379 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			379 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| /*
 | |
|  * sgp40.c - Support for Sensirion SGP40 Gas Sensor
 | |
|  *
 | |
|  * Copyright (C) 2021 Andreas Klinger <ak@it-klinger.de>
 | |
|  *
 | |
|  * I2C slave address: 0x59
 | |
|  *
 | |
|  * Datasheet can be found here:
 | |
|  * https://www.sensirion.com/file/datasheet_sgp40
 | |
|  *
 | |
|  * There are two functionalities supported:
 | |
|  *
 | |
|  * 1) read raw logarithmic resistance value from sensor
 | |
|  *    --> useful to pass it to the algorithm of the sensor vendor for
 | |
|  *    measuring deteriorations and improvements of air quality.
 | |
|  *
 | |
|  * 2) calculate an estimated absolute voc index (0 - 500 index points) for
 | |
|  *    measuring the air quality.
 | |
|  *    For this purpose the value of the resistance for which the voc index
 | |
|  *    will be 250 can be set up using calibbias.
 | |
|  *
 | |
|  * Compensation values of relative humidity and temperature can be set up
 | |
|  * by writing to the out values of temp and humidityrelative.
 | |
|  */
 | |
| 
 | |
| #include <linux/delay.h>
 | |
| #include <linux/crc8.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/i2c.h>
 | |
| #include <linux/iio/iio.h>
 | |
| 
 | |
| /*
 | |
|  * floating point calculation of voc is done as integer
 | |
|  * where numbers are multiplied by 1 << SGP40_CALC_POWER
 | |
|  */
 | |
| #define SGP40_CALC_POWER	14
 | |
| 
 | |
| #define SGP40_CRC8_POLYNOMIAL	0x31
 | |
| #define SGP40_CRC8_INIT		0xff
 | |
| 
 | |
| DECLARE_CRC8_TABLE(sgp40_crc8_table);
 | |
| 
 | |
| struct sgp40_data {
 | |
| 	struct device		*dev;
 | |
| 	struct i2c_client	*client;
 | |
| 	int			rht;
 | |
| 	int			temp;
 | |
| 	int			res_calibbias;
 | |
| 	/* Prevent concurrent access to rht, tmp, calibbias */
 | |
| 	struct mutex		lock;
 | |
| };
 | |
| 
 | |
| struct sgp40_tg_measure {
 | |
| 	u8	command[2];
 | |
| 	__be16	rht_ticks;
 | |
| 	u8	rht_crc;
 | |
| 	__be16	temp_ticks;
 | |
| 	u8	temp_crc;
 | |
| } __packed;
 | |
| 
 | |
| struct sgp40_tg_result {
 | |
| 	__be16	res_ticks;
 | |
| 	u8	res_crc;
 | |
| } __packed;
 | |
| 
 | |
| static const struct iio_chan_spec sgp40_channels[] = {
 | |
| 	{
 | |
| 		.type = IIO_CONCENTRATION,
 | |
| 		.channel2 = IIO_MOD_VOC,
 | |
| 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
 | |
| 	},
 | |
| 	{
 | |
| 		.type = IIO_RESISTANCE,
 | |
| 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
 | |
| 			BIT(IIO_CHAN_INFO_CALIBBIAS),
 | |
| 	},
 | |
| 	{
 | |
| 		.type = IIO_TEMP,
 | |
| 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
 | |
| 		.output = 1,
 | |
| 	},
 | |
| 	{
 | |
| 		.type = IIO_HUMIDITYRELATIVE,
 | |
| 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
 | |
| 		.output = 1,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * taylor approximation of e^x:
 | |
|  * y = 1 + x + x^2 / 2 + x^3 / 6 + x^4 / 24 + ... + x^n / n!
 | |
|  *
 | |
|  * Because we are calculating x real value multiplied by 2^power we get
 | |
|  * an additional 2^power^n to divide for every element. For a reasonable
 | |
|  * precision this would overflow after a few iterations. Therefore we
 | |
|  * divide the x^n part whenever its about to overflow (xmax).
 | |
|  */
 | |
| 
 | |
| static u32 sgp40_exp(int exp, u32 power, u32 rounds)
 | |
| {
 | |
|         u32 x, y, xp;
 | |
|         u32 factorial, divider, xmax;
 | |
|         int sign = 1;
 | |
| 	int i;
 | |
| 
 | |
|         if (exp == 0)
 | |
|                 return 1 << power;
 | |
|         else if (exp < 0) {
 | |
|                 sign = -1;
 | |
|                 exp *= -1;
 | |
|         }
 | |
| 
 | |
|         xmax = 0x7FFFFFFF / exp;
 | |
|         x = exp;
 | |
|         xp = 1;
 | |
|         factorial = 1;
 | |
|         y = 1 << power;
 | |
|         divider = 0;
 | |
| 
 | |
|         for (i = 1; i <= rounds; i++) {
 | |
|                 xp *= x;
 | |
|                 factorial *= i;
 | |
|                 y += (xp >> divider) / factorial;
 | |
|                 divider += power;
 | |
|                 /* divide when next multiplication would overflow */
 | |
|                 if (xp >= xmax) {
 | |
|                         xp >>= power;
 | |
|                         divider -= power;
 | |
|                 }
 | |
|         }
 | |
| 
 | |
|         if (sign == -1)
 | |
|                 return (1 << (power * 2)) / y;
 | |
|         else
 | |
|                 return y;
 | |
| }
 | |
| 
 | |
| static int sgp40_calc_voc(struct sgp40_data *data, u16 resistance_raw, int *voc)
 | |
| {
 | |
| 	int x;
 | |
| 	u32 exp = 0;
 | |
| 
 | |
| 	/* we calculate as a multiple of 16384 (2^14) */
 | |
| 	mutex_lock(&data->lock);
 | |
| 	x = ((int)resistance_raw - data->res_calibbias) * 106;
 | |
| 	mutex_unlock(&data->lock);
 | |
| 
 | |
| 	/* voc = 500 / (1 + e^x) */
 | |
| 	exp = sgp40_exp(x, SGP40_CALC_POWER, 18);
 | |
| 	*voc = 500 * ((1 << (SGP40_CALC_POWER * 2)) / ((1<<SGP40_CALC_POWER) + exp));
 | |
| 
 | |
| 	dev_dbg(data->dev, "raw: %d res_calibbias: %d x: %d exp: %d voc: %d\n",
 | |
| 				resistance_raw, data->res_calibbias, x, exp, *voc);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sgp40_measure_resistance_raw(struct sgp40_data *data, u16 *resistance_raw)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct i2c_client *client = data->client;
 | |
| 	u32 ticks;
 | |
| 	u16 ticks16;
 | |
| 	u8 crc;
 | |
| 	struct sgp40_tg_measure tg = {.command = {0x26, 0x0F}};
 | |
| 	struct sgp40_tg_result tgres;
 | |
| 
 | |
| 	mutex_lock(&data->lock);
 | |
| 
 | |
| 	ticks = (data->rht / 10) * 65535 / 10000;
 | |
| 	ticks16 = (u16)clamp(ticks, 0u, 65535u); /* clamp between 0 .. 100 %rH */
 | |
| 	tg.rht_ticks = cpu_to_be16(ticks16);
 | |
| 	tg.rht_crc = crc8(sgp40_crc8_table, (u8 *)&tg.rht_ticks, 2, SGP40_CRC8_INIT);
 | |
| 
 | |
| 	ticks = ((data->temp + 45000) / 10 ) * 65535 / 17500;
 | |
| 	ticks16 = (u16)clamp(ticks, 0u, 65535u); /* clamp between -45 .. +130 °C */
 | |
| 	tg.temp_ticks = cpu_to_be16(ticks16);
 | |
| 	tg.temp_crc = crc8(sgp40_crc8_table, (u8 *)&tg.temp_ticks, 2, SGP40_CRC8_INIT);
 | |
| 
 | |
| 	mutex_unlock(&data->lock);
 | |
| 
 | |
| 	ret = i2c_master_send(client, (const char *)&tg, sizeof(tg));
 | |
| 	if (ret != sizeof(tg)) {
 | |
| 		dev_warn(data->dev, "i2c_master_send ret: %d sizeof: %zu\n", ret, sizeof(tg));
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	msleep(30);
 | |
| 
 | |
| 	ret = i2c_master_recv(client, (u8 *)&tgres, sizeof(tgres));
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 	if (ret != sizeof(tgres)) {
 | |
| 		dev_warn(data->dev, "i2c_master_recv ret: %d sizeof: %zu\n", ret, sizeof(tgres));
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	crc = crc8(sgp40_crc8_table, (u8 *)&tgres.res_ticks, 2, SGP40_CRC8_INIT);
 | |
| 	if (crc != tgres.res_crc) {
 | |
| 		dev_err(data->dev, "CRC error while measure-raw\n");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	*resistance_raw = be16_to_cpu(tgres.res_ticks);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sgp40_read_raw(struct iio_dev *indio_dev,
 | |
| 			struct iio_chan_spec const *chan, int *val,
 | |
| 			int *val2, long mask)
 | |
| {
 | |
| 	struct sgp40_data *data = iio_priv(indio_dev);
 | |
| 	int ret, voc;
 | |
| 	u16 resistance_raw;
 | |
| 
 | |
| 	switch (mask) {
 | |
| 	case IIO_CHAN_INFO_RAW:
 | |
| 		switch (chan->type) {
 | |
| 		case IIO_RESISTANCE:
 | |
| 			ret = sgp40_measure_resistance_raw(data, &resistance_raw);
 | |
| 			if (ret)
 | |
| 				return ret;
 | |
| 
 | |
| 			*val = resistance_raw;
 | |
| 			return IIO_VAL_INT;
 | |
| 		case IIO_TEMP:
 | |
| 			mutex_lock(&data->lock);
 | |
| 			*val = data->temp;
 | |
| 			mutex_unlock(&data->lock);
 | |
| 			return IIO_VAL_INT;
 | |
| 		case IIO_HUMIDITYRELATIVE:
 | |
| 			mutex_lock(&data->lock);
 | |
| 			*val = data->rht;
 | |
| 			mutex_unlock(&data->lock);
 | |
| 			return IIO_VAL_INT;
 | |
| 		default:
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	case IIO_CHAN_INFO_PROCESSED:
 | |
| 		ret = sgp40_measure_resistance_raw(data, &resistance_raw);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		ret = sgp40_calc_voc(data, resistance_raw, &voc);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		*val = voc / (1 << SGP40_CALC_POWER);
 | |
| 		/*
 | |
| 		 * calculation should fit into integer, where:
 | |
| 		 * voc <= (500 * 2^SGP40_CALC_POWER) = 8192000
 | |
| 		 * (with SGP40_CALC_POWER = 14)
 | |
| 		 */
 | |
| 		*val2 = ((voc % (1 << SGP40_CALC_POWER)) * 244) / (1 << (SGP40_CALC_POWER - 12));
 | |
| 		dev_dbg(data->dev, "voc: %d val: %d.%06d\n", voc, *val, *val2);
 | |
| 		return IIO_VAL_INT_PLUS_MICRO;
 | |
| 	case IIO_CHAN_INFO_CALIBBIAS:
 | |
| 		mutex_lock(&data->lock);
 | |
| 		*val = data->res_calibbias;
 | |
| 		mutex_unlock(&data->lock);
 | |
| 		return IIO_VAL_INT;
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int sgp40_write_raw(struct iio_dev *indio_dev,
 | |
| 			struct iio_chan_spec const *chan, int val,
 | |
| 			int val2, long mask)
 | |
| {
 | |
| 	struct sgp40_data *data = iio_priv(indio_dev);
 | |
| 
 | |
| 	switch (mask) {
 | |
| 	case IIO_CHAN_INFO_RAW:
 | |
| 		switch (chan->type) {
 | |
| 		case IIO_TEMP:
 | |
| 			if ((val < -45000) || (val > 130000))
 | |
| 				return -EINVAL;
 | |
| 
 | |
| 			mutex_lock(&data->lock);
 | |
| 			data->temp = val;
 | |
| 			mutex_unlock(&data->lock);
 | |
| 			return 0;
 | |
| 		case IIO_HUMIDITYRELATIVE:
 | |
| 			if ((val < 0) || (val > 100000))
 | |
| 				return -EINVAL;
 | |
| 
 | |
| 			mutex_lock(&data->lock);
 | |
| 			data->rht = val;
 | |
| 			mutex_unlock(&data->lock);
 | |
| 			return 0;
 | |
| 		default:
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	case IIO_CHAN_INFO_CALIBBIAS:
 | |
| 		if ((val < 20000) || (val > 52768))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		mutex_lock(&data->lock);
 | |
| 		data->res_calibbias = val;
 | |
| 		mutex_unlock(&data->lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static const struct iio_info sgp40_info = {
 | |
| 	.read_raw	= sgp40_read_raw,
 | |
| 	.write_raw	= sgp40_write_raw,
 | |
| };
 | |
| 
 | |
| static int sgp40_probe(struct i2c_client *client,
 | |
| 		     const struct i2c_device_id *id)
 | |
| {
 | |
| 	struct device *dev = &client->dev;
 | |
| 	struct iio_dev *indio_dev;
 | |
| 	struct sgp40_data *data;
 | |
| 	int ret;
 | |
| 
 | |
| 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
 | |
| 	if (!indio_dev)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	data = iio_priv(indio_dev);
 | |
| 	data->client = client;
 | |
| 	data->dev = dev;
 | |
| 
 | |
| 	crc8_populate_msb(sgp40_crc8_table, SGP40_CRC8_POLYNOMIAL);
 | |
| 
 | |
| 	mutex_init(&data->lock);
 | |
| 
 | |
| 	/* set default values */
 | |
| 	data->rht = 50000;		/* 50 % */
 | |
| 	data->temp = 25000;		/* 25 °C */
 | |
| 	data->res_calibbias = 30000;	/* resistance raw value for voc index of 250 */
 | |
| 
 | |
| 	indio_dev->info = &sgp40_info;
 | |
| 	indio_dev->name = id->name;
 | |
| 	indio_dev->modes = INDIO_DIRECT_MODE;
 | |
| 	indio_dev->channels = sgp40_channels;
 | |
| 	indio_dev->num_channels = ARRAY_SIZE(sgp40_channels);
 | |
| 
 | |
| 	ret = devm_iio_device_register(dev, indio_dev);
 | |
| 	if (ret)
 | |
| 		dev_err(dev, "failed to register iio device\n");
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static const struct i2c_device_id sgp40_id[] = {
 | |
| 	{ "sgp40" },
 | |
| 	{ }
 | |
| };
 | |
| 
 | |
| MODULE_DEVICE_TABLE(i2c, sgp40_id);
 | |
| 
 | |
| static const struct of_device_id sgp40_dt_ids[] = {
 | |
| 	{ .compatible = "sensirion,sgp40" },
 | |
| 	{ }
 | |
| };
 | |
| 
 | |
| MODULE_DEVICE_TABLE(of, sgp40_dt_ids);
 | |
| 
 | |
| static struct i2c_driver sgp40_driver = {
 | |
| 	.driver = {
 | |
| 		.name = "sgp40",
 | |
| 		.of_match_table = sgp40_dt_ids,
 | |
| 	},
 | |
| 	.probe = sgp40_probe,
 | |
| 	.id_table = sgp40_id,
 | |
| };
 | |
| module_i2c_driver(sgp40_driver);
 | |
| 
 | |
| MODULE_AUTHOR("Andreas Klinger <ak@it-klinger.de>");
 | |
| MODULE_DESCRIPTION("Sensirion SGP40 gas sensor");
 | |
| MODULE_LICENSE("GPL v2");
 |