1042 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1042 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: BSD-3-Clause
 | |
| /*
 | |
|  * Copyright (c) 2020, MIPI Alliance, Inc.
 | |
|  *
 | |
|  * Author: Nicolas Pitre <npitre@baylibre.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/bitfield.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/i3c/master.h>
 | |
| #include <linux/io.h>
 | |
| 
 | |
| #include "hci.h"
 | |
| #include "cmd.h"
 | |
| #include "ibi.h"
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * PIO Access Area
 | |
|  */
 | |
| 
 | |
| #define pio_reg_read(r)		readl(hci->PIO_regs + (PIO_##r))
 | |
| #define pio_reg_write(r, v)	writel(v, hci->PIO_regs + (PIO_##r))
 | |
| 
 | |
| #define PIO_COMMAND_QUEUE_PORT		0x00
 | |
| #define PIO_RESPONSE_QUEUE_PORT		0x04
 | |
| #define PIO_XFER_DATA_PORT		0x08
 | |
| #define PIO_IBI_PORT			0x0c
 | |
| 
 | |
| #define PIO_QUEUE_THLD_CTRL		0x10
 | |
| #define QUEUE_IBI_STATUS_THLD		GENMASK(31, 24)
 | |
| #define QUEUE_IBI_DATA_THLD		GENMASK(23, 16)
 | |
| #define QUEUE_RESP_BUF_THLD		GENMASK(15, 8)
 | |
| #define QUEUE_CMD_EMPTY_BUF_THLD	GENMASK(7, 0)
 | |
| 
 | |
| #define PIO_DATA_BUFFER_THLD_CTRL	0x14
 | |
| #define DATA_RX_START_THLD		GENMASK(26, 24)
 | |
| #define DATA_TX_START_THLD		GENMASK(18, 16)
 | |
| #define DATA_RX_BUF_THLD		GENMASK(10, 8)
 | |
| #define DATA_TX_BUF_THLD		GENMASK(2, 0)
 | |
| 
 | |
| #define PIO_QUEUE_SIZE			0x18
 | |
| #define TX_DATA_BUFFER_SIZE		GENMASK(31, 24)
 | |
| #define RX_DATA_BUFFER_SIZE		GENMASK(23, 16)
 | |
| #define IBI_STATUS_SIZE			GENMASK(15, 8)
 | |
| #define CR_QUEUE_SIZE			GENMASK(7, 0)
 | |
| 
 | |
| #define PIO_INTR_STATUS			0x20
 | |
| #define PIO_INTR_STATUS_ENABLE		0x24
 | |
| #define PIO_INTR_SIGNAL_ENABLE		0x28
 | |
| #define PIO_INTR_FORCE			0x2c
 | |
| #define STAT_TRANSFER_BLOCKED		BIT(25)
 | |
| #define STAT_PERR_RESP_UFLOW		BIT(24)
 | |
| #define STAT_PERR_CMD_OFLOW		BIT(23)
 | |
| #define STAT_PERR_IBI_UFLOW		BIT(22)
 | |
| #define STAT_PERR_RX_UFLOW		BIT(21)
 | |
| #define STAT_PERR_TX_OFLOW		BIT(20)
 | |
| #define STAT_ERR_RESP_QUEUE_FULL	BIT(19)
 | |
| #define STAT_WARN_RESP_QUEUE_FULL	BIT(18)
 | |
| #define STAT_ERR_IBI_QUEUE_FULL		BIT(17)
 | |
| #define STAT_WARN_IBI_QUEUE_FULL	BIT(16)
 | |
| #define STAT_ERR_RX_DATA_FULL		BIT(15)
 | |
| #define STAT_WARN_RX_DATA_FULL		BIT(14)
 | |
| #define STAT_ERR_TX_DATA_EMPTY		BIT(13)
 | |
| #define STAT_WARN_TX_DATA_EMPTY		BIT(12)
 | |
| #define STAT_TRANSFER_ERR		BIT(9)
 | |
| #define STAT_WARN_INS_STOP_MODE		BIT(7)
 | |
| #define STAT_TRANSFER_ABORT		BIT(5)
 | |
| #define STAT_RESP_READY			BIT(4)
 | |
| #define STAT_CMD_QUEUE_READY		BIT(3)
 | |
| #define STAT_IBI_STATUS_THLD		BIT(2)
 | |
| #define STAT_RX_THLD			BIT(1)
 | |
| #define STAT_TX_THLD			BIT(0)
 | |
| 
 | |
| #define PIO_QUEUE_CUR_STATUS		0x38
 | |
| #define CUR_IBI_Q_LEVEL			GENMASK(28, 20)
 | |
| #define CUR_RESP_Q_LEVEL		GENMASK(18, 10)
 | |
| #define CUR_CMD_Q_EMPTY_LEVEL		GENMASK(8, 0)
 | |
| 
 | |
| #define PIO_DATA_BUFFER_CUR_STATUS	0x3c
 | |
| #define CUR_RX_BUF_LVL			GENMASK(26, 16)
 | |
| #define CUR_TX_BUF_LVL			GENMASK(10, 0)
 | |
| 
 | |
| /*
 | |
|  * Handy status bit combinations
 | |
|  */
 | |
| 
 | |
| #define STAT_LATENCY_WARNINGS		(STAT_WARN_RESP_QUEUE_FULL | \
 | |
| 					 STAT_WARN_IBI_QUEUE_FULL | \
 | |
| 					 STAT_WARN_RX_DATA_FULL | \
 | |
| 					 STAT_WARN_TX_DATA_EMPTY | \
 | |
| 					 STAT_WARN_INS_STOP_MODE)
 | |
| 
 | |
| #define STAT_LATENCY_ERRORS		(STAT_ERR_RESP_QUEUE_FULL | \
 | |
| 					 STAT_ERR_IBI_QUEUE_FULL | \
 | |
| 					 STAT_ERR_RX_DATA_FULL | \
 | |
| 					 STAT_ERR_TX_DATA_EMPTY)
 | |
| 
 | |
| #define STAT_PROG_ERRORS		(STAT_TRANSFER_BLOCKED | \
 | |
| 					 STAT_PERR_RESP_UFLOW | \
 | |
| 					 STAT_PERR_CMD_OFLOW | \
 | |
| 					 STAT_PERR_IBI_UFLOW | \
 | |
| 					 STAT_PERR_RX_UFLOW | \
 | |
| 					 STAT_PERR_TX_OFLOW)
 | |
| 
 | |
| #define STAT_ALL_ERRORS			(STAT_TRANSFER_ABORT | \
 | |
| 					 STAT_TRANSFER_ERR | \
 | |
| 					 STAT_LATENCY_ERRORS | \
 | |
| 					 STAT_PROG_ERRORS)
 | |
| 
 | |
| struct hci_pio_dev_ibi_data {
 | |
| 	struct i3c_generic_ibi_pool *pool;
 | |
| 	unsigned int max_len;
 | |
| };
 | |
| 
 | |
| struct hci_pio_ibi_data {
 | |
| 	struct i3c_ibi_slot *slot;
 | |
| 	void *data_ptr;
 | |
| 	unsigned int addr;
 | |
| 	unsigned int seg_len, seg_cnt;
 | |
| 	unsigned int max_len;
 | |
| 	bool last_seg;
 | |
| };
 | |
| 
 | |
| struct hci_pio_data {
 | |
| 	spinlock_t lock;
 | |
| 	struct hci_xfer *curr_xfer, *xfer_queue;
 | |
| 	struct hci_xfer *curr_rx, *rx_queue;
 | |
| 	struct hci_xfer *curr_tx, *tx_queue;
 | |
| 	struct hci_xfer *curr_resp, *resp_queue;
 | |
| 	struct hci_pio_ibi_data ibi;
 | |
| 	unsigned int rx_thresh_size, tx_thresh_size;
 | |
| 	unsigned int max_ibi_thresh;
 | |
| 	u32 reg_queue_thresh;
 | |
| 	u32 enabled_irqs;
 | |
| };
 | |
| 
 | |
| static int hci_pio_init(struct i3c_hci *hci)
 | |
| {
 | |
| 	struct hci_pio_data *pio;
 | |
| 	u32 val, size_val, rx_thresh, tx_thresh, ibi_val;
 | |
| 
 | |
| 	pio = kzalloc(sizeof(*pio), GFP_KERNEL);
 | |
| 	if (!pio)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	hci->io_data = pio;
 | |
| 	spin_lock_init(&pio->lock);
 | |
| 
 | |
| 	size_val = pio_reg_read(QUEUE_SIZE);
 | |
| 	dev_info(&hci->master.dev, "CMD/RESP FIFO = %ld entries\n",
 | |
| 		 FIELD_GET(CR_QUEUE_SIZE, size_val));
 | |
| 	dev_info(&hci->master.dev, "IBI FIFO = %ld bytes\n",
 | |
| 		 4 * FIELD_GET(IBI_STATUS_SIZE, size_val));
 | |
| 	dev_info(&hci->master.dev, "RX data FIFO = %d bytes\n",
 | |
| 		 4 * (2 << FIELD_GET(RX_DATA_BUFFER_SIZE, size_val)));
 | |
| 	dev_info(&hci->master.dev, "TX data FIFO = %d bytes\n",
 | |
| 		 4 * (2 << FIELD_GET(TX_DATA_BUFFER_SIZE, size_val)));
 | |
| 
 | |
| 	/*
 | |
| 	 * Let's initialize data thresholds to half of the actual FIFO size.
 | |
| 	 * The start thresholds aren't used (set to 0) as the FIFO is always
 | |
| 	 * serviced before the corresponding command is queued.
 | |
| 	 */
 | |
| 	rx_thresh = FIELD_GET(RX_DATA_BUFFER_SIZE, size_val);
 | |
| 	tx_thresh = FIELD_GET(TX_DATA_BUFFER_SIZE, size_val);
 | |
| 	if (hci->version_major == 1) {
 | |
| 		/* those are expressed as 2^[n+1), so just sub 1 if not 0 */
 | |
| 		if (rx_thresh)
 | |
| 			rx_thresh -= 1;
 | |
| 		if (tx_thresh)
 | |
| 			tx_thresh -= 1;
 | |
| 		pio->rx_thresh_size = 2 << rx_thresh;
 | |
| 		pio->tx_thresh_size = 2 << tx_thresh;
 | |
| 	} else {
 | |
| 		/* size is 2^(n+1) and threshold is 2^n i.e. already halved */
 | |
| 		pio->rx_thresh_size = 1 << rx_thresh;
 | |
| 		pio->tx_thresh_size = 1 << tx_thresh;
 | |
| 	}
 | |
| 	val = FIELD_PREP(DATA_RX_BUF_THLD,   rx_thresh) |
 | |
| 	      FIELD_PREP(DATA_TX_BUF_THLD,   tx_thresh);
 | |
| 	pio_reg_write(DATA_BUFFER_THLD_CTRL, val);
 | |
| 
 | |
| 	/*
 | |
| 	 * Let's raise an interrupt as soon as there is one free cmd slot
 | |
| 	 * or one available response or IBI. For IBI data let's use half the
 | |
| 	 * IBI queue size within allowed bounds.
 | |
| 	 */
 | |
| 	ibi_val = FIELD_GET(IBI_STATUS_SIZE, size_val);
 | |
| 	pio->max_ibi_thresh = clamp_val(ibi_val/2, 1, 63);
 | |
| 	val = FIELD_PREP(QUEUE_IBI_STATUS_THLD, 1) |
 | |
| 	      FIELD_PREP(QUEUE_IBI_DATA_THLD, pio->max_ibi_thresh) |
 | |
| 	      FIELD_PREP(QUEUE_RESP_BUF_THLD, 1) |
 | |
| 	      FIELD_PREP(QUEUE_CMD_EMPTY_BUF_THLD, 1);
 | |
| 	pio_reg_write(QUEUE_THLD_CTRL, val);
 | |
| 	pio->reg_queue_thresh = val;
 | |
| 
 | |
| 	/* Disable all IRQs but allow all status bits */
 | |
| 	pio_reg_write(INTR_SIGNAL_ENABLE, 0x0);
 | |
| 	pio_reg_write(INTR_STATUS_ENABLE, 0xffffffff);
 | |
| 
 | |
| 	/* Always accept error interrupts (will be activated on first xfer) */
 | |
| 	pio->enabled_irqs = STAT_ALL_ERRORS;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void hci_pio_cleanup(struct i3c_hci *hci)
 | |
| {
 | |
| 	struct hci_pio_data *pio = hci->io_data;
 | |
| 
 | |
| 	pio_reg_write(INTR_SIGNAL_ENABLE, 0x0);
 | |
| 
 | |
| 	if (pio) {
 | |
| 		DBG("status = %#x/%#x",
 | |
| 		    pio_reg_read(INTR_STATUS), pio_reg_read(INTR_SIGNAL_ENABLE));
 | |
| 		BUG_ON(pio->curr_xfer);
 | |
| 		BUG_ON(pio->curr_rx);
 | |
| 		BUG_ON(pio->curr_tx);
 | |
| 		BUG_ON(pio->curr_resp);
 | |
| 		kfree(pio);
 | |
| 		hci->io_data = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void hci_pio_write_cmd(struct i3c_hci *hci, struct hci_xfer *xfer)
 | |
| {
 | |
| 	DBG("cmd_desc[%d] = 0x%08x", 0, xfer->cmd_desc[0]);
 | |
| 	DBG("cmd_desc[%d] = 0x%08x", 1, xfer->cmd_desc[1]);
 | |
| 	pio_reg_write(COMMAND_QUEUE_PORT, xfer->cmd_desc[0]);
 | |
| 	pio_reg_write(COMMAND_QUEUE_PORT, xfer->cmd_desc[1]);
 | |
| 	if (hci->cmd == &mipi_i3c_hci_cmd_v2) {
 | |
| 		DBG("cmd_desc[%d] = 0x%08x", 2, xfer->cmd_desc[2]);
 | |
| 		DBG("cmd_desc[%d] = 0x%08x", 3, xfer->cmd_desc[3]);
 | |
| 		pio_reg_write(COMMAND_QUEUE_PORT, xfer->cmd_desc[2]);
 | |
| 		pio_reg_write(COMMAND_QUEUE_PORT, xfer->cmd_desc[3]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool hci_pio_do_rx(struct i3c_hci *hci, struct hci_pio_data *pio)
 | |
| {
 | |
| 	struct hci_xfer *xfer = pio->curr_rx;
 | |
| 	unsigned int nr_words;
 | |
| 	u32 *p;
 | |
| 
 | |
| 	p = xfer->data;
 | |
| 	p += (xfer->data_len - xfer->data_left) / 4;
 | |
| 
 | |
| 	while (xfer->data_left >= 4) {
 | |
| 		/* bail out if FIFO hasn't reached the threshold value yet */
 | |
| 		if (!(pio_reg_read(INTR_STATUS) & STAT_RX_THLD))
 | |
| 			return false;
 | |
| 		nr_words = min(xfer->data_left / 4, pio->rx_thresh_size);
 | |
| 		/* extract data from FIFO */
 | |
| 		xfer->data_left -= nr_words * 4;
 | |
| 		DBG("now %d left %d", nr_words * 4, xfer->data_left);
 | |
| 		while (nr_words--)
 | |
| 			*p++ = pio_reg_read(XFER_DATA_PORT);
 | |
| 	}
 | |
| 
 | |
| 	/* trailing data is retrieved upon response reception */
 | |
| 	return !xfer->data_left;
 | |
| }
 | |
| 
 | |
| static void hci_pio_do_trailing_rx(struct i3c_hci *hci,
 | |
| 				   struct hci_pio_data *pio, unsigned int count)
 | |
| {
 | |
| 	struct hci_xfer *xfer = pio->curr_rx;
 | |
| 	u32 *p;
 | |
| 
 | |
| 	DBG("%d remaining", count);
 | |
| 
 | |
| 	p = xfer->data;
 | |
| 	p += (xfer->data_len - xfer->data_left) / 4;
 | |
| 
 | |
| 	if (count >= 4) {
 | |
| 		unsigned int nr_words = count / 4;
 | |
| 		/* extract data from FIFO */
 | |
| 		xfer->data_left -= nr_words * 4;
 | |
| 		DBG("now %d left %d", nr_words * 4, xfer->data_left);
 | |
| 		while (nr_words--)
 | |
| 			*p++ = pio_reg_read(XFER_DATA_PORT);
 | |
| 	}
 | |
| 
 | |
| 	count &= 3;
 | |
| 	if (count) {
 | |
| 		/*
 | |
| 		 * There are trailing bytes in the last word.
 | |
| 		 * Fetch it and extract bytes in an endian independent way.
 | |
| 		 * Unlike the TX case, we must not write memory past the
 | |
| 		 * end of the destination buffer.
 | |
| 		 */
 | |
| 		u8 *p_byte = (u8 *)p;
 | |
| 		u32 data = pio_reg_read(XFER_DATA_PORT);
 | |
| 
 | |
| 		xfer->data_word_before_partial = data;
 | |
| 		xfer->data_left -= count;
 | |
| 		data = (__force u32) cpu_to_le32(data);
 | |
| 		while (count--) {
 | |
| 			*p_byte++ = data;
 | |
| 			data >>= 8;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool hci_pio_do_tx(struct i3c_hci *hci, struct hci_pio_data *pio)
 | |
| {
 | |
| 	struct hci_xfer *xfer = pio->curr_tx;
 | |
| 	unsigned int nr_words;
 | |
| 	u32 *p;
 | |
| 
 | |
| 	p = xfer->data;
 | |
| 	p += (xfer->data_len - xfer->data_left) / 4;
 | |
| 
 | |
| 	while (xfer->data_left >= 4) {
 | |
| 		/* bail out if FIFO free space is below set threshold */
 | |
| 		if (!(pio_reg_read(INTR_STATUS) & STAT_TX_THLD))
 | |
| 			return false;
 | |
| 		/* we can fill up to that TX threshold */
 | |
| 		nr_words = min(xfer->data_left / 4, pio->tx_thresh_size);
 | |
| 		/* push data into the FIFO */
 | |
| 		xfer->data_left -= nr_words * 4;
 | |
| 		DBG("now %d left %d", nr_words * 4, xfer->data_left);
 | |
| 		while (nr_words--)
 | |
| 			pio_reg_write(XFER_DATA_PORT, *p++);
 | |
| 	}
 | |
| 
 | |
| 	if (xfer->data_left) {
 | |
| 		/*
 | |
| 		 * There are trailing bytes to send. We can simply load
 | |
| 		 * them from memory as a word which will keep those bytes
 | |
| 		 * in their proper place even on a BE system. This will
 | |
| 		 * also get some bytes past the actual buffer but no one
 | |
| 		 * should care as they won't be sent out.
 | |
| 		 */
 | |
| 		if (!(pio_reg_read(INTR_STATUS) & STAT_TX_THLD))
 | |
| 			return false;
 | |
| 		DBG("trailing %d", xfer->data_left);
 | |
| 		pio_reg_write(XFER_DATA_PORT, *p);
 | |
| 		xfer->data_left = 0;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool hci_pio_process_rx(struct i3c_hci *hci, struct hci_pio_data *pio)
 | |
| {
 | |
| 	while (pio->curr_rx && hci_pio_do_rx(hci, pio))
 | |
| 		pio->curr_rx = pio->curr_rx->next_data;
 | |
| 	return !pio->curr_rx;
 | |
| }
 | |
| 
 | |
| static bool hci_pio_process_tx(struct i3c_hci *hci, struct hci_pio_data *pio)
 | |
| {
 | |
| 	while (pio->curr_tx && hci_pio_do_tx(hci, pio))
 | |
| 		pio->curr_tx = pio->curr_tx->next_data;
 | |
| 	return !pio->curr_tx;
 | |
| }
 | |
| 
 | |
| static void hci_pio_queue_data(struct i3c_hci *hci, struct hci_pio_data *pio)
 | |
| {
 | |
| 	struct hci_xfer *xfer = pio->curr_xfer;
 | |
| 	struct hci_xfer *prev_queue_tail;
 | |
| 
 | |
| 	if (!xfer->data) {
 | |
| 		xfer->data_len = xfer->data_left = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (xfer->rnw) {
 | |
| 		prev_queue_tail = pio->rx_queue;
 | |
| 		pio->rx_queue = xfer;
 | |
| 		if (pio->curr_rx) {
 | |
| 			prev_queue_tail->next_data = xfer;
 | |
| 		} else {
 | |
| 			pio->curr_rx = xfer;
 | |
| 			if (!hci_pio_process_rx(hci, pio))
 | |
| 				pio->enabled_irqs |= STAT_RX_THLD;
 | |
| 		}
 | |
| 	} else {
 | |
| 		prev_queue_tail = pio->tx_queue;
 | |
| 		pio->tx_queue = xfer;
 | |
| 		if (pio->curr_tx) {
 | |
| 			prev_queue_tail->next_data = xfer;
 | |
| 		} else {
 | |
| 			pio->curr_tx = xfer;
 | |
| 			if (!hci_pio_process_tx(hci, pio))
 | |
| 				pio->enabled_irqs |= STAT_TX_THLD;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void hci_pio_push_to_next_rx(struct i3c_hci *hci, struct hci_xfer *xfer,
 | |
| 				    unsigned int words_to_keep)
 | |
| {
 | |
| 	u32 *from = xfer->data;
 | |
| 	u32 from_last;
 | |
| 	unsigned int received, count;
 | |
| 
 | |
| 	received = (xfer->data_len - xfer->data_left) / 4;
 | |
| 	if ((xfer->data_len - xfer->data_left) & 3) {
 | |
| 		from_last = xfer->data_word_before_partial;
 | |
| 		received += 1;
 | |
| 	} else {
 | |
| 		from_last = from[received];
 | |
| 	}
 | |
| 	from += words_to_keep;
 | |
| 	count = received - words_to_keep;
 | |
| 
 | |
| 	while (count) {
 | |
| 		unsigned int room, left, chunk, bytes_to_move;
 | |
| 		u32 last_word;
 | |
| 
 | |
| 		xfer = xfer->next_data;
 | |
| 		if (!xfer) {
 | |
| 			dev_err(&hci->master.dev, "pushing RX data to unexistent xfer\n");
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		room = DIV_ROUND_UP(xfer->data_len, 4);
 | |
| 		left = DIV_ROUND_UP(xfer->data_left, 4);
 | |
| 		chunk = min(count, room);
 | |
| 		if (chunk > left) {
 | |
| 			hci_pio_push_to_next_rx(hci, xfer, chunk - left);
 | |
| 			left = chunk;
 | |
| 			xfer->data_left = left * 4;
 | |
| 		}
 | |
| 
 | |
| 		bytes_to_move = xfer->data_len - xfer->data_left;
 | |
| 		if (bytes_to_move & 3) {
 | |
| 			/* preserve word  to become partial */
 | |
| 			u32 *p = xfer->data;
 | |
| 
 | |
| 			xfer->data_word_before_partial = p[bytes_to_move / 4];
 | |
| 		}
 | |
| 		memmove(xfer->data + chunk, xfer->data, bytes_to_move);
 | |
| 
 | |
| 		/* treat last word specially because of partial word issues */
 | |
| 		chunk -= 1;
 | |
| 
 | |
| 		memcpy(xfer->data, from, chunk * 4);
 | |
| 		xfer->data_left -= chunk * 4;
 | |
| 		from += chunk;
 | |
| 		count -= chunk;
 | |
| 
 | |
| 		last_word = (count == 1) ? from_last : *from++;
 | |
| 		if (xfer->data_left < 4) {
 | |
| 			/*
 | |
| 			 * Like in hci_pio_do_trailing_rx(), preserve original
 | |
| 			 * word to be stored partially then store bytes it
 | |
| 			 * in an endian independent way.
 | |
| 			 */
 | |
| 			u8 *p_byte = xfer->data;
 | |
| 
 | |
| 			p_byte += chunk * 4;
 | |
| 			xfer->data_word_before_partial = last_word;
 | |
| 			last_word = (__force u32) cpu_to_le32(last_word);
 | |
| 			while (xfer->data_left--) {
 | |
| 				*p_byte++ = last_word;
 | |
| 				last_word >>= 8;
 | |
| 			}
 | |
| 		} else {
 | |
| 			u32 *p = xfer->data;
 | |
| 
 | |
| 			p[chunk] = last_word;
 | |
| 			xfer->data_left -= 4;
 | |
| 		}
 | |
| 		count--;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void hci_pio_err(struct i3c_hci *hci, struct hci_pio_data *pio,
 | |
| 			u32 status);
 | |
| 
 | |
| static bool hci_pio_process_resp(struct i3c_hci *hci, struct hci_pio_data *pio)
 | |
| {
 | |
| 	while (pio->curr_resp &&
 | |
| 	       (pio_reg_read(INTR_STATUS) & STAT_RESP_READY)) {
 | |
| 		struct hci_xfer *xfer = pio->curr_resp;
 | |
| 		u32 resp = pio_reg_read(RESPONSE_QUEUE_PORT);
 | |
| 		unsigned int tid = RESP_TID(resp);
 | |
| 
 | |
| 		DBG("resp = 0x%08x", resp);
 | |
| 		if (tid != xfer->cmd_tid) {
 | |
| 			dev_err(&hci->master.dev,
 | |
| 				"response tid=%d when expecting %d\n",
 | |
| 				tid, xfer->cmd_tid);
 | |
| 			/* let's pretend it is a prog error... any of them  */
 | |
| 			hci_pio_err(hci, pio, STAT_PROG_ERRORS);
 | |
| 			return false;
 | |
| 		}
 | |
| 		xfer->response = resp;
 | |
| 
 | |
| 		if (pio->curr_rx == xfer) {
 | |
| 			/*
 | |
| 			 * Response availability implies RX completion.
 | |
| 			 * Retrieve trailing RX data if any.
 | |
| 			 * Note that short reads are possible.
 | |
| 			 */
 | |
| 			unsigned int received, expected, to_keep;
 | |
| 
 | |
| 			received = xfer->data_len - xfer->data_left;
 | |
| 			expected = RESP_DATA_LENGTH(xfer->response);
 | |
| 			if (expected > received) {
 | |
| 				hci_pio_do_trailing_rx(hci, pio,
 | |
| 						       expected - received);
 | |
| 			} else if (received > expected) {
 | |
| 				/* we consumed data meant for next xfer */
 | |
| 				to_keep = DIV_ROUND_UP(expected, 4);
 | |
| 				hci_pio_push_to_next_rx(hci, xfer, to_keep);
 | |
| 			}
 | |
| 
 | |
| 			/* then process the RX list pointer */
 | |
| 			if (hci_pio_process_rx(hci, pio))
 | |
| 				pio->enabled_irqs &= ~STAT_RX_THLD;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We're about to give back ownership of the xfer structure
 | |
| 		 * to the waiting instance. Make sure no reference to it
 | |
| 		 * still exists.
 | |
| 		 */
 | |
| 		if (pio->curr_rx == xfer) {
 | |
| 			DBG("short RX ?");
 | |
| 			pio->curr_rx = pio->curr_rx->next_data;
 | |
| 		} else if (pio->curr_tx == xfer) {
 | |
| 			DBG("short TX ?");
 | |
| 			pio->curr_tx = pio->curr_tx->next_data;
 | |
| 		} else if (xfer->data_left) {
 | |
| 			DBG("PIO xfer count = %d after response",
 | |
| 			    xfer->data_left);
 | |
| 		}
 | |
| 
 | |
| 		pio->curr_resp = xfer->next_resp;
 | |
| 		if (xfer->completion)
 | |
| 			complete(xfer->completion);
 | |
| 	}
 | |
| 	return !pio->curr_resp;
 | |
| }
 | |
| 
 | |
| static void hci_pio_queue_resp(struct i3c_hci *hci, struct hci_pio_data *pio)
 | |
| {
 | |
| 	struct hci_xfer *xfer = pio->curr_xfer;
 | |
| 	struct hci_xfer *prev_queue_tail;
 | |
| 
 | |
| 	if (!(xfer->cmd_desc[0] & CMD_0_ROC))
 | |
| 		return;
 | |
| 
 | |
| 	prev_queue_tail = pio->resp_queue;
 | |
| 	pio->resp_queue = xfer;
 | |
| 	if (pio->curr_resp) {
 | |
| 		prev_queue_tail->next_resp = xfer;
 | |
| 	} else {
 | |
| 		pio->curr_resp = xfer;
 | |
| 		if (!hci_pio_process_resp(hci, pio))
 | |
| 			pio->enabled_irqs |= STAT_RESP_READY;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool hci_pio_process_cmd(struct i3c_hci *hci, struct hci_pio_data *pio)
 | |
| {
 | |
| 	while (pio->curr_xfer &&
 | |
| 	       (pio_reg_read(INTR_STATUS) & STAT_CMD_QUEUE_READY)) {
 | |
| 		/*
 | |
| 		 * Always process the data FIFO before sending the command
 | |
| 		 * so needed TX data or RX space is available upfront.
 | |
| 		 */
 | |
| 		hci_pio_queue_data(hci, pio);
 | |
| 		/*
 | |
| 		 * Then queue our response request. This will also process
 | |
| 		 * the response FIFO in case it got suddenly filled up
 | |
| 		 * with results from previous commands.
 | |
| 		 */
 | |
| 		hci_pio_queue_resp(hci, pio);
 | |
| 		/*
 | |
| 		 * Finally send the command.
 | |
| 		 */
 | |
| 		hci_pio_write_cmd(hci, pio->curr_xfer);
 | |
| 		/*
 | |
| 		 * And move on.
 | |
| 		 */
 | |
| 		pio->curr_xfer = pio->curr_xfer->next_xfer;
 | |
| 	}
 | |
| 	return !pio->curr_xfer;
 | |
| }
 | |
| 
 | |
| static int hci_pio_queue_xfer(struct i3c_hci *hci, struct hci_xfer *xfer, int n)
 | |
| {
 | |
| 	struct hci_pio_data *pio = hci->io_data;
 | |
| 	struct hci_xfer *prev_queue_tail;
 | |
| 	int i;
 | |
| 
 | |
| 	DBG("n = %d", n);
 | |
| 
 | |
| 	/* link xfer instances together and initialize data count */
 | |
| 	for (i = 0; i < n; i++) {
 | |
| 		xfer[i].next_xfer = (i + 1 < n) ? &xfer[i + 1] : NULL;
 | |
| 		xfer[i].next_data = NULL;
 | |
| 		xfer[i].next_resp = NULL;
 | |
| 		xfer[i].data_left = xfer[i].data_len;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irq(&pio->lock);
 | |
| 	prev_queue_tail = pio->xfer_queue;
 | |
| 	pio->xfer_queue = &xfer[n - 1];
 | |
| 	if (pio->curr_xfer) {
 | |
| 		prev_queue_tail->next_xfer = xfer;
 | |
| 	} else {
 | |
| 		pio->curr_xfer = xfer;
 | |
| 		if (!hci_pio_process_cmd(hci, pio))
 | |
| 			pio->enabled_irqs |= STAT_CMD_QUEUE_READY;
 | |
| 		pio_reg_write(INTR_SIGNAL_ENABLE, pio->enabled_irqs);
 | |
| 		DBG("status = %#x/%#x",
 | |
| 		    pio_reg_read(INTR_STATUS), pio_reg_read(INTR_SIGNAL_ENABLE));
 | |
| 	}
 | |
| 	spin_unlock_irq(&pio->lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool hci_pio_dequeue_xfer_common(struct i3c_hci *hci,
 | |
| 					struct hci_pio_data *pio,
 | |
| 					struct hci_xfer *xfer, int n)
 | |
| {
 | |
| 	struct hci_xfer *p, **p_prev_next;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * To safely dequeue a transfer request, it must be either entirely
 | |
| 	 * processed, or not yet processed at all. If our request tail is
 | |
| 	 * reachable from either the data or resp list that means the command
 | |
| 	 * was submitted and not yet completed.
 | |
| 	 */
 | |
| 	for (p = pio->curr_resp; p; p = p->next_resp)
 | |
| 		for (i = 0; i < n; i++)
 | |
| 			if (p == &xfer[i])
 | |
| 				goto pio_screwed;
 | |
| 	for (p = pio->curr_rx; p; p = p->next_data)
 | |
| 		for (i = 0; i < n; i++)
 | |
| 			if (p == &xfer[i])
 | |
| 				goto pio_screwed;
 | |
| 	for (p = pio->curr_tx; p; p = p->next_data)
 | |
| 		for (i = 0; i < n; i++)
 | |
| 			if (p == &xfer[i])
 | |
| 				goto pio_screwed;
 | |
| 
 | |
| 	/*
 | |
| 	 * The command was completed, or wasn't yet submitted.
 | |
| 	 * Unlink it from the que if the later.
 | |
| 	 */
 | |
| 	p_prev_next = &pio->curr_xfer;
 | |
| 	for (p = pio->curr_xfer; p; p = p->next_xfer) {
 | |
| 		if (p == &xfer[0]) {
 | |
| 			*p_prev_next = xfer[n - 1].next_xfer;
 | |
| 			break;
 | |
| 		}
 | |
| 		p_prev_next = &p->next_xfer;
 | |
| 	}
 | |
| 
 | |
| 	/* return true if we actually unqueued something */
 | |
| 	return !!p;
 | |
| 
 | |
| pio_screwed:
 | |
| 	/*
 | |
| 	 * Life is tough. We must invalidate the hardware state and
 | |
| 	 * discard everything that is still queued.
 | |
| 	 */
 | |
| 	for (p = pio->curr_resp; p; p = p->next_resp) {
 | |
| 		p->response = FIELD_PREP(RESP_ERR_FIELD, RESP_ERR_HC_TERMINATED);
 | |
| 		if (p->completion)
 | |
| 			complete(p->completion);
 | |
| 	}
 | |
| 	for (p = pio->curr_xfer; p; p = p->next_xfer) {
 | |
| 		p->response = FIELD_PREP(RESP_ERR_FIELD, RESP_ERR_HC_TERMINATED);
 | |
| 		if (p->completion)
 | |
| 			complete(p->completion);
 | |
| 	}
 | |
| 	pio->curr_xfer = pio->curr_rx = pio->curr_tx = pio->curr_resp = NULL;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool hci_pio_dequeue_xfer(struct i3c_hci *hci, struct hci_xfer *xfer, int n)
 | |
| {
 | |
| 	struct hci_pio_data *pio = hci->io_data;
 | |
| 	int ret;
 | |
| 
 | |
| 	spin_lock_irq(&pio->lock);
 | |
| 	DBG("n=%d status=%#x/%#x", n,
 | |
| 	    pio_reg_read(INTR_STATUS), pio_reg_read(INTR_SIGNAL_ENABLE));
 | |
| 	DBG("main_status = %#x/%#x",
 | |
| 	    readl(hci->base_regs + 0x20), readl(hci->base_regs + 0x28));
 | |
| 
 | |
| 	ret = hci_pio_dequeue_xfer_common(hci, pio, xfer, n);
 | |
| 	spin_unlock_irq(&pio->lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void hci_pio_err(struct i3c_hci *hci, struct hci_pio_data *pio,
 | |
| 			u32 status)
 | |
| {
 | |
| 	/* TODO: this ought to be more sophisticated eventually */
 | |
| 
 | |
| 	if (pio_reg_read(INTR_STATUS) & STAT_RESP_READY) {
 | |
| 		/* this may happen when an error is signaled with ROC unset */
 | |
| 		u32 resp = pio_reg_read(RESPONSE_QUEUE_PORT);
 | |
| 
 | |
| 		dev_err(&hci->master.dev,
 | |
| 			"orphan response (%#x) on error\n", resp);
 | |
| 	}
 | |
| 
 | |
| 	/* dump states on programming errors */
 | |
| 	if (status & STAT_PROG_ERRORS) {
 | |
| 		u32 queue = pio_reg_read(QUEUE_CUR_STATUS);
 | |
| 		u32 data = pio_reg_read(DATA_BUFFER_CUR_STATUS);
 | |
| 
 | |
| 		dev_err(&hci->master.dev,
 | |
| 			"prog error %#lx (C/R/I = %ld/%ld/%ld, TX/RX = %ld/%ld)\n",
 | |
| 			status & STAT_PROG_ERRORS,
 | |
| 			FIELD_GET(CUR_CMD_Q_EMPTY_LEVEL, queue),
 | |
| 			FIELD_GET(CUR_RESP_Q_LEVEL, queue),
 | |
| 			FIELD_GET(CUR_IBI_Q_LEVEL, queue),
 | |
| 			FIELD_GET(CUR_TX_BUF_LVL, data),
 | |
| 			FIELD_GET(CUR_RX_BUF_LVL, data));
 | |
| 	}
 | |
| 
 | |
| 	/* just bust out everything with pending responses for now */
 | |
| 	hci_pio_dequeue_xfer_common(hci, pio, pio->curr_resp, 1);
 | |
| 	/* ... and half-way TX transfers if any */
 | |
| 	if (pio->curr_tx && pio->curr_tx->data_left != pio->curr_tx->data_len)
 | |
| 		hci_pio_dequeue_xfer_common(hci, pio, pio->curr_tx, 1);
 | |
| 	/* then reset the hardware */
 | |
| 	mipi_i3c_hci_pio_reset(hci);
 | |
| 	mipi_i3c_hci_resume(hci);
 | |
| 
 | |
| 	DBG("status=%#x/%#x",
 | |
| 	    pio_reg_read(INTR_STATUS), pio_reg_read(INTR_SIGNAL_ENABLE));
 | |
| }
 | |
| 
 | |
| static void hci_pio_set_ibi_thresh(struct i3c_hci *hci,
 | |
| 				   struct hci_pio_data *pio,
 | |
| 				   unsigned int thresh_val)
 | |
| {
 | |
| 	u32 regval = pio->reg_queue_thresh;
 | |
| 
 | |
| 	regval &= ~QUEUE_IBI_STATUS_THLD;
 | |
| 	regval |= FIELD_PREP(QUEUE_IBI_STATUS_THLD, thresh_val);
 | |
| 	/* write the threshold reg only if it changes */
 | |
| 	if (regval != pio->reg_queue_thresh) {
 | |
| 		pio_reg_write(QUEUE_THLD_CTRL, regval);
 | |
| 		pio->reg_queue_thresh = regval;
 | |
| 		DBG("%d", thresh_val);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool hci_pio_get_ibi_segment(struct i3c_hci *hci,
 | |
| 				    struct hci_pio_data *pio)
 | |
| {
 | |
| 	struct hci_pio_ibi_data *ibi = &pio->ibi;
 | |
| 	unsigned int nr_words, thresh_val;
 | |
| 	u32 *p;
 | |
| 
 | |
| 	p = ibi->data_ptr;
 | |
| 	p += (ibi->seg_len - ibi->seg_cnt) / 4;
 | |
| 
 | |
| 	while ((nr_words = ibi->seg_cnt/4)) {
 | |
| 		/* determine our IBI queue threshold value */
 | |
| 		thresh_val = min(nr_words, pio->max_ibi_thresh);
 | |
| 		hci_pio_set_ibi_thresh(hci, pio, thresh_val);
 | |
| 		/* bail out if we don't have that amount of data ready */
 | |
| 		if (!(pio_reg_read(INTR_STATUS) & STAT_IBI_STATUS_THLD))
 | |
| 			return false;
 | |
| 		/* extract the data from the IBI port */
 | |
| 		nr_words = thresh_val;
 | |
| 		ibi->seg_cnt -= nr_words * 4;
 | |
| 		DBG("now %d left %d", nr_words * 4, ibi->seg_cnt);
 | |
| 		while (nr_words--)
 | |
| 			*p++ = pio_reg_read(IBI_PORT);
 | |
| 	}
 | |
| 
 | |
| 	if (ibi->seg_cnt) {
 | |
| 		/*
 | |
| 		 * There are trailing bytes in the last word.
 | |
| 		 * Fetch it and extract bytes in an endian independent way.
 | |
| 		 * Unlike the TX case, we must not write past the end of
 | |
| 		 * the destination buffer.
 | |
| 		 */
 | |
| 		u32 data;
 | |
| 		u8 *p_byte = (u8 *)p;
 | |
| 
 | |
| 		hci_pio_set_ibi_thresh(hci, pio, 1);
 | |
| 		if (!(pio_reg_read(INTR_STATUS) & STAT_IBI_STATUS_THLD))
 | |
| 			return false;
 | |
| 		DBG("trailing %d", ibi->seg_cnt);
 | |
| 		data = pio_reg_read(IBI_PORT);
 | |
| 		data = (__force u32) cpu_to_le32(data);
 | |
| 		while (ibi->seg_cnt--) {
 | |
| 			*p_byte++ = data;
 | |
| 			data >>= 8;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool hci_pio_prep_new_ibi(struct i3c_hci *hci, struct hci_pio_data *pio)
 | |
| {
 | |
| 	struct hci_pio_ibi_data *ibi = &pio->ibi;
 | |
| 	struct i3c_dev_desc *dev;
 | |
| 	struct i3c_hci_dev_data *dev_data;
 | |
| 	struct hci_pio_dev_ibi_data *dev_ibi;
 | |
| 	u32 ibi_status;
 | |
| 
 | |
| 	/*
 | |
| 	 * We have a new IBI. Try to set up its payload retrieval.
 | |
| 	 * When returning true, the IBI data has to be consumed whether
 | |
| 	 * or not we are set up to capture it. If we return true with
 | |
| 	 * ibi->slot == NULL that means the data payload has to be
 | |
| 	 * drained out of the IBI port and dropped.
 | |
| 	 */
 | |
| 
 | |
| 	ibi_status = pio_reg_read(IBI_PORT);
 | |
| 	DBG("status = %#x", ibi_status);
 | |
| 	ibi->addr = FIELD_GET(IBI_TARGET_ADDR, ibi_status);
 | |
| 	if (ibi_status & IBI_ERROR) {
 | |
| 		dev_err(&hci->master.dev, "IBI error from %#x\n", ibi->addr);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	ibi->last_seg = ibi_status & IBI_LAST_STATUS;
 | |
| 	ibi->seg_len = FIELD_GET(IBI_DATA_LENGTH, ibi_status);
 | |
| 	ibi->seg_cnt = ibi->seg_len;
 | |
| 
 | |
| 	dev = i3c_hci_addr_to_dev(hci, ibi->addr);
 | |
| 	if (!dev) {
 | |
| 		dev_err(&hci->master.dev,
 | |
| 			"IBI for unknown device %#x\n", ibi->addr);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	dev_data = i3c_dev_get_master_data(dev);
 | |
| 	dev_ibi = dev_data->ibi_data;
 | |
| 	ibi->max_len = dev_ibi->max_len;
 | |
| 
 | |
| 	if (ibi->seg_len > ibi->max_len) {
 | |
| 		dev_err(&hci->master.dev, "IBI payload too big (%d > %d)\n",
 | |
| 			ibi->seg_len, ibi->max_len);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	ibi->slot = i3c_generic_ibi_get_free_slot(dev_ibi->pool);
 | |
| 	if (!ibi->slot) {
 | |
| 		dev_err(&hci->master.dev, "no free slot for IBI\n");
 | |
| 	} else {
 | |
| 		ibi->slot->len = 0;
 | |
| 		ibi->data_ptr = ibi->slot->data;
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void hci_pio_free_ibi_slot(struct i3c_hci *hci, struct hci_pio_data *pio)
 | |
| {
 | |
| 	struct hci_pio_ibi_data *ibi = &pio->ibi;
 | |
| 	struct hci_pio_dev_ibi_data *dev_ibi;
 | |
| 
 | |
| 	if (ibi->slot) {
 | |
| 		dev_ibi = ibi->slot->dev->common.master_priv;
 | |
| 		i3c_generic_ibi_recycle_slot(dev_ibi->pool, ibi->slot);
 | |
| 		ibi->slot = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool hci_pio_process_ibi(struct i3c_hci *hci, struct hci_pio_data *pio)
 | |
| {
 | |
| 	struct hci_pio_ibi_data *ibi = &pio->ibi;
 | |
| 
 | |
| 	if (!ibi->slot && !ibi->seg_cnt && ibi->last_seg)
 | |
| 		if (!hci_pio_prep_new_ibi(hci, pio))
 | |
| 			return false;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		u32 ibi_status;
 | |
| 		unsigned int ibi_addr;
 | |
| 
 | |
| 		if (ibi->slot) {
 | |
| 			if (!hci_pio_get_ibi_segment(hci, pio))
 | |
| 				return false;
 | |
| 			ibi->slot->len += ibi->seg_len;
 | |
| 			ibi->data_ptr += ibi->seg_len;
 | |
| 			if (ibi->last_seg) {
 | |
| 				/* was the last segment: submit it and leave */
 | |
| 				i3c_master_queue_ibi(ibi->slot->dev, ibi->slot);
 | |
| 				ibi->slot = NULL;
 | |
| 				hci_pio_set_ibi_thresh(hci, pio, 1);
 | |
| 				return true;
 | |
| 			}
 | |
| 		} else if (ibi->seg_cnt) {
 | |
| 			/*
 | |
| 			 * No slot but a non-zero count. This is the result
 | |
| 			 * of some error and the payload must be drained.
 | |
| 			 * This normally does not happen therefore no need
 | |
| 			 * to be extra optimized here.
 | |
| 			 */
 | |
| 			hci_pio_set_ibi_thresh(hci, pio, 1);
 | |
| 			do {
 | |
| 				if (!(pio_reg_read(INTR_STATUS) & STAT_IBI_STATUS_THLD))
 | |
| 					return false;
 | |
| 				pio_reg_read(IBI_PORT);
 | |
| 			} while (--ibi->seg_cnt);
 | |
| 			if (ibi->last_seg)
 | |
| 				return true;
 | |
| 		}
 | |
| 
 | |
| 		/* try to move to the next segment right away */
 | |
| 		hci_pio_set_ibi_thresh(hci, pio, 1);
 | |
| 		if (!(pio_reg_read(INTR_STATUS) & STAT_IBI_STATUS_THLD))
 | |
| 			return false;
 | |
| 		ibi_status = pio_reg_read(IBI_PORT);
 | |
| 		ibi_addr = FIELD_GET(IBI_TARGET_ADDR, ibi_status);
 | |
| 		if (ibi->addr != ibi_addr) {
 | |
| 			/* target address changed before last segment */
 | |
| 			dev_err(&hci->master.dev,
 | |
| 				"unexp IBI address changed from %d to %d\n",
 | |
| 				ibi->addr, ibi_addr);
 | |
| 			hci_pio_free_ibi_slot(hci, pio);
 | |
| 		}
 | |
| 		ibi->last_seg = ibi_status & IBI_LAST_STATUS;
 | |
| 		ibi->seg_len = FIELD_GET(IBI_DATA_LENGTH, ibi_status);
 | |
| 		ibi->seg_cnt = ibi->seg_len;
 | |
| 		if (ibi->slot && ibi->slot->len + ibi->seg_len > ibi->max_len) {
 | |
| 			dev_err(&hci->master.dev,
 | |
| 				"IBI payload too big (%d > %d)\n",
 | |
| 				ibi->slot->len + ibi->seg_len, ibi->max_len);
 | |
| 			hci_pio_free_ibi_slot(hci, pio);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int hci_pio_request_ibi(struct i3c_hci *hci, struct i3c_dev_desc *dev,
 | |
| 			       const struct i3c_ibi_setup *req)
 | |
| {
 | |
| 	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
 | |
| 	struct i3c_generic_ibi_pool *pool;
 | |
| 	struct hci_pio_dev_ibi_data *dev_ibi;
 | |
| 
 | |
| 	dev_ibi = kmalloc(sizeof(*dev_ibi), GFP_KERNEL);
 | |
| 	if (!dev_ibi)
 | |
| 		return -ENOMEM;
 | |
| 	pool = i3c_generic_ibi_alloc_pool(dev, req);
 | |
| 	if (IS_ERR(pool)) {
 | |
| 		kfree(dev_ibi);
 | |
| 		return PTR_ERR(pool);
 | |
| 	}
 | |
| 	dev_ibi->pool = pool;
 | |
| 	dev_ibi->max_len = req->max_payload_len;
 | |
| 	dev_data->ibi_data = dev_ibi;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void hci_pio_free_ibi(struct i3c_hci *hci, struct i3c_dev_desc *dev)
 | |
| {
 | |
| 	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
 | |
| 	struct hci_pio_dev_ibi_data *dev_ibi = dev_data->ibi_data;
 | |
| 
 | |
| 	dev_data->ibi_data = NULL;
 | |
| 	i3c_generic_ibi_free_pool(dev_ibi->pool);
 | |
| 	kfree(dev_ibi);
 | |
| }
 | |
| 
 | |
| static void hci_pio_recycle_ibi_slot(struct i3c_hci *hci,
 | |
| 				    struct i3c_dev_desc *dev,
 | |
| 				    struct i3c_ibi_slot *slot)
 | |
| {
 | |
| 	struct i3c_hci_dev_data *dev_data = i3c_dev_get_master_data(dev);
 | |
| 	struct hci_pio_dev_ibi_data *dev_ibi = dev_data->ibi_data;
 | |
| 
 | |
| 	i3c_generic_ibi_recycle_slot(dev_ibi->pool, slot);
 | |
| }
 | |
| 
 | |
| static bool hci_pio_irq_handler(struct i3c_hci *hci, unsigned int unused)
 | |
| {
 | |
| 	struct hci_pio_data *pio = hci->io_data;
 | |
| 	u32 status;
 | |
| 
 | |
| 	spin_lock(&pio->lock);
 | |
| 	status = pio_reg_read(INTR_STATUS);
 | |
| 	DBG("(in) status: %#x/%#x", status, pio->enabled_irqs);
 | |
| 	status &= pio->enabled_irqs | STAT_LATENCY_WARNINGS;
 | |
| 	if (!status) {
 | |
| 		spin_unlock(&pio->lock);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	if (status & STAT_IBI_STATUS_THLD)
 | |
| 		hci_pio_process_ibi(hci, pio);
 | |
| 
 | |
| 	if (status & STAT_RX_THLD)
 | |
| 		if (hci_pio_process_rx(hci, pio))
 | |
| 			pio->enabled_irqs &= ~STAT_RX_THLD;
 | |
| 	if (status & STAT_TX_THLD)
 | |
| 		if (hci_pio_process_tx(hci, pio))
 | |
| 			pio->enabled_irqs &= ~STAT_TX_THLD;
 | |
| 	if (status & STAT_RESP_READY)
 | |
| 		if (hci_pio_process_resp(hci, pio))
 | |
| 			pio->enabled_irqs &= ~STAT_RESP_READY;
 | |
| 
 | |
| 	if (unlikely(status & STAT_LATENCY_WARNINGS)) {
 | |
| 		pio_reg_write(INTR_STATUS, status & STAT_LATENCY_WARNINGS);
 | |
| 		dev_warn_ratelimited(&hci->master.dev,
 | |
| 				     "encountered warning condition %#lx\n",
 | |
| 				     status & STAT_LATENCY_WARNINGS);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(status & STAT_ALL_ERRORS)) {
 | |
| 		pio_reg_write(INTR_STATUS, status & STAT_ALL_ERRORS);
 | |
| 		hci_pio_err(hci, pio, status & STAT_ALL_ERRORS);
 | |
| 	}
 | |
| 
 | |
| 	if (status & STAT_CMD_QUEUE_READY)
 | |
| 		if (hci_pio_process_cmd(hci, pio))
 | |
| 			pio->enabled_irqs &= ~STAT_CMD_QUEUE_READY;
 | |
| 
 | |
| 	pio_reg_write(INTR_SIGNAL_ENABLE, pio->enabled_irqs);
 | |
| 	DBG("(out) status: %#x/%#x",
 | |
| 	    pio_reg_read(INTR_STATUS), pio_reg_read(INTR_SIGNAL_ENABLE));
 | |
| 	spin_unlock(&pio->lock);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| const struct hci_io_ops mipi_i3c_hci_pio = {
 | |
| 	.init			= hci_pio_init,
 | |
| 	.cleanup		= hci_pio_cleanup,
 | |
| 	.queue_xfer		= hci_pio_queue_xfer,
 | |
| 	.dequeue_xfer		= hci_pio_dequeue_xfer,
 | |
| 	.irq_handler		= hci_pio_irq_handler,
 | |
| 	.request_ibi		= hci_pio_request_ibi,
 | |
| 	.free_ibi		= hci_pio_free_ibi,
 | |
| 	.recycle_ibi_slot	= hci_pio_recycle_ibi_slot,
 | |
| };
 |