3722 lines
		
	
	
		
			87 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3722 lines
		
	
	
		
			87 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
 | |
|  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
 | |
|  *
 | |
|  * This file is released under the GPL.
 | |
|  */
 | |
| 
 | |
| #include "dm-core.h"
 | |
| #include "dm-rq.h"
 | |
| #include "dm-uevent.h"
 | |
| #include "dm-ima.h"
 | |
| 
 | |
| #include <linux/bio-integrity.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/sched/mm.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/blkpg.h>
 | |
| #include <linux/bio.h>
 | |
| #include <linux/mempool.h>
 | |
| #include <linux/dax.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/idr.h>
 | |
| #include <linux/uio.h>
 | |
| #include <linux/hdreg.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/wait.h>
 | |
| #include <linux/pr.h>
 | |
| #include <linux/refcount.h>
 | |
| #include <linux/part_stat.h>
 | |
| #include <linux/blk-crypto.h>
 | |
| #include <linux/blk-crypto-profile.h>
 | |
| 
 | |
| #define DM_MSG_PREFIX "core"
 | |
| 
 | |
| /*
 | |
|  * Cookies are numeric values sent with CHANGE and REMOVE
 | |
|  * uevents while resuming, removing or renaming the device.
 | |
|  */
 | |
| #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
 | |
| #define DM_COOKIE_LENGTH 24
 | |
| 
 | |
| /*
 | |
|  * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
 | |
|  * dm_io into one list, and reuse bio->bi_private as the list head. Before
 | |
|  * ending this fs bio, we will recover its ->bi_private.
 | |
|  */
 | |
| #define REQ_DM_POLL_LIST	REQ_DRV
 | |
| 
 | |
| static const char *_name = DM_NAME;
 | |
| 
 | |
| static unsigned int major;
 | |
| static unsigned int _major;
 | |
| 
 | |
| static DEFINE_IDR(_minor_idr);
 | |
| 
 | |
| static DEFINE_SPINLOCK(_minor_lock);
 | |
| 
 | |
| static void do_deferred_remove(struct work_struct *w);
 | |
| 
 | |
| static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
 | |
| 
 | |
| static struct workqueue_struct *deferred_remove_workqueue;
 | |
| 
 | |
| atomic_t dm_global_event_nr = ATOMIC_INIT(0);
 | |
| DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
 | |
| 
 | |
| void dm_issue_global_event(void)
 | |
| {
 | |
| 	atomic_inc(&dm_global_event_nr);
 | |
| 	wake_up(&dm_global_eventq);
 | |
| }
 | |
| 
 | |
| DEFINE_STATIC_KEY_FALSE(stats_enabled);
 | |
| DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
 | |
| DEFINE_STATIC_KEY_FALSE(zoned_enabled);
 | |
| 
 | |
| /*
 | |
|  * One of these is allocated (on-stack) per original bio.
 | |
|  */
 | |
| struct clone_info {
 | |
| 	struct dm_table *map;
 | |
| 	struct bio *bio;
 | |
| 	struct dm_io *io;
 | |
| 	sector_t sector;
 | |
| 	unsigned int sector_count;
 | |
| 	bool is_abnormal_io:1;
 | |
| 	bool submit_as_polled:1;
 | |
| };
 | |
| 
 | |
| static inline struct dm_target_io *clone_to_tio(struct bio *clone)
 | |
| {
 | |
| 	return container_of(clone, struct dm_target_io, clone);
 | |
| }
 | |
| 
 | |
| void *dm_per_bio_data(struct bio *bio, size_t data_size)
 | |
| {
 | |
| 	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
 | |
| 		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
 | |
| 	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_per_bio_data);
 | |
| 
 | |
| struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
 | |
| {
 | |
| 	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
 | |
| 
 | |
| 	if (io->magic == DM_IO_MAGIC)
 | |
| 		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
 | |
| 	BUG_ON(io->magic != DM_TIO_MAGIC);
 | |
| 	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
 | |
| 
 | |
| unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
 | |
| {
 | |
| 	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 | |
| 
 | |
| #define MINOR_ALLOCED ((void *)-1)
 | |
| 
 | |
| #define DM_NUMA_NODE NUMA_NO_NODE
 | |
| static int dm_numa_node = DM_NUMA_NODE;
 | |
| 
 | |
| #define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
 | |
| static int swap_bios = DEFAULT_SWAP_BIOS;
 | |
| static int get_swap_bios(void)
 | |
| {
 | |
| 	int latch = READ_ONCE(swap_bios);
 | |
| 
 | |
| 	if (unlikely(latch <= 0))
 | |
| 		latch = DEFAULT_SWAP_BIOS;
 | |
| 	return latch;
 | |
| }
 | |
| 
 | |
| struct table_device {
 | |
| 	struct list_head list;
 | |
| 	refcount_t count;
 | |
| 	struct dm_dev dm_dev;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Bio-based DM's mempools' reserved IOs set by the user.
 | |
|  */
 | |
| #define RESERVED_BIO_BASED_IOS		16
 | |
| static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 | |
| 
 | |
| static int __dm_get_module_param_int(int *module_param, int min, int max)
 | |
| {
 | |
| 	int param = READ_ONCE(*module_param);
 | |
| 	int modified_param = 0;
 | |
| 	bool modified = true;
 | |
| 
 | |
| 	if (param < min)
 | |
| 		modified_param = min;
 | |
| 	else if (param > max)
 | |
| 		modified_param = max;
 | |
| 	else
 | |
| 		modified = false;
 | |
| 
 | |
| 	if (modified) {
 | |
| 		(void)cmpxchg(module_param, param, modified_param);
 | |
| 		param = modified_param;
 | |
| 	}
 | |
| 
 | |
| 	return param;
 | |
| }
 | |
| 
 | |
| unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
 | |
| {
 | |
| 	unsigned int param = READ_ONCE(*module_param);
 | |
| 	unsigned int modified_param = 0;
 | |
| 
 | |
| 	if (!param)
 | |
| 		modified_param = def;
 | |
| 	else if (param > max)
 | |
| 		modified_param = max;
 | |
| 
 | |
| 	if (modified_param) {
 | |
| 		(void)cmpxchg(module_param, param, modified_param);
 | |
| 		param = modified_param;
 | |
| 	}
 | |
| 
 | |
| 	return param;
 | |
| }
 | |
| 
 | |
| unsigned int dm_get_reserved_bio_based_ios(void)
 | |
| {
 | |
| 	return __dm_get_module_param(&reserved_bio_based_ios,
 | |
| 				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 | |
| 
 | |
| static unsigned int dm_get_numa_node(void)
 | |
| {
 | |
| 	return __dm_get_module_param_int(&dm_numa_node,
 | |
| 					 DM_NUMA_NODE, num_online_nodes() - 1);
 | |
| }
 | |
| 
 | |
| static int __init local_init(void)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	r = dm_uevent_init();
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
 | |
| 	if (!deferred_remove_workqueue) {
 | |
| 		r = -ENOMEM;
 | |
| 		goto out_uevent_exit;
 | |
| 	}
 | |
| 
 | |
| 	_major = major;
 | |
| 	r = register_blkdev(_major, _name);
 | |
| 	if (r < 0)
 | |
| 		goto out_free_workqueue;
 | |
| 
 | |
| 	if (!_major)
 | |
| 		_major = r;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_free_workqueue:
 | |
| 	destroy_workqueue(deferred_remove_workqueue);
 | |
| out_uevent_exit:
 | |
| 	dm_uevent_exit();
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void local_exit(void)
 | |
| {
 | |
| 	destroy_workqueue(deferred_remove_workqueue);
 | |
| 
 | |
| 	unregister_blkdev(_major, _name);
 | |
| 	dm_uevent_exit();
 | |
| 
 | |
| 	_major = 0;
 | |
| 
 | |
| 	DMINFO("cleaned up");
 | |
| }
 | |
| 
 | |
| static int (*_inits[])(void) __initdata = {
 | |
| 	local_init,
 | |
| 	dm_target_init,
 | |
| 	dm_linear_init,
 | |
| 	dm_stripe_init,
 | |
| 	dm_io_init,
 | |
| 	dm_kcopyd_init,
 | |
| 	dm_interface_init,
 | |
| 	dm_statistics_init,
 | |
| };
 | |
| 
 | |
| static void (*_exits[])(void) = {
 | |
| 	local_exit,
 | |
| 	dm_target_exit,
 | |
| 	dm_linear_exit,
 | |
| 	dm_stripe_exit,
 | |
| 	dm_io_exit,
 | |
| 	dm_kcopyd_exit,
 | |
| 	dm_interface_exit,
 | |
| 	dm_statistics_exit,
 | |
| };
 | |
| 
 | |
| static int __init dm_init(void)
 | |
| {
 | |
| 	const int count = ARRAY_SIZE(_inits);
 | |
| 	int r, i;
 | |
| 
 | |
| #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
 | |
| 	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
 | |
| 	       " Duplicate IMA measurements will not be recorded in the IMA log.");
 | |
| #endif
 | |
| 
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		r = _inits[i]();
 | |
| 		if (r)
 | |
| 			goto bad;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| bad:
 | |
| 	while (i--)
 | |
| 		_exits[i]();
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void __exit dm_exit(void)
 | |
| {
 | |
| 	int i = ARRAY_SIZE(_exits);
 | |
| 
 | |
| 	while (i--)
 | |
| 		_exits[i]();
 | |
| 
 | |
| 	/*
 | |
| 	 * Should be empty by this point.
 | |
| 	 */
 | |
| 	idr_destroy(&_minor_idr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Block device functions
 | |
|  */
 | |
| int dm_deleting_md(struct mapped_device *md)
 | |
| {
 | |
| 	return test_bit(DMF_DELETING, &md->flags);
 | |
| }
 | |
| 
 | |
| static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
 | |
| {
 | |
| 	struct mapped_device *md;
 | |
| 
 | |
| 	spin_lock(&_minor_lock);
 | |
| 
 | |
| 	md = disk->private_data;
 | |
| 	if (!md)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (test_bit(DMF_FREEING, &md->flags) ||
 | |
| 	    dm_deleting_md(md)) {
 | |
| 		md = NULL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	dm_get(md);
 | |
| 	atomic_inc(&md->open_count);
 | |
| out:
 | |
| 	spin_unlock(&_minor_lock);
 | |
| 
 | |
| 	return md ? 0 : -ENXIO;
 | |
| }
 | |
| 
 | |
| static void dm_blk_close(struct gendisk *disk)
 | |
| {
 | |
| 	struct mapped_device *md;
 | |
| 
 | |
| 	spin_lock(&_minor_lock);
 | |
| 
 | |
| 	md = disk->private_data;
 | |
| 	if (WARN_ON(!md))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (atomic_dec_and_test(&md->open_count) &&
 | |
| 	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 | |
| 		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 | |
| 
 | |
| 	dm_put(md);
 | |
| out:
 | |
| 	spin_unlock(&_minor_lock);
 | |
| }
 | |
| 
 | |
| int dm_open_count(struct mapped_device *md)
 | |
| {
 | |
| 	return atomic_read(&md->open_count);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Guarantees nothing is using the device before it's deleted.
 | |
|  */
 | |
| int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 | |
| {
 | |
| 	int r = 0;
 | |
| 
 | |
| 	spin_lock(&_minor_lock);
 | |
| 
 | |
| 	if (dm_open_count(md)) {
 | |
| 		r = -EBUSY;
 | |
| 		if (mark_deferred)
 | |
| 			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 | |
| 	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 | |
| 		r = -EEXIST;
 | |
| 	else
 | |
| 		set_bit(DMF_DELETING, &md->flags);
 | |
| 
 | |
| 	spin_unlock(&_minor_lock);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| int dm_cancel_deferred_remove(struct mapped_device *md)
 | |
| {
 | |
| 	int r = 0;
 | |
| 
 | |
| 	spin_lock(&_minor_lock);
 | |
| 
 | |
| 	if (test_bit(DMF_DELETING, &md->flags))
 | |
| 		r = -EBUSY;
 | |
| 	else
 | |
| 		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 | |
| 
 | |
| 	spin_unlock(&_minor_lock);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void do_deferred_remove(struct work_struct *w)
 | |
| {
 | |
| 	dm_deferred_remove();
 | |
| }
 | |
| 
 | |
| static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 | |
| {
 | |
| 	struct mapped_device *md = bdev->bd_disk->private_data;
 | |
| 
 | |
| 	return dm_get_geometry(md, geo);
 | |
| }
 | |
| 
 | |
| static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 | |
| 			    struct block_device **bdev, unsigned int cmd,
 | |
| 			    unsigned long arg, bool *forward)
 | |
| {
 | |
| 	struct dm_target *ti;
 | |
| 	struct dm_table *map;
 | |
| 	int r;
 | |
| 
 | |
| retry:
 | |
| 	r = -ENOTTY;
 | |
| 	map = dm_get_live_table(md, srcu_idx);
 | |
| 	if (!map || !dm_table_get_size(map))
 | |
| 		return r;
 | |
| 
 | |
| 	/* We only support devices that have a single target */
 | |
| 	if (map->num_targets != 1)
 | |
| 		return r;
 | |
| 
 | |
| 	ti = dm_table_get_target(map, 0);
 | |
| 	if (!ti->type->prepare_ioctl)
 | |
| 		return r;
 | |
| 
 | |
| 	if (dm_suspended_md(md))
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	r = ti->type->prepare_ioctl(ti, bdev, cmd, arg, forward);
 | |
| 	if (r == -ENOTCONN && *forward && !fatal_signal_pending(current)) {
 | |
| 		dm_put_live_table(md, *srcu_idx);
 | |
| 		fsleep(10000);
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 | |
| {
 | |
| 	dm_put_live_table(md, srcu_idx);
 | |
| }
 | |
| 
 | |
| static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
 | |
| 			unsigned int cmd, unsigned long arg)
 | |
| {
 | |
| 	struct mapped_device *md = bdev->bd_disk->private_data;
 | |
| 	int r, srcu_idx;
 | |
| 	bool forward = true;
 | |
| 
 | |
| 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev, cmd, arg, &forward);
 | |
| 	if (!forward || r < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (r > 0) {
 | |
| 		/*
 | |
| 		 * Target determined this ioctl is being issued against a
 | |
| 		 * subset of the parent bdev; require extra privileges.
 | |
| 		 */
 | |
| 		if (!capable(CAP_SYS_RAWIO)) {
 | |
| 			DMDEBUG_LIMIT(
 | |
| 	"%s: sending ioctl %x to DM device without required privilege.",
 | |
| 				current->comm, cmd);
 | |
| 			r = -ENOIOCTLCMD;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!bdev->bd_disk->fops->ioctl)
 | |
| 		r = -ENOTTY;
 | |
| 	else
 | |
| 		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
 | |
| out:
 | |
| 	dm_unprepare_ioctl(md, srcu_idx);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| u64 dm_start_time_ns_from_clone(struct bio *bio)
 | |
| {
 | |
| 	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
 | |
| 
 | |
| static inline bool bio_is_flush_with_data(struct bio *bio)
 | |
| {
 | |
| 	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
 | |
| }
 | |
| 
 | |
| static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
 | |
| {
 | |
| 	/*
 | |
| 	 * If REQ_PREFLUSH set, don't account payload, it will be
 | |
| 	 * submitted (and accounted) after this flush completes.
 | |
| 	 */
 | |
| 	if (bio_is_flush_with_data(bio))
 | |
| 		return 0;
 | |
| 	if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
 | |
| 		return io->sectors;
 | |
| 	return bio_sectors(bio);
 | |
| }
 | |
| 
 | |
| static void dm_io_acct(struct dm_io *io, bool end)
 | |
| {
 | |
| 	struct bio *bio = io->orig_bio;
 | |
| 
 | |
| 	if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
 | |
| 		if (!end)
 | |
| 			bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
 | |
| 					   io->start_time);
 | |
| 		else
 | |
| 			bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
 | |
| 					 dm_io_sectors(io, bio),
 | |
| 					 io->start_time);
 | |
| 	}
 | |
| 
 | |
| 	if (static_branch_unlikely(&stats_enabled) &&
 | |
| 	    unlikely(dm_stats_used(&io->md->stats))) {
 | |
| 		sector_t sector;
 | |
| 
 | |
| 		if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
 | |
| 			sector = bio_end_sector(bio) - io->sector_offset;
 | |
| 		else
 | |
| 			sector = bio->bi_iter.bi_sector;
 | |
| 
 | |
| 		dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
 | |
| 				    sector, dm_io_sectors(io, bio),
 | |
| 				    end, io->start_time, &io->stats_aux);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __dm_start_io_acct(struct dm_io *io)
 | |
| {
 | |
| 	dm_io_acct(io, false);
 | |
| }
 | |
| 
 | |
| static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
 | |
| {
 | |
| 	/*
 | |
| 	 * Ensure IO accounting is only ever started once.
 | |
| 	 */
 | |
| 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
 | |
| 		return;
 | |
| 
 | |
| 	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
 | |
| 	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
 | |
| 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
 | |
| 	} else {
 | |
| 		unsigned long flags;
 | |
| 		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
 | |
| 		spin_lock_irqsave(&io->lock, flags);
 | |
| 		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
 | |
| 			spin_unlock_irqrestore(&io->lock, flags);
 | |
| 			return;
 | |
| 		}
 | |
| 		dm_io_set_flag(io, DM_IO_ACCOUNTED);
 | |
| 		spin_unlock_irqrestore(&io->lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	__dm_start_io_acct(io);
 | |
| }
 | |
| 
 | |
| static void dm_end_io_acct(struct dm_io *io)
 | |
| {
 | |
| 	dm_io_acct(io, true);
 | |
| }
 | |
| 
 | |
| static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask)
 | |
| {
 | |
| 	struct dm_io *io;
 | |
| 	struct dm_target_io *tio;
 | |
| 	struct bio *clone;
 | |
| 
 | |
| 	clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs);
 | |
| 	if (unlikely(!clone))
 | |
| 		return NULL;
 | |
| 	tio = clone_to_tio(clone);
 | |
| 	tio->flags = 0;
 | |
| 	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
 | |
| 	tio->io = NULL;
 | |
| 
 | |
| 	io = container_of(tio, struct dm_io, tio);
 | |
| 	io->magic = DM_IO_MAGIC;
 | |
| 	io->status = BLK_STS_OK;
 | |
| 
 | |
| 	/* one ref is for submission, the other is for completion */
 | |
| 	atomic_set(&io->io_count, 2);
 | |
| 	this_cpu_inc(*md->pending_io);
 | |
| 	io->orig_bio = bio;
 | |
| 	io->md = md;
 | |
| 	spin_lock_init(&io->lock);
 | |
| 	io->start_time = jiffies;
 | |
| 	io->flags = 0;
 | |
| 	if (blk_queue_io_stat(md->queue))
 | |
| 		dm_io_set_flag(io, DM_IO_BLK_STAT);
 | |
| 
 | |
| 	if (static_branch_unlikely(&stats_enabled) &&
 | |
| 	    unlikely(dm_stats_used(&md->stats)))
 | |
| 		dm_stats_record_start(&md->stats, &io->stats_aux);
 | |
| 
 | |
| 	return io;
 | |
| }
 | |
| 
 | |
| static void free_io(struct dm_io *io)
 | |
| {
 | |
| 	bio_put(&io->tio.clone);
 | |
| }
 | |
| 
 | |
| static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 | |
| 			     unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
 | |
| {
 | |
| 	struct mapped_device *md = ci->io->md;
 | |
| 	struct dm_target_io *tio;
 | |
| 	struct bio *clone;
 | |
| 
 | |
| 	if (!ci->io->tio.io) {
 | |
| 		/* the dm_target_io embedded in ci->io is available */
 | |
| 		tio = &ci->io->tio;
 | |
| 		/* alloc_io() already initialized embedded clone */
 | |
| 		clone = &tio->clone;
 | |
| 	} else {
 | |
| 		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
 | |
| 					&md->mempools->bs);
 | |
| 		if (!clone)
 | |
| 			return NULL;
 | |
| 
 | |
| 		/* REQ_DM_POLL_LIST shouldn't be inherited */
 | |
| 		clone->bi_opf &= ~REQ_DM_POLL_LIST;
 | |
| 
 | |
| 		tio = clone_to_tio(clone);
 | |
| 		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
 | |
| 	}
 | |
| 
 | |
| 	tio->magic = DM_TIO_MAGIC;
 | |
| 	tio->io = ci->io;
 | |
| 	tio->ti = ti;
 | |
| 	tio->target_bio_nr = target_bio_nr;
 | |
| 	tio->len_ptr = len;
 | |
| 	tio->old_sector = 0;
 | |
| 
 | |
| 	/* Set default bdev, but target must bio_set_dev() before issuing IO */
 | |
| 	clone->bi_bdev = md->disk->part0;
 | |
| 	if (likely(ti != NULL) && unlikely(ti->needs_bio_set_dev))
 | |
| 		bio_set_dev(clone, md->disk->part0);
 | |
| 
 | |
| 	if (len) {
 | |
| 		clone->bi_iter.bi_size = to_bytes(*len);
 | |
| 		if (bio_integrity(clone))
 | |
| 			bio_integrity_trim(clone);
 | |
| 	}
 | |
| 
 | |
| 	return clone;
 | |
| }
 | |
| 
 | |
| static void free_tio(struct bio *clone)
 | |
| {
 | |
| 	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
 | |
| 		return;
 | |
| 	bio_put(clone);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add the bio to the list of deferred io.
 | |
|  */
 | |
| static void queue_io(struct mapped_device *md, struct bio *bio)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&md->deferred_lock, flags);
 | |
| 	bio_list_add(&md->deferred, bio);
 | |
| 	spin_unlock_irqrestore(&md->deferred_lock, flags);
 | |
| 	queue_work(md->wq, &md->work);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Everyone (including functions in this file), should use this
 | |
|  * function to access the md->map field, and make sure they call
 | |
|  * dm_put_live_table() when finished.
 | |
|  */
 | |
| struct dm_table *dm_get_live_table(struct mapped_device *md,
 | |
| 				   int *srcu_idx) __acquires(md->io_barrier)
 | |
| {
 | |
| 	*srcu_idx = srcu_read_lock(&md->io_barrier);
 | |
| 
 | |
| 	return srcu_dereference(md->map, &md->io_barrier);
 | |
| }
 | |
| 
 | |
| void dm_put_live_table(struct mapped_device *md,
 | |
| 		       int srcu_idx) __releases(md->io_barrier)
 | |
| {
 | |
| 	srcu_read_unlock(&md->io_barrier, srcu_idx);
 | |
| }
 | |
| 
 | |
| void dm_sync_table(struct mapped_device *md)
 | |
| {
 | |
| 	synchronize_srcu(&md->io_barrier);
 | |
| 	synchronize_rcu_expedited();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A fast alternative to dm_get_live_table/dm_put_live_table.
 | |
|  * The caller must not block between these two functions.
 | |
|  */
 | |
| static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 | |
| {
 | |
| 	rcu_read_lock();
 | |
| 	return rcu_dereference(md->map);
 | |
| }
 | |
| 
 | |
| static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 | |
| {
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| 
 | |
| static char *_dm_claim_ptr = "I belong to device-mapper";
 | |
| 
 | |
| /*
 | |
|  * Open a table device so we can use it as a map destination.
 | |
|  */
 | |
| static struct table_device *open_table_device(struct mapped_device *md,
 | |
| 		dev_t dev, blk_mode_t mode)
 | |
| {
 | |
| 	struct table_device *td;
 | |
| 	struct file *bdev_file;
 | |
| 	struct block_device *bdev;
 | |
| 	u64 part_off;
 | |
| 	int r;
 | |
| 
 | |
| 	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 | |
| 	if (!td)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	refcount_set(&td->count, 1);
 | |
| 
 | |
| 	bdev_file = bdev_file_open_by_dev(dev, mode, _dm_claim_ptr, NULL);
 | |
| 	if (IS_ERR(bdev_file)) {
 | |
| 		r = PTR_ERR(bdev_file);
 | |
| 		goto out_free_td;
 | |
| 	}
 | |
| 
 | |
| 	bdev = file_bdev(bdev_file);
 | |
| 
 | |
| 	/*
 | |
| 	 * We can be called before the dm disk is added.  In that case we can't
 | |
| 	 * register the holder relation here.  It will be done once add_disk was
 | |
| 	 * called.
 | |
| 	 */
 | |
| 	if (md->disk->slave_dir) {
 | |
| 		r = bd_link_disk_holder(bdev, md->disk);
 | |
| 		if (r)
 | |
| 			goto out_blkdev_put;
 | |
| 	}
 | |
| 
 | |
| 	td->dm_dev.mode = mode;
 | |
| 	td->dm_dev.bdev = bdev;
 | |
| 	td->dm_dev.bdev_file = bdev_file;
 | |
| 	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off,
 | |
| 						NULL, NULL);
 | |
| 	format_dev_t(td->dm_dev.name, dev);
 | |
| 	list_add(&td->list, &md->table_devices);
 | |
| 	return td;
 | |
| 
 | |
| out_blkdev_put:
 | |
| 	__fput_sync(bdev_file);
 | |
| out_free_td:
 | |
| 	kfree(td);
 | |
| 	return ERR_PTR(r);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Close a table device that we've been using.
 | |
|  */
 | |
| static void close_table_device(struct table_device *td, struct mapped_device *md)
 | |
| {
 | |
| 	if (md->disk->slave_dir)
 | |
| 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
 | |
| 
 | |
| 	/* Leverage async fput() if DMF_DEFERRED_REMOVE set */
 | |
| 	if (unlikely(test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 | |
| 		fput(td->dm_dev.bdev_file);
 | |
| 	else
 | |
| 		__fput_sync(td->dm_dev.bdev_file);
 | |
| 
 | |
| 	put_dax(td->dm_dev.dax_dev);
 | |
| 	list_del(&td->list);
 | |
| 	kfree(td);
 | |
| }
 | |
| 
 | |
| static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 | |
| 					      blk_mode_t mode)
 | |
| {
 | |
| 	struct table_device *td;
 | |
| 
 | |
| 	list_for_each_entry(td, l, list)
 | |
| 		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 | |
| 			return td;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
 | |
| 			struct dm_dev **result)
 | |
| {
 | |
| 	struct table_device *td;
 | |
| 
 | |
| 	mutex_lock(&md->table_devices_lock);
 | |
| 	td = find_table_device(&md->table_devices, dev, mode);
 | |
| 	if (!td) {
 | |
| 		td = open_table_device(md, dev, mode);
 | |
| 		if (IS_ERR(td)) {
 | |
| 			mutex_unlock(&md->table_devices_lock);
 | |
| 			return PTR_ERR(td);
 | |
| 		}
 | |
| 	} else {
 | |
| 		refcount_inc(&td->count);
 | |
| 	}
 | |
| 	mutex_unlock(&md->table_devices_lock);
 | |
| 
 | |
| 	*result = &td->dm_dev;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 | |
| {
 | |
| 	struct table_device *td = container_of(d, struct table_device, dm_dev);
 | |
| 
 | |
| 	mutex_lock(&md->table_devices_lock);
 | |
| 	if (refcount_dec_and_test(&td->count))
 | |
| 		close_table_device(td, md);
 | |
| 	mutex_unlock(&md->table_devices_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get the geometry associated with a dm device
 | |
|  */
 | |
| int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 | |
| {
 | |
| 	*geo = md->geometry;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set the geometry of a device.
 | |
|  */
 | |
| int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 | |
| {
 | |
| 	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 | |
| 
 | |
| 	if (geo->start > sz) {
 | |
| 		DMERR("Start sector is beyond the geometry limits.");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	md->geometry = *geo;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __noflush_suspending(struct mapped_device *md)
 | |
| {
 | |
| 	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 | |
| }
 | |
| 
 | |
| static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
 | |
| {
 | |
| 	struct mapped_device *md = io->md;
 | |
| 
 | |
| 	if (first_stage) {
 | |
| 		struct dm_io *next = md->requeue_list;
 | |
| 
 | |
| 		md->requeue_list = io;
 | |
| 		io->next = next;
 | |
| 	} else {
 | |
| 		bio_list_add_head(&md->deferred, io->orig_bio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
 | |
| {
 | |
| 	if (first_stage)
 | |
| 		queue_work(md->wq, &md->requeue_work);
 | |
| 	else
 | |
| 		queue_work(md->wq, &md->work);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return true if the dm_io's original bio is requeued.
 | |
|  * io->status is updated with error if requeue disallowed.
 | |
|  */
 | |
| static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
 | |
| {
 | |
| 	struct bio *bio = io->orig_bio;
 | |
| 	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
 | |
| 	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
 | |
| 				     (bio->bi_opf & REQ_POLLED));
 | |
| 	struct mapped_device *md = io->md;
 | |
| 	bool requeued = false;
 | |
| 
 | |
| 	if (handle_requeue || handle_polled_eagain) {
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		if (bio->bi_opf & REQ_POLLED) {
 | |
| 			/*
 | |
| 			 * Upper layer won't help us poll split bio
 | |
| 			 * (io->orig_bio may only reflect a subset of the
 | |
| 			 * pre-split original) so clear REQ_POLLED.
 | |
| 			 */
 | |
| 			bio_clear_polled(bio);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Target requested pushing back the I/O or
 | |
| 		 * polled IO hit BLK_STS_AGAIN.
 | |
| 		 */
 | |
| 		spin_lock_irqsave(&md->deferred_lock, flags);
 | |
| 		if ((__noflush_suspending(md) &&
 | |
| 		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
 | |
| 		    handle_polled_eagain || first_stage) {
 | |
| 			dm_requeue_add_io(io, first_stage);
 | |
| 			requeued = true;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * noflush suspend was interrupted or this is
 | |
| 			 * a write to a zoned target.
 | |
| 			 */
 | |
| 			io->status = BLK_STS_IOERR;
 | |
| 		}
 | |
| 		spin_unlock_irqrestore(&md->deferred_lock, flags);
 | |
| 	}
 | |
| 
 | |
| 	if (requeued)
 | |
| 		dm_kick_requeue(md, first_stage);
 | |
| 
 | |
| 	return requeued;
 | |
| }
 | |
| 
 | |
| static void __dm_io_complete(struct dm_io *io, bool first_stage)
 | |
| {
 | |
| 	struct bio *bio = io->orig_bio;
 | |
| 	struct mapped_device *md = io->md;
 | |
| 	blk_status_t io_error;
 | |
| 	bool requeued;
 | |
| 
 | |
| 	requeued = dm_handle_requeue(io, first_stage);
 | |
| 	if (requeued && first_stage)
 | |
| 		return;
 | |
| 
 | |
| 	io_error = io->status;
 | |
| 	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
 | |
| 		dm_end_io_acct(io);
 | |
| 	else if (!io_error) {
 | |
| 		/*
 | |
| 		 * Must handle target that DM_MAPIO_SUBMITTED only to
 | |
| 		 * then bio_endio() rather than dm_submit_bio_remap()
 | |
| 		 */
 | |
| 		__dm_start_io_acct(io);
 | |
| 		dm_end_io_acct(io);
 | |
| 	}
 | |
| 	free_io(io);
 | |
| 	smp_wmb();
 | |
| 	this_cpu_dec(*md->pending_io);
 | |
| 
 | |
| 	/* nudge anyone waiting on suspend queue */
 | |
| 	if (unlikely(wq_has_sleeper(&md->wait)))
 | |
| 		wake_up(&md->wait);
 | |
| 
 | |
| 	/* Return early if the original bio was requeued */
 | |
| 	if (requeued)
 | |
| 		return;
 | |
| 
 | |
| 	if (bio_is_flush_with_data(bio)) {
 | |
| 		/*
 | |
| 		 * Preflush done for flush with data, reissue
 | |
| 		 * without REQ_PREFLUSH.
 | |
| 		 */
 | |
| 		bio->bi_opf &= ~REQ_PREFLUSH;
 | |
| 		queue_io(md, bio);
 | |
| 	} else {
 | |
| 		/* done with normal IO or empty flush */
 | |
| 		if (io_error)
 | |
| 			bio->bi_status = io_error;
 | |
| 		bio_endio(bio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void dm_wq_requeue_work(struct work_struct *work)
 | |
| {
 | |
| 	struct mapped_device *md = container_of(work, struct mapped_device,
 | |
| 						requeue_work);
 | |
| 	unsigned long flags;
 | |
| 	struct dm_io *io;
 | |
| 
 | |
| 	/* reuse deferred lock to simplify dm_handle_requeue */
 | |
| 	spin_lock_irqsave(&md->deferred_lock, flags);
 | |
| 	io = md->requeue_list;
 | |
| 	md->requeue_list = NULL;
 | |
| 	spin_unlock_irqrestore(&md->deferred_lock, flags);
 | |
| 
 | |
| 	while (io) {
 | |
| 		struct dm_io *next = io->next;
 | |
| 
 | |
| 		dm_io_rewind(io, &md->disk->bio_split);
 | |
| 
 | |
| 		io->next = NULL;
 | |
| 		__dm_io_complete(io, false);
 | |
| 		io = next;
 | |
| 		cond_resched();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Two staged requeue:
 | |
|  *
 | |
|  * 1) io->orig_bio points to the real original bio, and the part mapped to
 | |
|  *    this io must be requeued, instead of other parts of the original bio.
 | |
|  *
 | |
|  * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
 | |
|  */
 | |
| static void dm_io_complete(struct dm_io *io)
 | |
| {
 | |
| 	bool first_requeue;
 | |
| 
 | |
| 	/*
 | |
| 	 * Only dm_io that has been split needs two stage requeue, otherwise
 | |
| 	 * we may run into long bio clone chain during suspend and OOM could
 | |
| 	 * be triggered.
 | |
| 	 *
 | |
| 	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
 | |
| 	 * also aren't handled via the first stage requeue.
 | |
| 	 */
 | |
| 	if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
 | |
| 		first_requeue = true;
 | |
| 	else
 | |
| 		first_requeue = false;
 | |
| 
 | |
| 	__dm_io_complete(io, first_requeue);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Decrements the number of outstanding ios that a bio has been
 | |
|  * cloned into, completing the original io if necc.
 | |
|  */
 | |
| static inline void __dm_io_dec_pending(struct dm_io *io)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&io->io_count))
 | |
| 		dm_io_complete(io);
 | |
| }
 | |
| 
 | |
| static void dm_io_set_error(struct dm_io *io, blk_status_t error)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* Push-back supersedes any I/O errors */
 | |
| 	spin_lock_irqsave(&io->lock, flags);
 | |
| 	if (!(io->status == BLK_STS_DM_REQUEUE &&
 | |
| 	      __noflush_suspending(io->md))) {
 | |
| 		io->status = error;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&io->lock, flags);
 | |
| }
 | |
| 
 | |
| static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
 | |
| {
 | |
| 	if (unlikely(error))
 | |
| 		dm_io_set_error(io, error);
 | |
| 
 | |
| 	__dm_io_dec_pending(io);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The queue_limits are only valid as long as you have a reference
 | |
|  * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
 | |
|  */
 | |
| static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
 | |
| {
 | |
| 	return &md->queue->limits;
 | |
| }
 | |
| 
 | |
| void disable_discard(struct mapped_device *md)
 | |
| {
 | |
| 	struct queue_limits *limits = dm_get_queue_limits(md);
 | |
| 
 | |
| 	/* device doesn't really support DISCARD, disable it */
 | |
| 	limits->max_hw_discard_sectors = 0;
 | |
| }
 | |
| 
 | |
| void disable_write_zeroes(struct mapped_device *md)
 | |
| {
 | |
| 	struct queue_limits *limits = dm_get_queue_limits(md);
 | |
| 
 | |
| 	/* device doesn't really support WRITE ZEROES, disable it */
 | |
| 	limits->max_write_zeroes_sectors = 0;
 | |
| }
 | |
| 
 | |
| static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
 | |
| {
 | |
| 	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
 | |
| }
 | |
| 
 | |
| static void clone_endio(struct bio *bio)
 | |
| {
 | |
| 	blk_status_t error = bio->bi_status;
 | |
| 	struct dm_target_io *tio = clone_to_tio(bio);
 | |
| 	struct dm_target *ti = tio->ti;
 | |
| 	dm_endio_fn endio = likely(ti != NULL) ? ti->type->end_io : NULL;
 | |
| 	struct dm_io *io = tio->io;
 | |
| 	struct mapped_device *md = io->md;
 | |
| 
 | |
| 	if (unlikely(error == BLK_STS_TARGET)) {
 | |
| 		if (bio_op(bio) == REQ_OP_DISCARD &&
 | |
| 		    !bdev_max_discard_sectors(bio->bi_bdev))
 | |
| 			disable_discard(md);
 | |
| 		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
 | |
| 			 !bdev_write_zeroes_sectors(bio->bi_bdev))
 | |
| 			disable_write_zeroes(md);
 | |
| 	}
 | |
| 
 | |
| 	if (static_branch_unlikely(&zoned_enabled) &&
 | |
| 	    unlikely(bdev_is_zoned(bio->bi_bdev)))
 | |
| 		dm_zone_endio(io, bio);
 | |
| 
 | |
| 	if (endio) {
 | |
| 		int r = endio(ti, bio, &error);
 | |
| 
 | |
| 		switch (r) {
 | |
| 		case DM_ENDIO_REQUEUE:
 | |
| 			if (static_branch_unlikely(&zoned_enabled)) {
 | |
| 				/*
 | |
| 				 * Requeuing writes to a sequential zone of a zoned
 | |
| 				 * target will break the sequential write pattern:
 | |
| 				 * fail such IO.
 | |
| 				 */
 | |
| 				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
 | |
| 					error = BLK_STS_IOERR;
 | |
| 				else
 | |
| 					error = BLK_STS_DM_REQUEUE;
 | |
| 			} else
 | |
| 				error = BLK_STS_DM_REQUEUE;
 | |
| 			fallthrough;
 | |
| 		case DM_ENDIO_DONE:
 | |
| 			break;
 | |
| 		case DM_ENDIO_INCOMPLETE:
 | |
| 			/* The target will handle the io */
 | |
| 			return;
 | |
| 		default:
 | |
| 			DMCRIT("unimplemented target endio return value: %d", r);
 | |
| 			BUG();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (static_branch_unlikely(&swap_bios_enabled) &&
 | |
| 	    likely(ti != NULL) && unlikely(swap_bios_limit(ti, bio)))
 | |
| 		up(&md->swap_bios_semaphore);
 | |
| 
 | |
| 	free_tio(bio);
 | |
| 	dm_io_dec_pending(io, error);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return maximum size of I/O possible at the supplied sector up to the current
 | |
|  * target boundary.
 | |
|  */
 | |
| static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
 | |
| 						  sector_t target_offset)
 | |
| {
 | |
| 	return ti->len - target_offset;
 | |
| }
 | |
| 
 | |
| static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
 | |
| 			     unsigned int max_granularity,
 | |
| 			     unsigned int max_sectors)
 | |
| {
 | |
| 	sector_t target_offset = dm_target_offset(ti, sector);
 | |
| 	sector_t len = max_io_len_target_boundary(ti, target_offset);
 | |
| 
 | |
| 	/*
 | |
| 	 * Does the target need to split IO even further?
 | |
| 	 * - varied (per target) IO splitting is a tenet of DM; this
 | |
| 	 *   explains why stacked chunk_sectors based splitting via
 | |
| 	 *   bio_split_to_limits() isn't possible here.
 | |
| 	 */
 | |
| 	if (!max_granularity)
 | |
| 		return len;
 | |
| 	return min_t(sector_t, len,
 | |
| 		min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
 | |
| 		    blk_boundary_sectors_left(target_offset, max_granularity)));
 | |
| }
 | |
| 
 | |
| static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
 | |
| {
 | |
| 	return __max_io_len(ti, sector, ti->max_io_len, 0);
 | |
| }
 | |
| 
 | |
| int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
 | |
| {
 | |
| 	if (len > UINT_MAX) {
 | |
| 		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
 | |
| 		      (unsigned long long)len, UINT_MAX);
 | |
| 		ti->error = "Maximum size of target IO is too large";
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ti->max_io_len = (uint32_t) len;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
 | |
| 
 | |
| static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
 | |
| 						sector_t sector, int *srcu_idx)
 | |
| 	__acquires(md->io_barrier)
 | |
| {
 | |
| 	struct dm_table *map;
 | |
| 	struct dm_target *ti;
 | |
| 
 | |
| 	map = dm_get_live_table(md, srcu_idx);
 | |
| 	if (!map)
 | |
| 		return NULL;
 | |
| 
 | |
| 	ti = dm_table_find_target(map, sector);
 | |
| 	if (!ti)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return ti;
 | |
| }
 | |
| 
 | |
| static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
 | |
| 		long nr_pages, enum dax_access_mode mode, void **kaddr,
 | |
| 		pfn_t *pfn)
 | |
| {
 | |
| 	struct mapped_device *md = dax_get_private(dax_dev);
 | |
| 	sector_t sector = pgoff * PAGE_SECTORS;
 | |
| 	struct dm_target *ti;
 | |
| 	long len, ret = -EIO;
 | |
| 	int srcu_idx;
 | |
| 
 | |
| 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 | |
| 
 | |
| 	if (!ti)
 | |
| 		goto out;
 | |
| 	if (!ti->type->direct_access)
 | |
| 		goto out;
 | |
| 	len = max_io_len(ti, sector) / PAGE_SECTORS;
 | |
| 	if (len < 1)
 | |
| 		goto out;
 | |
| 	nr_pages = min(len, nr_pages);
 | |
| 	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
 | |
| 
 | |
|  out:
 | |
| 	dm_put_live_table(md, srcu_idx);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
 | |
| 				  size_t nr_pages)
 | |
| {
 | |
| 	struct mapped_device *md = dax_get_private(dax_dev);
 | |
| 	sector_t sector = pgoff * PAGE_SECTORS;
 | |
| 	struct dm_target *ti;
 | |
| 	int ret = -EIO;
 | |
| 	int srcu_idx;
 | |
| 
 | |
| 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 | |
| 
 | |
| 	if (!ti)
 | |
| 		goto out;
 | |
| 	if (WARN_ON(!ti->type->dax_zero_page_range)) {
 | |
| 		/*
 | |
| 		 * ->zero_page_range() is mandatory dax operation. If we are
 | |
| 		 *  here, something is wrong.
 | |
| 		 */
 | |
| 		goto out;
 | |
| 	}
 | |
| 	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
 | |
|  out:
 | |
| 	dm_put_live_table(md, srcu_idx);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
 | |
| 		void *addr, size_t bytes, struct iov_iter *i)
 | |
| {
 | |
| 	struct mapped_device *md = dax_get_private(dax_dev);
 | |
| 	sector_t sector = pgoff * PAGE_SECTORS;
 | |
| 	struct dm_target *ti;
 | |
| 	int srcu_idx;
 | |
| 	long ret = 0;
 | |
| 
 | |
| 	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 | |
| 	if (!ti || !ti->type->dax_recovery_write)
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
 | |
| out:
 | |
| 	dm_put_live_table(md, srcu_idx);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A target may call dm_accept_partial_bio only from the map routine.  It is
 | |
|  * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
 | |
|  * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
 | |
|  * __send_duplicate_bios().
 | |
|  *
 | |
|  * dm_accept_partial_bio informs the dm that the target only wants to process
 | |
|  * additional n_sectors sectors of the bio and the rest of the data should be
 | |
|  * sent in a next bio.
 | |
|  *
 | |
|  * A diagram that explains the arithmetics:
 | |
|  * +--------------------+---------------+-------+
 | |
|  * |         1          |       2       |   3   |
 | |
|  * +--------------------+---------------+-------+
 | |
|  *
 | |
|  * <-------------- *tio->len_ptr --------------->
 | |
|  *                      <----- bio_sectors ----->
 | |
|  *                      <-- n_sectors -->
 | |
|  *
 | |
|  * Region 1 was already iterated over with bio_advance or similar function.
 | |
|  *	(it may be empty if the target doesn't use bio_advance)
 | |
|  * Region 2 is the remaining bio size that the target wants to process.
 | |
|  *	(it may be empty if region 1 is non-empty, although there is no reason
 | |
|  *	 to make it empty)
 | |
|  * The target requires that region 3 is to be sent in the next bio.
 | |
|  *
 | |
|  * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
 | |
|  * the partially processed part (the sum of regions 1+2) must be the same for all
 | |
|  * copies of the bio.
 | |
|  */
 | |
| void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
 | |
| {
 | |
| 	struct dm_target_io *tio = clone_to_tio(bio);
 | |
| 	struct dm_io *io = tio->io;
 | |
| 	unsigned int bio_sectors = bio_sectors(bio);
 | |
| 
 | |
| 	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
 | |
| 	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
 | |
| 	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
 | |
| 	BUG_ON(bio_sectors > *tio->len_ptr);
 | |
| 	BUG_ON(n_sectors > bio_sectors);
 | |
| 
 | |
| 	*tio->len_ptr -= bio_sectors - n_sectors;
 | |
| 	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
 | |
| 
 | |
| 	/*
 | |
| 	 * __split_and_process_bio() may have already saved mapped part
 | |
| 	 * for accounting but it is being reduced so update accordingly.
 | |
| 	 */
 | |
| 	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
 | |
| 	io->sectors = n_sectors;
 | |
| 	io->sector_offset = bio_sectors(io->orig_bio);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
 | |
| 
 | |
| /*
 | |
|  * @clone: clone bio that DM core passed to target's .map function
 | |
|  * @tgt_clone: clone of @clone bio that target needs submitted
 | |
|  *
 | |
|  * Targets should use this interface to submit bios they take
 | |
|  * ownership of when returning DM_MAPIO_SUBMITTED.
 | |
|  *
 | |
|  * Target should also enable ti->accounts_remapped_io
 | |
|  */
 | |
| void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
 | |
| {
 | |
| 	struct dm_target_io *tio = clone_to_tio(clone);
 | |
| 	struct dm_io *io = tio->io;
 | |
| 
 | |
| 	/* establish bio that will get submitted */
 | |
| 	if (!tgt_clone)
 | |
| 		tgt_clone = clone;
 | |
| 
 | |
| 	/*
 | |
| 	 * Account io->origin_bio to DM dev on behalf of target
 | |
| 	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
 | |
| 	 */
 | |
| 	dm_start_io_acct(io, clone);
 | |
| 
 | |
| 	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
 | |
| 			      tio->old_sector);
 | |
| 	submit_bio_noacct(tgt_clone);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
 | |
| 
 | |
| static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
 | |
| {
 | |
| 	mutex_lock(&md->swap_bios_lock);
 | |
| 	while (latch < md->swap_bios) {
 | |
| 		cond_resched();
 | |
| 		down(&md->swap_bios_semaphore);
 | |
| 		md->swap_bios--;
 | |
| 	}
 | |
| 	while (latch > md->swap_bios) {
 | |
| 		cond_resched();
 | |
| 		up(&md->swap_bios_semaphore);
 | |
| 		md->swap_bios++;
 | |
| 	}
 | |
| 	mutex_unlock(&md->swap_bios_lock);
 | |
| }
 | |
| 
 | |
| static void __map_bio(struct bio *clone)
 | |
| {
 | |
| 	struct dm_target_io *tio = clone_to_tio(clone);
 | |
| 	struct dm_target *ti = tio->ti;
 | |
| 	struct dm_io *io = tio->io;
 | |
| 	struct mapped_device *md = io->md;
 | |
| 	int r;
 | |
| 
 | |
| 	clone->bi_end_io = clone_endio;
 | |
| 
 | |
| 	/*
 | |
| 	 * Map the clone.
 | |
| 	 */
 | |
| 	tio->old_sector = clone->bi_iter.bi_sector;
 | |
| 
 | |
| 	if (static_branch_unlikely(&swap_bios_enabled) &&
 | |
| 	    unlikely(swap_bios_limit(ti, clone))) {
 | |
| 		int latch = get_swap_bios();
 | |
| 
 | |
| 		if (unlikely(latch != md->swap_bios))
 | |
| 			__set_swap_bios_limit(md, latch);
 | |
| 		down(&md->swap_bios_semaphore);
 | |
| 	}
 | |
| 
 | |
| 	if (likely(ti->type->map == linear_map))
 | |
| 		r = linear_map(ti, clone);
 | |
| 	else if (ti->type->map == stripe_map)
 | |
| 		r = stripe_map(ti, clone);
 | |
| 	else
 | |
| 		r = ti->type->map(ti, clone);
 | |
| 
 | |
| 	switch (r) {
 | |
| 	case DM_MAPIO_SUBMITTED:
 | |
| 		/* target has assumed ownership of this io */
 | |
| 		if (!ti->accounts_remapped_io)
 | |
| 			dm_start_io_acct(io, clone);
 | |
| 		break;
 | |
| 	case DM_MAPIO_REMAPPED:
 | |
| 		dm_submit_bio_remap(clone, NULL);
 | |
| 		break;
 | |
| 	case DM_MAPIO_KILL:
 | |
| 	case DM_MAPIO_REQUEUE:
 | |
| 		if (static_branch_unlikely(&swap_bios_enabled) &&
 | |
| 		    unlikely(swap_bios_limit(ti, clone)))
 | |
| 			up(&md->swap_bios_semaphore);
 | |
| 		free_tio(clone);
 | |
| 		if (r == DM_MAPIO_KILL)
 | |
| 			dm_io_dec_pending(io, BLK_STS_IOERR);
 | |
| 		else
 | |
| 			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
 | |
| 		break;
 | |
| 	default:
 | |
| 		DMCRIT("unimplemented target map return value: %d", r);
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void setup_split_accounting(struct clone_info *ci, unsigned int len)
 | |
| {
 | |
| 	struct dm_io *io = ci->io;
 | |
| 
 | |
| 	if (ci->sector_count > len) {
 | |
| 		/*
 | |
| 		 * Split needed, save the mapped part for accounting.
 | |
| 		 * NOTE: dm_accept_partial_bio() will update accordingly.
 | |
| 		 */
 | |
| 		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
 | |
| 		io->sectors = len;
 | |
| 		io->sector_offset = bio_sectors(ci->bio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
 | |
| 				struct dm_target *ti, unsigned int num_bios,
 | |
| 				unsigned *len, gfp_t gfp_flag)
 | |
| {
 | |
| 	struct bio *bio;
 | |
| 	int try = (gfp_flag & GFP_NOWAIT) ? 0 : 1;
 | |
| 
 | |
| 	for (; try < 2; try++) {
 | |
| 		int bio_nr;
 | |
| 
 | |
| 		if (try && num_bios > 1)
 | |
| 			mutex_lock(&ci->io->md->table_devices_lock);
 | |
| 		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
 | |
| 			bio = alloc_tio(ci, ti, bio_nr, len,
 | |
| 					try ? GFP_NOIO : GFP_NOWAIT);
 | |
| 			if (!bio)
 | |
| 				break;
 | |
| 
 | |
| 			bio_list_add(blist, bio);
 | |
| 		}
 | |
| 		if (try && num_bios > 1)
 | |
| 			mutex_unlock(&ci->io->md->table_devices_lock);
 | |
| 		if (bio_nr == num_bios)
 | |
| 			return;
 | |
| 
 | |
| 		while ((bio = bio_list_pop(blist)))
 | |
| 			free_tio(bio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
 | |
| 					  unsigned int num_bios, unsigned int *len,
 | |
| 					  gfp_t gfp_flag)
 | |
| {
 | |
| 	struct bio_list blist = BIO_EMPTY_LIST;
 | |
| 	struct bio *clone;
 | |
| 	unsigned int ret = 0;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */
 | |
| 		return 0;
 | |
| 
 | |
| 	/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
 | |
| 	if (len)
 | |
| 		setup_split_accounting(ci, *len);
 | |
| 
 | |
| 	/*
 | |
| 	 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently
 | |
| 	 * support allocating using GFP_NOWAIT with GFP_NOIO fallback.
 | |
| 	 */
 | |
| 	alloc_multiple_bios(&blist, ci, ti, num_bios, len, gfp_flag);
 | |
| 	while ((clone = bio_list_pop(&blist))) {
 | |
| 		if (num_bios > 1)
 | |
| 			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
 | |
| 		__map_bio(clone);
 | |
| 		ret += 1;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void __send_empty_flush(struct clone_info *ci)
 | |
| {
 | |
| 	struct dm_table *t = ci->map;
 | |
| 	struct bio flush_bio;
 | |
| 
 | |
| 	/*
 | |
| 	 * Use an on-stack bio for this, it's safe since we don't
 | |
| 	 * need to reference it after submit. It's just used as
 | |
| 	 * the basis for the clone(s).
 | |
| 	 */
 | |
| 	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
 | |
| 		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
 | |
| 
 | |
| 	ci->bio = &flush_bio;
 | |
| 	ci->sector_count = 0;
 | |
| 	ci->io->tio.clone.bi_iter.bi_size = 0;
 | |
| 
 | |
| 	if (!t->flush_bypasses_map) {
 | |
| 		for (unsigned int i = 0; i < t->num_targets; i++) {
 | |
| 			unsigned int bios;
 | |
| 			struct dm_target *ti = dm_table_get_target(t, i);
 | |
| 
 | |
| 			if (unlikely(ti->num_flush_bios == 0))
 | |
| 				continue;
 | |
| 
 | |
| 			atomic_add(ti->num_flush_bios, &ci->io->io_count);
 | |
| 			bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios,
 | |
| 						     NULL, GFP_NOWAIT);
 | |
| 			atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Note that there's no need to grab t->devices_lock here
 | |
| 		 * because the targets that support flush optimization don't
 | |
| 		 * modify the list of devices.
 | |
| 		 */
 | |
| 		struct list_head *devices = dm_table_get_devices(t);
 | |
| 		unsigned int len = 0;
 | |
| 		struct dm_dev_internal *dd;
 | |
| 		list_for_each_entry(dd, devices, list) {
 | |
| 			struct bio *clone;
 | |
| 			/*
 | |
| 			 * Note that the structure dm_target_io is not
 | |
| 			 * associated with any target (because the device may be
 | |
| 			 * used by multiple targets), so we set tio->ti = NULL.
 | |
| 			 * We must check for NULL in the I/O processing path, to
 | |
| 			 * avoid NULL pointer dereference.
 | |
| 			 */
 | |
| 			clone = alloc_tio(ci, NULL, 0, &len, GFP_NOIO);
 | |
| 			atomic_add(1, &ci->io->io_count);
 | |
| 			bio_set_dev(clone, dd->dm_dev->bdev);
 | |
| 			clone->bi_end_io = clone_endio;
 | |
| 			dm_submit_bio_remap(clone, NULL);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * alloc_io() takes one extra reference for submission, so the
 | |
| 	 * reference won't reach 0 without the following subtraction
 | |
| 	 */
 | |
| 	atomic_sub(1, &ci->io->io_count);
 | |
| 
 | |
| 	bio_uninit(ci->bio);
 | |
| }
 | |
| 
 | |
| static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti,
 | |
| 			       unsigned int num_bios, unsigned int max_granularity,
 | |
| 			       unsigned int max_sectors)
 | |
| {
 | |
| 	unsigned int len, bios;
 | |
| 
 | |
| 	len = min_t(sector_t, ci->sector_count,
 | |
| 		    __max_io_len(ti, ci->sector, max_granularity, max_sectors));
 | |
| 
 | |
| 	atomic_add(num_bios, &ci->io->io_count);
 | |
| 	bios = __send_duplicate_bios(ci, ti, num_bios, &len, GFP_NOIO);
 | |
| 	/*
 | |
| 	 * alloc_io() takes one extra reference for submission, so the
 | |
| 	 * reference won't reach 0 without the following (+1) subtraction
 | |
| 	 */
 | |
| 	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
 | |
| 
 | |
| 	ci->sector += len;
 | |
| 	ci->sector_count -= len;
 | |
| }
 | |
| 
 | |
| static bool is_abnormal_io(struct bio *bio)
 | |
| {
 | |
| 	switch (bio_op(bio)) {
 | |
| 	case REQ_OP_READ:
 | |
| 	case REQ_OP_WRITE:
 | |
| 	case REQ_OP_FLUSH:
 | |
| 		return false;
 | |
| 	case REQ_OP_DISCARD:
 | |
| 	case REQ_OP_SECURE_ERASE:
 | |
| 	case REQ_OP_WRITE_ZEROES:
 | |
| 	case REQ_OP_ZONE_RESET_ALL:
 | |
| 		return true;
 | |
| 	default:
 | |
| 		return false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static blk_status_t __process_abnormal_io(struct clone_info *ci,
 | |
| 					  struct dm_target *ti)
 | |
| {
 | |
| 	unsigned int num_bios = 0;
 | |
| 	unsigned int max_granularity = 0;
 | |
| 	unsigned int max_sectors = 0;
 | |
| 	struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
 | |
| 
 | |
| 	switch (bio_op(ci->bio)) {
 | |
| 	case REQ_OP_DISCARD:
 | |
| 		num_bios = ti->num_discard_bios;
 | |
| 		max_sectors = limits->max_discard_sectors;
 | |
| 		if (ti->max_discard_granularity)
 | |
| 			max_granularity = max_sectors;
 | |
| 		break;
 | |
| 	case REQ_OP_SECURE_ERASE:
 | |
| 		num_bios = ti->num_secure_erase_bios;
 | |
| 		max_sectors = limits->max_secure_erase_sectors;
 | |
| 		break;
 | |
| 	case REQ_OP_WRITE_ZEROES:
 | |
| 		num_bios = ti->num_write_zeroes_bios;
 | |
| 		max_sectors = limits->max_write_zeroes_sectors;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Even though the device advertised support for this type of
 | |
| 	 * request, that does not mean every target supports it, and
 | |
| 	 * reconfiguration might also have changed that since the
 | |
| 	 * check was performed.
 | |
| 	 */
 | |
| 	if (unlikely(!num_bios))
 | |
| 		return BLK_STS_NOTSUPP;
 | |
| 
 | |
| 	__send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors);
 | |
| 
 | |
| 	return BLK_STS_OK;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reuse ->bi_private as dm_io list head for storing all dm_io instances
 | |
|  * associated with this bio, and this bio's bi_private needs to be
 | |
|  * stored in dm_io->data before the reuse.
 | |
|  *
 | |
|  * bio->bi_private is owned by fs or upper layer, so block layer won't
 | |
|  * touch it after splitting. Meantime it won't be changed by anyone after
 | |
|  * bio is submitted. So this reuse is safe.
 | |
|  */
 | |
| static inline struct dm_io **dm_poll_list_head(struct bio *bio)
 | |
| {
 | |
| 	return (struct dm_io **)&bio->bi_private;
 | |
| }
 | |
| 
 | |
| static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
 | |
| {
 | |
| 	struct dm_io **head = dm_poll_list_head(bio);
 | |
| 
 | |
| 	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
 | |
| 		bio->bi_opf |= REQ_DM_POLL_LIST;
 | |
| 		/*
 | |
| 		 * Save .bi_private into dm_io, so that we can reuse
 | |
| 		 * .bi_private as dm_io list head for storing dm_io list
 | |
| 		 */
 | |
| 		io->data = bio->bi_private;
 | |
| 
 | |
| 		/* tell block layer to poll for completion */
 | |
| 		bio->bi_cookie = ~BLK_QC_T_NONE;
 | |
| 
 | |
| 		io->next = NULL;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * bio recursed due to split, reuse original poll list,
 | |
| 		 * and save bio->bi_private too.
 | |
| 		 */
 | |
| 		io->data = (*head)->data;
 | |
| 		io->next = *head;
 | |
| 	}
 | |
| 
 | |
| 	*head = io;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Select the correct strategy for processing a non-flush bio.
 | |
|  */
 | |
| static blk_status_t __split_and_process_bio(struct clone_info *ci)
 | |
| {
 | |
| 	struct bio *clone;
 | |
| 	struct dm_target *ti;
 | |
| 	unsigned int len;
 | |
| 
 | |
| 	ti = dm_table_find_target(ci->map, ci->sector);
 | |
| 	if (unlikely(!ti))
 | |
| 		return BLK_STS_IOERR;
 | |
| 
 | |
| 	if (unlikely(ci->is_abnormal_io))
 | |
| 		return __process_abnormal_io(ci, ti);
 | |
| 
 | |
| 	/*
 | |
| 	 * Only support bio polling for normal IO, and the target io is
 | |
| 	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
 | |
| 	 */
 | |
| 	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
 | |
| 
 | |
| 	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
 | |
| 	setup_split_accounting(ci, len);
 | |
| 
 | |
| 	if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) {
 | |
| 		if (unlikely(!dm_target_supports_nowait(ti->type)))
 | |
| 			return BLK_STS_NOTSUPP;
 | |
| 
 | |
| 		clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT);
 | |
| 		if (unlikely(!clone))
 | |
| 			return BLK_STS_AGAIN;
 | |
| 	} else {
 | |
| 		clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
 | |
| 	}
 | |
| 	__map_bio(clone);
 | |
| 
 | |
| 	ci->sector += len;
 | |
| 	ci->sector_count -= len;
 | |
| 
 | |
| 	return BLK_STS_OK;
 | |
| }
 | |
| 
 | |
| static void init_clone_info(struct clone_info *ci, struct dm_io *io,
 | |
| 			    struct dm_table *map, struct bio *bio, bool is_abnormal)
 | |
| {
 | |
| 	ci->map = map;
 | |
| 	ci->io = io;
 | |
| 	ci->bio = bio;
 | |
| 	ci->is_abnormal_io = is_abnormal;
 | |
| 	ci->submit_as_polled = false;
 | |
| 	ci->sector = bio->bi_iter.bi_sector;
 | |
| 	ci->sector_count = bio_sectors(bio);
 | |
| 
 | |
| 	/* Shouldn't happen but sector_count was being set to 0 so... */
 | |
| 	if (static_branch_unlikely(&zoned_enabled) &&
 | |
| 	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
 | |
| 		ci->sector_count = 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_BLK_DEV_ZONED
 | |
| static inline bool dm_zone_bio_needs_split(struct mapped_device *md,
 | |
| 					   struct bio *bio)
 | |
| {
 | |
| 	/*
 | |
| 	 * For mapped device that need zone append emulation, we must
 | |
| 	 * split any large BIO that straddles zone boundaries.
 | |
| 	 */
 | |
| 	return dm_emulate_zone_append(md) && bio_straddles_zones(bio) &&
 | |
| 		!bio_flagged(bio, BIO_ZONE_WRITE_PLUGGING);
 | |
| }
 | |
| static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
 | |
| {
 | |
| 	return dm_emulate_zone_append(md) && blk_zone_plug_bio(bio, 0);
 | |
| }
 | |
| 
 | |
| static blk_status_t __send_zone_reset_all_emulated(struct clone_info *ci,
 | |
| 						   struct dm_target *ti)
 | |
| {
 | |
| 	struct bio_list blist = BIO_EMPTY_LIST;
 | |
| 	struct mapped_device *md = ci->io->md;
 | |
| 	unsigned int zone_sectors = md->disk->queue->limits.chunk_sectors;
 | |
| 	unsigned long *need_reset;
 | |
| 	unsigned int i, nr_zones, nr_reset;
 | |
| 	unsigned int num_bios = 0;
 | |
| 	blk_status_t sts = BLK_STS_OK;
 | |
| 	sector_t sector = ti->begin;
 | |
| 	struct bio *clone;
 | |
| 	int ret;
 | |
| 
 | |
| 	nr_zones = ti->len >> ilog2(zone_sectors);
 | |
| 	need_reset = bitmap_zalloc(nr_zones, GFP_NOIO);
 | |
| 	if (!need_reset)
 | |
| 		return BLK_STS_RESOURCE;
 | |
| 
 | |
| 	ret = dm_zone_get_reset_bitmap(md, ci->map, ti->begin,
 | |
| 				       nr_zones, need_reset);
 | |
| 	if (ret) {
 | |
| 		sts = BLK_STS_IOERR;
 | |
| 		goto free_bitmap;
 | |
| 	}
 | |
| 
 | |
| 	/* If we have no zone to reset, we are done. */
 | |
| 	nr_reset = bitmap_weight(need_reset, nr_zones);
 | |
| 	if (!nr_reset)
 | |
| 		goto free_bitmap;
 | |
| 
 | |
| 	atomic_add(nr_zones, &ci->io->io_count);
 | |
| 
 | |
| 	for (i = 0; i < nr_zones; i++) {
 | |
| 
 | |
| 		if (!test_bit(i, need_reset)) {
 | |
| 			sector += zone_sectors;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (bio_list_empty(&blist)) {
 | |
| 			/* This may take a while, so be nice to others */
 | |
| 			if (num_bios)
 | |
| 				cond_resched();
 | |
| 
 | |
| 			/*
 | |
| 			 * We may need to reset thousands of zones, so let's
 | |
| 			 * not go crazy with the clone allocation.
 | |
| 			 */
 | |
| 			alloc_multiple_bios(&blist, ci, ti, min(nr_reset, 32),
 | |
| 					    NULL, GFP_NOIO);
 | |
| 		}
 | |
| 
 | |
| 		/* Get a clone and change it to a regular reset operation. */
 | |
| 		clone = bio_list_pop(&blist);
 | |
| 		clone->bi_opf &= ~REQ_OP_MASK;
 | |
| 		clone->bi_opf |= REQ_OP_ZONE_RESET | REQ_SYNC;
 | |
| 		clone->bi_iter.bi_sector = sector;
 | |
| 		clone->bi_iter.bi_size = 0;
 | |
| 		__map_bio(clone);
 | |
| 
 | |
| 		sector += zone_sectors;
 | |
| 		num_bios++;
 | |
| 		nr_reset--;
 | |
| 	}
 | |
| 
 | |
| 	WARN_ON_ONCE(!bio_list_empty(&blist));
 | |
| 	atomic_sub(nr_zones - num_bios, &ci->io->io_count);
 | |
| 	ci->sector_count = 0;
 | |
| 
 | |
| free_bitmap:
 | |
| 	bitmap_free(need_reset);
 | |
| 
 | |
| 	return sts;
 | |
| }
 | |
| 
 | |
| static void __send_zone_reset_all_native(struct clone_info *ci,
 | |
| 					 struct dm_target *ti)
 | |
| {
 | |
| 	unsigned int bios;
 | |
| 
 | |
| 	atomic_add(1, &ci->io->io_count);
 | |
| 	bios = __send_duplicate_bios(ci, ti, 1, NULL, GFP_NOIO);
 | |
| 	atomic_sub(1 - bios, &ci->io->io_count);
 | |
| 
 | |
| 	ci->sector_count = 0;
 | |
| }
 | |
| 
 | |
| static blk_status_t __send_zone_reset_all(struct clone_info *ci)
 | |
| {
 | |
| 	struct dm_table *t = ci->map;
 | |
| 	blk_status_t sts = BLK_STS_OK;
 | |
| 
 | |
| 	for (unsigned int i = 0; i < t->num_targets; i++) {
 | |
| 		struct dm_target *ti = dm_table_get_target(t, i);
 | |
| 
 | |
| 		if (ti->zone_reset_all_supported) {
 | |
| 			__send_zone_reset_all_native(ci, ti);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		sts = __send_zone_reset_all_emulated(ci, ti);
 | |
| 		if (sts != BLK_STS_OK)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/* Release the reference that alloc_io() took for submission. */
 | |
| 	atomic_sub(1, &ci->io->io_count);
 | |
| 
 | |
| 	return sts;
 | |
| }
 | |
| 
 | |
| #else
 | |
| static inline bool dm_zone_bio_needs_split(struct mapped_device *md,
 | |
| 					   struct bio *bio)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
 | |
| {
 | |
| 	return false;
 | |
| }
 | |
| static blk_status_t __send_zone_reset_all(struct clone_info *ci)
 | |
| {
 | |
| 	return BLK_STS_NOTSUPP;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Entry point to split a bio into clones and submit them to the targets.
 | |
|  */
 | |
| static void dm_split_and_process_bio(struct mapped_device *md,
 | |
| 				     struct dm_table *map, struct bio *bio)
 | |
| {
 | |
| 	struct clone_info ci;
 | |
| 	struct dm_io *io;
 | |
| 	blk_status_t error = BLK_STS_OK;
 | |
| 	bool is_abnormal, need_split;
 | |
| 
 | |
| 	is_abnormal = is_abnormal_io(bio);
 | |
| 	if (static_branch_unlikely(&zoned_enabled)) {
 | |
| 		/* Special case REQ_OP_ZONE_RESET_ALL as it cannot be split. */
 | |
| 		need_split = (bio_op(bio) != REQ_OP_ZONE_RESET_ALL) &&
 | |
| 			(is_abnormal || dm_zone_bio_needs_split(md, bio));
 | |
| 	} else {
 | |
| 		need_split = is_abnormal;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(need_split)) {
 | |
| 		/*
 | |
| 		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
 | |
| 		 * otherwise associated queue_limits won't be imposed.
 | |
| 		 * Also split the BIO for mapped devices needing zone append
 | |
| 		 * emulation to ensure that the BIO does not cross zone
 | |
| 		 * boundaries.
 | |
| 		 */
 | |
| 		bio = bio_split_to_limits(bio);
 | |
| 		if (!bio)
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Use the block layer zone write plugging for mapped devices that
 | |
| 	 * need zone append emulation (e.g. dm-crypt).
 | |
| 	 */
 | |
| 	if (static_branch_unlikely(&zoned_enabled) && dm_zone_plug_bio(md, bio))
 | |
| 		return;
 | |
| 
 | |
| 	/* Only support nowait for normal IO */
 | |
| 	if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) {
 | |
| 		io = alloc_io(md, bio, GFP_NOWAIT);
 | |
| 		if (unlikely(!io)) {
 | |
| 			/* Unable to do anything without dm_io. */
 | |
| 			bio_wouldblock_error(bio);
 | |
| 			return;
 | |
| 		}
 | |
| 	} else {
 | |
| 		io = alloc_io(md, bio, GFP_NOIO);
 | |
| 	}
 | |
| 	init_clone_info(&ci, io, map, bio, is_abnormal);
 | |
| 
 | |
| 	if (bio->bi_opf & REQ_PREFLUSH) {
 | |
| 		__send_empty_flush(&ci);
 | |
| 		/* dm_io_complete submits any data associated with flush */
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (static_branch_unlikely(&zoned_enabled) &&
 | |
| 	    (bio_op(bio) == REQ_OP_ZONE_RESET_ALL)) {
 | |
| 		error = __send_zone_reset_all(&ci);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	error = __split_and_process_bio(&ci);
 | |
| 	if (error || !ci.sector_count)
 | |
| 		goto out;
 | |
| 	/*
 | |
| 	 * Remainder must be passed to submit_bio_noacct() so it gets handled
 | |
| 	 * *after* bios already submitted have been completely processed.
 | |
| 	 */
 | |
| 	bio_trim(bio, io->sectors, ci.sector_count);
 | |
| 	trace_block_split(bio, bio->bi_iter.bi_sector);
 | |
| 	bio_inc_remaining(bio);
 | |
| 	submit_bio_noacct(bio);
 | |
| out:
 | |
| 	/*
 | |
| 	 * Drop the extra reference count for non-POLLED bio, and hold one
 | |
| 	 * reference for POLLED bio, which will be released in dm_poll_bio
 | |
| 	 *
 | |
| 	 * Add every dm_io instance into the dm_io list head which is stored
 | |
| 	 * in bio->bi_private, so that dm_poll_bio can poll them all.
 | |
| 	 */
 | |
| 	if (error || !ci.submit_as_polled) {
 | |
| 		/*
 | |
| 		 * In case of submission failure, the extra reference for
 | |
| 		 * submitting io isn't consumed yet
 | |
| 		 */
 | |
| 		if (error)
 | |
| 			atomic_dec(&io->io_count);
 | |
| 		dm_io_dec_pending(io, error);
 | |
| 	} else
 | |
| 		dm_queue_poll_io(bio, io);
 | |
| }
 | |
| 
 | |
| static void dm_submit_bio(struct bio *bio)
 | |
| {
 | |
| 	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
 | |
| 	int srcu_idx;
 | |
| 	struct dm_table *map;
 | |
| 
 | |
| 	map = dm_get_live_table(md, &srcu_idx);
 | |
| 	if (unlikely(!map)) {
 | |
| 		DMERR_LIMIT("%s: mapping table unavailable, erroring io",
 | |
| 			    dm_device_name(md));
 | |
| 		bio_io_error(bio);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* If suspended, queue this IO for later */
 | |
| 	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
 | |
| 		if (bio->bi_opf & REQ_NOWAIT)
 | |
| 			bio_wouldblock_error(bio);
 | |
| 		else if (bio->bi_opf & REQ_RAHEAD)
 | |
| 			bio_io_error(bio);
 | |
| 		else
 | |
| 			queue_io(md, bio);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	dm_split_and_process_bio(md, map, bio);
 | |
| out:
 | |
| 	dm_put_live_table(md, srcu_idx);
 | |
| }
 | |
| 
 | |
| static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
 | |
| 			  unsigned int flags)
 | |
| {
 | |
| 	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
 | |
| 
 | |
| 	/* don't poll if the mapped io is done */
 | |
| 	if (atomic_read(&io->io_count) > 1)
 | |
| 		bio_poll(&io->tio.clone, iob, flags);
 | |
| 
 | |
| 	/* bio_poll holds the last reference */
 | |
| 	return atomic_read(&io->io_count) == 1;
 | |
| }
 | |
| 
 | |
| static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
 | |
| 		       unsigned int flags)
 | |
| {
 | |
| 	struct dm_io **head = dm_poll_list_head(bio);
 | |
| 	struct dm_io *list = *head;
 | |
| 	struct dm_io *tmp = NULL;
 | |
| 	struct dm_io *curr, *next;
 | |
| 
 | |
| 	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
 | |
| 	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
 | |
| 		return 0;
 | |
| 
 | |
| 	WARN_ON_ONCE(!list);
 | |
| 
 | |
| 	/*
 | |
| 	 * Restore .bi_private before possibly completing dm_io.
 | |
| 	 *
 | |
| 	 * bio_poll() is only possible once @bio has been completely
 | |
| 	 * submitted via submit_bio_noacct()'s depth-first submission.
 | |
| 	 * So there is no dm_queue_poll_io() race associated with
 | |
| 	 * clearing REQ_DM_POLL_LIST here.
 | |
| 	 */
 | |
| 	bio->bi_opf &= ~REQ_DM_POLL_LIST;
 | |
| 	bio->bi_private = list->data;
 | |
| 
 | |
| 	for (curr = list, next = curr->next; curr; curr = next, next =
 | |
| 			curr ? curr->next : NULL) {
 | |
| 		if (dm_poll_dm_io(curr, iob, flags)) {
 | |
| 			/*
 | |
| 			 * clone_endio() has already occurred, so no
 | |
| 			 * error handling is needed here.
 | |
| 			 */
 | |
| 			__dm_io_dec_pending(curr);
 | |
| 		} else {
 | |
| 			curr->next = tmp;
 | |
| 			tmp = curr;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Not done? */
 | |
| 	if (tmp) {
 | |
| 		bio->bi_opf |= REQ_DM_POLL_LIST;
 | |
| 		/* Reset bio->bi_private to dm_io list head */
 | |
| 		*head = tmp;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *---------------------------------------------------------------
 | |
|  * An IDR is used to keep track of allocated minor numbers.
 | |
|  *---------------------------------------------------------------
 | |
|  */
 | |
| static void free_minor(int minor)
 | |
| {
 | |
| 	spin_lock(&_minor_lock);
 | |
| 	idr_remove(&_minor_idr, minor);
 | |
| 	spin_unlock(&_minor_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * See if the device with a specific minor # is free.
 | |
|  */
 | |
| static int specific_minor(int minor)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	if (minor >= (1 << MINORBITS))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	idr_preload(GFP_KERNEL);
 | |
| 	spin_lock(&_minor_lock);
 | |
| 
 | |
| 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
 | |
| 
 | |
| 	spin_unlock(&_minor_lock);
 | |
| 	idr_preload_end();
 | |
| 	if (r < 0)
 | |
| 		return r == -ENOSPC ? -EBUSY : r;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int next_free_minor(int *minor)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	idr_preload(GFP_KERNEL);
 | |
| 	spin_lock(&_minor_lock);
 | |
| 
 | |
| 	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
 | |
| 
 | |
| 	spin_unlock(&_minor_lock);
 | |
| 	idr_preload_end();
 | |
| 	if (r < 0)
 | |
| 		return r;
 | |
| 	*minor = r;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct block_device_operations dm_blk_dops;
 | |
| static const struct block_device_operations dm_rq_blk_dops;
 | |
| static const struct dax_operations dm_dax_ops;
 | |
| 
 | |
| static void dm_wq_work(struct work_struct *work);
 | |
| 
 | |
| #ifdef CONFIG_BLK_INLINE_ENCRYPTION
 | |
| static void dm_queue_destroy_crypto_profile(struct request_queue *q)
 | |
| {
 | |
| 	dm_destroy_crypto_profile(q->crypto_profile);
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_BLK_INLINE_ENCRYPTION */
 | |
| 
 | |
| static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
 | |
| {
 | |
| }
 | |
| #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
 | |
| 
 | |
| static void cleanup_mapped_device(struct mapped_device *md)
 | |
| {
 | |
| 	if (md->wq)
 | |
| 		destroy_workqueue(md->wq);
 | |
| 	dm_free_md_mempools(md->mempools);
 | |
| 
 | |
| 	if (md->dax_dev) {
 | |
| 		dax_remove_host(md->disk);
 | |
| 		kill_dax(md->dax_dev);
 | |
| 		put_dax(md->dax_dev);
 | |
| 		md->dax_dev = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (md->disk) {
 | |
| 		spin_lock(&_minor_lock);
 | |
| 		md->disk->private_data = NULL;
 | |
| 		spin_unlock(&_minor_lock);
 | |
| 		if (dm_get_md_type(md) != DM_TYPE_NONE) {
 | |
| 			struct table_device *td;
 | |
| 
 | |
| 			dm_sysfs_exit(md);
 | |
| 			list_for_each_entry(td, &md->table_devices, list) {
 | |
| 				bd_unlink_disk_holder(td->dm_dev.bdev,
 | |
| 						      md->disk);
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Hold lock to make sure del_gendisk() won't concurrent
 | |
| 			 * with open/close_table_device().
 | |
| 			 */
 | |
| 			mutex_lock(&md->table_devices_lock);
 | |
| 			del_gendisk(md->disk);
 | |
| 			mutex_unlock(&md->table_devices_lock);
 | |
| 		}
 | |
| 		dm_queue_destroy_crypto_profile(md->queue);
 | |
| 		put_disk(md->disk);
 | |
| 	}
 | |
| 
 | |
| 	if (md->pending_io) {
 | |
| 		free_percpu(md->pending_io);
 | |
| 		md->pending_io = NULL;
 | |
| 	}
 | |
| 
 | |
| 	cleanup_srcu_struct(&md->io_barrier);
 | |
| 
 | |
| 	mutex_destroy(&md->suspend_lock);
 | |
| 	mutex_destroy(&md->type_lock);
 | |
| 	mutex_destroy(&md->table_devices_lock);
 | |
| 	mutex_destroy(&md->swap_bios_lock);
 | |
| 
 | |
| 	dm_mq_cleanup_mapped_device(md);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate and initialise a blank device with a given minor.
 | |
|  */
 | |
| static struct mapped_device *alloc_dev(int minor)
 | |
| {
 | |
| 	int r, numa_node_id = dm_get_numa_node();
 | |
| 	struct dax_device *dax_dev;
 | |
| 	struct mapped_device *md;
 | |
| 	void *old_md;
 | |
| 
 | |
| 	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
 | |
| 	if (!md) {
 | |
| 		DMERR("unable to allocate device, out of memory.");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (!try_module_get(THIS_MODULE))
 | |
| 		goto bad_module_get;
 | |
| 
 | |
| 	/* get a minor number for the dev */
 | |
| 	if (minor == DM_ANY_MINOR)
 | |
| 		r = next_free_minor(&minor);
 | |
| 	else
 | |
| 		r = specific_minor(minor);
 | |
| 	if (r < 0)
 | |
| 		goto bad_minor;
 | |
| 
 | |
| 	r = init_srcu_struct(&md->io_barrier);
 | |
| 	if (r < 0)
 | |
| 		goto bad_io_barrier;
 | |
| 
 | |
| 	md->numa_node_id = numa_node_id;
 | |
| 	md->init_tio_pdu = false;
 | |
| 	md->type = DM_TYPE_NONE;
 | |
| 	mutex_init(&md->suspend_lock);
 | |
| 	mutex_init(&md->type_lock);
 | |
| 	mutex_init(&md->table_devices_lock);
 | |
| 	spin_lock_init(&md->deferred_lock);
 | |
| 	atomic_set(&md->holders, 1);
 | |
| 	atomic_set(&md->open_count, 0);
 | |
| 	atomic_set(&md->event_nr, 0);
 | |
| 	atomic_set(&md->uevent_seq, 0);
 | |
| 	INIT_LIST_HEAD(&md->uevent_list);
 | |
| 	INIT_LIST_HEAD(&md->table_devices);
 | |
| 	spin_lock_init(&md->uevent_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * default to bio-based until DM table is loaded and md->type
 | |
| 	 * established. If request-based table is loaded: blk-mq will
 | |
| 	 * override accordingly.
 | |
| 	 */
 | |
| 	md->disk = blk_alloc_disk(NULL, md->numa_node_id);
 | |
| 	if (IS_ERR(md->disk)) {
 | |
| 		md->disk = NULL;
 | |
| 		goto bad;
 | |
| 	}
 | |
| 	md->queue = md->disk->queue;
 | |
| 
 | |
| 	init_waitqueue_head(&md->wait);
 | |
| 	INIT_WORK(&md->work, dm_wq_work);
 | |
| 	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
 | |
| 	init_waitqueue_head(&md->eventq);
 | |
| 	init_completion(&md->kobj_holder.completion);
 | |
| 
 | |
| 	md->requeue_list = NULL;
 | |
| 	md->swap_bios = get_swap_bios();
 | |
| 	sema_init(&md->swap_bios_semaphore, md->swap_bios);
 | |
| 	mutex_init(&md->swap_bios_lock);
 | |
| 
 | |
| 	md->disk->major = _major;
 | |
| 	md->disk->first_minor = minor;
 | |
| 	md->disk->minors = 1;
 | |
| 	md->disk->flags |= GENHD_FL_NO_PART;
 | |
| 	md->disk->fops = &dm_blk_dops;
 | |
| 	md->disk->private_data = md;
 | |
| 	sprintf(md->disk->disk_name, "dm-%d", minor);
 | |
| 
 | |
| 	dax_dev = alloc_dax(md, &dm_dax_ops);
 | |
| 	if (IS_ERR(dax_dev)) {
 | |
| 		if (PTR_ERR(dax_dev) != -EOPNOTSUPP)
 | |
| 			goto bad;
 | |
| 	} else {
 | |
| 		set_dax_nocache(dax_dev);
 | |
| 		set_dax_nomc(dax_dev);
 | |
| 		md->dax_dev = dax_dev;
 | |
| 		if (dax_add_host(dax_dev, md->disk))
 | |
| 			goto bad;
 | |
| 	}
 | |
| 
 | |
| 	format_dev_t(md->name, MKDEV(_major, minor));
 | |
| 
 | |
| 	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
 | |
| 	if (!md->wq)
 | |
| 		goto bad;
 | |
| 
 | |
| 	md->pending_io = alloc_percpu(unsigned long);
 | |
| 	if (!md->pending_io)
 | |
| 		goto bad;
 | |
| 
 | |
| 	r = dm_stats_init(&md->stats);
 | |
| 	if (r < 0)
 | |
| 		goto bad;
 | |
| 
 | |
| 	/* Populate the mapping, nobody knows we exist yet */
 | |
| 	spin_lock(&_minor_lock);
 | |
| 	old_md = idr_replace(&_minor_idr, md, minor);
 | |
| 	spin_unlock(&_minor_lock);
 | |
| 
 | |
| 	BUG_ON(old_md != MINOR_ALLOCED);
 | |
| 
 | |
| 	return md;
 | |
| 
 | |
| bad:
 | |
| 	cleanup_mapped_device(md);
 | |
| bad_io_barrier:
 | |
| 	free_minor(minor);
 | |
| bad_minor:
 | |
| 	module_put(THIS_MODULE);
 | |
| bad_module_get:
 | |
| 	kvfree(md);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void unlock_fs(struct mapped_device *md);
 | |
| 
 | |
| static void free_dev(struct mapped_device *md)
 | |
| {
 | |
| 	int minor = MINOR(disk_devt(md->disk));
 | |
| 
 | |
| 	unlock_fs(md);
 | |
| 
 | |
| 	cleanup_mapped_device(md);
 | |
| 
 | |
| 	WARN_ON_ONCE(!list_empty(&md->table_devices));
 | |
| 	dm_stats_cleanup(&md->stats);
 | |
| 	free_minor(minor);
 | |
| 
 | |
| 	module_put(THIS_MODULE);
 | |
| 	kvfree(md);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Bind a table to the device.
 | |
|  */
 | |
| static void event_callback(void *context)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	LIST_HEAD(uevents);
 | |
| 	struct mapped_device *md = context;
 | |
| 
 | |
| 	spin_lock_irqsave(&md->uevent_lock, flags);
 | |
| 	list_splice_init(&md->uevent_list, &uevents);
 | |
| 	spin_unlock_irqrestore(&md->uevent_lock, flags);
 | |
| 
 | |
| 	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
 | |
| 
 | |
| 	atomic_inc(&md->event_nr);
 | |
| 	wake_up(&md->eventq);
 | |
| 	dm_issue_global_event();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns old map, which caller must destroy.
 | |
|  */
 | |
| static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
 | |
| 			       struct queue_limits *limits)
 | |
| {
 | |
| 	struct dm_table *old_map;
 | |
| 	sector_t size;
 | |
| 	int ret;
 | |
| 
 | |
| 	lockdep_assert_held(&md->suspend_lock);
 | |
| 
 | |
| 	size = dm_table_get_size(t);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wipe any geometry if the size of the table changed.
 | |
| 	 */
 | |
| 	if (size != dm_get_size(md))
 | |
| 		memset(&md->geometry, 0, sizeof(md->geometry));
 | |
| 
 | |
| 	set_capacity(md->disk, size);
 | |
| 
 | |
| 	dm_table_event_callback(t, event_callback, md);
 | |
| 
 | |
| 	if (dm_table_request_based(t)) {
 | |
| 		/*
 | |
| 		 * Leverage the fact that request-based DM targets are
 | |
| 		 * immutable singletons - used to optimize dm_mq_queue_rq.
 | |
| 		 */
 | |
| 		md->immutable_target = dm_table_get_immutable_target(t);
 | |
| 
 | |
| 		/*
 | |
| 		 * There is no need to reload with request-based dm because the
 | |
| 		 * size of front_pad doesn't change.
 | |
| 		 *
 | |
| 		 * Note for future: If you are to reload bioset, prep-ed
 | |
| 		 * requests in the queue may refer to bio from the old bioset,
 | |
| 		 * so you must walk through the queue to unprep.
 | |
| 		 */
 | |
| 		if (!md->mempools) {
 | |
| 			md->mempools = t->mempools;
 | |
| 			t->mempools = NULL;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * The md may already have mempools that need changing.
 | |
| 		 * If so, reload bioset because front_pad may have changed
 | |
| 		 * because a different table was loaded.
 | |
| 		 */
 | |
| 		dm_free_md_mempools(md->mempools);
 | |
| 		md->mempools = t->mempools;
 | |
| 		t->mempools = NULL;
 | |
| 	}
 | |
| 
 | |
| 	ret = dm_table_set_restrictions(t, md->queue, limits);
 | |
| 	if (ret) {
 | |
| 		old_map = ERR_PTR(ret);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
 | |
| 	rcu_assign_pointer(md->map, (void *)t);
 | |
| 	md->immutable_target_type = dm_table_get_immutable_target_type(t);
 | |
| 
 | |
| 	if (old_map)
 | |
| 		dm_sync_table(md);
 | |
| out:
 | |
| 	return old_map;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns unbound table for the caller to free.
 | |
|  */
 | |
| static struct dm_table *__unbind(struct mapped_device *md)
 | |
| {
 | |
| 	struct dm_table *map = rcu_dereference_protected(md->map, 1);
 | |
| 
 | |
| 	if (!map)
 | |
| 		return NULL;
 | |
| 
 | |
| 	dm_table_event_callback(map, NULL, NULL);
 | |
| 	RCU_INIT_POINTER(md->map, NULL);
 | |
| 	dm_sync_table(md);
 | |
| 
 | |
| 	return map;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Constructor for a new device.
 | |
|  */
 | |
| int dm_create(int minor, struct mapped_device **result)
 | |
| {
 | |
| 	struct mapped_device *md;
 | |
| 
 | |
| 	md = alloc_dev(minor);
 | |
| 	if (!md)
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	dm_ima_reset_data(md);
 | |
| 
 | |
| 	*result = md;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Functions to manage md->type.
 | |
|  * All are required to hold md->type_lock.
 | |
|  */
 | |
| void dm_lock_md_type(struct mapped_device *md)
 | |
| {
 | |
| 	mutex_lock(&md->type_lock);
 | |
| }
 | |
| 
 | |
| void dm_unlock_md_type(struct mapped_device *md)
 | |
| {
 | |
| 	mutex_unlock(&md->type_lock);
 | |
| }
 | |
| 
 | |
| void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
 | |
| {
 | |
| 	BUG_ON(!mutex_is_locked(&md->type_lock));
 | |
| 	md->type = type;
 | |
| }
 | |
| 
 | |
| enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
 | |
| {
 | |
| 	return md->type;
 | |
| }
 | |
| 
 | |
| struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
 | |
| {
 | |
| 	return md->immutable_target_type;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Setup the DM device's queue based on md's type
 | |
|  */
 | |
| int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
 | |
| {
 | |
| 	enum dm_queue_mode type = dm_table_get_type(t);
 | |
| 	struct queue_limits limits;
 | |
| 	struct table_device *td;
 | |
| 	int r;
 | |
| 
 | |
| 	WARN_ON_ONCE(type == DM_TYPE_NONE);
 | |
| 
 | |
| 	if (type == DM_TYPE_REQUEST_BASED) {
 | |
| 		md->disk->fops = &dm_rq_blk_dops;
 | |
| 		r = dm_mq_init_request_queue(md, t);
 | |
| 		if (r) {
 | |
| 			DMERR("Cannot initialize queue for request-based dm mapped device");
 | |
| 			return r;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	r = dm_calculate_queue_limits(t, &limits);
 | |
| 	if (r) {
 | |
| 		DMERR("Cannot calculate initial queue limits");
 | |
| 		return r;
 | |
| 	}
 | |
| 	r = dm_table_set_restrictions(t, md->queue, &limits);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	/*
 | |
| 	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
 | |
| 	 * with open_table_device() and close_table_device().
 | |
| 	 */
 | |
| 	mutex_lock(&md->table_devices_lock);
 | |
| 	r = add_disk(md->disk);
 | |
| 	mutex_unlock(&md->table_devices_lock);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	/*
 | |
| 	 * Register the holder relationship for devices added before the disk
 | |
| 	 * was live.
 | |
| 	 */
 | |
| 	list_for_each_entry(td, &md->table_devices, list) {
 | |
| 		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
 | |
| 		if (r)
 | |
| 			goto out_undo_holders;
 | |
| 	}
 | |
| 
 | |
| 	r = dm_sysfs_init(md);
 | |
| 	if (r)
 | |
| 		goto out_undo_holders;
 | |
| 
 | |
| 	md->type = type;
 | |
| 	return 0;
 | |
| 
 | |
| out_undo_holders:
 | |
| 	list_for_each_entry_continue_reverse(td, &md->table_devices, list)
 | |
| 		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
 | |
| 	mutex_lock(&md->table_devices_lock);
 | |
| 	del_gendisk(md->disk);
 | |
| 	mutex_unlock(&md->table_devices_lock);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| struct mapped_device *dm_get_md(dev_t dev)
 | |
| {
 | |
| 	struct mapped_device *md;
 | |
| 	unsigned int minor = MINOR(dev);
 | |
| 
 | |
| 	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
 | |
| 		return NULL;
 | |
| 
 | |
| 	spin_lock(&_minor_lock);
 | |
| 
 | |
| 	md = idr_find(&_minor_idr, minor);
 | |
| 	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
 | |
| 	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
 | |
| 		md = NULL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	dm_get(md);
 | |
| out:
 | |
| 	spin_unlock(&_minor_lock);
 | |
| 
 | |
| 	return md;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_get_md);
 | |
| 
 | |
| void *dm_get_mdptr(struct mapped_device *md)
 | |
| {
 | |
| 	return md->interface_ptr;
 | |
| }
 | |
| 
 | |
| void dm_set_mdptr(struct mapped_device *md, void *ptr)
 | |
| {
 | |
| 	md->interface_ptr = ptr;
 | |
| }
 | |
| 
 | |
| void dm_get(struct mapped_device *md)
 | |
| {
 | |
| 	atomic_inc(&md->holders);
 | |
| 	BUG_ON(test_bit(DMF_FREEING, &md->flags));
 | |
| }
 | |
| 
 | |
| int dm_hold(struct mapped_device *md)
 | |
| {
 | |
| 	spin_lock(&_minor_lock);
 | |
| 	if (test_bit(DMF_FREEING, &md->flags)) {
 | |
| 		spin_unlock(&_minor_lock);
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 	dm_get(md);
 | |
| 	spin_unlock(&_minor_lock);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_hold);
 | |
| 
 | |
| const char *dm_device_name(struct mapped_device *md)
 | |
| {
 | |
| 	return md->name;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_device_name);
 | |
| 
 | |
| static void __dm_destroy(struct mapped_device *md, bool wait)
 | |
| {
 | |
| 	struct dm_table *map;
 | |
| 	int srcu_idx;
 | |
| 
 | |
| 	might_sleep();
 | |
| 
 | |
| 	spin_lock(&_minor_lock);
 | |
| 	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
 | |
| 	set_bit(DMF_FREEING, &md->flags);
 | |
| 	spin_unlock(&_minor_lock);
 | |
| 
 | |
| 	blk_mark_disk_dead(md->disk);
 | |
| 
 | |
| 	/*
 | |
| 	 * Take suspend_lock so that presuspend and postsuspend methods
 | |
| 	 * do not race with internal suspend.
 | |
| 	 */
 | |
| 	mutex_lock(&md->suspend_lock);
 | |
| 	map = dm_get_live_table(md, &srcu_idx);
 | |
| 	if (!dm_suspended_md(md)) {
 | |
| 		dm_table_presuspend_targets(map);
 | |
| 		set_bit(DMF_SUSPENDED, &md->flags);
 | |
| 		set_bit(DMF_POST_SUSPENDING, &md->flags);
 | |
| 		dm_table_postsuspend_targets(map);
 | |
| 	}
 | |
| 	/* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
 | |
| 	dm_put_live_table(md, srcu_idx);
 | |
| 	mutex_unlock(&md->suspend_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Rare, but there may be I/O requests still going to complete,
 | |
| 	 * for example.  Wait for all references to disappear.
 | |
| 	 * No one should increment the reference count of the mapped_device,
 | |
| 	 * after the mapped_device state becomes DMF_FREEING.
 | |
| 	 */
 | |
| 	if (wait)
 | |
| 		while (atomic_read(&md->holders))
 | |
| 			fsleep(1000);
 | |
| 	else if (atomic_read(&md->holders))
 | |
| 		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
 | |
| 		       dm_device_name(md), atomic_read(&md->holders));
 | |
| 
 | |
| 	dm_table_destroy(__unbind(md));
 | |
| 	free_dev(md);
 | |
| }
 | |
| 
 | |
| void dm_destroy(struct mapped_device *md)
 | |
| {
 | |
| 	__dm_destroy(md, true);
 | |
| }
 | |
| 
 | |
| void dm_destroy_immediate(struct mapped_device *md)
 | |
| {
 | |
| 	__dm_destroy(md, false);
 | |
| }
 | |
| 
 | |
| void dm_put(struct mapped_device *md)
 | |
| {
 | |
| 	atomic_dec(&md->holders);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_put);
 | |
| 
 | |
| static bool dm_in_flight_bios(struct mapped_device *md)
 | |
| {
 | |
| 	int cpu;
 | |
| 	unsigned long sum = 0;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		sum += *per_cpu_ptr(md->pending_io, cpu);
 | |
| 
 | |
| 	return sum != 0;
 | |
| }
 | |
| 
 | |
| static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
 | |
| {
 | |
| 	int r = 0;
 | |
| 	DEFINE_WAIT(wait);
 | |
| 
 | |
| 	while (true) {
 | |
| 		prepare_to_wait(&md->wait, &wait, task_state);
 | |
| 
 | |
| 		if (!dm_in_flight_bios(md))
 | |
| 			break;
 | |
| 
 | |
| 		if (signal_pending_state(task_state, current)) {
 | |
| 			r = -ERESTARTSYS;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		io_schedule();
 | |
| 	}
 | |
| 	finish_wait(&md->wait, &wait);
 | |
| 
 | |
| 	smp_rmb();
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
 | |
| {
 | |
| 	int r = 0;
 | |
| 
 | |
| 	if (!queue_is_mq(md->queue))
 | |
| 		return dm_wait_for_bios_completion(md, task_state);
 | |
| 
 | |
| 	while (true) {
 | |
| 		if (!blk_mq_queue_inflight(md->queue))
 | |
| 			break;
 | |
| 
 | |
| 		if (signal_pending_state(task_state, current)) {
 | |
| 			r = -ERESTARTSYS;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		fsleep(5000);
 | |
| 	}
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Process the deferred bios
 | |
|  */
 | |
| static void dm_wq_work(struct work_struct *work)
 | |
| {
 | |
| 	struct mapped_device *md = container_of(work, struct mapped_device, work);
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
 | |
| 		spin_lock_irq(&md->deferred_lock);
 | |
| 		bio = bio_list_pop(&md->deferred);
 | |
| 		spin_unlock_irq(&md->deferred_lock);
 | |
| 
 | |
| 		if (!bio)
 | |
| 			break;
 | |
| 
 | |
| 		submit_bio_noacct(bio);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void dm_queue_flush(struct mapped_device *md)
 | |
| {
 | |
| 	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
 | |
| 	smp_mb__after_atomic();
 | |
| 	queue_work(md->wq, &md->work);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Swap in a new table, returning the old one for the caller to destroy.
 | |
|  */
 | |
| struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
 | |
| {
 | |
| 	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
 | |
| 	struct queue_limits limits;
 | |
| 	int r;
 | |
| 
 | |
| 	mutex_lock(&md->suspend_lock);
 | |
| 
 | |
| 	/* device must be suspended */
 | |
| 	if (!dm_suspended_md(md))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the new table has no data devices, retain the existing limits.
 | |
| 	 * This helps multipath with queue_if_no_path if all paths disappear,
 | |
| 	 * then new I/O is queued based on these limits, and then some paths
 | |
| 	 * reappear.
 | |
| 	 */
 | |
| 	if (dm_table_has_no_data_devices(table)) {
 | |
| 		live_map = dm_get_live_table_fast(md);
 | |
| 		if (live_map)
 | |
| 			limits = md->queue->limits;
 | |
| 		dm_put_live_table_fast(md);
 | |
| 	}
 | |
| 
 | |
| 	if (!live_map) {
 | |
| 		r = dm_calculate_queue_limits(table, &limits);
 | |
| 		if (r) {
 | |
| 			map = ERR_PTR(r);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	map = __bind(md, table, &limits);
 | |
| 	dm_issue_global_event();
 | |
| 
 | |
| out:
 | |
| 	mutex_unlock(&md->suspend_lock);
 | |
| 	return map;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Functions to lock and unlock any filesystem running on the
 | |
|  * device.
 | |
|  */
 | |
| static int lock_fs(struct mapped_device *md)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
 | |
| 
 | |
| 	r = bdev_freeze(md->disk->part0);
 | |
| 	if (!r)
 | |
| 		set_bit(DMF_FROZEN, &md->flags);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void unlock_fs(struct mapped_device *md)
 | |
| {
 | |
| 	if (!test_bit(DMF_FROZEN, &md->flags))
 | |
| 		return;
 | |
| 	bdev_thaw(md->disk->part0);
 | |
| 	clear_bit(DMF_FROZEN, &md->flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
 | |
|  * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
 | |
|  * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
 | |
|  *
 | |
|  * If __dm_suspend returns 0, the device is completely quiescent
 | |
|  * now. There is no request-processing activity. All new requests
 | |
|  * are being added to md->deferred list.
 | |
|  */
 | |
| static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
 | |
| 			unsigned int suspend_flags, unsigned int task_state,
 | |
| 			int dmf_suspended_flag)
 | |
| {
 | |
| 	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
 | |
| 	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
 | |
| 	int r;
 | |
| 
 | |
| 	lockdep_assert_held(&md->suspend_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
 | |
| 	 * This flag is cleared before dm_suspend returns.
 | |
| 	 */
 | |
| 	if (noflush)
 | |
| 		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 | |
| 	else
 | |
| 		DMDEBUG("%s: suspending with flush", dm_device_name(md));
 | |
| 
 | |
| 	/*
 | |
| 	 * This gets reverted if there's an error later and the targets
 | |
| 	 * provide the .presuspend_undo hook.
 | |
| 	 */
 | |
| 	dm_table_presuspend_targets(map);
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush I/O to the device.
 | |
| 	 * Any I/O submitted after lock_fs() may not be flushed.
 | |
| 	 * noflush takes precedence over do_lockfs.
 | |
| 	 * (lock_fs() flushes I/Os and waits for them to complete.)
 | |
| 	 */
 | |
| 	if (!noflush && do_lockfs) {
 | |
| 		r = lock_fs(md);
 | |
| 		if (r) {
 | |
| 			dm_table_presuspend_undo_targets(map);
 | |
| 			return r;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Here we must make sure that no processes are submitting requests
 | |
| 	 * to target drivers i.e. no one may be executing
 | |
| 	 * dm_split_and_process_bio from dm_submit_bio.
 | |
| 	 *
 | |
| 	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
 | |
| 	 * we take the write lock. To prevent any process from reentering
 | |
| 	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
 | |
| 	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
 | |
| 	 * flush_workqueue(md->wq).
 | |
| 	 */
 | |
| 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
 | |
| 	if (map)
 | |
| 		synchronize_srcu(&md->io_barrier);
 | |
| 
 | |
| 	/*
 | |
| 	 * Stop md->queue before flushing md->wq in case request-based
 | |
| 	 * dm defers requests to md->wq from md->queue.
 | |
| 	 */
 | |
| 	if (dm_request_based(md))
 | |
| 		dm_stop_queue(md->queue);
 | |
| 
 | |
| 	flush_workqueue(md->wq);
 | |
| 
 | |
| 	/*
 | |
| 	 * At this point no more requests are entering target request routines.
 | |
| 	 * We call dm_wait_for_completion to wait for all existing requests
 | |
| 	 * to finish.
 | |
| 	 */
 | |
| 	r = dm_wait_for_completion(md, task_state);
 | |
| 	if (!r)
 | |
| 		set_bit(dmf_suspended_flag, &md->flags);
 | |
| 
 | |
| 	if (noflush)
 | |
| 		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 | |
| 	if (map)
 | |
| 		synchronize_srcu(&md->io_barrier);
 | |
| 
 | |
| 	/* were we interrupted ? */
 | |
| 	if (r < 0) {
 | |
| 		dm_queue_flush(md);
 | |
| 
 | |
| 		if (dm_request_based(md))
 | |
| 			dm_start_queue(md->queue);
 | |
| 
 | |
| 		unlock_fs(md);
 | |
| 		dm_table_presuspend_undo_targets(map);
 | |
| 		/* pushback list is already flushed, so skip flush */
 | |
| 	}
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We need to be able to change a mapping table under a mounted
 | |
|  * filesystem.  For example we might want to move some data in
 | |
|  * the background.  Before the table can be swapped with
 | |
|  * dm_bind_table, dm_suspend must be called to flush any in
 | |
|  * flight bios and ensure that any further io gets deferred.
 | |
|  */
 | |
| /*
 | |
|  * Suspend mechanism in request-based dm.
 | |
|  *
 | |
|  * 1. Flush all I/Os by lock_fs() if needed.
 | |
|  * 2. Stop dispatching any I/O by stopping the request_queue.
 | |
|  * 3. Wait for all in-flight I/Os to be completed or requeued.
 | |
|  *
 | |
|  * To abort suspend, start the request_queue.
 | |
|  */
 | |
| int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
 | |
| {
 | |
| 	struct dm_table *map = NULL;
 | |
| 	int r = 0;
 | |
| 
 | |
| retry:
 | |
| 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
 | |
| 
 | |
| 	if (dm_suspended_md(md)) {
 | |
| 		r = -EINVAL;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	if (dm_suspended_internally_md(md)) {
 | |
| 		/* already internally suspended, wait for internal resume */
 | |
| 		mutex_unlock(&md->suspend_lock);
 | |
| 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
 | |
| 		if (r)
 | |
| 			return r;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
 | |
| 	if (!map) {
 | |
| 		/* avoid deadlock with fs/namespace.c:do_mount() */
 | |
| 		suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
 | |
| 	}
 | |
| 
 | |
| 	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
 | |
| 	if (r)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	set_bit(DMF_POST_SUSPENDING, &md->flags);
 | |
| 	dm_table_postsuspend_targets(map);
 | |
| 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
 | |
| 
 | |
| out_unlock:
 | |
| 	mutex_unlock(&md->suspend_lock);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int __dm_resume(struct mapped_device *md, struct dm_table *map)
 | |
| {
 | |
| 	if (map) {
 | |
| 		int r = dm_table_resume_targets(map);
 | |
| 
 | |
| 		if (r)
 | |
| 			return r;
 | |
| 	}
 | |
| 
 | |
| 	dm_queue_flush(md);
 | |
| 
 | |
| 	/*
 | |
| 	 * Flushing deferred I/Os must be done after targets are resumed
 | |
| 	 * so that mapping of targets can work correctly.
 | |
| 	 * Request-based dm is queueing the deferred I/Os in its request_queue.
 | |
| 	 */
 | |
| 	if (dm_request_based(md))
 | |
| 		dm_start_queue(md->queue);
 | |
| 
 | |
| 	unlock_fs(md);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int dm_resume(struct mapped_device *md)
 | |
| {
 | |
| 	int r;
 | |
| 	struct dm_table *map = NULL;
 | |
| 
 | |
| retry:
 | |
| 	r = -EINVAL;
 | |
| 	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
 | |
| 
 | |
| 	if (!dm_suspended_md(md))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (dm_suspended_internally_md(md)) {
 | |
| 		/* already internally suspended, wait for internal resume */
 | |
| 		mutex_unlock(&md->suspend_lock);
 | |
| 		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
 | |
| 		if (r)
 | |
| 			return r;
 | |
| 		goto retry;
 | |
| 	}
 | |
| 
 | |
| 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
 | |
| 	if (!map || !dm_table_get_size(map))
 | |
| 		goto out;
 | |
| 
 | |
| 	r = __dm_resume(md, map);
 | |
| 	if (r)
 | |
| 		goto out;
 | |
| 
 | |
| 	clear_bit(DMF_SUSPENDED, &md->flags);
 | |
| out:
 | |
| 	mutex_unlock(&md->suspend_lock);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Internal suspend/resume works like userspace-driven suspend. It waits
 | |
|  * until all bios finish and prevents issuing new bios to the target drivers.
 | |
|  * It may be used only from the kernel.
 | |
|  */
 | |
| 
 | |
| static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
 | |
| {
 | |
| 	struct dm_table *map = NULL;
 | |
| 
 | |
| 	lockdep_assert_held(&md->suspend_lock);
 | |
| 
 | |
| 	if (md->internal_suspend_count++)
 | |
| 		return; /* nested internal suspend */
 | |
| 
 | |
| 	if (dm_suspended_md(md)) {
 | |
| 		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
 | |
| 		return; /* nest suspend */
 | |
| 	}
 | |
| 
 | |
| 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
 | |
| 
 | |
| 	/*
 | |
| 	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
 | |
| 	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
 | |
| 	 * would require changing .presuspend to return an error -- avoid this
 | |
| 	 * until there is a need for more elaborate variants of internal suspend.
 | |
| 	 */
 | |
| 	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
 | |
| 			    DMF_SUSPENDED_INTERNALLY);
 | |
| 
 | |
| 	set_bit(DMF_POST_SUSPENDING, &md->flags);
 | |
| 	dm_table_postsuspend_targets(map);
 | |
| 	clear_bit(DMF_POST_SUSPENDING, &md->flags);
 | |
| }
 | |
| 
 | |
| static void __dm_internal_resume(struct mapped_device *md)
 | |
| {
 | |
| 	int r;
 | |
| 	struct dm_table *map;
 | |
| 
 | |
| 	BUG_ON(!md->internal_suspend_count);
 | |
| 
 | |
| 	if (--md->internal_suspend_count)
 | |
| 		return; /* resume from nested internal suspend */
 | |
| 
 | |
| 	if (dm_suspended_md(md))
 | |
| 		goto done; /* resume from nested suspend */
 | |
| 
 | |
| 	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
 | |
| 	r = __dm_resume(md, map);
 | |
| 	if (r) {
 | |
| 		/*
 | |
| 		 * If a preresume method of some target failed, we are in a
 | |
| 		 * tricky situation. We can't return an error to the caller. We
 | |
| 		 * can't fake success because then the "resume" and
 | |
| 		 * "postsuspend" methods would not be paired correctly, and it
 | |
| 		 * would break various targets, for example it would cause list
 | |
| 		 * corruption in the "origin" target.
 | |
| 		 *
 | |
| 		 * So, we fake normal suspend here, to make sure that the
 | |
| 		 * "resume" and "postsuspend" methods will be paired correctly.
 | |
| 		 */
 | |
| 		DMERR("Preresume method failed: %d", r);
 | |
| 		set_bit(DMF_SUSPENDED, &md->flags);
 | |
| 	}
 | |
| done:
 | |
| 	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
 | |
| 	smp_mb__after_atomic();
 | |
| 	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
 | |
| }
 | |
| 
 | |
| void dm_internal_suspend_noflush(struct mapped_device *md)
 | |
| {
 | |
| 	mutex_lock(&md->suspend_lock);
 | |
| 	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
 | |
| 	mutex_unlock(&md->suspend_lock);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
 | |
| 
 | |
| void dm_internal_resume(struct mapped_device *md)
 | |
| {
 | |
| 	mutex_lock(&md->suspend_lock);
 | |
| 	__dm_internal_resume(md);
 | |
| 	mutex_unlock(&md->suspend_lock);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_internal_resume);
 | |
| 
 | |
| /*
 | |
|  * Fast variants of internal suspend/resume hold md->suspend_lock,
 | |
|  * which prevents interaction with userspace-driven suspend.
 | |
|  */
 | |
| 
 | |
| void dm_internal_suspend_fast(struct mapped_device *md)
 | |
| {
 | |
| 	mutex_lock(&md->suspend_lock);
 | |
| 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
 | |
| 		return;
 | |
| 
 | |
| 	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
 | |
| 	synchronize_srcu(&md->io_barrier);
 | |
| 	flush_workqueue(md->wq);
 | |
| 	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
 | |
| 
 | |
| void dm_internal_resume_fast(struct mapped_device *md)
 | |
| {
 | |
| 	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
 | |
| 		goto done;
 | |
| 
 | |
| 	dm_queue_flush(md);
 | |
| 
 | |
| done:
 | |
| 	mutex_unlock(&md->suspend_lock);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
 | |
| 
 | |
| /*
 | |
|  *---------------------------------------------------------------
 | |
|  * Event notification.
 | |
|  *---------------------------------------------------------------
 | |
|  */
 | |
| int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
 | |
| 		      unsigned int cookie, bool need_resize_uevent)
 | |
| {
 | |
| 	int r;
 | |
| 	unsigned int noio_flag;
 | |
| 	char udev_cookie[DM_COOKIE_LENGTH];
 | |
| 	char *envp[3] = { NULL, NULL, NULL };
 | |
| 	char **envpp = envp;
 | |
| 	if (cookie) {
 | |
| 		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
 | |
| 			 DM_COOKIE_ENV_VAR_NAME, cookie);
 | |
| 		*envpp++ = udev_cookie;
 | |
| 	}
 | |
| 	if (need_resize_uevent) {
 | |
| 		*envpp++ = "RESIZE=1";
 | |
| 	}
 | |
| 
 | |
| 	noio_flag = memalloc_noio_save();
 | |
| 
 | |
| 	r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
 | |
| 
 | |
| 	memalloc_noio_restore(noio_flag);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| uint32_t dm_next_uevent_seq(struct mapped_device *md)
 | |
| {
 | |
| 	return atomic_add_return(1, &md->uevent_seq);
 | |
| }
 | |
| 
 | |
| uint32_t dm_get_event_nr(struct mapped_device *md)
 | |
| {
 | |
| 	return atomic_read(&md->event_nr);
 | |
| }
 | |
| 
 | |
| int dm_wait_event(struct mapped_device *md, int event_nr)
 | |
| {
 | |
| 	return wait_event_interruptible(md->eventq,
 | |
| 			(event_nr != atomic_read(&md->event_nr)));
 | |
| }
 | |
| 
 | |
| void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&md->uevent_lock, flags);
 | |
| 	list_add(elist, &md->uevent_list);
 | |
| 	spin_unlock_irqrestore(&md->uevent_lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The gendisk is only valid as long as you have a reference
 | |
|  * count on 'md'.
 | |
|  */
 | |
| struct gendisk *dm_disk(struct mapped_device *md)
 | |
| {
 | |
| 	return md->disk;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_disk);
 | |
| 
 | |
| struct kobject *dm_kobject(struct mapped_device *md)
 | |
| {
 | |
| 	return &md->kobj_holder.kobj;
 | |
| }
 | |
| 
 | |
| struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
 | |
| {
 | |
| 	struct mapped_device *md;
 | |
| 
 | |
| 	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
 | |
| 
 | |
| 	spin_lock(&_minor_lock);
 | |
| 	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
 | |
| 		md = NULL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	dm_get(md);
 | |
| out:
 | |
| 	spin_unlock(&_minor_lock);
 | |
| 
 | |
| 	return md;
 | |
| }
 | |
| 
 | |
| int dm_suspended_md(struct mapped_device *md)
 | |
| {
 | |
| 	return test_bit(DMF_SUSPENDED, &md->flags);
 | |
| }
 | |
| 
 | |
| static int dm_post_suspending_md(struct mapped_device *md)
 | |
| {
 | |
| 	return test_bit(DMF_POST_SUSPENDING, &md->flags);
 | |
| }
 | |
| 
 | |
| int dm_suspended_internally_md(struct mapped_device *md)
 | |
| {
 | |
| 	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
 | |
| }
 | |
| 
 | |
| int dm_test_deferred_remove_flag(struct mapped_device *md)
 | |
| {
 | |
| 	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
 | |
| }
 | |
| 
 | |
| int dm_suspended(struct dm_target *ti)
 | |
| {
 | |
| 	return dm_suspended_md(ti->table->md);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_suspended);
 | |
| 
 | |
| int dm_post_suspending(struct dm_target *ti)
 | |
| {
 | |
| 	return dm_post_suspending_md(ti->table->md);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_post_suspending);
 | |
| 
 | |
| int dm_noflush_suspending(struct dm_target *ti)
 | |
| {
 | |
| 	return __noflush_suspending(ti->table->md);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dm_noflush_suspending);
 | |
| 
 | |
| void dm_free_md_mempools(struct dm_md_mempools *pools)
 | |
| {
 | |
| 	if (!pools)
 | |
| 		return;
 | |
| 
 | |
| 	bioset_exit(&pools->bs);
 | |
| 	bioset_exit(&pools->io_bs);
 | |
| 
 | |
| 	kfree(pools);
 | |
| }
 | |
| 
 | |
| struct dm_pr {
 | |
| 	u64	old_key;
 | |
| 	u64	new_key;
 | |
| 	u32	flags;
 | |
| 	bool	abort;
 | |
| 	bool	fail_early;
 | |
| 	int	ret;
 | |
| 	enum pr_type type;
 | |
| 	struct pr_keys *read_keys;
 | |
| 	struct pr_held_reservation *rsv;
 | |
| };
 | |
| 
 | |
| static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
 | |
| 		      struct dm_pr *pr)
 | |
| {
 | |
| 	struct mapped_device *md = bdev->bd_disk->private_data;
 | |
| 	struct dm_table *table;
 | |
| 	struct dm_target *ti;
 | |
| 	int ret = -ENOTTY, srcu_idx;
 | |
| 
 | |
| 	table = dm_get_live_table(md, &srcu_idx);
 | |
| 	if (!table || !dm_table_get_size(table))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* We only support devices that have a single target */
 | |
| 	if (table->num_targets != 1)
 | |
| 		goto out;
 | |
| 	ti = dm_table_get_target(table, 0);
 | |
| 
 | |
| 	if (dm_suspended_md(md)) {
 | |
| 		ret = -EAGAIN;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ret = -EINVAL;
 | |
| 	if (!ti->type->iterate_devices)
 | |
| 		goto out;
 | |
| 
 | |
| 	ti->type->iterate_devices(ti, fn, pr);
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	dm_put_live_table(md, srcu_idx);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For register / unregister we need to manually call out to every path.
 | |
|  */
 | |
| static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
 | |
| 			    sector_t start, sector_t len, void *data)
 | |
| {
 | |
| 	struct dm_pr *pr = data;
 | |
| 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!ops || !ops->pr_register) {
 | |
| 		pr->ret = -EOPNOTSUPP;
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
 | |
| 	if (!ret)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!pr->ret)
 | |
| 		pr->ret = ret;
 | |
| 
 | |
| 	if (pr->fail_early)
 | |
| 		return -1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
 | |
| 			  u32 flags)
 | |
| {
 | |
| 	struct dm_pr pr = {
 | |
| 		.old_key	= old_key,
 | |
| 		.new_key	= new_key,
 | |
| 		.flags		= flags,
 | |
| 		.fail_early	= true,
 | |
| 		.ret		= 0,
 | |
| 	};
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
 | |
| 	if (ret) {
 | |
| 		/* Didn't even get to register a path */
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	if (!pr.ret)
 | |
| 		return 0;
 | |
| 	ret = pr.ret;
 | |
| 
 | |
| 	if (!new_key)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* unregister all paths if we failed to register any path */
 | |
| 	pr.old_key = new_key;
 | |
| 	pr.new_key = 0;
 | |
| 	pr.flags = 0;
 | |
| 	pr.fail_early = false;
 | |
| 	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
 | |
| 			   sector_t start, sector_t len, void *data)
 | |
| {
 | |
| 	struct dm_pr *pr = data;
 | |
| 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
 | |
| 
 | |
| 	if (!ops || !ops->pr_reserve) {
 | |
| 		pr->ret = -EOPNOTSUPP;
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
 | |
| 	if (!pr->ret)
 | |
| 		return -1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
 | |
| 			 u32 flags)
 | |
| {
 | |
| 	struct dm_pr pr = {
 | |
| 		.old_key	= key,
 | |
| 		.flags		= flags,
 | |
| 		.type		= type,
 | |
| 		.fail_early	= false,
 | |
| 		.ret		= 0,
 | |
| 	};
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return pr.ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If there is a non-All Registrants type of reservation, the release must be
 | |
|  * sent down the holding path. For the cases where there is no reservation or
 | |
|  * the path is not the holder the device will also return success, so we must
 | |
|  * try each path to make sure we got the correct path.
 | |
|  */
 | |
| static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
 | |
| 			   sector_t start, sector_t len, void *data)
 | |
| {
 | |
| 	struct dm_pr *pr = data;
 | |
| 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
 | |
| 
 | |
| 	if (!ops || !ops->pr_release) {
 | |
| 		pr->ret = -EOPNOTSUPP;
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
 | |
| 	if (pr->ret)
 | |
| 		return -1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
 | |
| {
 | |
| 	struct dm_pr pr = {
 | |
| 		.old_key	= key,
 | |
| 		.type		= type,
 | |
| 		.fail_early	= false,
 | |
| 	};
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return pr.ret;
 | |
| }
 | |
| 
 | |
| static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
 | |
| 			   sector_t start, sector_t len, void *data)
 | |
| {
 | |
| 	struct dm_pr *pr = data;
 | |
| 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
 | |
| 
 | |
| 	if (!ops || !ops->pr_preempt) {
 | |
| 		pr->ret = -EOPNOTSUPP;
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
 | |
| 				  pr->abort);
 | |
| 	if (!pr->ret)
 | |
| 		return -1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
 | |
| 			 enum pr_type type, bool abort)
 | |
| {
 | |
| 	struct dm_pr pr = {
 | |
| 		.new_key	= new_key,
 | |
| 		.old_key	= old_key,
 | |
| 		.type		= type,
 | |
| 		.fail_early	= false,
 | |
| 	};
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return pr.ret;
 | |
| }
 | |
| 
 | |
| static int dm_pr_clear(struct block_device *bdev, u64 key)
 | |
| {
 | |
| 	struct mapped_device *md = bdev->bd_disk->private_data;
 | |
| 	const struct pr_ops *ops;
 | |
| 	int r, srcu_idx;
 | |
| 	bool forward = true;
 | |
| 
 | |
| 	/* Not a real ioctl, but targets must not interpret non-DM ioctls */
 | |
| 	r = dm_prepare_ioctl(md, &srcu_idx, &bdev, 0, 0, &forward);
 | |
| 	if (r < 0)
 | |
| 		goto out;
 | |
| 	WARN_ON_ONCE(!forward);
 | |
| 
 | |
| 	ops = bdev->bd_disk->fops->pr_ops;
 | |
| 	if (ops && ops->pr_clear)
 | |
| 		r = ops->pr_clear(bdev, key);
 | |
| 	else
 | |
| 		r = -EOPNOTSUPP;
 | |
| out:
 | |
| 	dm_unprepare_ioctl(md, srcu_idx);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
 | |
| 			     sector_t start, sector_t len, void *data)
 | |
| {
 | |
| 	struct dm_pr *pr = data;
 | |
| 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
 | |
| 
 | |
| 	if (!ops || !ops->pr_read_keys) {
 | |
| 		pr->ret = -EOPNOTSUPP;
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
 | |
| 	if (!pr->ret)
 | |
| 		return -1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
 | |
| {
 | |
| 	struct dm_pr pr = {
 | |
| 		.read_keys = keys,
 | |
| 	};
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return pr.ret;
 | |
| }
 | |
| 
 | |
| static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
 | |
| 				    sector_t start, sector_t len, void *data)
 | |
| {
 | |
| 	struct dm_pr *pr = data;
 | |
| 	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
 | |
| 
 | |
| 	if (!ops || !ops->pr_read_reservation) {
 | |
| 		pr->ret = -EOPNOTSUPP;
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
 | |
| 	if (!pr->ret)
 | |
| 		return -1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dm_pr_read_reservation(struct block_device *bdev,
 | |
| 				  struct pr_held_reservation *rsv)
 | |
| {
 | |
| 	struct dm_pr pr = {
 | |
| 		.rsv = rsv,
 | |
| 	};
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return pr.ret;
 | |
| }
 | |
| 
 | |
| static const struct pr_ops dm_pr_ops = {
 | |
| 	.pr_register	= dm_pr_register,
 | |
| 	.pr_reserve	= dm_pr_reserve,
 | |
| 	.pr_release	= dm_pr_release,
 | |
| 	.pr_preempt	= dm_pr_preempt,
 | |
| 	.pr_clear	= dm_pr_clear,
 | |
| 	.pr_read_keys	= dm_pr_read_keys,
 | |
| 	.pr_read_reservation = dm_pr_read_reservation,
 | |
| };
 | |
| 
 | |
| static const struct block_device_operations dm_blk_dops = {
 | |
| 	.submit_bio = dm_submit_bio,
 | |
| 	.poll_bio = dm_poll_bio,
 | |
| 	.open = dm_blk_open,
 | |
| 	.release = dm_blk_close,
 | |
| 	.ioctl = dm_blk_ioctl,
 | |
| 	.getgeo = dm_blk_getgeo,
 | |
| 	.report_zones = dm_blk_report_zones,
 | |
| 	.pr_ops = &dm_pr_ops,
 | |
| 	.owner = THIS_MODULE
 | |
| };
 | |
| 
 | |
| static const struct block_device_operations dm_rq_blk_dops = {
 | |
| 	.open = dm_blk_open,
 | |
| 	.release = dm_blk_close,
 | |
| 	.ioctl = dm_blk_ioctl,
 | |
| 	.getgeo = dm_blk_getgeo,
 | |
| 	.pr_ops = &dm_pr_ops,
 | |
| 	.owner = THIS_MODULE
 | |
| };
 | |
| 
 | |
| static const struct dax_operations dm_dax_ops = {
 | |
| 	.direct_access = dm_dax_direct_access,
 | |
| 	.zero_page_range = dm_dax_zero_page_range,
 | |
| 	.recovery_write = dm_dax_recovery_write,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * module hooks
 | |
|  */
 | |
| module_init(dm_init);
 | |
| module_exit(dm_exit);
 | |
| 
 | |
| module_param(major, uint, 0);
 | |
| MODULE_PARM_DESC(major, "The major number of the device mapper");
 | |
| 
 | |
| module_param(reserved_bio_based_ios, uint, 0644);
 | |
| MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
 | |
| 
 | |
| module_param(dm_numa_node, int, 0644);
 | |
| MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
 | |
| 
 | |
| module_param(swap_bios, int, 0644);
 | |
| MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
 | |
| 
 | |
| MODULE_DESCRIPTION(DM_NAME " driver");
 | |
| MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
 | |
| MODULE_LICENSE("GPL");
 |