1161 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1161 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Copyright (C) 2017 Western Digital Corporation or its affiliates.
 | |
|  *
 | |
|  * This file is released under the GPL.
 | |
|  */
 | |
| 
 | |
| #include "dm-zoned.h"
 | |
| 
 | |
| #include <linux/module.h>
 | |
| 
 | |
| #define	DM_MSG_PREFIX		"zoned"
 | |
| 
 | |
| #define DMZ_MIN_BIOS		8192
 | |
| 
 | |
| /*
 | |
|  * Zone BIO context.
 | |
|  */
 | |
| struct dmz_bioctx {
 | |
| 	struct dmz_dev		*dev;
 | |
| 	struct dm_zone		*zone;
 | |
| 	struct bio		*bio;
 | |
| 	refcount_t		ref;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Chunk work descriptor.
 | |
|  */
 | |
| struct dm_chunk_work {
 | |
| 	struct work_struct	work;
 | |
| 	refcount_t		refcount;
 | |
| 	struct dmz_target	*target;
 | |
| 	unsigned int		chunk;
 | |
| 	struct bio_list		bio_list;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Target descriptor.
 | |
|  */
 | |
| struct dmz_target {
 | |
| 	struct dm_dev		**ddev;
 | |
| 	unsigned int		nr_ddevs;
 | |
| 
 | |
| 	unsigned int		flags;
 | |
| 
 | |
| 	/* Zoned block device information */
 | |
| 	struct dmz_dev		*dev;
 | |
| 
 | |
| 	/* For metadata handling */
 | |
| 	struct dmz_metadata     *metadata;
 | |
| 
 | |
| 	/* For chunk work */
 | |
| 	struct radix_tree_root	chunk_rxtree;
 | |
| 	struct workqueue_struct *chunk_wq;
 | |
| 	struct mutex		chunk_lock;
 | |
| 
 | |
| 	/* For cloned BIOs to zones */
 | |
| 	struct bio_set		bio_set;
 | |
| 
 | |
| 	/* For flush */
 | |
| 	spinlock_t		flush_lock;
 | |
| 	struct bio_list		flush_list;
 | |
| 	struct delayed_work	flush_work;
 | |
| 	struct workqueue_struct *flush_wq;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Flush intervals (seconds).
 | |
|  */
 | |
| #define DMZ_FLUSH_PERIOD	(10 * HZ)
 | |
| 
 | |
| /*
 | |
|  * Target BIO completion.
 | |
|  */
 | |
| static inline void dmz_bio_endio(struct bio *bio, blk_status_t status)
 | |
| {
 | |
| 	struct dmz_bioctx *bioctx =
 | |
| 		dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
 | |
| 
 | |
| 	if (status != BLK_STS_OK && bio->bi_status == BLK_STS_OK)
 | |
| 		bio->bi_status = status;
 | |
| 	if (bioctx->dev && bio->bi_status != BLK_STS_OK)
 | |
| 		bioctx->dev->flags |= DMZ_CHECK_BDEV;
 | |
| 
 | |
| 	if (refcount_dec_and_test(&bioctx->ref)) {
 | |
| 		struct dm_zone *zone = bioctx->zone;
 | |
| 
 | |
| 		if (zone) {
 | |
| 			if (bio->bi_status != BLK_STS_OK &&
 | |
| 			    bio_op(bio) == REQ_OP_WRITE &&
 | |
| 			    dmz_is_seq(zone))
 | |
| 				set_bit(DMZ_SEQ_WRITE_ERR, &zone->flags);
 | |
| 			dmz_deactivate_zone(zone);
 | |
| 		}
 | |
| 		bio_endio(bio);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Completion callback for an internally cloned target BIO. This terminates the
 | |
|  * target BIO when there are no more references to its context.
 | |
|  */
 | |
| static void dmz_clone_endio(struct bio *clone)
 | |
| {
 | |
| 	struct dmz_bioctx *bioctx = clone->bi_private;
 | |
| 	blk_status_t status = clone->bi_status;
 | |
| 
 | |
| 	bio_put(clone);
 | |
| 	dmz_bio_endio(bioctx->bio, status);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Issue a clone of a target BIO. The clone may only partially process the
 | |
|  * original target BIO.
 | |
|  */
 | |
| static int dmz_submit_bio(struct dmz_target *dmz, struct dm_zone *zone,
 | |
| 			  struct bio *bio, sector_t chunk_block,
 | |
| 			  unsigned int nr_blocks)
 | |
| {
 | |
| 	struct dmz_bioctx *bioctx =
 | |
| 		dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
 | |
| 	struct dmz_dev *dev = zone->dev;
 | |
| 	struct bio *clone;
 | |
| 
 | |
| 	if (dev->flags & DMZ_BDEV_DYING)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	clone = bio_alloc_clone(dev->bdev, bio, GFP_NOIO, &dmz->bio_set);
 | |
| 	if (!clone)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	bioctx->dev = dev;
 | |
| 	clone->bi_iter.bi_sector =
 | |
| 		dmz_start_sect(dmz->metadata, zone) + dmz_blk2sect(chunk_block);
 | |
| 	clone->bi_iter.bi_size = dmz_blk2sect(nr_blocks) << SECTOR_SHIFT;
 | |
| 	clone->bi_end_io = dmz_clone_endio;
 | |
| 	clone->bi_private = bioctx;
 | |
| 
 | |
| 	bio_advance(bio, clone->bi_iter.bi_size);
 | |
| 
 | |
| 	refcount_inc(&bioctx->ref);
 | |
| 	submit_bio_noacct(clone);
 | |
| 
 | |
| 	if (bio_op(bio) == REQ_OP_WRITE && dmz_is_seq(zone))
 | |
| 		zone->wp_block += nr_blocks;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Zero out pages of discarded blocks accessed by a read BIO.
 | |
|  */
 | |
| static void dmz_handle_read_zero(struct dmz_target *dmz, struct bio *bio,
 | |
| 				 sector_t chunk_block, unsigned int nr_blocks)
 | |
| {
 | |
| 	unsigned int size = nr_blocks << DMZ_BLOCK_SHIFT;
 | |
| 
 | |
| 	/* Clear nr_blocks */
 | |
| 	swap(bio->bi_iter.bi_size, size);
 | |
| 	zero_fill_bio(bio);
 | |
| 	swap(bio->bi_iter.bi_size, size);
 | |
| 
 | |
| 	bio_advance(bio, size);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Process a read BIO.
 | |
|  */
 | |
| static int dmz_handle_read(struct dmz_target *dmz, struct dm_zone *zone,
 | |
| 			   struct bio *bio)
 | |
| {
 | |
| 	struct dmz_metadata *zmd = dmz->metadata;
 | |
| 	sector_t chunk_block = dmz_chunk_block(zmd, dmz_bio_block(bio));
 | |
| 	unsigned int nr_blocks = dmz_bio_blocks(bio);
 | |
| 	sector_t end_block = chunk_block + nr_blocks;
 | |
| 	struct dm_zone *rzone, *bzone;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Read into unmapped chunks need only zeroing the BIO buffer */
 | |
| 	if (!zone) {
 | |
| 		zero_fill_bio(bio);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	DMDEBUG("(%s): READ chunk %llu -> %s zone %u, block %llu, %u blocks",
 | |
| 		dmz_metadata_label(zmd),
 | |
| 		(unsigned long long)dmz_bio_chunk(zmd, bio),
 | |
| 		(dmz_is_rnd(zone) ? "RND" :
 | |
| 		 (dmz_is_cache(zone) ? "CACHE" : "SEQ")),
 | |
| 		zone->id,
 | |
| 		(unsigned long long)chunk_block, nr_blocks);
 | |
| 
 | |
| 	/* Check block validity to determine the read location */
 | |
| 	bzone = zone->bzone;
 | |
| 	while (chunk_block < end_block) {
 | |
| 		nr_blocks = 0;
 | |
| 		if (dmz_is_rnd(zone) || dmz_is_cache(zone) ||
 | |
| 		    chunk_block < zone->wp_block) {
 | |
| 			/* Test block validity in the data zone */
 | |
| 			ret = dmz_block_valid(zmd, zone, chunk_block);
 | |
| 			if (ret < 0)
 | |
| 				return ret;
 | |
| 			if (ret > 0) {
 | |
| 				/* Read data zone blocks */
 | |
| 				nr_blocks = ret;
 | |
| 				rzone = zone;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * No valid blocks found in the data zone.
 | |
| 		 * Check the buffer zone, if there is one.
 | |
| 		 */
 | |
| 		if (!nr_blocks && bzone) {
 | |
| 			ret = dmz_block_valid(zmd, bzone, chunk_block);
 | |
| 			if (ret < 0)
 | |
| 				return ret;
 | |
| 			if (ret > 0) {
 | |
| 				/* Read buffer zone blocks */
 | |
| 				nr_blocks = ret;
 | |
| 				rzone = bzone;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (nr_blocks) {
 | |
| 			/* Valid blocks found: read them */
 | |
| 			nr_blocks = min_t(unsigned int, nr_blocks,
 | |
| 					  end_block - chunk_block);
 | |
| 			ret = dmz_submit_bio(dmz, rzone, bio,
 | |
| 					     chunk_block, nr_blocks);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 			chunk_block += nr_blocks;
 | |
| 		} else {
 | |
| 			/* No valid block: zeroout the current BIO block */
 | |
| 			dmz_handle_read_zero(dmz, bio, chunk_block, 1);
 | |
| 			chunk_block++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write blocks directly in a data zone, at the write pointer.
 | |
|  * If a buffer zone is assigned, invalidate the blocks written
 | |
|  * in place.
 | |
|  */
 | |
| static int dmz_handle_direct_write(struct dmz_target *dmz,
 | |
| 				   struct dm_zone *zone, struct bio *bio,
 | |
| 				   sector_t chunk_block,
 | |
| 				   unsigned int nr_blocks)
 | |
| {
 | |
| 	struct dmz_metadata *zmd = dmz->metadata;
 | |
| 	struct dm_zone *bzone = zone->bzone;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (dmz_is_readonly(zone))
 | |
| 		return -EROFS;
 | |
| 
 | |
| 	/* Submit write */
 | |
| 	ret = dmz_submit_bio(dmz, zone, bio, chunk_block, nr_blocks);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Validate the blocks in the data zone and invalidate
 | |
| 	 * in the buffer zone, if there is one.
 | |
| 	 */
 | |
| 	ret = dmz_validate_blocks(zmd, zone, chunk_block, nr_blocks);
 | |
| 	if (ret == 0 && bzone)
 | |
| 		ret = dmz_invalidate_blocks(zmd, bzone, chunk_block, nr_blocks);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write blocks in the buffer zone of @zone.
 | |
|  * If no buffer zone is assigned yet, get one.
 | |
|  * Called with @zone write locked.
 | |
|  */
 | |
| static int dmz_handle_buffered_write(struct dmz_target *dmz,
 | |
| 				     struct dm_zone *zone, struct bio *bio,
 | |
| 				     sector_t chunk_block,
 | |
| 				     unsigned int nr_blocks)
 | |
| {
 | |
| 	struct dmz_metadata *zmd = dmz->metadata;
 | |
| 	struct dm_zone *bzone;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Get the buffer zone. One will be allocated if needed */
 | |
| 	bzone = dmz_get_chunk_buffer(zmd, zone);
 | |
| 	if (IS_ERR(bzone))
 | |
| 		return PTR_ERR(bzone);
 | |
| 
 | |
| 	if (dmz_is_readonly(bzone))
 | |
| 		return -EROFS;
 | |
| 
 | |
| 	/* Submit write */
 | |
| 	ret = dmz_submit_bio(dmz, bzone, bio, chunk_block, nr_blocks);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Validate the blocks in the buffer zone
 | |
| 	 * and invalidate in the data zone.
 | |
| 	 */
 | |
| 	ret = dmz_validate_blocks(zmd, bzone, chunk_block, nr_blocks);
 | |
| 	if (ret == 0 && chunk_block < zone->wp_block)
 | |
| 		ret = dmz_invalidate_blocks(zmd, zone, chunk_block, nr_blocks);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Process a write BIO.
 | |
|  */
 | |
| static int dmz_handle_write(struct dmz_target *dmz, struct dm_zone *zone,
 | |
| 			    struct bio *bio)
 | |
| {
 | |
| 	struct dmz_metadata *zmd = dmz->metadata;
 | |
| 	sector_t chunk_block = dmz_chunk_block(zmd, dmz_bio_block(bio));
 | |
| 	unsigned int nr_blocks = dmz_bio_blocks(bio);
 | |
| 
 | |
| 	if (!zone)
 | |
| 		return -ENOSPC;
 | |
| 
 | |
| 	DMDEBUG("(%s): WRITE chunk %llu -> %s zone %u, block %llu, %u blocks",
 | |
| 		dmz_metadata_label(zmd),
 | |
| 		(unsigned long long)dmz_bio_chunk(zmd, bio),
 | |
| 		(dmz_is_rnd(zone) ? "RND" :
 | |
| 		 (dmz_is_cache(zone) ? "CACHE" : "SEQ")),
 | |
| 		zone->id,
 | |
| 		(unsigned long long)chunk_block, nr_blocks);
 | |
| 
 | |
| 	if (dmz_is_rnd(zone) || dmz_is_cache(zone) ||
 | |
| 	    chunk_block == zone->wp_block) {
 | |
| 		/*
 | |
| 		 * zone is a random zone or it is a sequential zone
 | |
| 		 * and the BIO is aligned to the zone write pointer:
 | |
| 		 * direct write the zone.
 | |
| 		 */
 | |
| 		return dmz_handle_direct_write(dmz, zone, bio,
 | |
| 					       chunk_block, nr_blocks);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * This is an unaligned write in a sequential zone:
 | |
| 	 * use buffered write.
 | |
| 	 */
 | |
| 	return dmz_handle_buffered_write(dmz, zone, bio, chunk_block, nr_blocks);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Process a discard BIO.
 | |
|  */
 | |
| static int dmz_handle_discard(struct dmz_target *dmz, struct dm_zone *zone,
 | |
| 			      struct bio *bio)
 | |
| {
 | |
| 	struct dmz_metadata *zmd = dmz->metadata;
 | |
| 	sector_t block = dmz_bio_block(bio);
 | |
| 	unsigned int nr_blocks = dmz_bio_blocks(bio);
 | |
| 	sector_t chunk_block = dmz_chunk_block(zmd, block);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/* For unmapped chunks, there is nothing to do */
 | |
| 	if (!zone)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (dmz_is_readonly(zone))
 | |
| 		return -EROFS;
 | |
| 
 | |
| 	DMDEBUG("(%s): DISCARD chunk %llu -> zone %u, block %llu, %u blocks",
 | |
| 		dmz_metadata_label(dmz->metadata),
 | |
| 		(unsigned long long)dmz_bio_chunk(zmd, bio),
 | |
| 		zone->id,
 | |
| 		(unsigned long long)chunk_block, nr_blocks);
 | |
| 
 | |
| 	/*
 | |
| 	 * Invalidate blocks in the data zone and its
 | |
| 	 * buffer zone if one is mapped.
 | |
| 	 */
 | |
| 	if (dmz_is_rnd(zone) || dmz_is_cache(zone) ||
 | |
| 	    chunk_block < zone->wp_block)
 | |
| 		ret = dmz_invalidate_blocks(zmd, zone, chunk_block, nr_blocks);
 | |
| 	if (ret == 0 && zone->bzone)
 | |
| 		ret = dmz_invalidate_blocks(zmd, zone->bzone,
 | |
| 					    chunk_block, nr_blocks);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Process a BIO.
 | |
|  */
 | |
| static void dmz_handle_bio(struct dmz_target *dmz, struct dm_chunk_work *cw,
 | |
| 			   struct bio *bio)
 | |
| {
 | |
| 	struct dmz_bioctx *bioctx =
 | |
| 		dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
 | |
| 	struct dmz_metadata *zmd = dmz->metadata;
 | |
| 	struct dm_zone *zone;
 | |
| 	int ret;
 | |
| 
 | |
| 	dmz_lock_metadata(zmd);
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the data zone mapping the chunk. There may be no
 | |
| 	 * mapping for read and discard. If a mapping is obtained,
 | |
| 	 + the zone returned will be set to active state.
 | |
| 	 */
 | |
| 	zone = dmz_get_chunk_mapping(zmd, dmz_bio_chunk(zmd, bio),
 | |
| 				     bio_op(bio));
 | |
| 	if (IS_ERR(zone)) {
 | |
| 		ret = PTR_ERR(zone);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Process the BIO */
 | |
| 	if (zone) {
 | |
| 		dmz_activate_zone(zone);
 | |
| 		bioctx->zone = zone;
 | |
| 		dmz_reclaim_bio_acc(zone->dev->reclaim);
 | |
| 	}
 | |
| 
 | |
| 	switch (bio_op(bio)) {
 | |
| 	case REQ_OP_READ:
 | |
| 		ret = dmz_handle_read(dmz, zone, bio);
 | |
| 		break;
 | |
| 	case REQ_OP_WRITE:
 | |
| 		ret = dmz_handle_write(dmz, zone, bio);
 | |
| 		break;
 | |
| 	case REQ_OP_DISCARD:
 | |
| 	case REQ_OP_WRITE_ZEROES:
 | |
| 		ret = dmz_handle_discard(dmz, zone, bio);
 | |
| 		break;
 | |
| 	default:
 | |
| 		DMERR("(%s): Unsupported BIO operation 0x%x",
 | |
| 		      dmz_metadata_label(dmz->metadata), bio_op(bio));
 | |
| 		ret = -EIO;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Release the chunk mapping. This will check that the mapping
 | |
| 	 * is still valid, that is, that the zone used still has valid blocks.
 | |
| 	 */
 | |
| 	if (zone)
 | |
| 		dmz_put_chunk_mapping(zmd, zone);
 | |
| out:
 | |
| 	dmz_bio_endio(bio, errno_to_blk_status(ret));
 | |
| 
 | |
| 	dmz_unlock_metadata(zmd);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Increment a chunk reference counter.
 | |
|  */
 | |
| static inline void dmz_get_chunk_work(struct dm_chunk_work *cw)
 | |
| {
 | |
| 	refcount_inc(&cw->refcount);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Decrement a chunk work reference count and
 | |
|  * free it if it becomes 0.
 | |
|  */
 | |
| static void dmz_put_chunk_work(struct dm_chunk_work *cw)
 | |
| {
 | |
| 	if (refcount_dec_and_test(&cw->refcount)) {
 | |
| 		WARN_ON(!bio_list_empty(&cw->bio_list));
 | |
| 		radix_tree_delete(&cw->target->chunk_rxtree, cw->chunk);
 | |
| 		kfree(cw);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Chunk BIO work function.
 | |
|  */
 | |
| static void dmz_chunk_work(struct work_struct *work)
 | |
| {
 | |
| 	struct dm_chunk_work *cw = container_of(work, struct dm_chunk_work, work);
 | |
| 	struct dmz_target *dmz = cw->target;
 | |
| 	struct bio *bio;
 | |
| 
 | |
| 	mutex_lock(&dmz->chunk_lock);
 | |
| 
 | |
| 	/* Process the chunk BIOs */
 | |
| 	while ((bio = bio_list_pop(&cw->bio_list))) {
 | |
| 		mutex_unlock(&dmz->chunk_lock);
 | |
| 		dmz_handle_bio(dmz, cw, bio);
 | |
| 		mutex_lock(&dmz->chunk_lock);
 | |
| 		dmz_put_chunk_work(cw);
 | |
| 	}
 | |
| 
 | |
| 	/* Queueing the work incremented the work refcount */
 | |
| 	dmz_put_chunk_work(cw);
 | |
| 
 | |
| 	mutex_unlock(&dmz->chunk_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flush work.
 | |
|  */
 | |
| static void dmz_flush_work(struct work_struct *work)
 | |
| {
 | |
| 	struct dmz_target *dmz = container_of(work, struct dmz_target, flush_work.work);
 | |
| 	struct bio *bio;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Flush dirty metadata blocks */
 | |
| 	ret = dmz_flush_metadata(dmz->metadata);
 | |
| 	if (ret)
 | |
| 		DMDEBUG("(%s): Metadata flush failed, rc=%d",
 | |
| 			dmz_metadata_label(dmz->metadata), ret);
 | |
| 
 | |
| 	/* Process queued flush requests */
 | |
| 	while (1) {
 | |
| 		spin_lock(&dmz->flush_lock);
 | |
| 		bio = bio_list_pop(&dmz->flush_list);
 | |
| 		spin_unlock(&dmz->flush_lock);
 | |
| 
 | |
| 		if (!bio)
 | |
| 			break;
 | |
| 
 | |
| 		dmz_bio_endio(bio, errno_to_blk_status(ret));
 | |
| 	}
 | |
| 
 | |
| 	queue_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get a chunk work and start it to process a new BIO.
 | |
|  * If the BIO chunk has no work yet, create one.
 | |
|  */
 | |
| static int dmz_queue_chunk_work(struct dmz_target *dmz, struct bio *bio)
 | |
| {
 | |
| 	unsigned int chunk = dmz_bio_chunk(dmz->metadata, bio);
 | |
| 	struct dm_chunk_work *cw;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	mutex_lock(&dmz->chunk_lock);
 | |
| 
 | |
| 	/* Get the BIO chunk work. If one is not active yet, create one */
 | |
| 	cw = radix_tree_lookup(&dmz->chunk_rxtree, chunk);
 | |
| 	if (cw) {
 | |
| 		dmz_get_chunk_work(cw);
 | |
| 	} else {
 | |
| 		/* Create a new chunk work */
 | |
| 		cw = kmalloc(sizeof(struct dm_chunk_work), GFP_NOIO);
 | |
| 		if (unlikely(!cw)) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		INIT_WORK(&cw->work, dmz_chunk_work);
 | |
| 		refcount_set(&cw->refcount, 1);
 | |
| 		cw->target = dmz;
 | |
| 		cw->chunk = chunk;
 | |
| 		bio_list_init(&cw->bio_list);
 | |
| 
 | |
| 		ret = radix_tree_insert(&dmz->chunk_rxtree, chunk, cw);
 | |
| 		if (unlikely(ret)) {
 | |
| 			kfree(cw);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	bio_list_add(&cw->bio_list, bio);
 | |
| 
 | |
| 	if (queue_work(dmz->chunk_wq, &cw->work))
 | |
| 		dmz_get_chunk_work(cw);
 | |
| out:
 | |
| 	mutex_unlock(&dmz->chunk_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if the backing device is being removed. If it's on the way out,
 | |
|  * start failing I/O. Reclaim and metadata components also call this
 | |
|  * function to cleanly abort operation in the event of such failure.
 | |
|  */
 | |
| bool dmz_bdev_is_dying(struct dmz_dev *dmz_dev)
 | |
| {
 | |
| 	if (dmz_dev->flags & DMZ_BDEV_DYING)
 | |
| 		return true;
 | |
| 
 | |
| 	if (dmz_dev->flags & DMZ_CHECK_BDEV)
 | |
| 		return !dmz_check_bdev(dmz_dev);
 | |
| 
 | |
| 	if (blk_queue_dying(bdev_get_queue(dmz_dev->bdev))) {
 | |
| 		dmz_dev_warn(dmz_dev, "Backing device queue dying");
 | |
| 		dmz_dev->flags |= DMZ_BDEV_DYING;
 | |
| 	}
 | |
| 
 | |
| 	return dmz_dev->flags & DMZ_BDEV_DYING;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check the backing device availability. This detects such events as
 | |
|  * backing device going offline due to errors, media removals, etc.
 | |
|  * This check is less efficient than dmz_bdev_is_dying() and should
 | |
|  * only be performed as a part of error handling.
 | |
|  */
 | |
| bool dmz_check_bdev(struct dmz_dev *dmz_dev)
 | |
| {
 | |
| 	struct gendisk *disk;
 | |
| 
 | |
| 	dmz_dev->flags &= ~DMZ_CHECK_BDEV;
 | |
| 
 | |
| 	if (dmz_bdev_is_dying(dmz_dev))
 | |
| 		return false;
 | |
| 
 | |
| 	disk = dmz_dev->bdev->bd_disk;
 | |
| 	if (disk->fops->check_events &&
 | |
| 	    disk->fops->check_events(disk, 0) & DISK_EVENT_MEDIA_CHANGE) {
 | |
| 		dmz_dev_warn(dmz_dev, "Backing device offline");
 | |
| 		dmz_dev->flags |= DMZ_BDEV_DYING;
 | |
| 	}
 | |
| 
 | |
| 	return !(dmz_dev->flags & DMZ_BDEV_DYING);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Process a new BIO.
 | |
|  */
 | |
| static int dmz_map(struct dm_target *ti, struct bio *bio)
 | |
| {
 | |
| 	struct dmz_target *dmz = ti->private;
 | |
| 	struct dmz_metadata *zmd = dmz->metadata;
 | |
| 	struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx));
 | |
| 	sector_t sector = bio->bi_iter.bi_sector;
 | |
| 	unsigned int nr_sectors = bio_sectors(bio);
 | |
| 	sector_t chunk_sector;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (dmz_dev_is_dying(zmd))
 | |
| 		return DM_MAPIO_KILL;
 | |
| 
 | |
| 	DMDEBUG("(%s): BIO op %d sector %llu + %u => chunk %llu, block %llu, %u blocks",
 | |
| 		dmz_metadata_label(zmd),
 | |
| 		bio_op(bio), (unsigned long long)sector, nr_sectors,
 | |
| 		(unsigned long long)dmz_bio_chunk(zmd, bio),
 | |
| 		(unsigned long long)dmz_chunk_block(zmd, dmz_bio_block(bio)),
 | |
| 		(unsigned int)dmz_bio_blocks(bio));
 | |
| 
 | |
| 	if (!nr_sectors && bio_op(bio) != REQ_OP_WRITE)
 | |
| 		return DM_MAPIO_REMAPPED;
 | |
| 
 | |
| 	/* The BIO should be block aligned */
 | |
| 	if ((nr_sectors & DMZ_BLOCK_SECTORS_MASK) || (sector & DMZ_BLOCK_SECTORS_MASK))
 | |
| 		return DM_MAPIO_KILL;
 | |
| 
 | |
| 	/* Initialize the BIO context */
 | |
| 	bioctx->dev = NULL;
 | |
| 	bioctx->zone = NULL;
 | |
| 	bioctx->bio = bio;
 | |
| 	refcount_set(&bioctx->ref, 1);
 | |
| 
 | |
| 	/* Set the BIO pending in the flush list */
 | |
| 	if (!nr_sectors && bio_op(bio) == REQ_OP_WRITE) {
 | |
| 		spin_lock(&dmz->flush_lock);
 | |
| 		bio_list_add(&dmz->flush_list, bio);
 | |
| 		spin_unlock(&dmz->flush_lock);
 | |
| 		mod_delayed_work(dmz->flush_wq, &dmz->flush_work, 0);
 | |
| 		return DM_MAPIO_SUBMITTED;
 | |
| 	}
 | |
| 
 | |
| 	/* Split zone BIOs to fit entirely into a zone */
 | |
| 	chunk_sector = sector & (dmz_zone_nr_sectors(zmd) - 1);
 | |
| 	if (chunk_sector + nr_sectors > dmz_zone_nr_sectors(zmd))
 | |
| 		dm_accept_partial_bio(bio, dmz_zone_nr_sectors(zmd) - chunk_sector);
 | |
| 
 | |
| 	/* Now ready to handle this BIO */
 | |
| 	ret = dmz_queue_chunk_work(dmz, bio);
 | |
| 	if (ret) {
 | |
| 		DMDEBUG("(%s): BIO op %d, can't process chunk %llu, err %i",
 | |
| 			dmz_metadata_label(zmd),
 | |
| 			bio_op(bio), (u64)dmz_bio_chunk(zmd, bio),
 | |
| 			ret);
 | |
| 		return DM_MAPIO_REQUEUE;
 | |
| 	}
 | |
| 
 | |
| 	return DM_MAPIO_SUBMITTED;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get zoned device information.
 | |
|  */
 | |
| static int dmz_get_zoned_device(struct dm_target *ti, char *path,
 | |
| 				int idx, int nr_devs)
 | |
| {
 | |
| 	struct dmz_target *dmz = ti->private;
 | |
| 	struct dm_dev *ddev;
 | |
| 	struct dmz_dev *dev;
 | |
| 	int ret;
 | |
| 	struct block_device *bdev;
 | |
| 
 | |
| 	/* Get the target device */
 | |
| 	ret = dm_get_device(ti, path, dm_table_get_mode(ti->table), &ddev);
 | |
| 	if (ret) {
 | |
| 		ti->error = "Get target device failed";
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	bdev = ddev->bdev;
 | |
| 	if (!bdev_is_zoned(bdev)) {
 | |
| 		if (nr_devs == 1) {
 | |
| 			ti->error = "Invalid regular device";
 | |
| 			goto err;
 | |
| 		}
 | |
| 		if (idx != 0) {
 | |
| 			ti->error = "First device must be a regular device";
 | |
| 			goto err;
 | |
| 		}
 | |
| 		if (dmz->ddev[0]) {
 | |
| 			ti->error = "Too many regular devices";
 | |
| 			goto err;
 | |
| 		}
 | |
| 		dev = &dmz->dev[idx];
 | |
| 		dev->flags = DMZ_BDEV_REGULAR;
 | |
| 	} else {
 | |
| 		if (dmz->ddev[idx]) {
 | |
| 			ti->error = "Too many zoned devices";
 | |
| 			goto err;
 | |
| 		}
 | |
| 		if (nr_devs > 1 && idx == 0) {
 | |
| 			ti->error = "First device must be a regular device";
 | |
| 			goto err;
 | |
| 		}
 | |
| 		dev = &dmz->dev[idx];
 | |
| 	}
 | |
| 	dev->bdev = bdev;
 | |
| 	dev->dev_idx = idx;
 | |
| 
 | |
| 	dev->capacity = bdev_nr_sectors(bdev);
 | |
| 	if (ti->begin) {
 | |
| 		ti->error = "Partial mapping is not supported";
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	dmz->ddev[idx] = ddev;
 | |
| 
 | |
| 	return 0;
 | |
| err:
 | |
| 	dm_put_device(ti, ddev);
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Cleanup zoned device information.
 | |
|  */
 | |
| static void dmz_put_zoned_devices(struct dm_target *ti)
 | |
| {
 | |
| 	struct dmz_target *dmz = ti->private;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < dmz->nr_ddevs; i++)
 | |
| 		if (dmz->ddev[i])
 | |
| 			dm_put_device(ti, dmz->ddev[i]);
 | |
| 
 | |
| 	kfree(dmz->ddev);
 | |
| }
 | |
| 
 | |
| static int dmz_fixup_devices(struct dm_target *ti)
 | |
| {
 | |
| 	struct dmz_target *dmz = ti->private;
 | |
| 	struct dmz_dev *reg_dev = NULL;
 | |
| 	sector_t zone_nr_sectors = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * When we have more than on devices, the first one must be a
 | |
| 	 * regular block device and the others zoned block devices.
 | |
| 	 */
 | |
| 	if (dmz->nr_ddevs > 1) {
 | |
| 		reg_dev = &dmz->dev[0];
 | |
| 		if (!(reg_dev->flags & DMZ_BDEV_REGULAR)) {
 | |
| 			ti->error = "Primary disk is not a regular device";
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		for (i = 1; i < dmz->nr_ddevs; i++) {
 | |
| 			struct dmz_dev *zoned_dev = &dmz->dev[i];
 | |
| 			struct block_device *bdev = zoned_dev->bdev;
 | |
| 
 | |
| 			if (zoned_dev->flags & DMZ_BDEV_REGULAR) {
 | |
| 				ti->error = "Secondary disk is not a zoned device";
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 			if (zone_nr_sectors &&
 | |
| 			    zone_nr_sectors != bdev_zone_sectors(bdev)) {
 | |
| 				ti->error = "Zone nr sectors mismatch";
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 			zone_nr_sectors = bdev_zone_sectors(bdev);
 | |
| 			zoned_dev->zone_nr_sectors = zone_nr_sectors;
 | |
| 			zoned_dev->nr_zones = bdev_nr_zones(bdev);
 | |
| 		}
 | |
| 	} else {
 | |
| 		struct dmz_dev *zoned_dev = &dmz->dev[0];
 | |
| 		struct block_device *bdev = zoned_dev->bdev;
 | |
| 
 | |
| 		if (zoned_dev->flags & DMZ_BDEV_REGULAR) {
 | |
| 			ti->error = "Disk is not a zoned device";
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		zoned_dev->zone_nr_sectors = bdev_zone_sectors(bdev);
 | |
| 		zoned_dev->nr_zones = bdev_nr_zones(bdev);
 | |
| 	}
 | |
| 
 | |
| 	if (reg_dev) {
 | |
| 		sector_t zone_offset;
 | |
| 
 | |
| 		reg_dev->zone_nr_sectors = zone_nr_sectors;
 | |
| 		reg_dev->nr_zones =
 | |
| 			DIV_ROUND_UP_SECTOR_T(reg_dev->capacity,
 | |
| 					      reg_dev->zone_nr_sectors);
 | |
| 		reg_dev->zone_offset = 0;
 | |
| 		zone_offset = reg_dev->nr_zones;
 | |
| 		for (i = 1; i < dmz->nr_ddevs; i++) {
 | |
| 			dmz->dev[i].zone_offset = zone_offset;
 | |
| 			zone_offset += dmz->dev[i].nr_zones;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Setup target.
 | |
|  */
 | |
| static int dmz_ctr(struct dm_target *ti, unsigned int argc, char **argv)
 | |
| {
 | |
| 	struct dmz_target *dmz;
 | |
| 	int ret, i;
 | |
| 
 | |
| 	/* Check arguments */
 | |
| 	if (argc < 1) {
 | |
| 		ti->error = "Invalid argument count";
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Allocate and initialize the target descriptor */
 | |
| 	dmz = kzalloc(sizeof(struct dmz_target), GFP_KERNEL);
 | |
| 	if (!dmz) {
 | |
| 		ti->error = "Unable to allocate the zoned target descriptor";
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	dmz->dev = kcalloc(argc, sizeof(struct dmz_dev), GFP_KERNEL);
 | |
| 	if (!dmz->dev) {
 | |
| 		ti->error = "Unable to allocate the zoned device descriptors";
 | |
| 		kfree(dmz);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	dmz->ddev = kcalloc(argc, sizeof(struct dm_dev *), GFP_KERNEL);
 | |
| 	if (!dmz->ddev) {
 | |
| 		ti->error = "Unable to allocate the dm device descriptors";
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err;
 | |
| 	}
 | |
| 	dmz->nr_ddevs = argc;
 | |
| 
 | |
| 	ti->private = dmz;
 | |
| 
 | |
| 	/* Get the target zoned block device */
 | |
| 	for (i = 0; i < argc; i++) {
 | |
| 		ret = dmz_get_zoned_device(ti, argv[i], i, argc);
 | |
| 		if (ret)
 | |
| 			goto err_dev;
 | |
| 	}
 | |
| 	ret = dmz_fixup_devices(ti);
 | |
| 	if (ret)
 | |
| 		goto err_dev;
 | |
| 
 | |
| 	/* Initialize metadata */
 | |
| 	ret = dmz_ctr_metadata(dmz->dev, argc, &dmz->metadata,
 | |
| 			       dm_table_device_name(ti->table));
 | |
| 	if (ret) {
 | |
| 		ti->error = "Metadata initialization failed";
 | |
| 		goto err_dev;
 | |
| 	}
 | |
| 
 | |
| 	/* Set target (no write same support) */
 | |
| 	ti->max_io_len = dmz_zone_nr_sectors(dmz->metadata);
 | |
| 	ti->num_flush_bios = 1;
 | |
| 	ti->num_discard_bios = 1;
 | |
| 	ti->num_write_zeroes_bios = 1;
 | |
| 	ti->per_io_data_size = sizeof(struct dmz_bioctx);
 | |
| 	ti->flush_supported = true;
 | |
| 	ti->discards_supported = true;
 | |
| 
 | |
| 	/* The exposed capacity is the number of chunks that can be mapped */
 | |
| 	ti->len = (sector_t)dmz_nr_chunks(dmz->metadata) <<
 | |
| 		dmz_zone_nr_sectors_shift(dmz->metadata);
 | |
| 
 | |
| 	/* Zone BIO */
 | |
| 	ret = bioset_init(&dmz->bio_set, DMZ_MIN_BIOS, 0, 0);
 | |
| 	if (ret) {
 | |
| 		ti->error = "Create BIO set failed";
 | |
| 		goto err_meta;
 | |
| 	}
 | |
| 
 | |
| 	/* Chunk BIO work */
 | |
| 	mutex_init(&dmz->chunk_lock);
 | |
| 	INIT_RADIX_TREE(&dmz->chunk_rxtree, GFP_NOIO);
 | |
| 	dmz->chunk_wq = alloc_workqueue("dmz_cwq_%s",
 | |
| 					WQ_MEM_RECLAIM | WQ_UNBOUND, 0,
 | |
| 					dmz_metadata_label(dmz->metadata));
 | |
| 	if (!dmz->chunk_wq) {
 | |
| 		ti->error = "Create chunk workqueue failed";
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err_bio;
 | |
| 	}
 | |
| 
 | |
| 	/* Flush work */
 | |
| 	spin_lock_init(&dmz->flush_lock);
 | |
| 	bio_list_init(&dmz->flush_list);
 | |
| 	INIT_DELAYED_WORK(&dmz->flush_work, dmz_flush_work);
 | |
| 	dmz->flush_wq = alloc_ordered_workqueue("dmz_fwq_%s", WQ_MEM_RECLAIM,
 | |
| 						dmz_metadata_label(dmz->metadata));
 | |
| 	if (!dmz->flush_wq) {
 | |
| 		ti->error = "Create flush workqueue failed";
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err_cwq;
 | |
| 	}
 | |
| 	mod_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
 | |
| 
 | |
| 	/* Initialize reclaim */
 | |
| 	for (i = 0; i < dmz->nr_ddevs; i++) {
 | |
| 		ret = dmz_ctr_reclaim(dmz->metadata, &dmz->dev[i].reclaim, i);
 | |
| 		if (ret) {
 | |
| 			ti->error = "Zone reclaim initialization failed";
 | |
| 			goto err_fwq;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	DMINFO("(%s): Target device: %llu 512-byte logical sectors (%llu blocks)",
 | |
| 	       dmz_metadata_label(dmz->metadata),
 | |
| 	       (unsigned long long)ti->len,
 | |
| 	       (unsigned long long)dmz_sect2blk(ti->len));
 | |
| 
 | |
| 	return 0;
 | |
| err_fwq:
 | |
| 	destroy_workqueue(dmz->flush_wq);
 | |
| err_cwq:
 | |
| 	destroy_workqueue(dmz->chunk_wq);
 | |
| err_bio:
 | |
| 	mutex_destroy(&dmz->chunk_lock);
 | |
| 	bioset_exit(&dmz->bio_set);
 | |
| err_meta:
 | |
| 	dmz_dtr_metadata(dmz->metadata);
 | |
| err_dev:
 | |
| 	dmz_put_zoned_devices(ti);
 | |
| err:
 | |
| 	kfree(dmz->dev);
 | |
| 	kfree(dmz);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Cleanup target.
 | |
|  */
 | |
| static void dmz_dtr(struct dm_target *ti)
 | |
| {
 | |
| 	struct dmz_target *dmz = ti->private;
 | |
| 	int i;
 | |
| 
 | |
| 	destroy_workqueue(dmz->chunk_wq);
 | |
| 
 | |
| 	for (i = 0; i < dmz->nr_ddevs; i++)
 | |
| 		dmz_dtr_reclaim(dmz->dev[i].reclaim);
 | |
| 
 | |
| 	cancel_delayed_work_sync(&dmz->flush_work);
 | |
| 	destroy_workqueue(dmz->flush_wq);
 | |
| 
 | |
| 	(void) dmz_flush_metadata(dmz->metadata);
 | |
| 
 | |
| 	dmz_dtr_metadata(dmz->metadata);
 | |
| 
 | |
| 	bioset_exit(&dmz->bio_set);
 | |
| 
 | |
| 	dmz_put_zoned_devices(ti);
 | |
| 
 | |
| 	mutex_destroy(&dmz->chunk_lock);
 | |
| 
 | |
| 	kfree(dmz->dev);
 | |
| 	kfree(dmz);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Setup target request queue limits.
 | |
|  */
 | |
| static void dmz_io_hints(struct dm_target *ti, struct queue_limits *limits)
 | |
| {
 | |
| 	struct dmz_target *dmz = ti->private;
 | |
| 	unsigned int chunk_sectors = dmz_zone_nr_sectors(dmz->metadata);
 | |
| 
 | |
| 	limits->logical_block_size = DMZ_BLOCK_SIZE;
 | |
| 	limits->physical_block_size = DMZ_BLOCK_SIZE;
 | |
| 
 | |
| 	limits->io_min = DMZ_BLOCK_SIZE;
 | |
| 	limits->io_opt = DMZ_BLOCK_SIZE;
 | |
| 
 | |
| 	limits->discard_alignment = 0;
 | |
| 	limits->discard_granularity = DMZ_BLOCK_SIZE;
 | |
| 	limits->max_hw_discard_sectors = chunk_sectors;
 | |
| 	limits->max_write_zeroes_sectors = chunk_sectors;
 | |
| 
 | |
| 	/* FS hint to try to align to the device zone size */
 | |
| 	limits->chunk_sectors = chunk_sectors;
 | |
| 	limits->max_sectors = chunk_sectors;
 | |
| 
 | |
| 	/* We are exposing a drive-managed zoned block device */
 | |
| 	limits->features &= ~BLK_FEAT_ZONED;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Pass on ioctl to the backend device.
 | |
|  */
 | |
| static int dmz_prepare_ioctl(struct dm_target *ti, struct block_device **bdev,
 | |
| 			     unsigned int cmd, unsigned long arg, bool *forward)
 | |
| {
 | |
| 	struct dmz_target *dmz = ti->private;
 | |
| 	struct dmz_dev *dev = &dmz->dev[0];
 | |
| 
 | |
| 	if (!dmz_check_bdev(dev))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	*bdev = dev->bdev;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Stop works on suspend.
 | |
|  */
 | |
| static void dmz_suspend(struct dm_target *ti)
 | |
| {
 | |
| 	struct dmz_target *dmz = ti->private;
 | |
| 	int i;
 | |
| 
 | |
| 	flush_workqueue(dmz->chunk_wq);
 | |
| 	for (i = 0; i < dmz->nr_ddevs; i++)
 | |
| 		dmz_suspend_reclaim(dmz->dev[i].reclaim);
 | |
| 	cancel_delayed_work_sync(&dmz->flush_work);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Restart works on resume or if suspend failed.
 | |
|  */
 | |
| static void dmz_resume(struct dm_target *ti)
 | |
| {
 | |
| 	struct dmz_target *dmz = ti->private;
 | |
| 	int i;
 | |
| 
 | |
| 	queue_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD);
 | |
| 	for (i = 0; i < dmz->nr_ddevs; i++)
 | |
| 		dmz_resume_reclaim(dmz->dev[i].reclaim);
 | |
| }
 | |
| 
 | |
| static int dmz_iterate_devices(struct dm_target *ti,
 | |
| 			       iterate_devices_callout_fn fn, void *data)
 | |
| {
 | |
| 	struct dmz_target *dmz = ti->private;
 | |
| 	unsigned int zone_nr_sectors = dmz_zone_nr_sectors(dmz->metadata);
 | |
| 	sector_t capacity;
 | |
| 	int i, r;
 | |
| 
 | |
| 	for (i = 0; i < dmz->nr_ddevs; i++) {
 | |
| 		capacity = dmz->dev[i].capacity & ~(zone_nr_sectors - 1);
 | |
| 		r = fn(ti, dmz->ddev[i], 0, capacity, data);
 | |
| 		if (r)
 | |
| 			break;
 | |
| 	}
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void dmz_status(struct dm_target *ti, status_type_t type,
 | |
| 		       unsigned int status_flags, char *result,
 | |
| 		       unsigned int maxlen)
 | |
| {
 | |
| 	struct dmz_target *dmz = ti->private;
 | |
| 	ssize_t sz = 0;
 | |
| 	char buf[BDEVNAME_SIZE];
 | |
| 	struct dmz_dev *dev;
 | |
| 	int i;
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case STATUSTYPE_INFO:
 | |
| 		DMEMIT("%u zones %u/%u cache",
 | |
| 		       dmz_nr_zones(dmz->metadata),
 | |
| 		       dmz_nr_unmap_cache_zones(dmz->metadata),
 | |
| 		       dmz_nr_cache_zones(dmz->metadata));
 | |
| 		for (i = 0; i < dmz->nr_ddevs; i++) {
 | |
| 			/*
 | |
| 			 * For a multi-device setup the first device
 | |
| 			 * contains only cache zones.
 | |
| 			 */
 | |
| 			if ((i == 0) &&
 | |
| 			    (dmz_nr_cache_zones(dmz->metadata) > 0))
 | |
| 				continue;
 | |
| 			DMEMIT(" %u/%u random %u/%u sequential",
 | |
| 			       dmz_nr_unmap_rnd_zones(dmz->metadata, i),
 | |
| 			       dmz_nr_rnd_zones(dmz->metadata, i),
 | |
| 			       dmz_nr_unmap_seq_zones(dmz->metadata, i),
 | |
| 			       dmz_nr_seq_zones(dmz->metadata, i));
 | |
| 		}
 | |
| 		break;
 | |
| 	case STATUSTYPE_TABLE:
 | |
| 		dev = &dmz->dev[0];
 | |
| 		format_dev_t(buf, dev->bdev->bd_dev);
 | |
| 		DMEMIT("%s", buf);
 | |
| 		for (i = 1; i < dmz->nr_ddevs; i++) {
 | |
| 			dev = &dmz->dev[i];
 | |
| 			format_dev_t(buf, dev->bdev->bd_dev);
 | |
| 			DMEMIT(" %s", buf);
 | |
| 		}
 | |
| 		break;
 | |
| 	case STATUSTYPE_IMA:
 | |
| 		*result = '\0';
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int dmz_message(struct dm_target *ti, unsigned int argc, char **argv,
 | |
| 		       char *result, unsigned int maxlen)
 | |
| {
 | |
| 	struct dmz_target *dmz = ti->private;
 | |
| 	int r = -EINVAL;
 | |
| 
 | |
| 	if (!strcasecmp(argv[0], "reclaim")) {
 | |
| 		int i;
 | |
| 
 | |
| 		for (i = 0; i < dmz->nr_ddevs; i++)
 | |
| 			dmz_schedule_reclaim(dmz->dev[i].reclaim);
 | |
| 		r = 0;
 | |
| 	} else
 | |
| 		DMERR("unrecognized message %s", argv[0]);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static struct target_type zoned_target = {
 | |
| 	.name		 = "zoned",
 | |
| 	.version	 = {2, 0, 0},
 | |
| 	.features	 = DM_TARGET_SINGLETON | DM_TARGET_MIXED_ZONED_MODEL,
 | |
| 	.module		 = THIS_MODULE,
 | |
| 	.ctr		 = dmz_ctr,
 | |
| 	.dtr		 = dmz_dtr,
 | |
| 	.map		 = dmz_map,
 | |
| 	.io_hints	 = dmz_io_hints,
 | |
| 	.prepare_ioctl	 = dmz_prepare_ioctl,
 | |
| 	.postsuspend	 = dmz_suspend,
 | |
| 	.resume		 = dmz_resume,
 | |
| 	.iterate_devices = dmz_iterate_devices,
 | |
| 	.status		 = dmz_status,
 | |
| 	.message	 = dmz_message,
 | |
| };
 | |
| module_dm(zoned);
 | |
| 
 | |
| MODULE_DESCRIPTION(DM_NAME " target for zoned block devices");
 | |
| MODULE_AUTHOR("Damien Le Moal <damien.lemoal@wdc.com>");
 | |
| MODULE_LICENSE("GPL");
 |