1867 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1867 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * A fairly generic DMA-API to IOMMU-API glue layer.
 | |
|  *
 | |
|  * Copyright (C) 2014-2015 ARM Ltd.
 | |
|  *
 | |
|  * based in part on arch/arm/mm/dma-mapping.c:
 | |
|  * Copyright (C) 2000-2004 Russell King
 | |
|  */
 | |
| 
 | |
| #include <linux/acpi_iort.h>
 | |
| #include <linux/atomic.h>
 | |
| #include <linux/crash_dump.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/dma-direct.h>
 | |
| #include <linux/dma-map-ops.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/huge_mm.h>
 | |
| #include <linux/iommu.h>
 | |
| #include <linux/iommu-dma.h>
 | |
| #include <linux/iova.h>
 | |
| #include <linux/irq.h>
 | |
| #include <linux/list_sort.h>
 | |
| #include <linux/memremap.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/of_iommu.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/scatterlist.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/swiotlb.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <trace/events/swiotlb.h>
 | |
| 
 | |
| #include "dma-iommu.h"
 | |
| #include "iommu-pages.h"
 | |
| 
 | |
| struct iommu_dma_msi_page {
 | |
| 	struct list_head	list;
 | |
| 	dma_addr_t		iova;
 | |
| 	phys_addr_t		phys;
 | |
| };
 | |
| 
 | |
| enum iommu_dma_cookie_type {
 | |
| 	IOMMU_DMA_IOVA_COOKIE,
 | |
| 	IOMMU_DMA_MSI_COOKIE,
 | |
| };
 | |
| 
 | |
| enum iommu_dma_queue_type {
 | |
| 	IOMMU_DMA_OPTS_PER_CPU_QUEUE,
 | |
| 	IOMMU_DMA_OPTS_SINGLE_QUEUE,
 | |
| };
 | |
| 
 | |
| struct iommu_dma_options {
 | |
| 	enum iommu_dma_queue_type qt;
 | |
| 	size_t		fq_size;
 | |
| 	unsigned int	fq_timeout;
 | |
| };
 | |
| 
 | |
| struct iommu_dma_cookie {
 | |
| 	enum iommu_dma_cookie_type	type;
 | |
| 	union {
 | |
| 		/* Full allocator for IOMMU_DMA_IOVA_COOKIE */
 | |
| 		struct {
 | |
| 			struct iova_domain	iovad;
 | |
| 			/* Flush queue */
 | |
| 			union {
 | |
| 				struct iova_fq	*single_fq;
 | |
| 				struct iova_fq	__percpu *percpu_fq;
 | |
| 			};
 | |
| 			/* Number of TLB flushes that have been started */
 | |
| 			atomic64_t		fq_flush_start_cnt;
 | |
| 			/* Number of TLB flushes that have been finished */
 | |
| 			atomic64_t		fq_flush_finish_cnt;
 | |
| 			/* Timer to regularily empty the flush queues */
 | |
| 			struct timer_list	fq_timer;
 | |
| 			/* 1 when timer is active, 0 when not */
 | |
| 			atomic_t		fq_timer_on;
 | |
| 		};
 | |
| 		/* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
 | |
| 		dma_addr_t		msi_iova;
 | |
| 	};
 | |
| 	struct list_head		msi_page_list;
 | |
| 
 | |
| 	/* Domain for flush queue callback; NULL if flush queue not in use */
 | |
| 	struct iommu_domain		*fq_domain;
 | |
| 	/* Options for dma-iommu use */
 | |
| 	struct iommu_dma_options	options;
 | |
| 	struct mutex			mutex;
 | |
| };
 | |
| 
 | |
| static DEFINE_STATIC_KEY_FALSE(iommu_deferred_attach_enabled);
 | |
| bool iommu_dma_forcedac __read_mostly;
 | |
| 
 | |
| static int __init iommu_dma_forcedac_setup(char *str)
 | |
| {
 | |
| 	int ret = kstrtobool(str, &iommu_dma_forcedac);
 | |
| 
 | |
| 	if (!ret && iommu_dma_forcedac)
 | |
| 		pr_info("Forcing DAC for PCI devices\n");
 | |
| 	return ret;
 | |
| }
 | |
| early_param("iommu.forcedac", iommu_dma_forcedac_setup);
 | |
| 
 | |
| /* Number of entries per flush queue */
 | |
| #define IOVA_DEFAULT_FQ_SIZE	256
 | |
| #define IOVA_SINGLE_FQ_SIZE	32768
 | |
| 
 | |
| /* Timeout (in ms) after which entries are flushed from the queue */
 | |
| #define IOVA_DEFAULT_FQ_TIMEOUT	10
 | |
| #define IOVA_SINGLE_FQ_TIMEOUT	1000
 | |
| 
 | |
| /* Flush queue entry for deferred flushing */
 | |
| struct iova_fq_entry {
 | |
| 	unsigned long iova_pfn;
 | |
| 	unsigned long pages;
 | |
| 	struct list_head freelist;
 | |
| 	u64 counter; /* Flush counter when this entry was added */
 | |
| };
 | |
| 
 | |
| /* Per-CPU flush queue structure */
 | |
| struct iova_fq {
 | |
| 	spinlock_t lock;
 | |
| 	unsigned int head, tail;
 | |
| 	unsigned int mod_mask;
 | |
| 	struct iova_fq_entry entries[];
 | |
| };
 | |
| 
 | |
| #define fq_ring_for_each(i, fq) \
 | |
| 	for ((i) = (fq)->head; (i) != (fq)->tail; (i) = ((i) + 1) & (fq)->mod_mask)
 | |
| 
 | |
| static inline bool fq_full(struct iova_fq *fq)
 | |
| {
 | |
| 	assert_spin_locked(&fq->lock);
 | |
| 	return (((fq->tail + 1) & fq->mod_mask) == fq->head);
 | |
| }
 | |
| 
 | |
| static inline unsigned int fq_ring_add(struct iova_fq *fq)
 | |
| {
 | |
| 	unsigned int idx = fq->tail;
 | |
| 
 | |
| 	assert_spin_locked(&fq->lock);
 | |
| 
 | |
| 	fq->tail = (idx + 1) & fq->mod_mask;
 | |
| 
 | |
| 	return idx;
 | |
| }
 | |
| 
 | |
| static void fq_ring_free_locked(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
 | |
| {
 | |
| 	u64 counter = atomic64_read(&cookie->fq_flush_finish_cnt);
 | |
| 	unsigned int idx;
 | |
| 
 | |
| 	assert_spin_locked(&fq->lock);
 | |
| 
 | |
| 	fq_ring_for_each(idx, fq) {
 | |
| 
 | |
| 		if (fq->entries[idx].counter >= counter)
 | |
| 			break;
 | |
| 
 | |
| 		iommu_put_pages_list(&fq->entries[idx].freelist);
 | |
| 		free_iova_fast(&cookie->iovad,
 | |
| 			       fq->entries[idx].iova_pfn,
 | |
| 			       fq->entries[idx].pages);
 | |
| 
 | |
| 		fq->head = (fq->head + 1) & fq->mod_mask;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void fq_ring_free(struct iommu_dma_cookie *cookie, struct iova_fq *fq)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&fq->lock, flags);
 | |
| 	fq_ring_free_locked(cookie, fq);
 | |
| 	spin_unlock_irqrestore(&fq->lock, flags);
 | |
| }
 | |
| 
 | |
| static void fq_flush_iotlb(struct iommu_dma_cookie *cookie)
 | |
| {
 | |
| 	atomic64_inc(&cookie->fq_flush_start_cnt);
 | |
| 	cookie->fq_domain->ops->flush_iotlb_all(cookie->fq_domain);
 | |
| 	atomic64_inc(&cookie->fq_flush_finish_cnt);
 | |
| }
 | |
| 
 | |
| static void fq_flush_timeout(struct timer_list *t)
 | |
| {
 | |
| 	struct iommu_dma_cookie *cookie = from_timer(cookie, t, fq_timer);
 | |
| 	int cpu;
 | |
| 
 | |
| 	atomic_set(&cookie->fq_timer_on, 0);
 | |
| 	fq_flush_iotlb(cookie);
 | |
| 
 | |
| 	if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE) {
 | |
| 		fq_ring_free(cookie, cookie->single_fq);
 | |
| 	} else {
 | |
| 		for_each_possible_cpu(cpu)
 | |
| 			fq_ring_free(cookie, per_cpu_ptr(cookie->percpu_fq, cpu));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void queue_iova(struct iommu_dma_cookie *cookie,
 | |
| 		unsigned long pfn, unsigned long pages,
 | |
| 		struct list_head *freelist)
 | |
| {
 | |
| 	struct iova_fq *fq;
 | |
| 	unsigned long flags;
 | |
| 	unsigned int idx;
 | |
| 
 | |
| 	/*
 | |
| 	 * Order against the IOMMU driver's pagetable update from unmapping
 | |
| 	 * @pte, to guarantee that fq_flush_iotlb() observes that if called
 | |
| 	 * from a different CPU before we release the lock below. Full barrier
 | |
| 	 * so it also pairs with iommu_dma_init_fq() to avoid seeing partially
 | |
| 	 * written fq state here.
 | |
| 	 */
 | |
| 	smp_mb();
 | |
| 
 | |
| 	if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE)
 | |
| 		fq = cookie->single_fq;
 | |
| 	else
 | |
| 		fq = raw_cpu_ptr(cookie->percpu_fq);
 | |
| 
 | |
| 	spin_lock_irqsave(&fq->lock, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * First remove all entries from the flush queue that have already been
 | |
| 	 * flushed out on another CPU. This makes the fq_full() check below less
 | |
| 	 * likely to be true.
 | |
| 	 */
 | |
| 	fq_ring_free_locked(cookie, fq);
 | |
| 
 | |
| 	if (fq_full(fq)) {
 | |
| 		fq_flush_iotlb(cookie);
 | |
| 		fq_ring_free_locked(cookie, fq);
 | |
| 	}
 | |
| 
 | |
| 	idx = fq_ring_add(fq);
 | |
| 
 | |
| 	fq->entries[idx].iova_pfn = pfn;
 | |
| 	fq->entries[idx].pages    = pages;
 | |
| 	fq->entries[idx].counter  = atomic64_read(&cookie->fq_flush_start_cnt);
 | |
| 	list_splice(freelist, &fq->entries[idx].freelist);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&fq->lock, flags);
 | |
| 
 | |
| 	/* Avoid false sharing as much as possible. */
 | |
| 	if (!atomic_read(&cookie->fq_timer_on) &&
 | |
| 	    !atomic_xchg(&cookie->fq_timer_on, 1))
 | |
| 		mod_timer(&cookie->fq_timer,
 | |
| 			  jiffies + msecs_to_jiffies(cookie->options.fq_timeout));
 | |
| }
 | |
| 
 | |
| static void iommu_dma_free_fq_single(struct iova_fq *fq)
 | |
| {
 | |
| 	int idx;
 | |
| 
 | |
| 	fq_ring_for_each(idx, fq)
 | |
| 		iommu_put_pages_list(&fq->entries[idx].freelist);
 | |
| 	vfree(fq);
 | |
| }
 | |
| 
 | |
| static void iommu_dma_free_fq_percpu(struct iova_fq __percpu *percpu_fq)
 | |
| {
 | |
| 	int cpu, idx;
 | |
| 
 | |
| 	/* The IOVAs will be torn down separately, so just free our queued pages */
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		struct iova_fq *fq = per_cpu_ptr(percpu_fq, cpu);
 | |
| 
 | |
| 		fq_ring_for_each(idx, fq)
 | |
| 			iommu_put_pages_list(&fq->entries[idx].freelist);
 | |
| 	}
 | |
| 
 | |
| 	free_percpu(percpu_fq);
 | |
| }
 | |
| 
 | |
| static void iommu_dma_free_fq(struct iommu_dma_cookie *cookie)
 | |
| {
 | |
| 	if (!cookie->fq_domain)
 | |
| 		return;
 | |
| 
 | |
| 	del_timer_sync(&cookie->fq_timer);
 | |
| 	if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE)
 | |
| 		iommu_dma_free_fq_single(cookie->single_fq);
 | |
| 	else
 | |
| 		iommu_dma_free_fq_percpu(cookie->percpu_fq);
 | |
| }
 | |
| 
 | |
| static void iommu_dma_init_one_fq(struct iova_fq *fq, size_t fq_size)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	fq->head = 0;
 | |
| 	fq->tail = 0;
 | |
| 	fq->mod_mask = fq_size - 1;
 | |
| 
 | |
| 	spin_lock_init(&fq->lock);
 | |
| 
 | |
| 	for (i = 0; i < fq_size; i++)
 | |
| 		INIT_LIST_HEAD(&fq->entries[i].freelist);
 | |
| }
 | |
| 
 | |
| static int iommu_dma_init_fq_single(struct iommu_dma_cookie *cookie)
 | |
| {
 | |
| 	size_t fq_size = cookie->options.fq_size;
 | |
| 	struct iova_fq *queue;
 | |
| 
 | |
| 	queue = vmalloc(struct_size(queue, entries, fq_size));
 | |
| 	if (!queue)
 | |
| 		return -ENOMEM;
 | |
| 	iommu_dma_init_one_fq(queue, fq_size);
 | |
| 	cookie->single_fq = queue;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int iommu_dma_init_fq_percpu(struct iommu_dma_cookie *cookie)
 | |
| {
 | |
| 	size_t fq_size = cookie->options.fq_size;
 | |
| 	struct iova_fq __percpu *queue;
 | |
| 	int cpu;
 | |
| 
 | |
| 	queue = __alloc_percpu(struct_size(queue, entries, fq_size),
 | |
| 			       __alignof__(*queue));
 | |
| 	if (!queue)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		iommu_dma_init_one_fq(per_cpu_ptr(queue, cpu), fq_size);
 | |
| 	cookie->percpu_fq = queue;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* sysfs updates are serialised by the mutex of the group owning @domain */
 | |
| int iommu_dma_init_fq(struct iommu_domain *domain)
 | |
| {
 | |
| 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
 | |
| 	int rc;
 | |
| 
 | |
| 	if (cookie->fq_domain)
 | |
| 		return 0;
 | |
| 
 | |
| 	atomic64_set(&cookie->fq_flush_start_cnt,  0);
 | |
| 	atomic64_set(&cookie->fq_flush_finish_cnt, 0);
 | |
| 
 | |
| 	if (cookie->options.qt == IOMMU_DMA_OPTS_SINGLE_QUEUE)
 | |
| 		rc = iommu_dma_init_fq_single(cookie);
 | |
| 	else
 | |
| 		rc = iommu_dma_init_fq_percpu(cookie);
 | |
| 
 | |
| 	if (rc) {
 | |
| 		pr_warn("iova flush queue initialization failed\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	timer_setup(&cookie->fq_timer, fq_flush_timeout, 0);
 | |
| 	atomic_set(&cookie->fq_timer_on, 0);
 | |
| 	/*
 | |
| 	 * Prevent incomplete fq state being observable. Pairs with path from
 | |
| 	 * __iommu_dma_unmap() through iommu_dma_free_iova() to queue_iova()
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 	WRITE_ONCE(cookie->fq_domain, domain);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
 | |
| {
 | |
| 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
 | |
| 		return cookie->iovad.granule;
 | |
| 	return PAGE_SIZE;
 | |
| }
 | |
| 
 | |
| static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
 | |
| {
 | |
| 	struct iommu_dma_cookie *cookie;
 | |
| 
 | |
| 	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
 | |
| 	if (cookie) {
 | |
| 		INIT_LIST_HEAD(&cookie->msi_page_list);
 | |
| 		cookie->type = type;
 | |
| 	}
 | |
| 	return cookie;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
 | |
|  * @domain: IOMMU domain to prepare for DMA-API usage
 | |
|  */
 | |
| int iommu_get_dma_cookie(struct iommu_domain *domain)
 | |
| {
 | |
| 	if (domain->iova_cookie)
 | |
| 		return -EEXIST;
 | |
| 
 | |
| 	domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
 | |
| 	if (!domain->iova_cookie)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	mutex_init(&domain->iova_cookie->mutex);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * iommu_get_msi_cookie - Acquire just MSI remapping resources
 | |
|  * @domain: IOMMU domain to prepare
 | |
|  * @base: Start address of IOVA region for MSI mappings
 | |
|  *
 | |
|  * Users who manage their own IOVA allocation and do not want DMA API support,
 | |
|  * but would still like to take advantage of automatic MSI remapping, can use
 | |
|  * this to initialise their own domain appropriately. Users should reserve a
 | |
|  * contiguous IOVA region, starting at @base, large enough to accommodate the
 | |
|  * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
 | |
|  * used by the devices attached to @domain.
 | |
|  */
 | |
| int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
 | |
| {
 | |
| 	struct iommu_dma_cookie *cookie;
 | |
| 
 | |
| 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (domain->iova_cookie)
 | |
| 		return -EEXIST;
 | |
| 
 | |
| 	cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
 | |
| 	if (!cookie)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	cookie->msi_iova = base;
 | |
| 	domain->iova_cookie = cookie;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(iommu_get_msi_cookie);
 | |
| 
 | |
| /**
 | |
|  * iommu_put_dma_cookie - Release a domain's DMA mapping resources
 | |
|  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
 | |
|  *          iommu_get_msi_cookie()
 | |
|  */
 | |
| void iommu_put_dma_cookie(struct iommu_domain *domain)
 | |
| {
 | |
| 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
 | |
| 	struct iommu_dma_msi_page *msi, *tmp;
 | |
| 
 | |
| 	if (!cookie)
 | |
| 		return;
 | |
| 
 | |
| 	if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule) {
 | |
| 		iommu_dma_free_fq(cookie);
 | |
| 		put_iova_domain(&cookie->iovad);
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
 | |
| 		list_del(&msi->list);
 | |
| 		kfree(msi);
 | |
| 	}
 | |
| 	kfree(cookie);
 | |
| 	domain->iova_cookie = NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * iommu_dma_get_resv_regions - Reserved region driver helper
 | |
|  * @dev: Device from iommu_get_resv_regions()
 | |
|  * @list: Reserved region list from iommu_get_resv_regions()
 | |
|  *
 | |
|  * IOMMU drivers can use this to implement their .get_resv_regions callback
 | |
|  * for general non-IOMMU-specific reservations. Currently, this covers GICv3
 | |
|  * ITS region reservation on ACPI based ARM platforms that may require HW MSI
 | |
|  * reservation.
 | |
|  */
 | |
| void iommu_dma_get_resv_regions(struct device *dev, struct list_head *list)
 | |
| {
 | |
| 
 | |
| 	if (!is_of_node(dev_iommu_fwspec_get(dev)->iommu_fwnode))
 | |
| 		iort_iommu_get_resv_regions(dev, list);
 | |
| 
 | |
| 	if (dev->of_node)
 | |
| 		of_iommu_get_resv_regions(dev, list);
 | |
| }
 | |
| EXPORT_SYMBOL(iommu_dma_get_resv_regions);
 | |
| 
 | |
| static int cookie_init_hw_msi_region(struct iommu_dma_cookie *cookie,
 | |
| 		phys_addr_t start, phys_addr_t end)
 | |
| {
 | |
| 	struct iova_domain *iovad = &cookie->iovad;
 | |
| 	struct iommu_dma_msi_page *msi_page;
 | |
| 	int i, num_pages;
 | |
| 
 | |
| 	start -= iova_offset(iovad, start);
 | |
| 	num_pages = iova_align(iovad, end - start) >> iova_shift(iovad);
 | |
| 
 | |
| 	for (i = 0; i < num_pages; i++) {
 | |
| 		msi_page = kmalloc(sizeof(*msi_page), GFP_KERNEL);
 | |
| 		if (!msi_page)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		msi_page->phys = start;
 | |
| 		msi_page->iova = start;
 | |
| 		INIT_LIST_HEAD(&msi_page->list);
 | |
| 		list_add(&msi_page->list, &cookie->msi_page_list);
 | |
| 		start += iovad->granule;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int iommu_dma_ranges_sort(void *priv, const struct list_head *a,
 | |
| 		const struct list_head *b)
 | |
| {
 | |
| 	struct resource_entry *res_a = list_entry(a, typeof(*res_a), node);
 | |
| 	struct resource_entry *res_b = list_entry(b, typeof(*res_b), node);
 | |
| 
 | |
| 	return res_a->res->start > res_b->res->start;
 | |
| }
 | |
| 
 | |
| static int iova_reserve_pci_windows(struct pci_dev *dev,
 | |
| 		struct iova_domain *iovad)
 | |
| {
 | |
| 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
 | |
| 	struct resource_entry *window;
 | |
| 	unsigned long lo, hi;
 | |
| 	phys_addr_t start = 0, end;
 | |
| 
 | |
| 	resource_list_for_each_entry(window, &bridge->windows) {
 | |
| 		if (resource_type(window->res) != IORESOURCE_MEM)
 | |
| 			continue;
 | |
| 
 | |
| 		lo = iova_pfn(iovad, window->res->start - window->offset);
 | |
| 		hi = iova_pfn(iovad, window->res->end - window->offset);
 | |
| 		reserve_iova(iovad, lo, hi);
 | |
| 	}
 | |
| 
 | |
| 	/* Get reserved DMA windows from host bridge */
 | |
| 	list_sort(NULL, &bridge->dma_ranges, iommu_dma_ranges_sort);
 | |
| 	resource_list_for_each_entry(window, &bridge->dma_ranges) {
 | |
| 		end = window->res->start - window->offset;
 | |
| resv_iova:
 | |
| 		if (end > start) {
 | |
| 			lo = iova_pfn(iovad, start);
 | |
| 			hi = iova_pfn(iovad, end);
 | |
| 			reserve_iova(iovad, lo, hi);
 | |
| 		} else if (end < start) {
 | |
| 			/* DMA ranges should be non-overlapping */
 | |
| 			dev_err(&dev->dev,
 | |
| 				"Failed to reserve IOVA [%pa-%pa]\n",
 | |
| 				&start, &end);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 
 | |
| 		start = window->res->end - window->offset + 1;
 | |
| 		/* If window is last entry */
 | |
| 		if (window->node.next == &bridge->dma_ranges &&
 | |
| 		    end != ~(phys_addr_t)0) {
 | |
| 			end = ~(phys_addr_t)0;
 | |
| 			goto resv_iova;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int iova_reserve_iommu_regions(struct device *dev,
 | |
| 		struct iommu_domain *domain)
 | |
| {
 | |
| 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
 | |
| 	struct iova_domain *iovad = &cookie->iovad;
 | |
| 	struct iommu_resv_region *region;
 | |
| 	LIST_HEAD(resv_regions);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (dev_is_pci(dev)) {
 | |
| 		ret = iova_reserve_pci_windows(to_pci_dev(dev), iovad);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	iommu_get_resv_regions(dev, &resv_regions);
 | |
| 	list_for_each_entry(region, &resv_regions, list) {
 | |
| 		unsigned long lo, hi;
 | |
| 
 | |
| 		/* We ARE the software that manages these! */
 | |
| 		if (region->type == IOMMU_RESV_SW_MSI)
 | |
| 			continue;
 | |
| 
 | |
| 		lo = iova_pfn(iovad, region->start);
 | |
| 		hi = iova_pfn(iovad, region->start + region->length - 1);
 | |
| 		reserve_iova(iovad, lo, hi);
 | |
| 
 | |
| 		if (region->type == IOMMU_RESV_MSI)
 | |
| 			ret = cookie_init_hw_msi_region(cookie, region->start,
 | |
| 					region->start + region->length);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 	}
 | |
| 	iommu_put_resv_regions(dev, &resv_regions);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static bool dev_is_untrusted(struct device *dev)
 | |
| {
 | |
| 	return dev_is_pci(dev) && to_pci_dev(dev)->untrusted;
 | |
| }
 | |
| 
 | |
| static bool dev_use_swiotlb(struct device *dev, size_t size,
 | |
| 			    enum dma_data_direction dir)
 | |
| {
 | |
| 	return IS_ENABLED(CONFIG_SWIOTLB) &&
 | |
| 		(dev_is_untrusted(dev) ||
 | |
| 		 dma_kmalloc_needs_bounce(dev, size, dir));
 | |
| }
 | |
| 
 | |
| static bool dev_use_sg_swiotlb(struct device *dev, struct scatterlist *sg,
 | |
| 			       int nents, enum dma_data_direction dir)
 | |
| {
 | |
| 	struct scatterlist *s;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!IS_ENABLED(CONFIG_SWIOTLB))
 | |
| 		return false;
 | |
| 
 | |
| 	if (dev_is_untrusted(dev))
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * If kmalloc() buffers are not DMA-safe for this device and
 | |
| 	 * direction, check the individual lengths in the sg list. If any
 | |
| 	 * element is deemed unsafe, use the swiotlb for bouncing.
 | |
| 	 */
 | |
| 	if (!dma_kmalloc_safe(dev, dir)) {
 | |
| 		for_each_sg(sg, s, nents, i)
 | |
| 			if (!dma_kmalloc_size_aligned(s->length))
 | |
| 				return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * iommu_dma_init_options - Initialize dma-iommu options
 | |
|  * @options: The options to be initialized
 | |
|  * @dev: Device the options are set for
 | |
|  *
 | |
|  * This allows tuning dma-iommu specific to device properties
 | |
|  */
 | |
| static void iommu_dma_init_options(struct iommu_dma_options *options,
 | |
| 				   struct device *dev)
 | |
| {
 | |
| 	/* Shadowing IOTLB flushes do better with a single large queue */
 | |
| 	if (dev->iommu->shadow_on_flush) {
 | |
| 		options->qt = IOMMU_DMA_OPTS_SINGLE_QUEUE;
 | |
| 		options->fq_timeout = IOVA_SINGLE_FQ_TIMEOUT;
 | |
| 		options->fq_size = IOVA_SINGLE_FQ_SIZE;
 | |
| 	} else {
 | |
| 		options->qt = IOMMU_DMA_OPTS_PER_CPU_QUEUE;
 | |
| 		options->fq_size = IOVA_DEFAULT_FQ_SIZE;
 | |
| 		options->fq_timeout = IOVA_DEFAULT_FQ_TIMEOUT;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * iommu_dma_init_domain - Initialise a DMA mapping domain
 | |
|  * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
 | |
|  * @dev: Device the domain is being initialised for
 | |
|  *
 | |
|  * If the geometry and dma_range_map include address 0, we reserve that page
 | |
|  * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
 | |
|  * any change which could make prior IOVAs invalid will fail.
 | |
|  */
 | |
| static int iommu_dma_init_domain(struct iommu_domain *domain, struct device *dev)
 | |
| {
 | |
| 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
 | |
| 	const struct bus_dma_region *map = dev->dma_range_map;
 | |
| 	unsigned long order, base_pfn;
 | |
| 	struct iova_domain *iovad;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	iovad = &cookie->iovad;
 | |
| 
 | |
| 	/* Use the smallest supported page size for IOVA granularity */
 | |
| 	order = __ffs(domain->pgsize_bitmap);
 | |
| 	base_pfn = 1;
 | |
| 
 | |
| 	/* Check the domain allows at least some access to the device... */
 | |
| 	if (map) {
 | |
| 		if (dma_range_map_min(map) > domain->geometry.aperture_end ||
 | |
| 		    dma_range_map_max(map) < domain->geometry.aperture_start) {
 | |
| 			pr_warn("specified DMA range outside IOMMU capability\n");
 | |
| 			return -EFAULT;
 | |
| 		}
 | |
| 	}
 | |
| 	/* ...then finally give it a kicking to make sure it fits */
 | |
| 	base_pfn = max_t(unsigned long, base_pfn,
 | |
| 			 domain->geometry.aperture_start >> order);
 | |
| 
 | |
| 	/* start_pfn is always nonzero for an already-initialised domain */
 | |
| 	mutex_lock(&cookie->mutex);
 | |
| 	if (iovad->start_pfn) {
 | |
| 		if (1UL << order != iovad->granule ||
 | |
| 		    base_pfn != iovad->start_pfn) {
 | |
| 			pr_warn("Incompatible range for DMA domain\n");
 | |
| 			ret = -EFAULT;
 | |
| 			goto done_unlock;
 | |
| 		}
 | |
| 
 | |
| 		ret = 0;
 | |
| 		goto done_unlock;
 | |
| 	}
 | |
| 
 | |
| 	init_iova_domain(iovad, 1UL << order, base_pfn);
 | |
| 	ret = iova_domain_init_rcaches(iovad);
 | |
| 	if (ret)
 | |
| 		goto done_unlock;
 | |
| 
 | |
| 	iommu_dma_init_options(&cookie->options, dev);
 | |
| 
 | |
| 	/* If the FQ fails we can simply fall back to strict mode */
 | |
| 	if (domain->type == IOMMU_DOMAIN_DMA_FQ &&
 | |
| 	    (!device_iommu_capable(dev, IOMMU_CAP_DEFERRED_FLUSH) || iommu_dma_init_fq(domain)))
 | |
| 		domain->type = IOMMU_DOMAIN_DMA;
 | |
| 
 | |
| 	ret = iova_reserve_iommu_regions(dev, domain);
 | |
| 
 | |
| done_unlock:
 | |
| 	mutex_unlock(&cookie->mutex);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
 | |
|  *                    page flags.
 | |
|  * @dir: Direction of DMA transfer
 | |
|  * @coherent: Is the DMA master cache-coherent?
 | |
|  * @attrs: DMA attributes for the mapping
 | |
|  *
 | |
|  * Return: corresponding IOMMU API page protection flags
 | |
|  */
 | |
| static int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
 | |
| 		     unsigned long attrs)
 | |
| {
 | |
| 	int prot = coherent ? IOMMU_CACHE : 0;
 | |
| 
 | |
| 	if (attrs & DMA_ATTR_PRIVILEGED)
 | |
| 		prot |= IOMMU_PRIV;
 | |
| 
 | |
| 	switch (dir) {
 | |
| 	case DMA_BIDIRECTIONAL:
 | |
| 		return prot | IOMMU_READ | IOMMU_WRITE;
 | |
| 	case DMA_TO_DEVICE:
 | |
| 		return prot | IOMMU_READ;
 | |
| 	case DMA_FROM_DEVICE:
 | |
| 		return prot | IOMMU_WRITE;
 | |
| 	default:
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static dma_addr_t iommu_dma_alloc_iova(struct iommu_domain *domain,
 | |
| 		size_t size, u64 dma_limit, struct device *dev)
 | |
| {
 | |
| 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
 | |
| 	struct iova_domain *iovad = &cookie->iovad;
 | |
| 	unsigned long shift, iova_len, iova;
 | |
| 
 | |
| 	if (cookie->type == IOMMU_DMA_MSI_COOKIE) {
 | |
| 		cookie->msi_iova += size;
 | |
| 		return cookie->msi_iova - size;
 | |
| 	}
 | |
| 
 | |
| 	shift = iova_shift(iovad);
 | |
| 	iova_len = size >> shift;
 | |
| 
 | |
| 	dma_limit = min_not_zero(dma_limit, dev->bus_dma_limit);
 | |
| 
 | |
| 	if (domain->geometry.force_aperture)
 | |
| 		dma_limit = min(dma_limit, (u64)domain->geometry.aperture_end);
 | |
| 
 | |
| 	/*
 | |
| 	 * Try to use all the 32-bit PCI addresses first. The original SAC vs.
 | |
| 	 * DAC reasoning loses relevance with PCIe, but enough hardware and
 | |
| 	 * firmware bugs are still lurking out there that it's safest not to
 | |
| 	 * venture into the 64-bit space until necessary.
 | |
| 	 *
 | |
| 	 * If your device goes wrong after seeing the notice then likely either
 | |
| 	 * its driver is not setting DMA masks accurately, the hardware has
 | |
| 	 * some inherent bug in handling >32-bit addresses, or not all the
 | |
| 	 * expected address bits are wired up between the device and the IOMMU.
 | |
| 	 */
 | |
| 	if (dma_limit > DMA_BIT_MASK(32) && dev->iommu->pci_32bit_workaround) {
 | |
| 		iova = alloc_iova_fast(iovad, iova_len,
 | |
| 				       DMA_BIT_MASK(32) >> shift, false);
 | |
| 		if (iova)
 | |
| 			goto done;
 | |
| 
 | |
| 		dev->iommu->pci_32bit_workaround = false;
 | |
| 		dev_notice(dev, "Using %d-bit DMA addresses\n", bits_per(dma_limit));
 | |
| 	}
 | |
| 
 | |
| 	iova = alloc_iova_fast(iovad, iova_len, dma_limit >> shift, true);
 | |
| done:
 | |
| 	return (dma_addr_t)iova << shift;
 | |
| }
 | |
| 
 | |
| static void iommu_dma_free_iova(struct iommu_dma_cookie *cookie,
 | |
| 		dma_addr_t iova, size_t size, struct iommu_iotlb_gather *gather)
 | |
| {
 | |
| 	struct iova_domain *iovad = &cookie->iovad;
 | |
| 
 | |
| 	/* The MSI case is only ever cleaning up its most recent allocation */
 | |
| 	if (cookie->type == IOMMU_DMA_MSI_COOKIE)
 | |
| 		cookie->msi_iova -= size;
 | |
| 	else if (gather && gather->queued)
 | |
| 		queue_iova(cookie, iova_pfn(iovad, iova),
 | |
| 				size >> iova_shift(iovad),
 | |
| 				&gather->freelist);
 | |
| 	else
 | |
| 		free_iova_fast(iovad, iova_pfn(iovad, iova),
 | |
| 				size >> iova_shift(iovad));
 | |
| }
 | |
| 
 | |
| static void __iommu_dma_unmap(struct device *dev, dma_addr_t dma_addr,
 | |
| 		size_t size)
 | |
| {
 | |
| 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
 | |
| 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
 | |
| 	struct iova_domain *iovad = &cookie->iovad;
 | |
| 	size_t iova_off = iova_offset(iovad, dma_addr);
 | |
| 	struct iommu_iotlb_gather iotlb_gather;
 | |
| 	size_t unmapped;
 | |
| 
 | |
| 	dma_addr -= iova_off;
 | |
| 	size = iova_align(iovad, size + iova_off);
 | |
| 	iommu_iotlb_gather_init(&iotlb_gather);
 | |
| 	iotlb_gather.queued = READ_ONCE(cookie->fq_domain);
 | |
| 
 | |
| 	unmapped = iommu_unmap_fast(domain, dma_addr, size, &iotlb_gather);
 | |
| 	WARN_ON(unmapped != size);
 | |
| 
 | |
| 	if (!iotlb_gather.queued)
 | |
| 		iommu_iotlb_sync(domain, &iotlb_gather);
 | |
| 	iommu_dma_free_iova(cookie, dma_addr, size, &iotlb_gather);
 | |
| }
 | |
| 
 | |
| static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
 | |
| 		size_t size, int prot, u64 dma_mask)
 | |
| {
 | |
| 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
 | |
| 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
 | |
| 	struct iova_domain *iovad = &cookie->iovad;
 | |
| 	size_t iova_off = iova_offset(iovad, phys);
 | |
| 	dma_addr_t iova;
 | |
| 
 | |
| 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
 | |
| 	    iommu_deferred_attach(dev, domain))
 | |
| 		return DMA_MAPPING_ERROR;
 | |
| 
 | |
| 	/* If anyone ever wants this we'd need support in the IOVA allocator */
 | |
| 	if (dev_WARN_ONCE(dev, dma_get_min_align_mask(dev) > iova_mask(iovad),
 | |
| 	    "Unsupported alignment constraint\n"))
 | |
| 		return DMA_MAPPING_ERROR;
 | |
| 
 | |
| 	size = iova_align(iovad, size + iova_off);
 | |
| 
 | |
| 	iova = iommu_dma_alloc_iova(domain, size, dma_mask, dev);
 | |
| 	if (!iova)
 | |
| 		return DMA_MAPPING_ERROR;
 | |
| 
 | |
| 	if (iommu_map(domain, iova, phys - iova_off, size, prot, GFP_ATOMIC)) {
 | |
| 		iommu_dma_free_iova(cookie, iova, size, NULL);
 | |
| 		return DMA_MAPPING_ERROR;
 | |
| 	}
 | |
| 	return iova + iova_off;
 | |
| }
 | |
| 
 | |
| static void __iommu_dma_free_pages(struct page **pages, int count)
 | |
| {
 | |
| 	while (count--)
 | |
| 		__free_page(pages[count]);
 | |
| 	kvfree(pages);
 | |
| }
 | |
| 
 | |
| static struct page **__iommu_dma_alloc_pages(struct device *dev,
 | |
| 		unsigned int count, unsigned long order_mask, gfp_t gfp)
 | |
| {
 | |
| 	struct page **pages;
 | |
| 	unsigned int i = 0, nid = dev_to_node(dev);
 | |
| 
 | |
| 	order_mask &= GENMASK(MAX_PAGE_ORDER, 0);
 | |
| 	if (!order_mask)
 | |
| 		return NULL;
 | |
| 
 | |
| 	pages = kvcalloc(count, sizeof(*pages), GFP_KERNEL);
 | |
| 	if (!pages)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* IOMMU can map any pages, so himem can also be used here */
 | |
| 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
 | |
| 
 | |
| 	while (count) {
 | |
| 		struct page *page = NULL;
 | |
| 		unsigned int order_size;
 | |
| 
 | |
| 		/*
 | |
| 		 * Higher-order allocations are a convenience rather
 | |
| 		 * than a necessity, hence using __GFP_NORETRY until
 | |
| 		 * falling back to minimum-order allocations.
 | |
| 		 */
 | |
| 		for (order_mask &= GENMASK(__fls(count), 0);
 | |
| 		     order_mask; order_mask &= ~order_size) {
 | |
| 			unsigned int order = __fls(order_mask);
 | |
| 			gfp_t alloc_flags = gfp;
 | |
| 
 | |
| 			order_size = 1U << order;
 | |
| 			if (order_mask > order_size)
 | |
| 				alloc_flags |= __GFP_NORETRY;
 | |
| 			page = alloc_pages_node(nid, alloc_flags, order);
 | |
| 			if (!page)
 | |
| 				continue;
 | |
| 			if (order)
 | |
| 				split_page(page, order);
 | |
| 			break;
 | |
| 		}
 | |
| 		if (!page) {
 | |
| 			__iommu_dma_free_pages(pages, i);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		count -= order_size;
 | |
| 		while (order_size--)
 | |
| 			pages[i++] = page++;
 | |
| 	}
 | |
| 	return pages;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If size is less than PAGE_SIZE, then a full CPU page will be allocated,
 | |
|  * but an IOMMU which supports smaller pages might not map the whole thing.
 | |
|  */
 | |
| static struct page **__iommu_dma_alloc_noncontiguous(struct device *dev,
 | |
| 		size_t size, struct sg_table *sgt, gfp_t gfp, unsigned long attrs)
 | |
| {
 | |
| 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
 | |
| 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
 | |
| 	struct iova_domain *iovad = &cookie->iovad;
 | |
| 	bool coherent = dev_is_dma_coherent(dev);
 | |
| 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
 | |
| 	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
 | |
| 	struct page **pages;
 | |
| 	dma_addr_t iova;
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	if (static_branch_unlikely(&iommu_deferred_attach_enabled) &&
 | |
| 	    iommu_deferred_attach(dev, domain))
 | |
| 		return NULL;
 | |
| 
 | |
| 	min_size = alloc_sizes & -alloc_sizes;
 | |
| 	if (min_size < PAGE_SIZE) {
 | |
| 		min_size = PAGE_SIZE;
 | |
| 		alloc_sizes |= PAGE_SIZE;
 | |
| 	} else {
 | |
| 		size = ALIGN(size, min_size);
 | |
| 	}
 | |
| 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
 | |
| 		alloc_sizes = min_size;
 | |
| 
 | |
| 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 | |
| 	pages = __iommu_dma_alloc_pages(dev, count, alloc_sizes >> PAGE_SHIFT,
 | |
| 					gfp);
 | |
| 	if (!pages)
 | |
| 		return NULL;
 | |
| 
 | |
| 	size = iova_align(iovad, size);
 | |
| 	iova = iommu_dma_alloc_iova(domain, size, dev->coherent_dma_mask, dev);
 | |
| 	if (!iova)
 | |
| 		goto out_free_pages;
 | |
| 
 | |
| 	/*
 | |
| 	 * Remove the zone/policy flags from the GFP - these are applied to the
 | |
| 	 * __iommu_dma_alloc_pages() but are not used for the supporting
 | |
| 	 * internal allocations that follow.
 | |
| 	 */
 | |
| 	gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM | __GFP_COMP);
 | |
| 
 | |
| 	if (sg_alloc_table_from_pages(sgt, pages, count, 0, size, gfp))
 | |
| 		goto out_free_iova;
 | |
| 
 | |
| 	if (!(ioprot & IOMMU_CACHE)) {
 | |
| 		struct scatterlist *sg;
 | |
| 		int i;
 | |
| 
 | |
| 		for_each_sg(sgt->sgl, sg, sgt->orig_nents, i)
 | |
| 			arch_dma_prep_coherent(sg_page(sg), sg->length);
 | |
| 	}
 | |
| 
 | |
| 	ret = iommu_map_sg(domain, iova, sgt->sgl, sgt->orig_nents, ioprot,
 | |
| 			   gfp);
 | |
| 	if (ret < 0 || ret < size)
 | |
| 		goto out_free_sg;
 | |
| 
 | |
| 	sgt->sgl->dma_address = iova;
 | |
| 	sgt->sgl->dma_length = size;
 | |
| 	return pages;
 | |
| 
 | |
| out_free_sg:
 | |
| 	sg_free_table(sgt);
 | |
| out_free_iova:
 | |
| 	iommu_dma_free_iova(cookie, iova, size, NULL);
 | |
| out_free_pages:
 | |
| 	__iommu_dma_free_pages(pages, count);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void *iommu_dma_alloc_remap(struct device *dev, size_t size,
 | |
| 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
 | |
| {
 | |
| 	struct page **pages;
 | |
| 	struct sg_table sgt;
 | |
| 	void *vaddr;
 | |
| 	pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
 | |
| 
 | |
| 	pages = __iommu_dma_alloc_noncontiguous(dev, size, &sgt, gfp, attrs);
 | |
| 	if (!pages)
 | |
| 		return NULL;
 | |
| 	*dma_handle = sgt.sgl->dma_address;
 | |
| 	sg_free_table(&sgt);
 | |
| 	vaddr = dma_common_pages_remap(pages, size, prot,
 | |
| 			__builtin_return_address(0));
 | |
| 	if (!vaddr)
 | |
| 		goto out_unmap;
 | |
| 	return vaddr;
 | |
| 
 | |
| out_unmap:
 | |
| 	__iommu_dma_unmap(dev, *dma_handle, size);
 | |
| 	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is the actual return value from the iommu_dma_alloc_noncontiguous.
 | |
|  *
 | |
|  * The users of the DMA API should only care about the sg_table, but to make
 | |
|  * the DMA-API internal vmaping and freeing easier we stash away the page
 | |
|  * array as well (except for the fallback case).  This can go away any time,
 | |
|  * e.g. when a vmap-variant that takes a scatterlist comes along.
 | |
|  */
 | |
| struct dma_sgt_handle {
 | |
| 	struct sg_table sgt;
 | |
| 	struct page **pages;
 | |
| };
 | |
| #define sgt_handle(sgt) \
 | |
| 	container_of((sgt), struct dma_sgt_handle, sgt)
 | |
| 
 | |
| struct sg_table *iommu_dma_alloc_noncontiguous(struct device *dev, size_t size,
 | |
| 	       enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
 | |
| {
 | |
| 	struct dma_sgt_handle *sh;
 | |
| 
 | |
| 	sh = kmalloc(sizeof(*sh), gfp);
 | |
| 	if (!sh)
 | |
| 		return NULL;
 | |
| 
 | |
| 	sh->pages = __iommu_dma_alloc_noncontiguous(dev, size, &sh->sgt, gfp, attrs);
 | |
| 	if (!sh->pages) {
 | |
| 		kfree(sh);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return &sh->sgt;
 | |
| }
 | |
| 
 | |
| void iommu_dma_free_noncontiguous(struct device *dev, size_t size,
 | |
| 		struct sg_table *sgt, enum dma_data_direction dir)
 | |
| {
 | |
| 	struct dma_sgt_handle *sh = sgt_handle(sgt);
 | |
| 
 | |
| 	__iommu_dma_unmap(dev, sgt->sgl->dma_address, size);
 | |
| 	__iommu_dma_free_pages(sh->pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
 | |
| 	sg_free_table(&sh->sgt);
 | |
| 	kfree(sh);
 | |
| }
 | |
| 
 | |
| void *iommu_dma_vmap_noncontiguous(struct device *dev, size_t size,
 | |
| 		struct sg_table *sgt)
 | |
| {
 | |
| 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 | |
| 
 | |
| 	return vmap(sgt_handle(sgt)->pages, count, VM_MAP, PAGE_KERNEL);
 | |
| }
 | |
| 
 | |
| int iommu_dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
 | |
| 		size_t size, struct sg_table *sgt)
 | |
| {
 | |
| 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 | |
| 
 | |
| 	if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
 | |
| 		return -ENXIO;
 | |
| 	return vm_map_pages(vma, sgt_handle(sgt)->pages, count);
 | |
| }
 | |
| 
 | |
| void iommu_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
 | |
| 		size_t size, enum dma_data_direction dir)
 | |
| {
 | |
| 	phys_addr_t phys;
 | |
| 
 | |
| 	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
 | |
| 		return;
 | |
| 
 | |
| 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
 | |
| 	if (!dev_is_dma_coherent(dev))
 | |
| 		arch_sync_dma_for_cpu(phys, size, dir);
 | |
| 
 | |
| 	swiotlb_sync_single_for_cpu(dev, phys, size, dir);
 | |
| }
 | |
| 
 | |
| void iommu_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
 | |
| 		size_t size, enum dma_data_direction dir)
 | |
| {
 | |
| 	phys_addr_t phys;
 | |
| 
 | |
| 	if (dev_is_dma_coherent(dev) && !dev_use_swiotlb(dev, size, dir))
 | |
| 		return;
 | |
| 
 | |
| 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dma_handle);
 | |
| 	swiotlb_sync_single_for_device(dev, phys, size, dir);
 | |
| 
 | |
| 	if (!dev_is_dma_coherent(dev))
 | |
| 		arch_sync_dma_for_device(phys, size, dir);
 | |
| }
 | |
| 
 | |
| void iommu_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
 | |
| 		int nelems, enum dma_data_direction dir)
 | |
| {
 | |
| 	struct scatterlist *sg;
 | |
| 	int i;
 | |
| 
 | |
| 	if (sg_dma_is_swiotlb(sgl))
 | |
| 		for_each_sg(sgl, sg, nelems, i)
 | |
| 			iommu_dma_sync_single_for_cpu(dev, sg_dma_address(sg),
 | |
| 						      sg->length, dir);
 | |
| 	else if (!dev_is_dma_coherent(dev))
 | |
| 		for_each_sg(sgl, sg, nelems, i)
 | |
| 			arch_sync_dma_for_cpu(sg_phys(sg), sg->length, dir);
 | |
| }
 | |
| 
 | |
| void iommu_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sgl,
 | |
| 		int nelems, enum dma_data_direction dir)
 | |
| {
 | |
| 	struct scatterlist *sg;
 | |
| 	int i;
 | |
| 
 | |
| 	if (sg_dma_is_swiotlb(sgl))
 | |
| 		for_each_sg(sgl, sg, nelems, i)
 | |
| 			iommu_dma_sync_single_for_device(dev,
 | |
| 							 sg_dma_address(sg),
 | |
| 							 sg->length, dir);
 | |
| 	else if (!dev_is_dma_coherent(dev))
 | |
| 		for_each_sg(sgl, sg, nelems, i)
 | |
| 			arch_sync_dma_for_device(sg_phys(sg), sg->length, dir);
 | |
| }
 | |
| 
 | |
| dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
 | |
| 	      unsigned long offset, size_t size, enum dma_data_direction dir,
 | |
| 	      unsigned long attrs)
 | |
| {
 | |
| 	phys_addr_t phys = page_to_phys(page) + offset;
 | |
| 	bool coherent = dev_is_dma_coherent(dev);
 | |
| 	int prot = dma_info_to_prot(dir, coherent, attrs);
 | |
| 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
 | |
| 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
 | |
| 	struct iova_domain *iovad = &cookie->iovad;
 | |
| 	dma_addr_t iova, dma_mask = dma_get_mask(dev);
 | |
| 
 | |
| 	/*
 | |
| 	 * If both the physical buffer start address and size are
 | |
| 	 * page aligned, we don't need to use a bounce page.
 | |
| 	 */
 | |
| 	if (dev_use_swiotlb(dev, size, dir) &&
 | |
| 	    iova_offset(iovad, phys | size)) {
 | |
| 		if (!is_swiotlb_active(dev)) {
 | |
| 			dev_warn_once(dev, "DMA bounce buffers are inactive, unable to map unaligned transaction.\n");
 | |
| 			return DMA_MAPPING_ERROR;
 | |
| 		}
 | |
| 
 | |
| 		trace_swiotlb_bounced(dev, phys, size);
 | |
| 
 | |
| 		phys = swiotlb_tbl_map_single(dev, phys, size,
 | |
| 					      iova_mask(iovad), dir, attrs);
 | |
| 
 | |
| 		if (phys == DMA_MAPPING_ERROR)
 | |
| 			return DMA_MAPPING_ERROR;
 | |
| 
 | |
| 		/*
 | |
| 		 * Untrusted devices should not see padding areas with random
 | |
| 		 * leftover kernel data, so zero the pre- and post-padding.
 | |
| 		 * swiotlb_tbl_map_single() has initialized the bounce buffer
 | |
| 		 * proper to the contents of the original memory buffer.
 | |
| 		 */
 | |
| 		if (dev_is_untrusted(dev)) {
 | |
| 			size_t start, virt = (size_t)phys_to_virt(phys);
 | |
| 
 | |
| 			/* Pre-padding */
 | |
| 			start = iova_align_down(iovad, virt);
 | |
| 			memset((void *)start, 0, virt - start);
 | |
| 
 | |
| 			/* Post-padding */
 | |
| 			start = virt + size;
 | |
| 			memset((void *)start, 0,
 | |
| 			       iova_align(iovad, start) - start);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
 | |
| 		arch_sync_dma_for_device(phys, size, dir);
 | |
| 
 | |
| 	iova = __iommu_dma_map(dev, phys, size, prot, dma_mask);
 | |
| 	if (iova == DMA_MAPPING_ERROR)
 | |
| 		swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
 | |
| 	return iova;
 | |
| }
 | |
| 
 | |
| void iommu_dma_unmap_page(struct device *dev, dma_addr_t dma_handle,
 | |
| 		size_t size, enum dma_data_direction dir, unsigned long attrs)
 | |
| {
 | |
| 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
 | |
| 	phys_addr_t phys;
 | |
| 
 | |
| 	phys = iommu_iova_to_phys(domain, dma_handle);
 | |
| 	if (WARN_ON(!phys))
 | |
| 		return;
 | |
| 
 | |
| 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) && !dev_is_dma_coherent(dev))
 | |
| 		arch_sync_dma_for_cpu(phys, size, dir);
 | |
| 
 | |
| 	__iommu_dma_unmap(dev, dma_handle, size);
 | |
| 
 | |
| 	swiotlb_tbl_unmap_single(dev, phys, size, dir, attrs);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Prepare a successfully-mapped scatterlist to give back to the caller.
 | |
|  *
 | |
|  * At this point the segments are already laid out by iommu_dma_map_sg() to
 | |
|  * avoid individually crossing any boundaries, so we merely need to check a
 | |
|  * segment's start address to avoid concatenating across one.
 | |
|  */
 | |
| static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
 | |
| 		dma_addr_t dma_addr)
 | |
| {
 | |
| 	struct scatterlist *s, *cur = sg;
 | |
| 	unsigned long seg_mask = dma_get_seg_boundary(dev);
 | |
| 	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
 | |
| 	int i, count = 0;
 | |
| 
 | |
| 	for_each_sg(sg, s, nents, i) {
 | |
| 		/* Restore this segment's original unaligned fields first */
 | |
| 		dma_addr_t s_dma_addr = sg_dma_address(s);
 | |
| 		unsigned int s_iova_off = sg_dma_address(s);
 | |
| 		unsigned int s_length = sg_dma_len(s);
 | |
| 		unsigned int s_iova_len = s->length;
 | |
| 
 | |
| 		sg_dma_address(s) = DMA_MAPPING_ERROR;
 | |
| 		sg_dma_len(s) = 0;
 | |
| 
 | |
| 		if (sg_dma_is_bus_address(s)) {
 | |
| 			if (i > 0)
 | |
| 				cur = sg_next(cur);
 | |
| 
 | |
| 			sg_dma_unmark_bus_address(s);
 | |
| 			sg_dma_address(cur) = s_dma_addr;
 | |
| 			sg_dma_len(cur) = s_length;
 | |
| 			sg_dma_mark_bus_address(cur);
 | |
| 			count++;
 | |
| 			cur_len = 0;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		s->offset += s_iova_off;
 | |
| 		s->length = s_length;
 | |
| 
 | |
| 		/*
 | |
| 		 * Now fill in the real DMA data. If...
 | |
| 		 * - there is a valid output segment to append to
 | |
| 		 * - and this segment starts on an IOVA page boundary
 | |
| 		 * - but doesn't fall at a segment boundary
 | |
| 		 * - and wouldn't make the resulting output segment too long
 | |
| 		 */
 | |
| 		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
 | |
| 		    (max_len - cur_len >= s_length)) {
 | |
| 			/* ...then concatenate it with the previous one */
 | |
| 			cur_len += s_length;
 | |
| 		} else {
 | |
| 			/* Otherwise start the next output segment */
 | |
| 			if (i > 0)
 | |
| 				cur = sg_next(cur);
 | |
| 			cur_len = s_length;
 | |
| 			count++;
 | |
| 
 | |
| 			sg_dma_address(cur) = dma_addr + s_iova_off;
 | |
| 		}
 | |
| 
 | |
| 		sg_dma_len(cur) = cur_len;
 | |
| 		dma_addr += s_iova_len;
 | |
| 
 | |
| 		if (s_length + s_iova_off < s_iova_len)
 | |
| 			cur_len = 0;
 | |
| 	}
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If mapping failed, then just restore the original list,
 | |
|  * but making sure the DMA fields are invalidated.
 | |
|  */
 | |
| static void __invalidate_sg(struct scatterlist *sg, int nents)
 | |
| {
 | |
| 	struct scatterlist *s;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_sg(sg, s, nents, i) {
 | |
| 		if (sg_dma_is_bus_address(s)) {
 | |
| 			sg_dma_unmark_bus_address(s);
 | |
| 		} else {
 | |
| 			if (sg_dma_address(s) != DMA_MAPPING_ERROR)
 | |
| 				s->offset += sg_dma_address(s);
 | |
| 			if (sg_dma_len(s))
 | |
| 				s->length = sg_dma_len(s);
 | |
| 		}
 | |
| 		sg_dma_address(s) = DMA_MAPPING_ERROR;
 | |
| 		sg_dma_len(s) = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void iommu_dma_unmap_sg_swiotlb(struct device *dev, struct scatterlist *sg,
 | |
| 		int nents, enum dma_data_direction dir, unsigned long attrs)
 | |
| {
 | |
| 	struct scatterlist *s;
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_sg(sg, s, nents, i)
 | |
| 		iommu_dma_unmap_page(dev, sg_dma_address(s),
 | |
| 				sg_dma_len(s), dir, attrs);
 | |
| }
 | |
| 
 | |
| static int iommu_dma_map_sg_swiotlb(struct device *dev, struct scatterlist *sg,
 | |
| 		int nents, enum dma_data_direction dir, unsigned long attrs)
 | |
| {
 | |
| 	struct scatterlist *s;
 | |
| 	int i;
 | |
| 
 | |
| 	sg_dma_mark_swiotlb(sg);
 | |
| 
 | |
| 	for_each_sg(sg, s, nents, i) {
 | |
| 		sg_dma_address(s) = iommu_dma_map_page(dev, sg_page(s),
 | |
| 				s->offset, s->length, dir, attrs);
 | |
| 		if (sg_dma_address(s) == DMA_MAPPING_ERROR)
 | |
| 			goto out_unmap;
 | |
| 		sg_dma_len(s) = s->length;
 | |
| 	}
 | |
| 
 | |
| 	return nents;
 | |
| 
 | |
| out_unmap:
 | |
| 	iommu_dma_unmap_sg_swiotlb(dev, sg, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
 | |
| 	return -EIO;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The DMA API client is passing in a scatterlist which could describe
 | |
|  * any old buffer layout, but the IOMMU API requires everything to be
 | |
|  * aligned to IOMMU pages. Hence the need for this complicated bit of
 | |
|  * impedance-matching, to be able to hand off a suitably-aligned list,
 | |
|  * but still preserve the original offsets and sizes for the caller.
 | |
|  */
 | |
| int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
 | |
| 		enum dma_data_direction dir, unsigned long attrs)
 | |
| {
 | |
| 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
 | |
| 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
 | |
| 	struct iova_domain *iovad = &cookie->iovad;
 | |
| 	struct scatterlist *s, *prev = NULL;
 | |
| 	int prot = dma_info_to_prot(dir, dev_is_dma_coherent(dev), attrs);
 | |
| 	struct pci_p2pdma_map_state p2pdma_state = {};
 | |
| 	enum pci_p2pdma_map_type map;
 | |
| 	dma_addr_t iova;
 | |
| 	size_t iova_len = 0;
 | |
| 	unsigned long mask = dma_get_seg_boundary(dev);
 | |
| 	ssize_t ret;
 | |
| 	int i;
 | |
| 
 | |
| 	if (static_branch_unlikely(&iommu_deferred_attach_enabled)) {
 | |
| 		ret = iommu_deferred_attach(dev, domain);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (dev_use_sg_swiotlb(dev, sg, nents, dir))
 | |
| 		return iommu_dma_map_sg_swiotlb(dev, sg, nents, dir, attrs);
 | |
| 
 | |
| 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
 | |
| 		iommu_dma_sync_sg_for_device(dev, sg, nents, dir);
 | |
| 
 | |
| 	/*
 | |
| 	 * Work out how much IOVA space we need, and align the segments to
 | |
| 	 * IOVA granules for the IOMMU driver to handle. With some clever
 | |
| 	 * trickery we can modify the list in-place, but reversibly, by
 | |
| 	 * stashing the unaligned parts in the as-yet-unused DMA fields.
 | |
| 	 */
 | |
| 	for_each_sg(sg, s, nents, i) {
 | |
| 		size_t s_iova_off = iova_offset(iovad, s->offset);
 | |
| 		size_t s_length = s->length;
 | |
| 		size_t pad_len = (mask - iova_len + 1) & mask;
 | |
| 
 | |
| 		if (is_pci_p2pdma_page(sg_page(s))) {
 | |
| 			map = pci_p2pdma_map_segment(&p2pdma_state, dev, s);
 | |
| 			switch (map) {
 | |
| 			case PCI_P2PDMA_MAP_BUS_ADDR:
 | |
| 				/*
 | |
| 				 * iommu_map_sg() will skip this segment as
 | |
| 				 * it is marked as a bus address,
 | |
| 				 * __finalise_sg() will copy the dma address
 | |
| 				 * into the output segment.
 | |
| 				 */
 | |
| 				continue;
 | |
| 			case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
 | |
| 				/*
 | |
| 				 * Mapping through host bridge should be
 | |
| 				 * mapped with regular IOVAs, thus we
 | |
| 				 * do nothing here and continue below.
 | |
| 				 */
 | |
| 				break;
 | |
| 			default:
 | |
| 				ret = -EREMOTEIO;
 | |
| 				goto out_restore_sg;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		sg_dma_address(s) = s_iova_off;
 | |
| 		sg_dma_len(s) = s_length;
 | |
| 		s->offset -= s_iova_off;
 | |
| 		s_length = iova_align(iovad, s_length + s_iova_off);
 | |
| 		s->length = s_length;
 | |
| 
 | |
| 		/*
 | |
| 		 * Due to the alignment of our single IOVA allocation, we can
 | |
| 		 * depend on these assumptions about the segment boundary mask:
 | |
| 		 * - If mask size >= IOVA size, then the IOVA range cannot
 | |
| 		 *   possibly fall across a boundary, so we don't care.
 | |
| 		 * - If mask size < IOVA size, then the IOVA range must start
 | |
| 		 *   exactly on a boundary, therefore we can lay things out
 | |
| 		 *   based purely on segment lengths without needing to know
 | |
| 		 *   the actual addresses beforehand.
 | |
| 		 * - The mask must be a power of 2, so pad_len == 0 if
 | |
| 		 *   iova_len == 0, thus we cannot dereference prev the first
 | |
| 		 *   time through here (i.e. before it has a meaningful value).
 | |
| 		 */
 | |
| 		if (pad_len && pad_len < s_length - 1) {
 | |
| 			prev->length += pad_len;
 | |
| 			iova_len += pad_len;
 | |
| 		}
 | |
| 
 | |
| 		iova_len += s_length;
 | |
| 		prev = s;
 | |
| 	}
 | |
| 
 | |
| 	if (!iova_len)
 | |
| 		return __finalise_sg(dev, sg, nents, 0);
 | |
| 
 | |
| 	iova = iommu_dma_alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
 | |
| 	if (!iova) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto out_restore_sg;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We'll leave any physical concatenation to the IOMMU driver's
 | |
| 	 * implementation - it knows better than we do.
 | |
| 	 */
 | |
| 	ret = iommu_map_sg(domain, iova, sg, nents, prot, GFP_ATOMIC);
 | |
| 	if (ret < 0 || ret < iova_len)
 | |
| 		goto out_free_iova;
 | |
| 
 | |
| 	return __finalise_sg(dev, sg, nents, iova);
 | |
| 
 | |
| out_free_iova:
 | |
| 	iommu_dma_free_iova(cookie, iova, iova_len, NULL);
 | |
| out_restore_sg:
 | |
| 	__invalidate_sg(sg, nents);
 | |
| out:
 | |
| 	if (ret != -ENOMEM && ret != -EREMOTEIO)
 | |
| 		return -EINVAL;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
 | |
| 		enum dma_data_direction dir, unsigned long attrs)
 | |
| {
 | |
| 	dma_addr_t end = 0, start;
 | |
| 	struct scatterlist *tmp;
 | |
| 	int i;
 | |
| 
 | |
| 	if (sg_dma_is_swiotlb(sg)) {
 | |
| 		iommu_dma_unmap_sg_swiotlb(dev, sg, nents, dir, attrs);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
 | |
| 		iommu_dma_sync_sg_for_cpu(dev, sg, nents, dir);
 | |
| 
 | |
| 	/*
 | |
| 	 * The scatterlist segments are mapped into a single
 | |
| 	 * contiguous IOVA allocation, the start and end points
 | |
| 	 * just have to be determined.
 | |
| 	 */
 | |
| 	for_each_sg(sg, tmp, nents, i) {
 | |
| 		if (sg_dma_is_bus_address(tmp)) {
 | |
| 			sg_dma_unmark_bus_address(tmp);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (sg_dma_len(tmp) == 0)
 | |
| 			break;
 | |
| 
 | |
| 		start = sg_dma_address(tmp);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	nents -= i;
 | |
| 	for_each_sg(tmp, tmp, nents, i) {
 | |
| 		if (sg_dma_is_bus_address(tmp)) {
 | |
| 			sg_dma_unmark_bus_address(tmp);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (sg_dma_len(tmp) == 0)
 | |
| 			break;
 | |
| 
 | |
| 		end = sg_dma_address(tmp) + sg_dma_len(tmp);
 | |
| 	}
 | |
| 
 | |
| 	if (end)
 | |
| 		__iommu_dma_unmap(dev, start, end - start);
 | |
| }
 | |
| 
 | |
| dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
 | |
| 		size_t size, enum dma_data_direction dir, unsigned long attrs)
 | |
| {
 | |
| 	return __iommu_dma_map(dev, phys, size,
 | |
| 			dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO,
 | |
| 			dma_get_mask(dev));
 | |
| }
 | |
| 
 | |
| void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
 | |
| 		size_t size, enum dma_data_direction dir, unsigned long attrs)
 | |
| {
 | |
| 	__iommu_dma_unmap(dev, handle, size);
 | |
| }
 | |
| 
 | |
| static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
 | |
| {
 | |
| 	size_t alloc_size = PAGE_ALIGN(size);
 | |
| 	int count = alloc_size >> PAGE_SHIFT;
 | |
| 	struct page *page = NULL, **pages = NULL;
 | |
| 
 | |
| 	/* Non-coherent atomic allocation? Easy */
 | |
| 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
 | |
| 	    dma_free_from_pool(dev, cpu_addr, alloc_size))
 | |
| 		return;
 | |
| 
 | |
| 	if (is_vmalloc_addr(cpu_addr)) {
 | |
| 		/*
 | |
| 		 * If it the address is remapped, then it's either non-coherent
 | |
| 		 * or highmem CMA, or an iommu_dma_alloc_remap() construction.
 | |
| 		 */
 | |
| 		pages = dma_common_find_pages(cpu_addr);
 | |
| 		if (!pages)
 | |
| 			page = vmalloc_to_page(cpu_addr);
 | |
| 		dma_common_free_remap(cpu_addr, alloc_size);
 | |
| 	} else {
 | |
| 		/* Lowmem means a coherent atomic or CMA allocation */
 | |
| 		page = virt_to_page(cpu_addr);
 | |
| 	}
 | |
| 
 | |
| 	if (pages)
 | |
| 		__iommu_dma_free_pages(pages, count);
 | |
| 	if (page)
 | |
| 		dma_free_contiguous(dev, page, alloc_size);
 | |
| }
 | |
| 
 | |
| void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
 | |
| 		dma_addr_t handle, unsigned long attrs)
 | |
| {
 | |
| 	__iommu_dma_unmap(dev, handle, size);
 | |
| 	__iommu_dma_free(dev, size, cpu_addr);
 | |
| }
 | |
| 
 | |
| static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
 | |
| 		struct page **pagep, gfp_t gfp, unsigned long attrs)
 | |
| {
 | |
| 	bool coherent = dev_is_dma_coherent(dev);
 | |
| 	size_t alloc_size = PAGE_ALIGN(size);
 | |
| 	int node = dev_to_node(dev);
 | |
| 	struct page *page = NULL;
 | |
| 	void *cpu_addr;
 | |
| 
 | |
| 	page = dma_alloc_contiguous(dev, alloc_size, gfp);
 | |
| 	if (!page)
 | |
| 		page = alloc_pages_node(node, gfp, get_order(alloc_size));
 | |
| 	if (!page)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!coherent || PageHighMem(page)) {
 | |
| 		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
 | |
| 
 | |
| 		cpu_addr = dma_common_contiguous_remap(page, alloc_size,
 | |
| 				prot, __builtin_return_address(0));
 | |
| 		if (!cpu_addr)
 | |
| 			goto out_free_pages;
 | |
| 
 | |
| 		if (!coherent)
 | |
| 			arch_dma_prep_coherent(page, size);
 | |
| 	} else {
 | |
| 		cpu_addr = page_address(page);
 | |
| 	}
 | |
| 
 | |
| 	*pagep = page;
 | |
| 	memset(cpu_addr, 0, alloc_size);
 | |
| 	return cpu_addr;
 | |
| out_free_pages:
 | |
| 	dma_free_contiguous(dev, page, alloc_size);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| void *iommu_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 | |
| 		gfp_t gfp, unsigned long attrs)
 | |
| {
 | |
| 	bool coherent = dev_is_dma_coherent(dev);
 | |
| 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
 | |
| 	struct page *page = NULL;
 | |
| 	void *cpu_addr;
 | |
| 
 | |
| 	gfp |= __GFP_ZERO;
 | |
| 
 | |
| 	if (gfpflags_allow_blocking(gfp) &&
 | |
| 	    !(attrs & DMA_ATTR_FORCE_CONTIGUOUS)) {
 | |
| 		return iommu_dma_alloc_remap(dev, size, handle, gfp, attrs);
 | |
| 	}
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
 | |
| 	    !gfpflags_allow_blocking(gfp) && !coherent)
 | |
| 		page = dma_alloc_from_pool(dev, PAGE_ALIGN(size), &cpu_addr,
 | |
| 					       gfp, NULL);
 | |
| 	else
 | |
| 		cpu_addr = iommu_dma_alloc_pages(dev, size, &page, gfp, attrs);
 | |
| 	if (!cpu_addr)
 | |
| 		return NULL;
 | |
| 
 | |
| 	*handle = __iommu_dma_map(dev, page_to_phys(page), size, ioprot,
 | |
| 			dev->coherent_dma_mask);
 | |
| 	if (*handle == DMA_MAPPING_ERROR) {
 | |
| 		__iommu_dma_free(dev, size, cpu_addr);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return cpu_addr;
 | |
| }
 | |
| 
 | |
| int iommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 | |
| 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
 | |
| 		unsigned long attrs)
 | |
| {
 | |
| 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
 | |
| 	unsigned long pfn, off = vma->vm_pgoff;
 | |
| 	int ret;
 | |
| 
 | |
| 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
 | |
| 
 | |
| 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
 | |
| 		return ret;
 | |
| 
 | |
| 	if (off >= nr_pages || vma_pages(vma) > nr_pages - off)
 | |
| 		return -ENXIO;
 | |
| 
 | |
| 	if (is_vmalloc_addr(cpu_addr)) {
 | |
| 		struct page **pages = dma_common_find_pages(cpu_addr);
 | |
| 
 | |
| 		if (pages)
 | |
| 			return vm_map_pages(vma, pages, nr_pages);
 | |
| 		pfn = vmalloc_to_pfn(cpu_addr);
 | |
| 	} else {
 | |
| 		pfn = page_to_pfn(virt_to_page(cpu_addr));
 | |
| 	}
 | |
| 
 | |
| 	return remap_pfn_range(vma, vma->vm_start, pfn + off,
 | |
| 			       vma->vm_end - vma->vm_start,
 | |
| 			       vma->vm_page_prot);
 | |
| }
 | |
| 
 | |
| int iommu_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
 | |
| 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
 | |
| 		unsigned long attrs)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (is_vmalloc_addr(cpu_addr)) {
 | |
| 		struct page **pages = dma_common_find_pages(cpu_addr);
 | |
| 
 | |
| 		if (pages) {
 | |
| 			return sg_alloc_table_from_pages(sgt, pages,
 | |
| 					PAGE_ALIGN(size) >> PAGE_SHIFT,
 | |
| 					0, size, GFP_KERNEL);
 | |
| 		}
 | |
| 
 | |
| 		page = vmalloc_to_page(cpu_addr);
 | |
| 	} else {
 | |
| 		page = virt_to_page(cpu_addr);
 | |
| 	}
 | |
| 
 | |
| 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
 | |
| 	if (!ret)
 | |
| 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| unsigned long iommu_dma_get_merge_boundary(struct device *dev)
 | |
| {
 | |
| 	struct iommu_domain *domain = iommu_get_dma_domain(dev);
 | |
| 
 | |
| 	return (1UL << __ffs(domain->pgsize_bitmap)) - 1;
 | |
| }
 | |
| 
 | |
| size_t iommu_dma_opt_mapping_size(void)
 | |
| {
 | |
| 	return iova_rcache_range();
 | |
| }
 | |
| 
 | |
| size_t iommu_dma_max_mapping_size(struct device *dev)
 | |
| {
 | |
| 	if (dev_is_untrusted(dev))
 | |
| 		return swiotlb_max_mapping_size(dev);
 | |
| 
 | |
| 	return SIZE_MAX;
 | |
| }
 | |
| 
 | |
| void iommu_setup_dma_ops(struct device *dev)
 | |
| {
 | |
| 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
 | |
| 
 | |
| 	if (dev_is_pci(dev))
 | |
| 		dev->iommu->pci_32bit_workaround = !iommu_dma_forcedac;
 | |
| 
 | |
| 	dev->dma_iommu = iommu_is_dma_domain(domain);
 | |
| 	if (dev->dma_iommu && iommu_dma_init_domain(domain, dev))
 | |
| 		goto out_err;
 | |
| 
 | |
| 	return;
 | |
| out_err:
 | |
| 	pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
 | |
| 		dev_name(dev));
 | |
| 	dev->dma_iommu = false;
 | |
| }
 | |
| 
 | |
| static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
 | |
| 		phys_addr_t msi_addr, struct iommu_domain *domain)
 | |
| {
 | |
| 	struct iommu_dma_cookie *cookie = domain->iova_cookie;
 | |
| 	struct iommu_dma_msi_page *msi_page;
 | |
| 	dma_addr_t iova;
 | |
| 	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
 | |
| 	size_t size = cookie_msi_granule(cookie);
 | |
| 
 | |
| 	msi_addr &= ~(phys_addr_t)(size - 1);
 | |
| 	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
 | |
| 		if (msi_page->phys == msi_addr)
 | |
| 			return msi_page;
 | |
| 
 | |
| 	msi_page = kzalloc(sizeof(*msi_page), GFP_KERNEL);
 | |
| 	if (!msi_page)
 | |
| 		return NULL;
 | |
| 
 | |
| 	iova = iommu_dma_alloc_iova(domain, size, dma_get_mask(dev), dev);
 | |
| 	if (!iova)
 | |
| 		goto out_free_page;
 | |
| 
 | |
| 	if (iommu_map(domain, iova, msi_addr, size, prot, GFP_KERNEL))
 | |
| 		goto out_free_iova;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&msi_page->list);
 | |
| 	msi_page->phys = msi_addr;
 | |
| 	msi_page->iova = iova;
 | |
| 	list_add(&msi_page->list, &cookie->msi_page_list);
 | |
| 	return msi_page;
 | |
| 
 | |
| out_free_iova:
 | |
| 	iommu_dma_free_iova(cookie, iova, size, NULL);
 | |
| out_free_page:
 | |
| 	kfree(msi_page);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * iommu_dma_prepare_msi() - Map the MSI page in the IOMMU domain
 | |
|  * @desc: MSI descriptor, will store the MSI page
 | |
|  * @msi_addr: MSI target address to be mapped
 | |
|  *
 | |
|  * Return: 0 on success or negative error code if the mapping failed.
 | |
|  */
 | |
| int iommu_dma_prepare_msi(struct msi_desc *desc, phys_addr_t msi_addr)
 | |
| {
 | |
| 	struct device *dev = msi_desc_to_dev(desc);
 | |
| 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
 | |
| 	struct iommu_dma_msi_page *msi_page;
 | |
| 	static DEFINE_MUTEX(msi_prepare_lock); /* see below */
 | |
| 
 | |
| 	if (!domain || !domain->iova_cookie) {
 | |
| 		desc->iommu_cookie = NULL;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * In fact the whole prepare operation should already be serialised by
 | |
| 	 * irq_domain_mutex further up the callchain, but that's pretty subtle
 | |
| 	 * on its own, so consider this locking as failsafe documentation...
 | |
| 	 */
 | |
| 	mutex_lock(&msi_prepare_lock);
 | |
| 	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
 | |
| 	mutex_unlock(&msi_prepare_lock);
 | |
| 
 | |
| 	msi_desc_set_iommu_cookie(desc, msi_page);
 | |
| 
 | |
| 	if (!msi_page)
 | |
| 		return -ENOMEM;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * iommu_dma_compose_msi_msg() - Apply translation to an MSI message
 | |
|  * @desc: MSI descriptor prepared by iommu_dma_prepare_msi()
 | |
|  * @msg: MSI message containing target physical address
 | |
|  */
 | |
| void iommu_dma_compose_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
 | |
| {
 | |
| 	struct device *dev = msi_desc_to_dev(desc);
 | |
| 	const struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
 | |
| 	const struct iommu_dma_msi_page *msi_page;
 | |
| 
 | |
| 	msi_page = msi_desc_get_iommu_cookie(desc);
 | |
| 
 | |
| 	if (!domain || !domain->iova_cookie || WARN_ON(!msi_page))
 | |
| 		return;
 | |
| 
 | |
| 	msg->address_hi = upper_32_bits(msi_page->iova);
 | |
| 	msg->address_lo &= cookie_msi_granule(domain->iova_cookie) - 1;
 | |
| 	msg->address_lo += lower_32_bits(msi_page->iova);
 | |
| }
 | |
| 
 | |
| static int iommu_dma_init(void)
 | |
| {
 | |
| 	if (is_kdump_kernel())
 | |
| 		static_branch_enable(&iommu_deferred_attach_enabled);
 | |
| 
 | |
| 	return iova_cache_get();
 | |
| }
 | |
| arch_initcall(iommu_dma_init);
 |