&sh->count);
 | |
| 
 | |
| 	mutex_lock(&log->io_mutex);
 | |
| 	/* meta + data */
 | |
| 	reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
 | |
| 
 | |
| 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
 | |
| 		if (!r5l_has_free_space(log, reserve)) {
 | |
| 			r5l_add_no_space_stripe(log, sh);
 | |
| 			wake_reclaim = true;
 | |
| 		} else {
 | |
| 			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
 | |
| 			if (ret) {
 | |
| 				spin_lock_irq(&log->io_list_lock);
 | |
| 				list_add_tail(&sh->log_list,
 | |
| 					      &log->no_mem_stripes);
 | |
| 				spin_unlock_irq(&log->io_list_lock);
 | |
| 			}
 | |
| 		}
 | |
| 	} else {  /* R5C_JOURNAL_MODE_WRITE_BACK */
 | |
| 		/*
 | |
| 		 * log space critical, do not process stripes that are
 | |
| 		 * not in cache yet (sh->log_start == MaxSector).
 | |
| 		 */
 | |
| 		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
 | |
| 		    sh->log_start == MaxSector) {
 | |
| 			r5l_add_no_space_stripe(log, sh);
 | |
| 			wake_reclaim = true;
 | |
| 			reserve = 0;
 | |
| 		} else if (!r5l_has_free_space(log, reserve)) {
 | |
| 			if (sh->log_start == log->last_checkpoint)
 | |
| 				BUG();
 | |
| 			else
 | |
| 				r5l_add_no_space_stripe(log, sh);
 | |
| 		} else {
 | |
| 			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
 | |
| 			if (ret) {
 | |
| 				spin_lock_irq(&log->io_list_lock);
 | |
| 				list_add_tail(&sh->log_list,
 | |
| 					      &log->no_mem_stripes);
 | |
| 				spin_unlock_irq(&log->io_list_lock);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&log->io_mutex);
 | |
| 	if (wake_reclaim)
 | |
| 		r5l_wake_reclaim(log, reserve);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void r5l_write_stripe_run(struct r5l_log *log)
 | |
| {
 | |
| 	if (!log)
 | |
| 		return;
 | |
| 	mutex_lock(&log->io_mutex);
 | |
| 	r5l_submit_current_io(log);
 | |
| 	mutex_unlock(&log->io_mutex);
 | |
| }
 | |
| 
 | |
| int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
 | |
| {
 | |
| 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
 | |
| 		/*
 | |
| 		 * in write through (journal only)
 | |
| 		 * we flush log disk cache first, then write stripe data to
 | |
| 		 * raid disks. So if bio is finished, the log disk cache is
 | |
| 		 * flushed already. The recovery guarantees we can recovery
 | |
| 		 * the bio from log disk, so we don't need to flush again
 | |
| 		 */
 | |
| 		if (bio->bi_iter.bi_size == 0) {
 | |
| 			bio_endio(bio);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		bio->bi_opf &= ~REQ_PREFLUSH;
 | |
| 	} else {
 | |
| 		/* write back (with cache) */
 | |
| 		if (bio->bi_iter.bi_size == 0) {
 | |
| 			mutex_lock(&log->io_mutex);
 | |
| 			r5l_get_meta(log, 0);
 | |
| 			bio_list_add(&log->current_io->flush_barriers, bio);
 | |
| 			log->current_io->has_flush = 1;
 | |
| 			log->current_io->has_null_flush = 1;
 | |
| 			atomic_inc(&log->current_io->pending_stripe);
 | |
| 			r5l_submit_current_io(log);
 | |
| 			mutex_unlock(&log->io_mutex);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 	return -EAGAIN;
 | |
| }
 | |
| 
 | |
| /* This will run after log space is reclaimed */
 | |
| static void r5l_run_no_space_stripes(struct r5l_log *log)
 | |
| {
 | |
| 	struct stripe_head *sh;
 | |
| 
 | |
| 	spin_lock(&log->no_space_stripes_lock);
 | |
| 	while (!list_empty(&log->no_space_stripes)) {
 | |
| 		sh = list_first_entry(&log->no_space_stripes,
 | |
| 				      struct stripe_head, log_list);
 | |
| 		list_del_init(&sh->log_list);
 | |
| 		set_bit(STRIPE_HANDLE, &sh->state);
 | |
| 		raid5_release_stripe(sh);
 | |
| 	}
 | |
| 	spin_unlock(&log->no_space_stripes_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * calculate new last_checkpoint
 | |
|  * for write through mode, returns log->next_checkpoint
 | |
|  * for write back, returns log_start of first sh in stripe_in_journal_list
 | |
|  */
 | |
| static sector_t r5c_calculate_new_cp(struct r5conf *conf)
 | |
| {
 | |
| 	struct stripe_head *sh;
 | |
| 	struct r5l_log *log = READ_ONCE(conf->log);
 | |
| 	sector_t new_cp;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
 | |
| 		return log->next_checkpoint;
 | |
| 
 | |
| 	spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
 | |
| 	if (list_empty(&log->stripe_in_journal_list)) {
 | |
| 		/* all stripes flushed */
 | |
| 		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
 | |
| 		return log->next_checkpoint;
 | |
| 	}
 | |
| 	sh = list_first_entry(&log->stripe_in_journal_list,
 | |
| 			      struct stripe_head, r5c);
 | |
| 	new_cp = sh->log_start;
 | |
| 	spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
 | |
| 	return new_cp;
 | |
| }
 | |
| 
 | |
| static sector_t r5l_reclaimable_space(struct r5l_log *log)
 | |
| {
 | |
| 	struct r5conf *conf = log->rdev->mddev->private;
 | |
| 
 | |
| 	return r5l_ring_distance(log, log->last_checkpoint,
 | |
| 				 r5c_calculate_new_cp(conf));
 | |
| }
 | |
| 
 | |
| static void r5l_run_no_mem_stripe(struct r5l_log *log)
 | |
| {
 | |
| 	struct stripe_head *sh;
 | |
| 
 | |
| 	lockdep_assert_held(&log->io_list_lock);
 | |
| 
 | |
| 	if (!list_empty(&log->no_mem_stripes)) {
 | |
| 		sh = list_first_entry(&log->no_mem_stripes,
 | |
| 				      struct stripe_head, log_list);
 | |
| 		list_del_init(&sh->log_list);
 | |
| 		set_bit(STRIPE_HANDLE, &sh->state);
 | |
| 		raid5_release_stripe(sh);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool r5l_complete_finished_ios(struct r5l_log *log)
 | |
| {
 | |
| 	struct r5l_io_unit *io, *next;
 | |
| 	bool found = false;
 | |
| 
 | |
| 	lockdep_assert_held(&log->io_list_lock);
 | |
| 
 | |
| 	list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
 | |
| 		/* don't change list order */
 | |
| 		if (io->state < IO_UNIT_STRIPE_END)
 | |
| 			break;
 | |
| 
 | |
| 		log->next_checkpoint = io->log_start;
 | |
| 
 | |
| 		list_del(&io->log_sibling);
 | |
| 		mempool_free(io, &log->io_pool);
 | |
| 		r5l_run_no_mem_stripe(log);
 | |
| 
 | |
| 		found = true;
 | |
| 	}
 | |
| 
 | |
| 	return found;
 | |
| }
 | |
| 
 | |
| static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
 | |
| {
 | |
| 	struct r5l_log *log = io->log;
 | |
| 	struct r5conf *conf = log->rdev->mddev->private;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&log->io_list_lock, flags);
 | |
| 	__r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
 | |
| 
 | |
| 	if (!r5l_complete_finished_ios(log)) {
 | |
| 		spin_unlock_irqrestore(&log->io_list_lock, flags);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (r5l_reclaimable_space(log) > log->max_free_space ||
 | |
| 	    test_bit(R5C_LOG_TIGHT, &conf->cache_state))
 | |
| 		r5l_wake_reclaim(log, 0);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&log->io_list_lock, flags);
 | |
| 	wake_up(&log->iounit_wait);
 | |
| }
 | |
| 
 | |
| void r5l_stripe_write_finished(struct stripe_head *sh)
 | |
| {
 | |
| 	struct r5l_io_unit *io;
 | |
| 
 | |
| 	io = sh->log_io;
 | |
| 	sh->log_io = NULL;
 | |
| 
 | |
| 	if (io && atomic_dec_and_test(&io->pending_stripe))
 | |
| 		__r5l_stripe_write_finished(io);
 | |
| }
 | |
| 
 | |
| static void r5l_log_flush_endio(struct bio *bio)
 | |
| {
 | |
| 	struct r5l_log *log = container_of(bio, struct r5l_log,
 | |
| 		flush_bio);
 | |
| 	unsigned long flags;
 | |
| 	struct r5l_io_unit *io;
 | |
| 
 | |
| 	if (bio->bi_status)
 | |
| 		md_error(log->rdev->mddev, log->rdev);
 | |
| 	bio_uninit(bio);
 | |
| 
 | |
| 	spin_lock_irqsave(&log->io_list_lock, flags);
 | |
| 	list_for_each_entry(io, &log->flushing_ios, log_sibling)
 | |
| 		r5l_io_run_stripes(io);
 | |
| 	list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
 | |
| 	spin_unlock_irqrestore(&log->io_list_lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Starting dispatch IO to raid.
 | |
|  * io_unit(meta) consists of a log. There is one situation we want to avoid. A
 | |
|  * broken meta in the middle of a log causes recovery can't find meta at the
 | |
|  * head of log. If operations require meta at the head persistent in log, we
 | |
|  * must make sure meta before it persistent in log too. A case is:
 | |
|  *
 | |
|  * stripe data/parity is in log, we start write stripe to raid disks. stripe
 | |
|  * data/parity must be persistent in log before we do the write to raid disks.
 | |
|  *
 | |
|  * The solution is we restrictly maintain io_unit list order. In this case, we
 | |
|  * only write stripes of an io_unit to raid disks till the io_unit is the first
 | |
|  * one whose data/parity is in log.
 | |
|  */
 | |
| void r5l_flush_stripe_to_raid(struct r5l_log *log)
 | |
| {
 | |
| 	bool do_flush;
 | |
| 
 | |
| 	if (!log || !log->need_cache_flush)
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock_irq(&log->io_list_lock);
 | |
| 	/* flush bio is running */
 | |
| 	if (!list_empty(&log->flushing_ios)) {
 | |
| 		spin_unlock_irq(&log->io_list_lock);
 | |
| 		return;
 | |
| 	}
 | |
| 	list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
 | |
| 	do_flush = !list_empty(&log->flushing_ios);
 | |
| 	spin_unlock_irq(&log->io_list_lock);
 | |
| 
 | |
| 	if (!do_flush)
 | |
| 		return;
 | |
| 	bio_init(&log->flush_bio, log->rdev->bdev, NULL, 0,
 | |
| 		  REQ_OP_WRITE | REQ_PREFLUSH);
 | |
| 	log->flush_bio.bi_end_io = r5l_log_flush_endio;
 | |
| 	submit_bio(&log->flush_bio);
 | |
| }
 | |
| 
 | |
| static void r5l_write_super(struct r5l_log *log, sector_t cp);
 | |
| static void r5l_write_super_and_discard_space(struct r5l_log *log,
 | |
| 	sector_t end)
 | |
| {
 | |
| 	struct block_device *bdev = log->rdev->bdev;
 | |
| 	struct mddev *mddev;
 | |
| 
 | |
| 	r5l_write_super(log, end);
 | |
| 
 | |
| 	if (!bdev_max_discard_sectors(bdev))
 | |
| 		return;
 | |
| 
 | |
| 	mddev = log->rdev->mddev;
 | |
| 	/*
 | |
| 	 * Discard could zero data, so before discard we must make sure
 | |
| 	 * superblock is updated to new log tail. Updating superblock (either
 | |
| 	 * directly call md_update_sb() or depend on md thread) must hold
 | |
| 	 * reconfig mutex. On the other hand, raid5_quiesce is called with
 | |
| 	 * reconfig_mutex hold. The first step of raid5_quiesce() is waiting
 | |
| 	 * for all IO finish, hence waiting for reclaim thread, while reclaim
 | |
| 	 * thread is calling this function and waiting for reconfig mutex. So
 | |
| 	 * there is a deadlock. We workaround this issue with a trylock.
 | |
| 	 * FIXME: we could miss discard if we can't take reconfig mutex
 | |
| 	 */
 | |
| 	set_mask_bits(&mddev->sb_flags, 0,
 | |
| 		BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
 | |
| 	if (!mddev_trylock(mddev))
 | |
| 		return;
 | |
| 	md_update_sb(mddev, 1);
 | |
| 	mddev_unlock(mddev);
 | |
| 
 | |
| 	/* discard IO error really doesn't matter, ignore it */
 | |
| 	if (log->last_checkpoint < end) {
 | |
| 		blkdev_issue_discard(bdev,
 | |
| 				log->last_checkpoint + log->rdev->data_offset,
 | |
| 				end - log->last_checkpoint, GFP_NOIO);
 | |
| 	} else {
 | |
| 		blkdev_issue_discard(bdev,
 | |
| 				log->last_checkpoint + log->rdev->data_offset,
 | |
| 				log->device_size - log->last_checkpoint,
 | |
| 				GFP_NOIO);
 | |
| 		blkdev_issue_discard(bdev, log->rdev->data_offset, end,
 | |
| 				GFP_NOIO);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
 | |
|  * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
 | |
|  *
 | |
|  * must hold conf->device_lock
 | |
|  */
 | |
| static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
 | |
| {
 | |
| 	BUG_ON(list_empty(&sh->lru));
 | |
| 	BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
 | |
| 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
 | |
| 
 | |
| 	/*
 | |
| 	 * The stripe is not ON_RELEASE_LIST, so it is safe to call
 | |
| 	 * raid5_release_stripe() while holding conf->device_lock
 | |
| 	 */
 | |
| 	BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
 | |
| 	lockdep_assert_held(&conf->device_lock);
 | |
| 
 | |
| 	list_del_init(&sh->lru);
 | |
| 	atomic_inc(&sh->count);
 | |
| 
 | |
| 	set_bit(STRIPE_HANDLE, &sh->state);
 | |
| 	atomic_inc(&conf->active_stripes);
 | |
| 	r5c_make_stripe_write_out(sh);
 | |
| 
 | |
| 	if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
 | |
| 		atomic_inc(&conf->r5c_flushing_partial_stripes);
 | |
| 	else
 | |
| 		atomic_inc(&conf->r5c_flushing_full_stripes);
 | |
| 	raid5_release_stripe(sh);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * if num == 0, flush all full stripes
 | |
|  * if num > 0, flush all full stripes. If less than num full stripes are
 | |
|  *             flushed, flush some partial stripes until totally num stripes are
 | |
|  *             flushed or there is no more cached stripes.
 | |
|  */
 | |
| void r5c_flush_cache(struct r5conf *conf, int num)
 | |
| {
 | |
| 	int count;
 | |
| 	struct stripe_head *sh, *next;
 | |
| 
 | |
| 	lockdep_assert_held(&conf->device_lock);
 | |
| 	if (!READ_ONCE(conf->log))
 | |
| 		return;
 | |
| 
 | |
| 	count = 0;
 | |
| 	list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
 | |
| 		r5c_flush_stripe(conf, sh);
 | |
| 		count++;
 | |
| 	}
 | |
| 
 | |
| 	if (count >= num)
 | |
| 		return;
 | |
| 	list_for_each_entry_safe(sh, next,
 | |
| 				 &conf->r5c_partial_stripe_list, lru) {
 | |
| 		r5c_flush_stripe(conf, sh);
 | |
| 		if (++count >= num)
 | |
| 			break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void r5c_do_reclaim(struct r5conf *conf)
 | |
| {
 | |
| 	struct r5l_log *log = READ_ONCE(conf->log);
 | |
| 	struct stripe_head *sh;
 | |
| 	int count = 0;
 | |
| 	unsigned long flags;
 | |
| 	int total_cached;
 | |
| 	int stripes_to_flush;
 | |
| 	int flushing_partial, flushing_full;
 | |
| 
 | |
| 	if (!r5c_is_writeback(log))
 | |
| 		return;
 | |
| 
 | |
| 	flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
 | |
| 	flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
 | |
| 	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
 | |
| 		atomic_read(&conf->r5c_cached_full_stripes) -
 | |
| 		flushing_full - flushing_partial;
 | |
| 
 | |
| 	if (total_cached > conf->min_nr_stripes * 3 / 4 ||
 | |
| 	    atomic_read(&conf->empty_inactive_list_nr) > 0)
 | |
| 		/*
 | |
| 		 * if stripe cache pressure high, flush all full stripes and
 | |
| 		 * some partial stripes
 | |
| 		 */
 | |
| 		stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
 | |
| 	else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
 | |
| 		 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
 | |
| 		 R5C_FULL_STRIPE_FLUSH_BATCH(conf))
 | |
| 		/*
 | |
| 		 * if stripe cache pressure moderate, or if there is many full
 | |
| 		 * stripes,flush all full stripes
 | |
| 		 */
 | |
| 		stripes_to_flush = 0;
 | |
| 	else
 | |
| 		/* no need to flush */
 | |
| 		stripes_to_flush = -1;
 | |
| 
 | |
| 	if (stripes_to_flush >= 0) {
 | |
| 		spin_lock_irqsave(&conf->device_lock, flags);
 | |
| 		r5c_flush_cache(conf, stripes_to_flush);
 | |
| 		spin_unlock_irqrestore(&conf->device_lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	/* if log space is tight, flush stripes on stripe_in_journal_list */
 | |
| 	if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
 | |
| 		spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
 | |
| 		spin_lock(&conf->device_lock);
 | |
| 		list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
 | |
| 			/*
 | |
| 			 * stripes on stripe_in_journal_list could be in any
 | |
| 			 * state of the stripe_cache state machine. In this
 | |
| 			 * case, we only want to flush stripe on
 | |
| 			 * r5c_cached_full/partial_stripes. The following
 | |
| 			 * condition makes sure the stripe is on one of the
 | |
| 			 * two lists.
 | |
| 			 */
 | |
| 			if (!list_empty(&sh->lru) &&
 | |
| 			    !test_bit(STRIPE_HANDLE, &sh->state) &&
 | |
| 			    atomic_read(&sh->count) == 0) {
 | |
| 				r5c_flush_stripe(conf, sh);
 | |
| 				if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
 | |
| 					break;
 | |
| 			}
 | |
| 		}
 | |
| 		spin_unlock(&conf->device_lock);
 | |
| 		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
 | |
| 		r5l_run_no_space_stripes(log);
 | |
| 
 | |
| 	md_wakeup_thread(conf->mddev->thread);
 | |
| }
 | |
| 
 | |
| static void r5l_do_reclaim(struct r5l_log *log)
 | |
| {
 | |
| 	struct r5conf *conf = log->rdev->mddev->private;
 | |
| 	sector_t reclaim_target = xchg(&log->reclaim_target, 0);
 | |
| 	sector_t reclaimable;
 | |
| 	sector_t next_checkpoint;
 | |
| 	bool write_super;
 | |
| 
 | |
| 	spin_lock_irq(&log->io_list_lock);
 | |
| 	write_super = r5l_reclaimable_space(log) > log->max_free_space ||
 | |
| 		reclaim_target != 0 || !list_empty(&log->no_space_stripes);
 | |
| 	/*
 | |
| 	 * move proper io_unit to reclaim list. We should not change the order.
 | |
| 	 * reclaimable/unreclaimable io_unit can be mixed in the list, we
 | |
| 	 * shouldn't reuse space of an unreclaimable io_unit
 | |
| 	 */
 | |
| 	while (1) {
 | |
| 		reclaimable = r5l_reclaimable_space(log);
 | |
| 		if (reclaimable >= reclaim_target ||
 | |
| 		    (list_empty(&log->running_ios) &&
 | |
| 		     list_empty(&log->io_end_ios) &&
 | |
| 		     list_empty(&log->flushing_ios) &&
 | |
| 		     list_empty(&log->finished_ios)))
 | |
| 			break;
 | |
| 
 | |
| 		md_wakeup_thread(log->rdev->mddev->thread);
 | |
| 		wait_event_lock_irq(log->iounit_wait,
 | |
| 				    r5l_reclaimable_space(log) > reclaimable,
 | |
| 				    log->io_list_lock);
 | |
| 	}
 | |
| 
 | |
| 	next_checkpoint = r5c_calculate_new_cp(conf);
 | |
| 	spin_unlock_irq(&log->io_list_lock);
 | |
| 
 | |
| 	if (reclaimable == 0 || !write_super)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * write_super will flush cache of each raid disk. We must write super
 | |
| 	 * here, because the log area might be reused soon and we don't want to
 | |
| 	 * confuse recovery
 | |
| 	 */
 | |
| 	r5l_write_super_and_discard_space(log, next_checkpoint);
 | |
| 
 | |
| 	mutex_lock(&log->io_mutex);
 | |
| 	log->last_checkpoint = next_checkpoint;
 | |
| 	r5c_update_log_state(log);
 | |
| 	mutex_unlock(&log->io_mutex);
 | |
| 
 | |
| 	r5l_run_no_space_stripes(log);
 | |
| }
 | |
| 
 | |
| static void r5l_reclaim_thread(struct md_thread *thread)
 | |
| {
 | |
| 	struct mddev *mddev = thread->mddev;
 | |
| 	struct r5conf *conf = mddev->private;
 | |
| 	struct r5l_log *log = READ_ONCE(conf->log);
 | |
| 
 | |
| 	if (!log)
 | |
| 		return;
 | |
| 	r5c_do_reclaim(conf);
 | |
| 	r5l_do_reclaim(log);
 | |
| }
 | |
| 
 | |
| void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
 | |
| {
 | |
| 	unsigned long target;
 | |
| 	unsigned long new = (unsigned long)space; /* overflow in theory */
 | |
| 
 | |
| 	if (!log)
 | |
| 		return;
 | |
| 
 | |
| 	target = READ_ONCE(log->reclaim_target);
 | |
| 	do {
 | |
| 		if (new < target)
 | |
| 			return;
 | |
| 	} while (!try_cmpxchg(&log->reclaim_target, &target, new));
 | |
| 	md_wakeup_thread(log->reclaim_thread);
 | |
| }
 | |
| 
 | |
| void r5l_quiesce(struct r5l_log *log, int quiesce)
 | |
| {
 | |
| 	struct mddev *mddev = log->rdev->mddev;
 | |
| 	struct md_thread *thread = rcu_dereference_protected(
 | |
| 		log->reclaim_thread, lockdep_is_held(&mddev->reconfig_mutex));
 | |
| 
 | |
| 	if (quiesce) {
 | |
| 		/* make sure r5l_write_super_and_discard_space exits */
 | |
| 		wake_up(&mddev->sb_wait);
 | |
| 		kthread_park(thread->tsk);
 | |
| 		r5l_wake_reclaim(log, MaxSector);
 | |
| 		r5l_do_reclaim(log);
 | |
| 	} else
 | |
| 		kthread_unpark(thread->tsk);
 | |
| }
 | |
| 
 | |
| bool r5l_log_disk_error(struct r5conf *conf)
 | |
| {
 | |
| 	struct r5l_log *log = READ_ONCE(conf->log);
 | |
| 
 | |
| 	/* don't allow write if journal disk is missing */
 | |
| 	if (!log)
 | |
| 		return test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
 | |
| 	else
 | |
| 		return test_bit(Faulty, &log->rdev->flags);
 | |
| }
 | |
| 
 | |
| #define R5L_RECOVERY_PAGE_POOL_SIZE 256
 | |
| 
 | |
| struct r5l_recovery_ctx {
 | |
| 	struct page *meta_page;		/* current meta */
 | |
| 	sector_t meta_total_blocks;	/* total size of current meta and data */
 | |
| 	sector_t pos;			/* recovery position */
 | |
| 	u64 seq;			/* recovery position seq */
 | |
| 	int data_parity_stripes;	/* number of data_parity stripes */
 | |
| 	int data_only_stripes;		/* number of data_only stripes */
 | |
| 	struct list_head cached_list;
 | |
| 
 | |
| 	/*
 | |
| 	 * read ahead page pool (ra_pool)
 | |
| 	 * in recovery, log is read sequentially. It is not efficient to
 | |
| 	 * read every page with sync_page_io(). The read ahead page pool
 | |
| 	 * reads multiple pages with one IO, so further log read can
 | |
| 	 * just copy data from the pool.
 | |
| 	 */
 | |
| 	struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
 | |
| 	struct bio_vec ra_bvec[R5L_RECOVERY_PAGE_POOL_SIZE];
 | |
| 	sector_t pool_offset;	/* offset of first page in the pool */
 | |
| 	int total_pages;	/* total allocated pages */
 | |
| 	int valid_pages;	/* pages with valid data */
 | |
| };
 | |
| 
 | |
| static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
 | |
| 					    struct r5l_recovery_ctx *ctx)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	ctx->valid_pages = 0;
 | |
| 	ctx->total_pages = 0;
 | |
| 	while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
 | |
| 		page = alloc_page(GFP_KERNEL);
 | |
| 
 | |
| 		if (!page)
 | |
| 			break;
 | |
| 		ctx->ra_pool[ctx->total_pages] = page;
 | |
| 		ctx->total_pages += 1;
 | |
| 	}
 | |
| 
 | |
| 	if (ctx->total_pages == 0)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ctx->pool_offset = 0;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void r5l_recovery_free_ra_pool(struct r5l_log *log,
 | |
| 					struct r5l_recovery_ctx *ctx)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ctx->total_pages; ++i)
 | |
| 		put_page(ctx->ra_pool[i]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * fetch ctx->valid_pages pages from offset
 | |
|  * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
 | |
|  * However, if the offset is close to the end of the journal device,
 | |
|  * ctx->valid_pages could be smaller than ctx->total_pages
 | |
|  */
 | |
| static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
 | |
| 				      struct r5l_recovery_ctx *ctx,
 | |
| 				      sector_t offset)
 | |
| {
 | |
| 	struct bio bio;
 | |
| 	int ret;
 | |
| 
 | |
| 	bio_init(&bio, log->rdev->bdev, ctx->ra_bvec,
 | |
| 		 R5L_RECOVERY_PAGE_POOL_SIZE, REQ_OP_READ);
 | |
| 	bio.bi_iter.bi_sector = log->rdev->data_offset + offset;
 | |
| 
 | |
| 	ctx->valid_pages = 0;
 | |
| 	ctx->pool_offset = offset;
 | |
| 
 | |
| 	while (ctx->valid_pages < ctx->total_pages) {
 | |
| 		__bio_add_page(&bio, ctx->ra_pool[ctx->valid_pages], PAGE_SIZE,
 | |
| 			       0);
 | |
| 		ctx->valid_pages += 1;
 | |
| 
 | |
| 		offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
 | |
| 
 | |
| 		if (offset == 0)  /* reached end of the device */
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	ret = submit_bio_wait(&bio);
 | |
| 	bio_uninit(&bio);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * try read a page from the read ahead page pool, if the page is not in the
 | |
|  * pool, call r5l_recovery_fetch_ra_pool
 | |
|  */
 | |
| static int r5l_recovery_read_page(struct r5l_log *log,
 | |
| 				  struct r5l_recovery_ctx *ctx,
 | |
| 				  struct page *page,
 | |
| 				  sector_t offset)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (offset < ctx->pool_offset ||
 | |
| 	    offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
 | |
| 		ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(offset < ctx->pool_offset ||
 | |
| 	       offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
 | |
| 
 | |
| 	memcpy(page_address(page),
 | |
| 	       page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
 | |
| 					 BLOCK_SECTOR_SHIFT]),
 | |
| 	       PAGE_SIZE);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int r5l_recovery_read_meta_block(struct r5l_log *log,
 | |
| 					struct r5l_recovery_ctx *ctx)
 | |
| {
 | |
| 	struct page *page = ctx->meta_page;
 | |
| 	struct r5l_meta_block *mb;
 | |
| 	u32 crc, stored_crc;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
 | |
| 	if (ret != 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	mb = page_address(page);
 | |
| 	stored_crc = le32_to_cpu(mb->checksum);
 | |
| 	mb->checksum = 0;
 | |
| 
 | |
| 	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
 | |
| 	    le64_to_cpu(mb->seq) != ctx->seq ||
 | |
| 	    mb->version != R5LOG_VERSION ||
 | |
| 	    le64_to_cpu(mb->position) != ctx->pos)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
 | |
| 	if (stored_crc != crc)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ctx->meta_total_blocks = BLOCK_SECTORS;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| r5l_recovery_create_empty_meta_block(struct r5l_log *log,
 | |
| 				     struct page *page,
 | |
| 				     sector_t pos, u64 seq)
 | |
| {
 | |
| 	struct r5l_meta_block *mb;
 | |
| 
 | |
| 	mb = page_address(page);
 | |
| 	clear_page(mb);
 | |
| 	mb->magic = cpu_to_le32(R5LOG_MAGIC);
 | |
| 	mb->version = R5LOG_VERSION;
 | |
| 	mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
 | |
| 	mb->seq = cpu_to_le64(seq);
 | |
| 	mb->position = cpu_to_le64(pos);
 | |
| }
 | |
| 
 | |
| static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
 | |
| 					  u64 seq)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	struct r5l_meta_block *mb;
 | |
| 
 | |
| 	page = alloc_page(GFP_KERNEL);
 | |
| 	if (!page)
 | |
| 		return -ENOMEM;
 | |
| 	r5l_recovery_create_empty_meta_block(log, page, pos, seq);
 | |
| 	mb = page_address(page);
 | |
| 	mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
 | |
| 					     mb, PAGE_SIZE));
 | |
| 	if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE |
 | |
| 			  REQ_SYNC | REQ_FUA, false)) {
 | |
| 		__free_page(page);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	__free_page(page);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
 | |
|  * to mark valid (potentially not flushed) data in the journal.
 | |
|  *
 | |
|  * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
 | |
|  * so there should not be any mismatch here.
 | |
|  */
 | |
| static void r5l_recovery_load_data(struct r5l_log *log,
 | |
| 				   struct stripe_head *sh,
 | |
| 				   struct r5l_recovery_ctx *ctx,
 | |
| 				   struct r5l_payload_data_parity *payload,
 | |
| 				   sector_t log_offset)
 | |
| {
 | |
| 	struct mddev *mddev = log->rdev->mddev;
 | |
| 	struct r5conf *conf = mddev->private;
 | |
| 	int dd_idx;
 | |
| 
 | |
| 	raid5_compute_sector(conf,
 | |
| 			     le64_to_cpu(payload->location), 0,
 | |
| 			     &dd_idx, sh);
 | |
| 	r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
 | |
| 	sh->dev[dd_idx].log_checksum =
 | |
| 		le32_to_cpu(payload->checksum[0]);
 | |
| 	ctx->meta_total_blocks += BLOCK_SECTORS;
 | |
| 
 | |
| 	set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
 | |
| 	set_bit(STRIPE_R5C_CACHING, &sh->state);
 | |
| }
 | |
| 
 | |
| static void r5l_recovery_load_parity(struct r5l_log *log,
 | |
| 				     struct stripe_head *sh,
 | |
| 				     struct r5l_recovery_ctx *ctx,
 | |
| 				     struct r5l_payload_data_parity *payload,
 | |
| 				     sector_t log_offset)
 | |
| {
 | |
| 	struct mddev *mddev = log->rdev->mddev;
 | |
| 	struct r5conf *conf = mddev->private;
 | |
| 
 | |
| 	ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
 | |
| 	r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
 | |
| 	sh->dev[sh->pd_idx].log_checksum =
 | |
| 		le32_to_cpu(payload->checksum[0]);
 | |
| 	set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
 | |
| 
 | |
| 	if (sh->qd_idx >= 0) {
 | |
| 		r5l_recovery_read_page(
 | |
| 			log, ctx, sh->dev[sh->qd_idx].page,
 | |
| 			r5l_ring_add(log, log_offset, BLOCK_SECTORS));
 | |
| 		sh->dev[sh->qd_idx].log_checksum =
 | |
| 			le32_to_cpu(payload->checksum[1]);
 | |
| 		set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
 | |
| 	}
 | |
| 	clear_bit(STRIPE_R5C_CACHING, &sh->state);
 | |
| }
 | |
| 
 | |
| static void r5l_recovery_reset_stripe(struct stripe_head *sh)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	sh->state = 0;
 | |
| 	sh->log_start = MaxSector;
 | |
| 	for (i = sh->disks; i--; )
 | |
| 		sh->dev[i].flags = 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| r5l_recovery_replay_one_stripe(struct r5conf *conf,
 | |
| 			       struct stripe_head *sh,
 | |
| 			       struct r5l_recovery_ctx *ctx)
 | |
| {
 | |
| 	struct md_rdev *rdev, *rrdev;
 | |
| 	int disk_index;
 | |
| 	int data_count = 0;
 | |
| 
 | |
| 	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
 | |
| 		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
 | |
| 			continue;
 | |
| 		if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
 | |
| 			continue;
 | |
| 		data_count++;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * stripes that only have parity must have been flushed
 | |
| 	 * before the crash that we are now recovering from, so
 | |
| 	 * there is nothing more to recovery.
 | |
| 	 */
 | |
| 	if (data_count == 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
 | |
| 		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
 | |
| 			continue;
 | |
| 
 | |
| 		/* in case device is broken */
 | |
| 		rdev = conf->disks[disk_index].rdev;
 | |
| 		if (rdev) {
 | |
| 			atomic_inc(&rdev->nr_pending);
 | |
| 			sync_page_io(rdev, sh->sector, PAGE_SIZE,
 | |
| 				     sh->dev[disk_index].page, REQ_OP_WRITE,
 | |
| 				     false);
 | |
| 			rdev_dec_pending(rdev, rdev->mddev);
 | |
| 		}
 | |
| 		rrdev = conf->disks[disk_index].replacement;
 | |
| 		if (rrdev) {
 | |
| 			atomic_inc(&rrdev->nr_pending);
 | |
| 			sync_page_io(rrdev, sh->sector, PAGE_SIZE,
 | |
| 				     sh->dev[disk_index].page, REQ_OP_WRITE,
 | |
| 				     false);
 | |
| 			rdev_dec_pending(rrdev, rrdev->mddev);
 | |
| 		}
 | |
| 	}
 | |
| 	ctx->data_parity_stripes++;
 | |
| out:
 | |
| 	r5l_recovery_reset_stripe(sh);
 | |
| }
 | |
| 
 | |
| static struct stripe_head *
 | |
| r5c_recovery_alloc_stripe(
 | |
| 		struct r5conf *conf,
 | |
| 		sector_t stripe_sect,
 | |
| 		int noblock)
 | |
| {
 | |
| 	struct stripe_head *sh;
 | |
| 
 | |
| 	sh = raid5_get_active_stripe(conf, NULL, stripe_sect,
 | |
| 				     noblock ? R5_GAS_NOBLOCK : 0);
 | |
| 	if (!sh)
 | |
| 		return NULL;  /* no more stripe available */
 | |
| 
 | |
| 	r5l_recovery_reset_stripe(sh);
 | |
| 
 | |
| 	return sh;
 | |
| }
 | |
| 
 | |
| static struct stripe_head *
 | |
| r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
 | |
| {
 | |
| 	struct stripe_head *sh;
 | |
| 
 | |
| 	list_for_each_entry(sh, list, lru)
 | |
| 		if (sh->sector == sect)
 | |
| 			return sh;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void
 | |
| r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
 | |
| 			  struct r5l_recovery_ctx *ctx)
 | |
| {
 | |
| 	struct stripe_head *sh, *next;
 | |
| 
 | |
| 	list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
 | |
| 		r5l_recovery_reset_stripe(sh);
 | |
| 		list_del_init(&sh->lru);
 | |
| 		raid5_release_stripe(sh);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void
 | |
| r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
 | |
| 			    struct r5l_recovery_ctx *ctx)
 | |
| {
 | |
| 	struct stripe_head *sh, *next;
 | |
| 
 | |
| 	list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
 | |
| 		if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
 | |
| 			r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
 | |
| 			list_del_init(&sh->lru);
 | |
| 			raid5_release_stripe(sh);
 | |
| 		}
 | |
| }
 | |
| 
 | |
| /* if matches return 0; otherwise return -EINVAL */
 | |
| static int
 | |
| r5l_recovery_verify_data_checksum(struct r5l_log *log,
 | |
| 				  struct r5l_recovery_ctx *ctx,
 | |
| 				  struct page *page,
 | |
| 				  sector_t log_offset, __le32 log_checksum)
 | |
| {
 | |
| 	void *addr;
 | |
| 	u32 checksum;
 | |
| 
 | |
| 	r5l_recovery_read_page(log, ctx, page, log_offset);
 | |
| 	addr = kmap_atomic(page);
 | |
| 	checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
 | |
| 	kunmap_atomic(addr);
 | |
| 	return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * before loading data to stripe cache, we need verify checksum for all data,
 | |
|  * if there is mismatch for any data page, we drop all data in the mata block
 | |
|  */
 | |
| static int
 | |
| r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
 | |
| 					 struct r5l_recovery_ctx *ctx)
 | |
| {
 | |
| 	struct mddev *mddev = log->rdev->mddev;
 | |
| 	struct r5conf *conf = mddev->private;
 | |
| 	struct r5l_meta_block *mb = page_address(ctx->meta_page);
 | |
| 	sector_t mb_offset = sizeof(struct r5l_meta_block);
 | |
| 	sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
 | |
| 	struct page *page;
 | |
| 	struct r5l_payload_data_parity *payload;
 | |
| 	struct r5l_payload_flush *payload_flush;
 | |
| 
 | |
| 	page = alloc_page(GFP_KERNEL);
 | |
| 	if (!page)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	while (mb_offset < le32_to_cpu(mb->meta_size)) {
 | |
| 		payload = (void *)mb + mb_offset;
 | |
| 		payload_flush = (void *)mb + mb_offset;
 | |
| 
 | |
| 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
 | |
| 			if (r5l_recovery_verify_data_checksum(
 | |
| 				    log, ctx, page, log_offset,
 | |
| 				    payload->checksum[0]) < 0)
 | |
| 				goto mismatch;
 | |
| 		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) {
 | |
| 			if (r5l_recovery_verify_data_checksum(
 | |
| 				    log, ctx, page, log_offset,
 | |
| 				    payload->checksum[0]) < 0)
 | |
| 				goto mismatch;
 | |
| 			if (conf->max_degraded == 2 && /* q for RAID 6 */
 | |
| 			    r5l_recovery_verify_data_checksum(
 | |
| 				    log, ctx, page,
 | |
| 				    r5l_ring_add(log, log_offset,
 | |
| 						 BLOCK_SECTORS),
 | |
| 				    payload->checksum[1]) < 0)
 | |
| 				goto mismatch;
 | |
| 		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
 | |
| 			/* nothing to do for R5LOG_PAYLOAD_FLUSH here */
 | |
| 		} else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
 | |
| 			goto mismatch;
 | |
| 
 | |
| 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
 | |
| 			mb_offset += sizeof(struct r5l_payload_flush) +
 | |
| 				le32_to_cpu(payload_flush->size);
 | |
| 		} else {
 | |
| 			/* DATA or PARITY payload */
 | |
| 			log_offset = r5l_ring_add(log, log_offset,
 | |
| 						  le32_to_cpu(payload->size));
 | |
| 			mb_offset += sizeof(struct r5l_payload_data_parity) +
 | |
| 				sizeof(__le32) *
 | |
| 				(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	put_page(page);
 | |
| 	return 0;
 | |
| 
 | |
| mismatch:
 | |
| 	put_page(page);
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Analyze all data/parity pages in one meta block
 | |
|  * Returns:
 | |
|  * 0 for success
 | |
|  * -EINVAL for unknown playload type
 | |
|  * -EAGAIN for checksum mismatch of data page
 | |
|  * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
 | |
|  */
 | |
| static int
 | |
| r5c_recovery_analyze_meta_block(struct r5l_log *log,
 | |
| 				struct r5l_recovery_ctx *ctx,
 | |
| 				struct list_head *cached_stripe_list)
 | |
| {
 | |
| 	struct mddev *mddev = log->rdev->mddev;
 | |
| 	struct r5conf *conf = mddev->private;
 | |
| 	struct r5l_meta_block *mb;
 | |
| 	struct r5l_payload_data_parity *payload;
 | |
| 	struct r5l_payload_flush *payload_flush;
 | |
| 	int mb_offset;
 | |
| 	sector_t log_offset;
 | |
| 	sector_t stripe_sect;
 | |
| 	struct stripe_head *sh;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * for mismatch in data blocks, we will drop all data in this mb, but
 | |
| 	 * we will still read next mb for other data with FLUSH flag, as
 | |
| 	 * io_unit could finish out of order.
 | |
| 	 */
 | |
| 	ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
 | |
| 	if (ret == -EINVAL)
 | |
| 		return -EAGAIN;
 | |
| 	else if (ret)
 | |
| 		return ret;   /* -ENOMEM duo to alloc_page() failed */
 | |
| 
 | |
| 	mb = page_address(ctx->meta_page);
 | |
| 	mb_offset = sizeof(struct r5l_meta_block);
 | |
| 	log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
 | |
| 
 | |
| 	while (mb_offset < le32_to_cpu(mb->meta_size)) {
 | |
| 		int dd;
 | |
| 
 | |
| 		payload = (void *)mb + mb_offset;
 | |
| 		payload_flush = (void *)mb + mb_offset;
 | |
| 
 | |
| 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
 | |
| 			int i, count;
 | |
| 
 | |
| 			count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
 | |
| 			for (i = 0; i < count; ++i) {
 | |
| 				stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
 | |
| 				sh = r5c_recovery_lookup_stripe(cached_stripe_list,
 | |
| 								stripe_sect);
 | |
| 				if (sh) {
 | |
| 					WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
 | |
| 					r5l_recovery_reset_stripe(sh);
 | |
| 					list_del_init(&sh->lru);
 | |
| 					raid5_release_stripe(sh);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			mb_offset += sizeof(struct r5l_payload_flush) +
 | |
| 				le32_to_cpu(payload_flush->size);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* DATA or PARITY payload */
 | |
| 		stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ?
 | |
| 			raid5_compute_sector(
 | |
| 				conf, le64_to_cpu(payload->location), 0, &dd,
 | |
| 				NULL)
 | |
| 			: le64_to_cpu(payload->location);
 | |
| 
 | |
| 		sh = r5c_recovery_lookup_stripe(cached_stripe_list,
 | |
| 						stripe_sect);
 | |
| 
 | |
| 		if (!sh) {
 | |
| 			sh = r5c_recovery_alloc_stripe(conf, stripe_sect, 1);
 | |
| 			/*
 | |
| 			 * cannot get stripe from raid5_get_active_stripe
 | |
| 			 * try replay some stripes
 | |
| 			 */
 | |
| 			if (!sh) {
 | |
| 				r5c_recovery_replay_stripes(
 | |
| 					cached_stripe_list, ctx);
 | |
| 				sh = r5c_recovery_alloc_stripe(
 | |
| 					conf, stripe_sect, 1);
 | |
| 			}
 | |
| 			if (!sh) {
 | |
| 				int new_size = conf->min_nr_stripes * 2;
 | |
| 				pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
 | |
| 					mdname(mddev),
 | |
| 					new_size);
 | |
| 				ret = raid5_set_cache_size(mddev, new_size);
 | |
| 				if (conf->min_nr_stripes <= new_size / 2) {
 | |
| 					pr_err("md/raid:%s: Cannot increase cache size, ret=%d, new_size=%d, min_nr_stripes=%d, max_nr_stripes=%d\n",
 | |
| 						mdname(mddev),
 | |
| 						ret,
 | |
| 						new_size,
 | |
| 						conf->min_nr_stripes,
 | |
| 						conf->max_nr_stripes);
 | |
| 					return -ENOMEM;
 | |
| 				}
 | |
| 				sh = r5c_recovery_alloc_stripe(
 | |
| 					conf, stripe_sect, 0);
 | |
| 			}
 | |
| 			if (!sh) {
 | |
| 				pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
 | |
| 					mdname(mddev));
 | |
| 				return -ENOMEM;
 | |
| 			}
 | |
| 			list_add_tail(&sh->lru, cached_stripe_list);
 | |
| 		}
 | |
| 
 | |
| 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
 | |
| 			if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
 | |
| 			    test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
 | |
| 				r5l_recovery_replay_one_stripe(conf, sh, ctx);
 | |
| 				list_move_tail(&sh->lru, cached_stripe_list);
 | |
| 			}
 | |
| 			r5l_recovery_load_data(log, sh, ctx, payload,
 | |
| 					       log_offset);
 | |
| 		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
 | |
| 			r5l_recovery_load_parity(log, sh, ctx, payload,
 | |
| 						 log_offset);
 | |
| 		else
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		log_offset = r5l_ring_add(log, log_offset,
 | |
| 					  le32_to_cpu(payload->size));
 | |
| 
 | |
| 		mb_offset += sizeof(struct r5l_payload_data_parity) +
 | |
| 			sizeof(__le32) *
 | |
| 			(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Load the stripe into cache. The stripe will be written out later by
 | |
|  * the stripe cache state machine.
 | |
|  */
 | |
| static void r5c_recovery_load_one_stripe(struct r5l_log *log,
 | |
| 					 struct stripe_head *sh)
 | |
| {
 | |
| 	struct r5dev *dev;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = sh->disks; i--; ) {
 | |
| 		dev = sh->dev + i;
 | |
| 		if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
 | |
| 			set_bit(R5_InJournal, &dev->flags);
 | |
| 			set_bit(R5_UPTODATE, &dev->flags);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Scan through the log for all to-be-flushed data
 | |
|  *
 | |
|  * For stripes with data and parity, namely Data-Parity stripe
 | |
|  * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
 | |
|  *
 | |
|  * For stripes with only data, namely Data-Only stripe
 | |
|  * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
 | |
|  *
 | |
|  * For a stripe, if we see data after parity, we should discard all previous
 | |
|  * data and parity for this stripe, as these data are already flushed to
 | |
|  * the array.
 | |
|  *
 | |
|  * At the end of the scan, we return the new journal_tail, which points to
 | |
|  * first data-only stripe on the journal device, or next invalid meta block.
 | |
|  */
 | |
| static int r5c_recovery_flush_log(struct r5l_log *log,
 | |
| 				  struct r5l_recovery_ctx *ctx)
 | |
| {
 | |
| 	struct stripe_head *sh;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/* scan through the log */
 | |
| 	while (1) {
 | |
| 		if (r5l_recovery_read_meta_block(log, ctx))
 | |
| 			break;
 | |
| 
 | |
| 		ret = r5c_recovery_analyze_meta_block(log, ctx,
 | |
| 						      &ctx->cached_list);
 | |
| 		/*
 | |
| 		 * -EAGAIN means mismatch in data block, in this case, we still
 | |
| 		 * try scan the next metablock
 | |
| 		 */
 | |
| 		if (ret && ret != -EAGAIN)
 | |
| 			break;   /* ret == -EINVAL or -ENOMEM */
 | |
| 		ctx->seq++;
 | |
| 		ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
 | |
| 	}
 | |
| 
 | |
| 	if (ret == -ENOMEM) {
 | |
| 		r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* replay data-parity stripes */
 | |
| 	r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
 | |
| 
 | |
| 	/* load data-only stripes to stripe cache */
 | |
| 	list_for_each_entry(sh, &ctx->cached_list, lru) {
 | |
| 		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
 | |
| 		r5c_recovery_load_one_stripe(log, sh);
 | |
| 		ctx->data_only_stripes++;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * we did a recovery. Now ctx.pos points to an invalid meta block. New
 | |
|  * log will start here. but we can't let superblock point to last valid
 | |
|  * meta block. The log might looks like:
 | |
|  * | meta 1| meta 2| meta 3|
 | |
|  * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
 | |
|  * superblock points to meta 1, we write a new valid meta 2n.  if crash
 | |
|  * happens again, new recovery will start from meta 1. Since meta 2n is
 | |
|  * valid now, recovery will think meta 3 is valid, which is wrong.
 | |
|  * The solution is we create a new meta in meta2 with its seq == meta
 | |
|  * 1's seq + 10000 and let superblock points to meta2. The same recovery
 | |
|  * will not think meta 3 is a valid meta, because its seq doesn't match
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Before recovery, the log looks like the following
 | |
|  *
 | |
|  *   ---------------------------------------------
 | |
|  *   |           valid log        | invalid log  |
 | |
|  *   ---------------------------------------------
 | |
|  *   ^
 | |
|  *   |- log->last_checkpoint
 | |
|  *   |- log->last_cp_seq
 | |
|  *
 | |
|  * Now we scan through the log until we see invalid entry
 | |
|  *
 | |
|  *   ---------------------------------------------
 | |
|  *   |           valid log        | invalid log  |
 | |
|  *   ---------------------------------------------
 | |
|  *   ^                            ^
 | |
|  *   |- log->last_checkpoint      |- ctx->pos
 | |
|  *   |- log->last_cp_seq          |- ctx->seq
 | |
|  *
 | |
|  * From this point, we need to increase seq number by 10 to avoid
 | |
|  * confusing next recovery.
 | |
|  *
 | |
|  *   ---------------------------------------------
 | |
|  *   |           valid log        | invalid log  |
 | |
|  *   ---------------------------------------------
 | |
|  *   ^                              ^
 | |
|  *   |- log->last_checkpoint        |- ctx->pos+1
 | |
|  *   |- log->last_cp_seq            |- ctx->seq+10001
 | |
|  *
 | |
|  * However, it is not safe to start the state machine yet, because data only
 | |
|  * parities are not yet secured in RAID. To save these data only parities, we
 | |
|  * rewrite them from seq+11.
 | |
|  *
 | |
|  *   -----------------------------------------------------------------
 | |
|  *   |           valid log        | data only stripes | invalid log  |
 | |
|  *   -----------------------------------------------------------------
 | |
|  *   ^                                                ^
 | |
|  *   |- log->last_checkpoint                          |- ctx->pos+n
 | |
|  *   |- log->last_cp_seq                              |- ctx->seq+10000+n
 | |
|  *
 | |
|  * If failure happens again during this process, the recovery can safe start
 | |
|  * again from log->last_checkpoint.
 | |
|  *
 | |
|  * Once data only stripes are rewritten to journal, we move log_tail
 | |
|  *
 | |
|  *   -----------------------------------------------------------------
 | |
|  *   |     old log        |    data only stripes    | invalid log  |
 | |
|  *   -----------------------------------------------------------------
 | |
|  *                        ^                         ^
 | |
|  *                        |- log->last_checkpoint   |- ctx->pos+n
 | |
|  *                        |- log->last_cp_seq       |- ctx->seq+10000+n
 | |
|  *
 | |
|  * Then we can safely start the state machine. If failure happens from this
 | |
|  * point on, the recovery will start from new log->last_checkpoint.
 | |
|  */
 | |
| static int
 | |
| r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
 | |
| 				       struct r5l_recovery_ctx *ctx)
 | |
| {
 | |
| 	struct stripe_head *sh;
 | |
| 	struct mddev *mddev = log->rdev->mddev;
 | |
| 	struct page *page;
 | |
| 	sector_t next_checkpoint = MaxSector;
 | |
| 
 | |
| 	page = alloc_page(GFP_KERNEL);
 | |
| 	if (!page) {
 | |
| 		pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
 | |
| 		       mdname(mddev));
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	WARN_ON(list_empty(&ctx->cached_list));
 | |
| 
 | |
| 	list_for_each_entry(sh, &ctx->cached_list, lru) {
 | |
| 		struct r5l_meta_block *mb;
 | |
| 		int i;
 | |
| 		int offset;
 | |
| 		sector_t write_pos;
 | |
| 
 | |
| 		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
 | |
| 		r5l_recovery_create_empty_meta_block(log, page,
 | |
| 						     ctx->pos, ctx->seq);
 | |
| 		mb = page_address(page);
 | |
| 		offset = le32_to_cpu(mb->meta_size);
 | |
| 		write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
 | |
| 
 | |
| 		for (i = sh->disks; i--; ) {
 | |
| 			struct r5dev *dev = &sh->dev[i];
 | |
| 			struct r5l_payload_data_parity *payload;
 | |
| 			void *addr;
 | |
| 
 | |
| 			if (test_bit(R5_InJournal, &dev->flags)) {
 | |
| 				payload = (void *)mb + offset;
 | |
| 				payload->header.type = cpu_to_le16(
 | |
| 					R5LOG_PAYLOAD_DATA);
 | |
| 				payload->size = cpu_to_le32(BLOCK_SECTORS);
 | |
| 				payload->location = cpu_to_le64(
 | |
| 					raid5_compute_blocknr(sh, i, 0));
 | |
| 				addr = kmap_atomic(dev->page);
 | |
| 				payload->checksum[0] = cpu_to_le32(
 | |
| 					crc32c_le(log->uuid_checksum, addr,
 | |
| 						  PAGE_SIZE));
 | |
| 				kunmap_atomic(addr);
 | |
| 				sync_page_io(log->rdev, write_pos, PAGE_SIZE,
 | |
| 					     dev->page, REQ_OP_WRITE, false);
 | |
| 				write_pos = r5l_ring_add(log, write_pos,
 | |
| 							 BLOCK_SECTORS);
 | |
| 				offset += sizeof(__le32) +
 | |
| 					sizeof(struct r5l_payload_data_parity);
 | |
| 
 | |
| 			}
 | |
| 		}
 | |
| 		mb->meta_size = cpu_to_le32(offset);
 | |
| 		mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
 | |
| 						     mb, PAGE_SIZE));
 | |
| 		sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
 | |
| 			     REQ_OP_WRITE | REQ_SYNC | REQ_FUA, false);
 | |
| 		sh->log_start = ctx->pos;
 | |
| 		list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
 | |
| 		atomic_inc(&log->stripe_in_journal_count);
 | |
| 		ctx->pos = write_pos;
 | |
| 		ctx->seq += 1;
 | |
| 		next_checkpoint = sh->log_start;
 | |
| 	}
 | |
| 	log->next_checkpoint = next_checkpoint;
 | |
| 	__free_page(page);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
 | |
| 						 struct r5l_recovery_ctx *ctx)
 | |
| {
 | |
| 	struct mddev *mddev = log->rdev->mddev;
 | |
| 	struct r5conf *conf = mddev->private;
 | |
| 	struct stripe_head *sh, *next;
 | |
| 	bool cleared_pending = false;
 | |
| 
 | |
| 	if (ctx->data_only_stripes == 0)
 | |
| 		return;
 | |
| 
 | |
| 	if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
 | |
| 		cleared_pending = true;
 | |
| 		clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
 | |
| 	}
 | |
| 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
 | |
| 
 | |
| 	list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
 | |
| 		r5c_make_stripe_write_out(sh);
 | |
| 		set_bit(STRIPE_HANDLE, &sh->state);
 | |
| 		list_del_init(&sh->lru);
 | |
| 		raid5_release_stripe(sh);
 | |
| 	}
 | |
| 
 | |
| 	/* reuse conf->wait_for_quiescent in recovery */
 | |
| 	wait_event(conf->wait_for_quiescent,
 | |
| 		   atomic_read(&conf->active_stripes) == 0);
 | |
| 
 | |
| 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
 | |
| 	if (cleared_pending)
 | |
| 		set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
 | |
| }
 | |
| 
 | |
| static int r5l_recovery_log(struct r5l_log *log)
 | |
| {
 | |
| 	struct mddev *mddev = log->rdev->mddev;
 | |
| 	struct r5l_recovery_ctx *ctx;
 | |
| 	int ret;
 | |
| 	sector_t pos;
 | |
| 
 | |
| 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
 | |
| 	if (!ctx)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ctx->pos = log->last_checkpoint;
 | |
| 	ctx->seq = log->last_cp_seq;
 | |
| 	INIT_LIST_HEAD(&ctx->cached_list);
 | |
| 	ctx->meta_page = alloc_page(GFP_KERNEL);
 | |
| 
 | |
| 	if (!ctx->meta_page) {
 | |
| 		ret =  -ENOMEM;
 | |
| 		goto meta_page;
 | |
| 	}
 | |
| 
 | |
| 	if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto ra_pool;
 | |
| 	}
 | |
| 
 | |
| 	ret = r5c_recovery_flush_log(log, ctx);
 | |
| 
 | |
| 	if (ret)
 | |
| 		goto error;
 | |
| 
 | |
| 	pos = ctx->pos;
 | |
| 	ctx->seq += 10000;
 | |
| 
 | |
| 	if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
 | |
| 		pr_info("md/raid:%s: starting from clean shutdown\n",
 | |
| 			 mdname(mddev));
 | |
| 	else
 | |
| 		pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
 | |
| 			 mdname(mddev), ctx->data_only_stripes,
 | |
| 			 ctx->data_parity_stripes);
 | |
| 
 | |
| 	if (ctx->data_only_stripes == 0) {
 | |
| 		log->next_checkpoint = ctx->pos;
 | |
| 		r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
 | |
| 		ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
 | |
| 	} else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
 | |
| 		pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
 | |
| 		       mdname(mddev));
 | |
| 		ret =  -EIO;
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	log->log_start = ctx->pos;
 | |
| 	log->seq = ctx->seq;
 | |
| 	log->last_checkpoint = pos;
 | |
| 	r5l_write_super(log, pos);
 | |
| 
 | |
| 	r5c_recovery_flush_data_only_stripes(log, ctx);
 | |
| 	ret = 0;
 | |
| error:
 | |
| 	r5l_recovery_free_ra_pool(log, ctx);
 | |
| ra_pool:
 | |
| 	__free_page(ctx->meta_page);
 | |
| meta_page:
 | |
| 	kfree(ctx);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void r5l_write_super(struct r5l_log *log, sector_t cp)
 | |
| {
 | |
| 	struct mddev *mddev = log->rdev->mddev;
 | |
| 
 | |
| 	log->rdev->journal_tail = cp;
 | |
| 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
 | |
| }
 | |
| 
 | |
| static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
 | |
| {
 | |
| 	struct r5conf *conf;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = mddev_lock(mddev);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	conf = mddev->private;
 | |
| 	if (!conf || !conf->log)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	switch (conf->log->r5c_journal_mode) {
 | |
| 	case R5C_JOURNAL_MODE_WRITE_THROUGH:
 | |
| 		ret = snprintf(
 | |
| 			page, PAGE_SIZE, "[%s] %s\n",
 | |
| 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
 | |
| 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
 | |
| 		break;
 | |
| 	case R5C_JOURNAL_MODE_WRITE_BACK:
 | |
| 		ret = snprintf(
 | |
| 			page, PAGE_SIZE, "%s [%s]\n",
 | |
| 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
 | |
| 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
 | |
| 		break;
 | |
| 	default:
 | |
| 		ret = 0;
 | |
| 	}
 | |
| 
 | |
| out_unlock:
 | |
| 	mddev_unlock(mddev);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set journal cache mode on @mddev (external API initially needed by dm-raid).
 | |
|  *
 | |
|  * @mode as defined in 'enum r5c_journal_mode'.
 | |
|  *
 | |
|  */
 | |
| int r5c_journal_mode_set(struct mddev *mddev, int mode)
 | |
| {
 | |
| 	struct r5conf *conf;
 | |
| 
 | |
| 	if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH ||
 | |
| 	    mode > R5C_JOURNAL_MODE_WRITE_BACK)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	conf = mddev->private;
 | |
| 	if (!conf || !conf->log)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	if (raid5_calc_degraded(conf) > 0 &&
 | |
| 	    mode == R5C_JOURNAL_MODE_WRITE_BACK)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	conf->log->r5c_journal_mode = mode;
 | |
| 
 | |
| 	pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
 | |
| 		 mdname(mddev), mode, r5c_journal_mode_str[mode]);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(r5c_journal_mode_set);
 | |
| 
 | |
| static ssize_t r5c_journal_mode_store(struct mddev *mddev,
 | |
| 				      const char *page, size_t length)
 | |
| {
 | |
| 	int mode = ARRAY_SIZE(r5c_journal_mode_str);
 | |
| 	size_t len = length;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (len < 2)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (page[len - 1] == '\n')
 | |
| 		len--;
 | |
| 
 | |
| 	while (mode--)
 | |
| 		if (strlen(r5c_journal_mode_str[mode]) == len &&
 | |
| 		    !strncmp(page, r5c_journal_mode_str[mode], len))
 | |
| 			break;
 | |
| 	ret = mddev_suspend_and_lock(mddev);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	ret = r5c_journal_mode_set(mddev, mode);
 | |
| 	mddev_unlock_and_resume(mddev);
 | |
| 	return ret ?: length;
 | |
| }
 | |
| 
 | |
| struct md_sysfs_entry
 | |
| r5c_journal_mode = __ATTR(journal_mode, 0644,
 | |
| 			  r5c_journal_mode_show, r5c_journal_mode_store);
 | |
| 
 | |
| /*
 | |
|  * Try handle write operation in caching phase. This function should only
 | |
|  * be called in write-back mode.
 | |
|  *
 | |
|  * If all outstanding writes can be handled in caching phase, returns 0
 | |
|  * If writes requires write-out phase, call r5c_make_stripe_write_out()
 | |
|  * and returns -EAGAIN
 | |
|  */
 | |
| int r5c_try_caching_write(struct r5conf *conf,
 | |
| 			  struct stripe_head *sh,
 | |
| 			  struct stripe_head_state *s,
 | |
| 			  int disks)
 | |
| {
 | |
| 	struct r5l_log *log = READ_ONCE(conf->log);
 | |
| 	int i;
 | |
| 	struct r5dev *dev;
 | |
| 	int to_cache = 0;
 | |
| 	void __rcu **pslot;
 | |
| 	sector_t tree_index;
 | |
| 	int ret;
 | |
| 	uintptr_t refcount;
 | |
| 
 | |
| 	BUG_ON(!r5c_is_writeback(log));
 | |
| 
 | |
| 	if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
 | |
| 		/*
 | |
| 		 * There are two different scenarios here:
 | |
| 		 *  1. The stripe has some data cached, and it is sent to
 | |
| 		 *     write-out phase for reclaim
 | |
| 		 *  2. The stripe is clean, and this is the first write
 | |
| 		 *
 | |
| 		 * For 1, return -EAGAIN, so we continue with
 | |
| 		 * handle_stripe_dirtying().
 | |
| 		 *
 | |
| 		 * For 2, set STRIPE_R5C_CACHING and continue with caching
 | |
| 		 * write.
 | |
| 		 */
 | |
| 
 | |
| 		/* case 1: anything injournal or anything in written */
 | |
| 		if (s->injournal > 0 || s->written > 0)
 | |
| 			return -EAGAIN;
 | |
| 		/* case 2 */
 | |
| 		set_bit(STRIPE_R5C_CACHING, &sh->state);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * When run in degraded mode, array is set to write-through mode.
 | |
| 	 * This check helps drain pending write safely in the transition to
 | |
| 	 * write-through mode.
 | |
| 	 *
 | |
| 	 * When a stripe is syncing, the write is also handled in write
 | |
| 	 * through mode.
 | |
| 	 */
 | |
| 	if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) {
 | |
| 		r5c_make_stripe_write_out(sh);
 | |
| 		return -EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	for (i = disks; i--; ) {
 | |
| 		dev = &sh->dev[i];
 | |
| 		/* if non-overwrite, use writing-out phase */
 | |
| 		if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
 | |
| 		    !test_bit(R5_InJournal, &dev->flags)) {
 | |
| 			r5c_make_stripe_write_out(sh);
 | |
| 			return -EAGAIN;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* if the stripe is not counted in big_stripe_tree, add it now */
 | |
| 	if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
 | |
| 	    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
 | |
| 		tree_index = r5c_tree_index(conf, sh->sector);
 | |
| 		spin_lock(&log->tree_lock);
 | |
| 		pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
 | |
| 					       tree_index);
 | |
| 		if (pslot) {
 | |
| 			refcount = (uintptr_t)radix_tree_deref_slot_protected(
 | |
| 				pslot, &log->tree_lock) >>
 | |
| 				R5C_RADIX_COUNT_SHIFT;
 | |
| 			radix_tree_replace_slot(
 | |
| 				&log->big_stripe_tree, pslot,
 | |
| 				(void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * this radix_tree_insert can fail safely, so no
 | |
| 			 * need to call radix_tree_preload()
 | |
| 			 */
 | |
| 			ret = radix_tree_insert(
 | |
| 				&log->big_stripe_tree, tree_index,
 | |
| 				(void *)(1 << R5C_RADIX_COUNT_SHIFT));
 | |
| 			if (ret) {
 | |
| 				spin_unlock(&log->tree_lock);
 | |
| 				r5c_make_stripe_write_out(sh);
 | |
| 				return -EAGAIN;
 | |
| 			}
 | |
| 		}
 | |
| 		spin_unlock(&log->tree_lock);
 | |
| 
 | |
| 		/*
 | |
| 		 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
 | |
| 		 * counted in the radix tree
 | |
| 		 */
 | |
| 		set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
 | |
| 		atomic_inc(&conf->r5c_cached_partial_stripes);
 | |
| 	}
 | |
| 
 | |
| 	for (i = disks; i--; ) {
 | |
| 		dev = &sh->dev[i];
 | |
| 		if (dev->towrite) {
 | |
| 			set_bit(R5_Wantwrite, &dev->flags);
 | |
| 			set_bit(R5_Wantdrain, &dev->flags);
 | |
| 			set_bit(R5_LOCKED, &dev->flags);
 | |
| 			to_cache++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (to_cache) {
 | |
| 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
 | |
| 		/*
 | |
| 		 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
 | |
| 		 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
 | |
| 		 * r5c_handle_data_cached()
 | |
| 		 */
 | |
| 		set_bit(STRIPE_LOG_TRAPPED, &sh->state);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * free extra pages (orig_page) we allocated for prexor
 | |
|  */
 | |
| void r5c_release_extra_page(struct stripe_head *sh)
 | |
| {
 | |
| 	struct r5conf *conf = sh->raid_conf;
 | |
| 	int i;
 | |
| 	bool using_disk_info_extra_page;
 | |
| 
 | |
| 	using_disk_info_extra_page =
 | |
| 		sh->dev[0].orig_page == conf->disks[0].extra_page;
 | |
| 
 | |
| 	for (i = sh->disks; i--; )
 | |
| 		if (sh->dev[i].page != sh->dev[i].orig_page) {
 | |
| 			struct page *p = sh->dev[i].orig_page;
 | |
| 
 | |
| 			sh->dev[i].orig_page = sh->dev[i].page;
 | |
| 			clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
 | |
| 
 | |
| 			if (!using_disk_info_extra_page)
 | |
| 				put_page(p);
 | |
| 		}
 | |
| 
 | |
| 	if (using_disk_info_extra_page) {
 | |
| 		clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
 | |
| 		md_wakeup_thread(conf->mddev->thread);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void r5c_use_extra_page(struct stripe_head *sh)
 | |
| {
 | |
| 	struct r5conf *conf = sh->raid_conf;
 | |
| 	int i;
 | |
| 	struct r5dev *dev;
 | |
| 
 | |
| 	for (i = sh->disks; i--; ) {
 | |
| 		dev = &sh->dev[i];
 | |
| 		if (dev->orig_page != dev->page)
 | |
| 			put_page(dev->orig_page);
 | |
| 		dev->orig_page = conf->disks[i].extra_page;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
 | |
|  * stripe is committed to RAID disks.
 | |
|  */
 | |
| void r5c_finish_stripe_write_out(struct r5conf *conf,
 | |
| 				 struct stripe_head *sh,
 | |
| 				 struct stripe_head_state *s)
 | |
| {
 | |
| 	struct r5l_log *log = READ_ONCE(conf->log);
 | |
| 	int i;
 | |
| 	sector_t tree_index;
 | |
| 	void __rcu **pslot;
 | |
| 	uintptr_t refcount;
 | |
| 
 | |
| 	if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
 | |
| 		return;
 | |
| 
 | |
| 	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
 | |
| 	clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
 | |
| 
 | |
| 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = sh->disks; i--; ) {
 | |
| 		clear_bit(R5_InJournal, &sh->dev[i].flags);
 | |
| 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
 | |
| 			wake_up_bit(&sh->dev[i].flags, R5_Overlap);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
 | |
| 	 * We updated R5_InJournal, so we also update s->injournal.
 | |
| 	 */
 | |
| 	s->injournal = 0;
 | |
| 
 | |
| 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
 | |
| 		if (atomic_dec_and_test(&conf->pending_full_writes))
 | |
| 			md_wakeup_thread(conf->mddev->thread);
 | |
| 
 | |
| 	spin_lock_irq(&log->stripe_in_journal_lock);
 | |
| 	list_del_init(&sh->r5c);
 | |
| 	spin_unlock_irq(&log->stripe_in_journal_lock);
 | |
| 	sh->log_start = MaxSector;
 | |
| 
 | |
| 	atomic_dec(&log->stripe_in_journal_count);
 | |
| 	r5c_update_log_state(log);
 | |
| 
 | |
| 	/* stop counting this stripe in big_stripe_tree */
 | |
| 	if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
 | |
| 	    test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
 | |
| 		tree_index = r5c_tree_index(conf, sh->sector);
 | |
| 		spin_lock(&log->tree_lock);
 | |
| 		pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
 | |
| 					       tree_index);
 | |
| 		BUG_ON(pslot == NULL);
 | |
| 		refcount = (uintptr_t)radix_tree_deref_slot_protected(
 | |
| 			pslot, &log->tree_lock) >>
 | |
| 			R5C_RADIX_COUNT_SHIFT;
 | |
| 		if (refcount == 1)
 | |
| 			radix_tree_delete(&log->big_stripe_tree, tree_index);
 | |
| 		else
 | |
| 			radix_tree_replace_slot(
 | |
| 				&log->big_stripe_tree, pslot,
 | |
| 				(void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
 | |
| 		spin_unlock(&log->tree_lock);
 | |
| 	}
 | |
| 
 | |
| 	if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
 | |
| 		BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
 | |
| 		atomic_dec(&conf->r5c_flushing_partial_stripes);
 | |
| 		atomic_dec(&conf->r5c_cached_partial_stripes);
 | |
| 	}
 | |
| 
 | |
| 	if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
 | |
| 		BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
 | |
| 		atomic_dec(&conf->r5c_flushing_full_stripes);
 | |
| 		atomic_dec(&conf->r5c_cached_full_stripes);
 | |
| 	}
 | |
| 
 | |
| 	r5l_append_flush_payload(log, sh->sector);
 | |
| 	/* stripe is flused to raid disks, we can do resync now */
 | |
| 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
 | |
| 		set_bit(STRIPE_HANDLE, &sh->state);
 | |
| }
 | |
| 
 | |
| int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
 | |
| {
 | |
| 	struct r5conf *conf = sh->raid_conf;
 | |
| 	int pages = 0;
 | |
| 	int reserve;
 | |
| 	int i;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	BUG_ON(!log);
 | |
| 
 | |
| 	for (i = 0; i < sh->disks; i++) {
 | |
| 		void *addr;
 | |
| 
 | |
| 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
 | |
| 			continue;
 | |
| 		addr = kmap_atomic(sh->dev[i].page);
 | |
| 		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
 | |
| 						    addr, PAGE_SIZE);
 | |
| 		kunmap_atomic(addr);
 | |
| 		pages++;
 | |
| 	}
 | |
| 	WARN_ON(pages == 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * The stripe must enter state machine again to call endio, so
 | |
| 	 * don't delay.
 | |
| 	 */
 | |
| 	clear_bit(STRIPE_DELAYED, &sh->state);
 | |
| 	atomic_inc(&sh->count);
 | |
| 
 | |
| 	mutex_lock(&log->io_mutex);
 | |
| 	/* meta + data */
 | |
| 	reserve = (1 + pages) << (PAGE_SHIFT - 9);
 | |
| 
 | |
| 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
 | |
| 	    sh->log_start == MaxSector)
 | |
| 		r5l_add_no_space_stripe(log, sh);
 | |
| 	else if (!r5l_has_free_space(log, reserve)) {
 | |
| 		if (sh->log_start == log->last_checkpoint)
 | |
| 			BUG();
 | |
| 		else
 | |
| 			r5l_add_no_space_stripe(log, sh);
 | |
| 	} else {
 | |
| 		ret = r5l_log_stripe(log, sh, pages, 0);
 | |
| 		if (ret) {
 | |
| 			spin_lock_irq(&log->io_list_lock);
 | |
| 			list_add_tail(&sh->log_list, &log->no_mem_stripes);
 | |
| 			spin_unlock_irq(&log->io_list_lock);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&log->io_mutex);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* check whether this big stripe is in write back cache. */
 | |
| bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
 | |
| {
 | |
| 	struct r5l_log *log = READ_ONCE(conf->log);
 | |
| 	sector_t tree_index;
 | |
| 	void *slot;
 | |
| 
 | |
| 	if (!log)
 | |
| 		return false;
 | |
| 
 | |
| 	tree_index = r5c_tree_index(conf, sect);
 | |
| 	slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
 | |
| 	return slot != NULL;
 | |
| }
 | |
| 
 | |
| static int r5l_load_log(struct r5l_log *log)
 | |
| {
 | |
| 	struct md_rdev *rdev = log->rdev;
 | |
| 	struct page *page;
 | |
| 	struct r5l_meta_block *mb;
 | |
| 	sector_t cp = log->rdev->journal_tail;
 | |
| 	u32 stored_crc, expected_crc;
 | |
| 	bool create_super = false;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/* Make sure it's valid */
 | |
| 	if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
 | |
| 		cp = 0;
 | |
| 	page = alloc_page(GFP_KERNEL);
 | |
| 	if (!page)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, false)) {
 | |
| 		ret = -EIO;
 | |
| 		goto ioerr;
 | |
| 	}
 | |
| 	mb = page_address(page);
 | |
| 
 | |
| 	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
 | |
| 	    mb->version != R5LOG_VERSION) {
 | |
| 		create_super = true;
 | |
| 		goto create;
 | |
| 	}
 | |
| 	stored_crc = le32_to_cpu(mb->checksum);
 | |
| 	mb->checksum = 0;
 | |
| 	expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
 | |
| 	if (stored_crc != expected_crc) {
 | |
| 		create_super = true;
 | |
| 		goto create;
 | |
| 	}
 | |
| 	if (le64_to_cpu(mb->position) != cp) {
 | |
| 		create_super = true;
 | |
| 		goto create;
 | |
| 	}
 | |
| create:
 | |
| 	if (create_super) {
 | |
| 		log->last_cp_seq = get_random_u32();
 | |
| 		cp = 0;
 | |
| 		r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
 | |
| 		/*
 | |
| 		 * Make sure super points to correct address. Log might have
 | |
| 		 * data very soon. If super hasn't correct log tail address,
 | |
| 		 * recovery can't find the log
 | |
| 		 */
 | |
| 		r5l_write_super(log, cp);
 | |
| 	} else
 | |
| 		log->last_cp_seq = le64_to_cpu(mb->seq);
 | |
| 
 | |
| 	log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
 | |
| 	log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
 | |
| 	if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
 | |
| 		log->max_free_space = RECLAIM_MAX_FREE_SPACE;
 | |
| 	log->last_checkpoint = cp;
 | |
| 
 | |
| 	__free_page(page);
 | |
| 
 | |
| 	if (create_super) {
 | |
| 		log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
 | |
| 		log->seq = log->last_cp_seq + 1;
 | |
| 		log->next_checkpoint = cp;
 | |
| 	} else
 | |
| 		ret = r5l_recovery_log(log);
 | |
| 
 | |
| 	r5c_update_log_state(log);
 | |
| 	return ret;
 | |
| ioerr:
 | |
| 	__free_page(page);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int r5l_start(struct r5l_log *log)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!log)
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = r5l_load_log(log);
 | |
| 	if (ret) {
 | |
| 		struct mddev *mddev = log->rdev->mddev;
 | |
| 		struct r5conf *conf = mddev->private;
 | |
| 
 | |
| 		r5l_exit_log(conf);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev)
 | |
| {
 | |
| 	struct r5conf *conf = mddev->private;
 | |
| 	struct r5l_log *log = READ_ONCE(conf->log);
 | |
| 
 | |
| 	if (!log)
 | |
| 		return;
 | |
| 
 | |
| 	if ((raid5_calc_degraded(conf) > 0 ||
 | |
| 	     test_bit(Journal, &rdev->flags)) &&
 | |
| 	    log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
 | |
| 		schedule_work(&log->disable_writeback_work);
 | |
| }
 | |
| 
 | |
| int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
 | |
| {
 | |
| 	struct r5l_log *log;
 | |
| 	struct md_thread *thread;
 | |
| 	int ret;
 | |
| 
 | |
| 	pr_debug("md/raid:%s: using device %pg as journal\n",
 | |
| 		 mdname(conf->mddev), rdev->bdev);
 | |
| 
 | |
| 	if (PAGE_SIZE != 4096)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
 | |
| 	 * raid_disks r5l_payload_data_parity.
 | |
| 	 *
 | |
| 	 * Write journal and cache does not work for very big array
 | |
| 	 * (raid_disks > 203)
 | |
| 	 */
 | |
| 	if (sizeof(struct r5l_meta_block) +
 | |
| 	    ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
 | |
| 	     conf->raid_disks) > PAGE_SIZE) {
 | |
| 		pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
 | |
| 		       mdname(conf->mddev), conf->raid_disks);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	log = kzalloc(sizeof(*log), GFP_KERNEL);
 | |
| 	if (!log)
 | |
| 		return -ENOMEM;
 | |
| 	log->rdev = rdev;
 | |
| 	log->need_cache_flush = bdev_write_cache(rdev->bdev);
 | |
| 	log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
 | |
| 				       sizeof(rdev->mddev->uuid));
 | |
| 
 | |
| 	mutex_init(&log->io_mutex);
 | |
| 
 | |
| 	spin_lock_init(&log->io_list_lock);
 | |
| 	INIT_LIST_HEAD(&log->running_ios);
 | |
| 	INIT_LIST_HEAD(&log->io_end_ios);
 | |
| 	INIT_LIST_HEAD(&log->flushing_ios);
 | |
| 	INIT_LIST_HEAD(&log->finished_ios);
 | |
| 
 | |
| 	log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
 | |
| 	if (!log->io_kc)
 | |
| 		goto io_kc;
 | |
| 
 | |
| 	ret = mempool_init_slab_pool(&log->io_pool, R5L_POOL_SIZE, log->io_kc);
 | |
| 	if (ret)
 | |
| 		goto io_pool;
 | |
| 
 | |
| 	ret = bioset_init(&log->bs, R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS);
 | |
| 	if (ret)
 | |
| 		goto io_bs;
 | |
| 
 | |
| 	ret = mempool_init_page_pool(&log->meta_pool, R5L_POOL_SIZE, 0);
 | |
| 	if (ret)
 | |
| 		goto out_mempool;
 | |
| 
 | |
| 	spin_lock_init(&log->tree_lock);
 | |
| 	INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
 | |
| 
 | |
| 	thread = md_register_thread(r5l_reclaim_thread, log->rdev->mddev,
 | |
| 				    "reclaim");
 | |
| 	if (!thread)
 | |
| 		goto reclaim_thread;
 | |
| 
 | |
| 	thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
 | |
| 	rcu_assign_pointer(log->reclaim_thread, thread);
 | |
| 
 | |
| 	init_waitqueue_head(&log->iounit_wait);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&log->no_mem_stripes);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&log->no_space_stripes);
 | |
| 	spin_lock_init(&log->no_space_stripes_lock);
 | |
| 
 | |
| 	INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
 | |
| 	INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
 | |
| 
 | |
| 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
 | |
| 	INIT_LIST_HEAD(&log->stripe_in_journal_list);
 | |
| 	spin_lock_init(&log->stripe_in_journal_lock);
 | |
| 	atomic_set(&log->stripe_in_journal_count, 0);
 | |
| 
 | |
| 	WRITE_ONCE(conf->log, log);
 | |
| 
 | |
| 	set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
 | |
| 	return 0;
 | |
| 
 | |
| reclaim_thread:
 | |
| 	mempool_exit(&log->meta_pool);
 | |
| out_mempool:
 | |
| 	bioset_exit(&log->bs);
 | |
| io_bs:
 | |
| 	mempool_exit(&log->io_pool);
 | |
| io_pool:
 | |
| 	kmem_cache_destroy(log->io_kc);
 | |
| io_kc:
 | |
| 	kfree(log);
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| void r5l_exit_log(struct r5conf *conf)
 | |
| {
 | |
| 	struct r5l_log *log = conf->log;
 | |
| 
 | |
| 	md_unregister_thread(conf->mddev, &log->reclaim_thread);
 | |
| 
 | |
| 	/*
 | |
| 	 * 'reconfig_mutex' is held by caller, set 'confg->log' to NULL to
 | |
| 	 * ensure disable_writeback_work wakes up and exits.
 | |
| 	 */
 | |
| 	WRITE_ONCE(conf->log, NULL);
 | |
| 	wake_up(&conf->mddev->sb_wait);
 | |
| 	flush_work(&log->disable_writeback_work);
 | |
| 
 | |
| 	mempool_exit(&log->meta_pool);
 | |
| 	bioset_exit(&log->bs);
 | |
| 	mempool_exit(&log->io_pool);
 | |
| 	kmem_cache_destroy(log->io_kc);
 | |
| 	kfree(log);
 | |
| }
 |