196 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			196 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /*
 | |
|  * Copyright (C) 2020 Invensense, Inc.
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/regmap.h>
 | |
| #include <linux/math64.h>
 | |
| 
 | |
| #include "inv_icm42600.h"
 | |
| #include "inv_icm42600_timestamp.h"
 | |
| 
 | |
| /* internal chip period is 32kHz, 31250ns */
 | |
| #define INV_ICM42600_TIMESTAMP_PERIOD		31250
 | |
| /* allow a jitter of +/- 2% */
 | |
| #define INV_ICM42600_TIMESTAMP_JITTER		2
 | |
| /* compute min and max periods accepted */
 | |
| #define INV_ICM42600_TIMESTAMP_MIN_PERIOD(_p)		\
 | |
| 	(((_p) * (100 - INV_ICM42600_TIMESTAMP_JITTER)) / 100)
 | |
| #define INV_ICM42600_TIMESTAMP_MAX_PERIOD(_p)		\
 | |
| 	(((_p) * (100 + INV_ICM42600_TIMESTAMP_JITTER)) / 100)
 | |
| 
 | |
| /* Add a new value inside an accumulator and update the estimate value */
 | |
| static void inv_update_acc(struct inv_icm42600_timestamp_acc *acc, uint32_t val)
 | |
| {
 | |
| 	uint64_t sum = 0;
 | |
| 	size_t i;
 | |
| 
 | |
| 	acc->values[acc->idx++] = val;
 | |
| 	if (acc->idx >= ARRAY_SIZE(acc->values))
 | |
| 		acc->idx = 0;
 | |
| 
 | |
| 	/* compute the mean of all stored values, use 0 as empty slot */
 | |
| 	for (i = 0; i < ARRAY_SIZE(acc->values); ++i) {
 | |
| 		if (acc->values[i] == 0)
 | |
| 			break;
 | |
| 		sum += acc->values[i];
 | |
| 	}
 | |
| 
 | |
| 	acc->val = div_u64(sum, i);
 | |
| }
 | |
| 
 | |
| void inv_icm42600_timestamp_init(struct inv_icm42600_timestamp *ts,
 | |
| 				 uint32_t period)
 | |
| {
 | |
| 	/* initial odr for sensor after reset is 1kHz */
 | |
| 	const uint32_t default_period = 1000000;
 | |
| 
 | |
| 	/* current multiplier and period values after reset */
 | |
| 	ts->mult = default_period / INV_ICM42600_TIMESTAMP_PERIOD;
 | |
| 	ts->period = default_period;
 | |
| 	/* new set multiplier is the one from chip initialization */
 | |
| 	ts->new_mult = period / INV_ICM42600_TIMESTAMP_PERIOD;
 | |
| 
 | |
| 	/* use theoretical value for chip period */
 | |
| 	inv_update_acc(&ts->chip_period, INV_ICM42600_TIMESTAMP_PERIOD);
 | |
| }
 | |
| 
 | |
| int inv_icm42600_timestamp_setup(struct inv_icm42600_state *st)
 | |
| {
 | |
| 	unsigned int val;
 | |
| 
 | |
| 	/* enable timestamp register */
 | |
| 	val = INV_ICM42600_TMST_CONFIG_TMST_TO_REGS_EN |
 | |
| 	      INV_ICM42600_TMST_CONFIG_TMST_EN;
 | |
| 	return regmap_update_bits(st->map, INV_ICM42600_REG_TMST_CONFIG,
 | |
| 				  INV_ICM42600_TMST_CONFIG_MASK, val);
 | |
| }
 | |
| 
 | |
| int inv_icm42600_timestamp_update_odr(struct inv_icm42600_timestamp *ts,
 | |
| 				      uint32_t period, bool fifo)
 | |
| {
 | |
| 	/* when FIFO is on, prevent odr change if one is already pending */
 | |
| 	if (fifo && ts->new_mult != 0)
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	ts->new_mult = period / INV_ICM42600_TIMESTAMP_PERIOD;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool inv_validate_period(uint32_t period, uint32_t mult)
 | |
| {
 | |
| 	const uint32_t chip_period = INV_ICM42600_TIMESTAMP_PERIOD;
 | |
| 	uint32_t period_min, period_max;
 | |
| 
 | |
| 	/* check that period is acceptable */
 | |
| 	period_min = INV_ICM42600_TIMESTAMP_MIN_PERIOD(chip_period) * mult;
 | |
| 	period_max = INV_ICM42600_TIMESTAMP_MAX_PERIOD(chip_period) * mult;
 | |
| 	if (period > period_min && period < period_max)
 | |
| 		return true;
 | |
| 	else
 | |
| 		return false;
 | |
| }
 | |
| 
 | |
| static bool inv_compute_chip_period(struct inv_icm42600_timestamp *ts,
 | |
| 				    uint32_t mult, uint32_t period)
 | |
| {
 | |
| 	uint32_t new_chip_period;
 | |
| 
 | |
| 	if (!inv_validate_period(period, mult))
 | |
| 		return false;
 | |
| 
 | |
| 	/* update chip internal period estimation */
 | |
| 	new_chip_period = period / mult;
 | |
| 	inv_update_acc(&ts->chip_period, new_chip_period);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| void inv_icm42600_timestamp_interrupt(struct inv_icm42600_timestamp *ts,
 | |
| 				      uint32_t fifo_period, size_t fifo_nb,
 | |
| 				      size_t sensor_nb, int64_t timestamp)
 | |
| {
 | |
| 	struct inv_icm42600_timestamp_interval *it;
 | |
| 	int64_t delta, interval;
 | |
| 	const uint32_t fifo_mult = fifo_period / INV_ICM42600_TIMESTAMP_PERIOD;
 | |
| 	uint32_t period = ts->period;
 | |
| 	int32_t m;
 | |
| 	bool valid = false;
 | |
| 
 | |
| 	if (fifo_nb == 0)
 | |
| 		return;
 | |
| 
 | |
| 	/* update interrupt timestamp and compute chip and sensor periods */
 | |
| 	it = &ts->it;
 | |
| 	it->lo = it->up;
 | |
| 	it->up = timestamp;
 | |
| 	delta = it->up - it->lo;
 | |
| 	if (it->lo != 0) {
 | |
| 		/* compute period: delta time divided by number of samples */
 | |
| 		period = div_s64(delta, fifo_nb);
 | |
| 		valid = inv_compute_chip_period(ts, fifo_mult, period);
 | |
| 		/* update sensor period if chip internal period is updated */
 | |
| 		if (valid)
 | |
| 			ts->period = ts->mult * ts->chip_period.val;
 | |
| 	}
 | |
| 
 | |
| 	/* no previous data, compute theoritical value from interrupt */
 | |
| 	if (ts->timestamp == 0) {
 | |
| 		/* elapsed time: sensor period * sensor samples number */
 | |
| 		interval = (int64_t)ts->period * (int64_t)sensor_nb;
 | |
| 		ts->timestamp = it->up - interval;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* if interrupt interval is valid, sync with interrupt timestamp */
 | |
| 	if (valid) {
 | |
| 		/* compute measured fifo_period */
 | |
| 		fifo_period = fifo_mult * ts->chip_period.val;
 | |
| 		/* delta time between last sample and last interrupt */
 | |
| 		delta = it->lo - ts->timestamp;
 | |
| 		/* if there are multiple samples, go back to first one */
 | |
| 		while (delta >= (fifo_period * 3 / 2))
 | |
| 			delta -= fifo_period;
 | |
| 		/* compute maximal adjustment value */
 | |
| 		m = INV_ICM42600_TIMESTAMP_MAX_PERIOD(ts->period) - ts->period;
 | |
| 		if (delta > m)
 | |
| 			delta = m;
 | |
| 		else if (delta < -m)
 | |
| 			delta = -m;
 | |
| 		ts->timestamp += delta;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void inv_icm42600_timestamp_apply_odr(struct inv_icm42600_timestamp *ts,
 | |
| 				      uint32_t fifo_period, size_t fifo_nb,
 | |
| 				      unsigned int fifo_no)
 | |
| {
 | |
| 	int64_t interval;
 | |
| 	uint32_t fifo_mult;
 | |
| 
 | |
| 	if (ts->new_mult == 0)
 | |
| 		return;
 | |
| 
 | |
| 	/* update to new multiplier and update period */
 | |
| 	ts->mult = ts->new_mult;
 | |
| 	ts->new_mult = 0;
 | |
| 	ts->period = ts->mult * ts->chip_period.val;
 | |
| 
 | |
| 	/*
 | |
| 	 * After ODR change the time interval with the previous sample is
 | |
| 	 * undertermined (depends when the change occures). So we compute the
 | |
| 	 * timestamp from the current interrupt using the new FIFO period, the
 | |
| 	 * total number of samples and the current sample numero.
 | |
| 	 */
 | |
| 	if (ts->timestamp != 0) {
 | |
| 		/* compute measured fifo period */
 | |
| 		fifo_mult = fifo_period / INV_ICM42600_TIMESTAMP_PERIOD;
 | |
| 		fifo_period = fifo_mult * ts->chip_period.val;
 | |
| 		/* computes time interval between interrupt and this sample */
 | |
| 		interval = (int64_t)(fifo_nb - fifo_no) * (int64_t)fifo_period;
 | |
| 		ts->timestamp = ts->it.up - interval;
 | |
| 	}
 | |
| }
 |