1516 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1516 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * I2C adapter for the IMG Serial Control Bus (SCB) IP block.
 | |
|  *
 | |
|  * Copyright (C) 2009, 2010, 2012, 2014 Imagination Technologies Ltd.
 | |
|  *
 | |
|  * There are three ways that this I2C controller can be driven:
 | |
|  *
 | |
|  * - Raw control of the SDA and SCK signals.
 | |
|  *
 | |
|  *   This corresponds to MODE_RAW, which takes control of the signals
 | |
|  *   directly for a certain number of clock cycles (the INT_TIMING
 | |
|  *   interrupt can be used for timing).
 | |
|  *
 | |
|  * - Atomic commands. A low level I2C symbol (such as generate
 | |
|  *   start/stop/ack/nack bit, generate byte, receive byte, and receive
 | |
|  *   ACK) is given to the hardware, with detection of completion by bits
 | |
|  *   in the LINESTAT register.
 | |
|  *
 | |
|  *   This mode of operation is used by MODE_ATOMIC, which uses an I2C
 | |
|  *   state machine in the interrupt handler to compose/react to I2C
 | |
|  *   transactions using atomic mode commands, and also by MODE_SEQUENCE,
 | |
|  *   which emits a simple fixed sequence of atomic mode commands.
 | |
|  *
 | |
|  *   Due to software control, the use of atomic commands usually results
 | |
|  *   in suboptimal use of the bus, with gaps between the I2C symbols while
 | |
|  *   the driver decides what to do next.
 | |
|  *
 | |
|  * - Automatic mode. A bus address, and whether to read/write is
 | |
|  *   specified, and the hardware takes care of the I2C state machine,
 | |
|  *   using a FIFO to send/receive bytes of data to an I2C slave. The
 | |
|  *   driver just has to keep the FIFO drained or filled in response to the
 | |
|  *   appropriate FIFO interrupts.
 | |
|  *
 | |
|  *   This corresponds to MODE_AUTOMATIC, which manages the FIFOs and deals
 | |
|  *   with control of repeated start bits between I2C messages.
 | |
|  *
 | |
|  *   Use of automatic mode and the FIFO can make much more efficient use
 | |
|  *   of the bus compared to individual atomic commands, with potentially
 | |
|  *   no wasted time between I2C symbols or I2C messages.
 | |
|  *
 | |
|  * In most cases MODE_AUTOMATIC is used, however if any of the messages in
 | |
|  * a transaction are zero byte writes (e.g. used by i2cdetect for probing
 | |
|  * the bus), MODE_ATOMIC must be used since automatic mode is normally
 | |
|  * started by the writing of data into the FIFO.
 | |
|  *
 | |
|  * The other modes are used in specific circumstances where MODE_ATOMIC and
 | |
|  * MODE_AUTOMATIC aren't appropriate. MODE_RAW is used to implement a bus
 | |
|  * recovery routine. MODE_SEQUENCE is used to reset the bus and make sure
 | |
|  * it is in a sane state.
 | |
|  *
 | |
|  * Notice that the driver implements a timer-based timeout mechanism.
 | |
|  * The reason for this mechanism is to reduce the number of interrupts
 | |
|  * received in automatic mode.
 | |
|  *
 | |
|  * The driver would get a slave event and transaction done interrupts for
 | |
|  * each atomic mode command that gets completed. However, these events are
 | |
|  * not needed in automatic mode, becase those atomic mode commands are
 | |
|  * managed automatically by the hardware.
 | |
|  *
 | |
|  * In practice, normal I2C transactions will be complete well before you
 | |
|  * get the timer interrupt, as the timer is re-scheduled during FIFO
 | |
|  * maintenance and disabled after the transaction is complete.
 | |
|  *
 | |
|  * In this way normal automatic mode operation isn't impacted by
 | |
|  * unnecessary interrupts, but the exceptional abort condition can still be
 | |
|  * detected (with a slight delay).
 | |
|  */
 | |
| 
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/clk.h>
 | |
| #include <linux/completion.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/i2c.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/of_platform.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/pm_runtime.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/timer.h>
 | |
| 
 | |
| /* Register offsets */
 | |
| 
 | |
| #define SCB_STATUS_REG			0x00
 | |
| #define SCB_OVERRIDE_REG		0x04
 | |
| #define SCB_READ_ADDR_REG		0x08
 | |
| #define SCB_READ_COUNT_REG		0x0c
 | |
| #define SCB_WRITE_ADDR_REG		0x10
 | |
| #define SCB_READ_DATA_REG		0x14
 | |
| #define SCB_WRITE_DATA_REG		0x18
 | |
| #define SCB_FIFO_STATUS_REG		0x1c
 | |
| #define SCB_CONTROL_SOFT_RESET		0x1f
 | |
| #define SCB_CLK_SET_REG			0x3c
 | |
| #define SCB_INT_STATUS_REG		0x40
 | |
| #define SCB_INT_CLEAR_REG		0x44
 | |
| #define SCB_INT_MASK_REG		0x48
 | |
| #define SCB_CONTROL_REG			0x4c
 | |
| #define SCB_TIME_TPL_REG		0x50
 | |
| #define SCB_TIME_TPH_REG		0x54
 | |
| #define SCB_TIME_TP2S_REG		0x58
 | |
| #define SCB_TIME_TBI_REG		0x60
 | |
| #define SCB_TIME_TSL_REG		0x64
 | |
| #define SCB_TIME_TDL_REG		0x68
 | |
| #define SCB_TIME_TSDL_REG		0x6c
 | |
| #define SCB_TIME_TSDH_REG		0x70
 | |
| #define SCB_READ_XADDR_REG		0x74
 | |
| #define SCB_WRITE_XADDR_REG		0x78
 | |
| #define SCB_WRITE_COUNT_REG		0x7c
 | |
| #define SCB_CORE_REV_REG		0x80
 | |
| #define SCB_TIME_TCKH_REG		0x84
 | |
| #define SCB_TIME_TCKL_REG		0x88
 | |
| #define SCB_FIFO_FLUSH_REG		0x8c
 | |
| #define SCB_READ_FIFO_REG		0x94
 | |
| #define SCB_CLEAR_REG			0x98
 | |
| 
 | |
| /* SCB_CONTROL_REG bits */
 | |
| 
 | |
| #define SCB_CONTROL_CLK_ENABLE		0x1e0
 | |
| #define SCB_CONTROL_TRANSACTION_HALT	0x200
 | |
| 
 | |
| #define FIFO_READ_FULL			BIT(0)
 | |
| #define FIFO_READ_EMPTY			BIT(1)
 | |
| #define FIFO_WRITE_FULL			BIT(2)
 | |
| #define FIFO_WRITE_EMPTY		BIT(3)
 | |
| 
 | |
| /* SCB_CLK_SET_REG bits */
 | |
| #define SCB_FILT_DISABLE		BIT(31)
 | |
| #define SCB_FILT_BYPASS			BIT(30)
 | |
| #define SCB_FILT_INC_MASK		0x7f
 | |
| #define SCB_FILT_INC_SHIFT		16
 | |
| #define SCB_INC_MASK			0x7f
 | |
| #define SCB_INC_SHIFT			8
 | |
| 
 | |
| /* SCB_INT_*_REG bits */
 | |
| 
 | |
| #define INT_BUS_INACTIVE		BIT(0)
 | |
| #define INT_UNEXPECTED_START		BIT(1)
 | |
| #define INT_SCLK_LOW_TIMEOUT		BIT(2)
 | |
| #define INT_SDAT_LOW_TIMEOUT		BIT(3)
 | |
| #define INT_WRITE_ACK_ERR		BIT(4)
 | |
| #define INT_ADDR_ACK_ERR		BIT(5)
 | |
| #define INT_FIFO_FULL			BIT(9)
 | |
| #define INT_FIFO_FILLING		BIT(10)
 | |
| #define INT_FIFO_EMPTY			BIT(11)
 | |
| #define INT_FIFO_EMPTYING		BIT(12)
 | |
| #define INT_TRANSACTION_DONE		BIT(15)
 | |
| #define INT_SLAVE_EVENT			BIT(16)
 | |
| #define INT_MASTER_HALTED		BIT(17)
 | |
| #define INT_TIMING			BIT(18)
 | |
| #define INT_STOP_DETECTED		BIT(19)
 | |
| 
 | |
| #define INT_FIFO_FULL_FILLING	(INT_FIFO_FULL  | INT_FIFO_FILLING)
 | |
| 
 | |
| /* Level interrupts need clearing after handling instead of before */
 | |
| #define INT_LEVEL			0x01e00
 | |
| 
 | |
| /* Don't allow any interrupts while the clock may be off */
 | |
| #define INT_ENABLE_MASK_INACTIVE	0x00000
 | |
| 
 | |
| /* Interrupt masks for the different driver modes */
 | |
| 
 | |
| #define INT_ENABLE_MASK_RAW		INT_TIMING
 | |
| 
 | |
| #define INT_ENABLE_MASK_ATOMIC		(INT_TRANSACTION_DONE | \
 | |
| 					 INT_SLAVE_EVENT      | \
 | |
| 					 INT_ADDR_ACK_ERR     | \
 | |
| 					 INT_WRITE_ACK_ERR)
 | |
| 
 | |
| #define INT_ENABLE_MASK_AUTOMATIC	(INT_SCLK_LOW_TIMEOUT | \
 | |
| 					 INT_ADDR_ACK_ERR     | \
 | |
| 					 INT_WRITE_ACK_ERR    | \
 | |
| 					 INT_FIFO_FULL        | \
 | |
| 					 INT_FIFO_FILLING     | \
 | |
| 					 INT_FIFO_EMPTY       | \
 | |
| 					 INT_MASTER_HALTED    | \
 | |
| 					 INT_STOP_DETECTED)
 | |
| 
 | |
| #define INT_ENABLE_MASK_WAITSTOP	(INT_SLAVE_EVENT      | \
 | |
| 					 INT_ADDR_ACK_ERR     | \
 | |
| 					 INT_WRITE_ACK_ERR)
 | |
| 
 | |
| /* SCB_STATUS_REG fields */
 | |
| 
 | |
| #define LINESTAT_SCLK_LINE_STATUS	BIT(0)
 | |
| #define LINESTAT_SCLK_EN		BIT(1)
 | |
| #define LINESTAT_SDAT_LINE_STATUS	BIT(2)
 | |
| #define LINESTAT_SDAT_EN		BIT(3)
 | |
| #define LINESTAT_DET_START_STATUS	BIT(4)
 | |
| #define LINESTAT_DET_STOP_STATUS	BIT(5)
 | |
| #define LINESTAT_DET_ACK_STATUS		BIT(6)
 | |
| #define LINESTAT_DET_NACK_STATUS	BIT(7)
 | |
| #define LINESTAT_BUS_IDLE		BIT(8)
 | |
| #define LINESTAT_T_DONE_STATUS		BIT(9)
 | |
| #define LINESTAT_SCLK_OUT_STATUS	BIT(10)
 | |
| #define LINESTAT_SDAT_OUT_STATUS	BIT(11)
 | |
| #define LINESTAT_GEN_LINE_MASK_STATUS	BIT(12)
 | |
| #define LINESTAT_START_BIT_DET		BIT(13)
 | |
| #define LINESTAT_STOP_BIT_DET		BIT(14)
 | |
| #define LINESTAT_ACK_DET		BIT(15)
 | |
| #define LINESTAT_NACK_DET		BIT(16)
 | |
| #define LINESTAT_INPUT_HELD_V		BIT(17)
 | |
| #define LINESTAT_ABORT_DET		BIT(18)
 | |
| #define LINESTAT_ACK_OR_NACK_DET	(LINESTAT_ACK_DET | LINESTAT_NACK_DET)
 | |
| #define LINESTAT_INPUT_DATA		0xff000000
 | |
| #define LINESTAT_INPUT_DATA_SHIFT	24
 | |
| 
 | |
| #define LINESTAT_CLEAR_SHIFT		13
 | |
| #define LINESTAT_LATCHED		(0x3f << LINESTAT_CLEAR_SHIFT)
 | |
| 
 | |
| /* SCB_OVERRIDE_REG fields */
 | |
| 
 | |
| #define OVERRIDE_SCLK_OVR		BIT(0)
 | |
| #define OVERRIDE_SCLKEN_OVR		BIT(1)
 | |
| #define OVERRIDE_SDAT_OVR		BIT(2)
 | |
| #define OVERRIDE_SDATEN_OVR		BIT(3)
 | |
| #define OVERRIDE_MASTER			BIT(9)
 | |
| #define OVERRIDE_LINE_OVR_EN		BIT(10)
 | |
| #define OVERRIDE_DIRECT			BIT(11)
 | |
| #define OVERRIDE_CMD_SHIFT		4
 | |
| #define OVERRIDE_CMD_MASK		0x1f
 | |
| #define OVERRIDE_DATA_SHIFT		24
 | |
| 
 | |
| #define OVERRIDE_SCLK_DOWN		(OVERRIDE_LINE_OVR_EN | \
 | |
| 					 OVERRIDE_SCLKEN_OVR)
 | |
| #define OVERRIDE_SCLK_UP		(OVERRIDE_LINE_OVR_EN | \
 | |
| 					 OVERRIDE_SCLKEN_OVR | \
 | |
| 					 OVERRIDE_SCLK_OVR)
 | |
| #define OVERRIDE_SDAT_DOWN		(OVERRIDE_LINE_OVR_EN | \
 | |
| 					 OVERRIDE_SDATEN_OVR)
 | |
| #define OVERRIDE_SDAT_UP		(OVERRIDE_LINE_OVR_EN | \
 | |
| 					 OVERRIDE_SDATEN_OVR | \
 | |
| 					 OVERRIDE_SDAT_OVR)
 | |
| 
 | |
| /* OVERRIDE_CMD values */
 | |
| 
 | |
| #define CMD_PAUSE			0x00
 | |
| #define CMD_GEN_DATA			0x01
 | |
| #define CMD_GEN_START			0x02
 | |
| #define CMD_GEN_STOP			0x03
 | |
| #define CMD_GEN_ACK			0x04
 | |
| #define CMD_GEN_NACK			0x05
 | |
| #define CMD_RET_DATA			0x08
 | |
| #define CMD_RET_ACK			0x09
 | |
| 
 | |
| /* Fixed timing values */
 | |
| 
 | |
| #define TIMEOUT_TBI			0x0
 | |
| #define TIMEOUT_TSL			0xffff
 | |
| #define TIMEOUT_TDL			0x0
 | |
| 
 | |
| /* Transaction timeout */
 | |
| 
 | |
| #define IMG_I2C_TIMEOUT			(msecs_to_jiffies(1000))
 | |
| 
 | |
| /*
 | |
|  * Worst incs are 1 (innacurate) and 16*256 (irregular).
 | |
|  * So a sensible inc is the logarithmic mean: 64 (2^6), which is
 | |
|  * in the middle of the valid range (0-127).
 | |
|  */
 | |
| #define SCB_OPT_INC		64
 | |
| 
 | |
| /* Setup the clock enable filtering for 25 ns */
 | |
| #define SCB_FILT_GLITCH		25
 | |
| 
 | |
| /*
 | |
|  * Bits to return from interrupt handler functions for different modes.
 | |
|  * This delays completion until we've finished with the registers, so that the
 | |
|  * function waiting for completion can safely disable the clock to save power.
 | |
|  */
 | |
| #define ISR_COMPLETE_M		BIT(31)
 | |
| #define ISR_FATAL_M		BIT(30)
 | |
| #define ISR_WAITSTOP		BIT(29)
 | |
| #define ISR_STATUS_M		0x0000ffff	/* contains +ve errno */
 | |
| #define ISR_COMPLETE(err)	(ISR_COMPLETE_M | (ISR_STATUS_M & (err)))
 | |
| #define ISR_FATAL(err)		(ISR_COMPLETE(err) | ISR_FATAL_M)
 | |
| 
 | |
| #define IMG_I2C_PM_TIMEOUT	1000 /* ms */
 | |
| 
 | |
| enum img_i2c_mode {
 | |
| 	MODE_INACTIVE,
 | |
| 	MODE_RAW,
 | |
| 	MODE_ATOMIC,
 | |
| 	MODE_AUTOMATIC,
 | |
| 	MODE_SEQUENCE,
 | |
| 	MODE_FATAL,
 | |
| 	MODE_WAITSTOP,
 | |
| 	MODE_SUSPEND,
 | |
| };
 | |
| 
 | |
| /* Timing parameters for i2c modes (in ns) */
 | |
| struct img_i2c_timings {
 | |
| 	const char *name;
 | |
| 	unsigned int max_bitrate;
 | |
| 	unsigned int tckh, tckl, tsdh, tsdl;
 | |
| 	unsigned int tp2s, tpl, tph;
 | |
| };
 | |
| 
 | |
| /* The timings array must be ordered from slower to faster */
 | |
| static struct img_i2c_timings timings[] = {
 | |
| 	/* Standard mode */
 | |
| 	{
 | |
| 		.name = "standard",
 | |
| 		.max_bitrate = I2C_MAX_STANDARD_MODE_FREQ,
 | |
| 		.tckh = 4000,
 | |
| 		.tckl = 4700,
 | |
| 		.tsdh = 4700,
 | |
| 		.tsdl = 8700,
 | |
| 		.tp2s = 4700,
 | |
| 		.tpl = 4700,
 | |
| 		.tph = 4000,
 | |
| 	},
 | |
| 	/* Fast mode */
 | |
| 	{
 | |
| 		.name = "fast",
 | |
| 		.max_bitrate = I2C_MAX_FAST_MODE_FREQ,
 | |
| 		.tckh = 600,
 | |
| 		.tckl = 1300,
 | |
| 		.tsdh = 600,
 | |
| 		.tsdl = 1200,
 | |
| 		.tp2s = 1300,
 | |
| 		.tpl = 600,
 | |
| 		.tph = 600,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| /* Reset dance */
 | |
| static u8 img_i2c_reset_seq[] = { CMD_GEN_START,
 | |
| 				  CMD_GEN_DATA, 0xff,
 | |
| 				  CMD_RET_ACK,
 | |
| 				  CMD_GEN_START,
 | |
| 				  CMD_GEN_STOP,
 | |
| 				  0 };
 | |
| /* Just issue a stop (after an abort condition) */
 | |
| static u8 img_i2c_stop_seq[] = {  CMD_GEN_STOP,
 | |
| 				  0 };
 | |
| 
 | |
| /* We're interested in different interrupts depending on the mode */
 | |
| static unsigned int img_i2c_int_enable_by_mode[] = {
 | |
| 	[MODE_INACTIVE]  = INT_ENABLE_MASK_INACTIVE,
 | |
| 	[MODE_RAW]       = INT_ENABLE_MASK_RAW,
 | |
| 	[MODE_ATOMIC]    = INT_ENABLE_MASK_ATOMIC,
 | |
| 	[MODE_AUTOMATIC] = INT_ENABLE_MASK_AUTOMATIC,
 | |
| 	[MODE_SEQUENCE]  = INT_ENABLE_MASK_ATOMIC,
 | |
| 	[MODE_FATAL]     = 0,
 | |
| 	[MODE_WAITSTOP]  = INT_ENABLE_MASK_WAITSTOP,
 | |
| 	[MODE_SUSPEND]   = 0,
 | |
| };
 | |
| 
 | |
| /* Atomic command names */
 | |
| static const char * const img_i2c_atomic_cmd_names[] = {
 | |
| 	[CMD_PAUSE]	= "PAUSE",
 | |
| 	[CMD_GEN_DATA]	= "GEN_DATA",
 | |
| 	[CMD_GEN_START]	= "GEN_START",
 | |
| 	[CMD_GEN_STOP]	= "GEN_STOP",
 | |
| 	[CMD_GEN_ACK]	= "GEN_ACK",
 | |
| 	[CMD_GEN_NACK]	= "GEN_NACK",
 | |
| 	[CMD_RET_DATA]	= "RET_DATA",
 | |
| 	[CMD_RET_ACK]	= "RET_ACK",
 | |
| };
 | |
| 
 | |
| struct img_i2c {
 | |
| 	struct i2c_adapter adap;
 | |
| 
 | |
| 	void __iomem *base;
 | |
| 
 | |
| 	/*
 | |
| 	 * The scb core clock is used to get the input frequency, and to disable
 | |
| 	 * it after every set of transactions to save some power.
 | |
| 	 */
 | |
| 	struct clk *scb_clk, *sys_clk;
 | |
| 	unsigned int bitrate;
 | |
| 	bool need_wr_rd_fence;
 | |
| 
 | |
| 	/* state */
 | |
| 	struct completion msg_complete;
 | |
| 	spinlock_t lock;	/* lock before doing anything with the state */
 | |
| 	struct i2c_msg msg;
 | |
| 
 | |
| 	/* After the last transaction, wait for a stop bit */
 | |
| 	bool last_msg;
 | |
| 	int msg_status;
 | |
| 
 | |
| 	enum img_i2c_mode mode;
 | |
| 	u32 int_enable;		/* depends on mode */
 | |
| 	u32 line_status;	/* line status over command */
 | |
| 
 | |
| 	/*
 | |
| 	 * To avoid slave event interrupts in automatic mode, use a timer to
 | |
| 	 * poll the abort condition if we don't get an interrupt for too long.
 | |
| 	 */
 | |
| 	struct timer_list check_timer;
 | |
| 	bool t_halt;
 | |
| 
 | |
| 	/* atomic mode state */
 | |
| 	bool at_t_done;
 | |
| 	bool at_slave_event;
 | |
| 	int at_cur_cmd;
 | |
| 	u8 at_cur_data;
 | |
| 
 | |
| 	/* Sequence: either reset or stop. See img_i2c_sequence. */
 | |
| 	u8 *seq;
 | |
| 
 | |
| 	/* raw mode */
 | |
| 	unsigned int raw_timeout;
 | |
| };
 | |
| 
 | |
| static int img_i2c_runtime_suspend(struct device *dev);
 | |
| static int img_i2c_runtime_resume(struct device *dev);
 | |
| 
 | |
| static void img_i2c_writel(struct img_i2c *i2c, u32 offset, u32 value)
 | |
| {
 | |
| 	writel(value, i2c->base + offset);
 | |
| }
 | |
| 
 | |
| static u32 img_i2c_readl(struct img_i2c *i2c, u32 offset)
 | |
| {
 | |
| 	return readl(i2c->base + offset);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The code to read from the master read fifo, and write to the master
 | |
|  * write fifo, checks a bit in an SCB register before every byte to
 | |
|  * ensure that the fifo is not full (write fifo) or empty (read fifo).
 | |
|  * Due to clock domain crossing inside the SCB block the updated value
 | |
|  * of this bit is only visible after 2 cycles.
 | |
|  *
 | |
|  * The scb_wr_rd_fence() function does 2 dummy writes (to the read-only
 | |
|  * revision register), and it's called after reading from or writing to the
 | |
|  * fifos to ensure that subsequent reads of the fifo status bits do not read
 | |
|  * stale values.
 | |
|  */
 | |
| static void img_i2c_wr_rd_fence(struct img_i2c *i2c)
 | |
| {
 | |
| 	if (i2c->need_wr_rd_fence) {
 | |
| 		img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
 | |
| 		img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void img_i2c_switch_mode(struct img_i2c *i2c, enum img_i2c_mode mode)
 | |
| {
 | |
| 	i2c->mode = mode;
 | |
| 	i2c->int_enable = img_i2c_int_enable_by_mode[mode];
 | |
| 	i2c->line_status = 0;
 | |
| }
 | |
| 
 | |
| static void img_i2c_raw_op(struct img_i2c *i2c)
 | |
| {
 | |
| 	i2c->raw_timeout = 0;
 | |
| 	img_i2c_writel(i2c, SCB_OVERRIDE_REG,
 | |
| 		OVERRIDE_SCLKEN_OVR |
 | |
| 		OVERRIDE_SDATEN_OVR |
 | |
| 		OVERRIDE_MASTER |
 | |
| 		OVERRIDE_LINE_OVR_EN |
 | |
| 		OVERRIDE_DIRECT |
 | |
| 		((i2c->at_cur_cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
 | |
| 		(i2c->at_cur_data << OVERRIDE_DATA_SHIFT));
 | |
| }
 | |
| 
 | |
| static const char *img_i2c_atomic_op_name(unsigned int cmd)
 | |
| {
 | |
| 	if (unlikely(cmd >= ARRAY_SIZE(img_i2c_atomic_cmd_names)))
 | |
| 		return "UNKNOWN";
 | |
| 	return img_i2c_atomic_cmd_names[cmd];
 | |
| }
 | |
| 
 | |
| /* Send a single atomic mode command to the hardware */
 | |
| static void img_i2c_atomic_op(struct img_i2c *i2c, int cmd, u8 data)
 | |
| {
 | |
| 	i2c->at_cur_cmd = cmd;
 | |
| 	i2c->at_cur_data = data;
 | |
| 
 | |
| 	/* work around lack of data setup time when generating data */
 | |
| 	if (cmd == CMD_GEN_DATA && i2c->mode == MODE_ATOMIC) {
 | |
| 		u32 line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
 | |
| 
 | |
| 		if (line_status & LINESTAT_SDAT_LINE_STATUS && !(data & 0x80)) {
 | |
| 			/* hold the data line down for a moment */
 | |
| 			img_i2c_switch_mode(i2c, MODE_RAW);
 | |
| 			img_i2c_raw_op(i2c);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(i2c->adap.dev.parent,
 | |
| 		"atomic cmd=%s (%d) data=%#x\n",
 | |
| 		img_i2c_atomic_op_name(cmd), cmd, data);
 | |
| 	i2c->at_t_done = (cmd == CMD_RET_DATA || cmd == CMD_RET_ACK);
 | |
| 	i2c->at_slave_event = false;
 | |
| 	i2c->line_status = 0;
 | |
| 
 | |
| 	img_i2c_writel(i2c, SCB_OVERRIDE_REG,
 | |
| 		((cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
 | |
| 		OVERRIDE_MASTER |
 | |
| 		OVERRIDE_DIRECT |
 | |
| 		(data << OVERRIDE_DATA_SHIFT));
 | |
| }
 | |
| 
 | |
| /* Start a transaction in atomic mode */
 | |
| static void img_i2c_atomic_start(struct img_i2c *i2c)
 | |
| {
 | |
| 	img_i2c_switch_mode(i2c, MODE_ATOMIC);
 | |
| 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
 | |
| 	img_i2c_atomic_op(i2c, CMD_GEN_START, 0x00);
 | |
| }
 | |
| 
 | |
| static void img_i2c_soft_reset(struct img_i2c *i2c)
 | |
| {
 | |
| 	i2c->t_halt = false;
 | |
| 	img_i2c_writel(i2c, SCB_CONTROL_REG, 0);
 | |
| 	img_i2c_writel(i2c, SCB_CONTROL_REG,
 | |
| 		       SCB_CONTROL_CLK_ENABLE | SCB_CONTROL_SOFT_RESET);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enable or release transaction halt for control of repeated starts.
 | |
|  * In version 3.3 of the IP when transaction halt is set, an interrupt
 | |
|  * will be generated after each byte of a transfer instead of after
 | |
|  * every transfer but before the stop bit.
 | |
|  * Due to this behaviour we have to be careful that every time we
 | |
|  * release the transaction halt we have to re-enable it straight away
 | |
|  * so that we only process a single byte, not doing so will result in
 | |
|  * all remaining bytes been processed and a stop bit being issued,
 | |
|  * which will prevent us having a repeated start.
 | |
|  */
 | |
| static void img_i2c_transaction_halt(struct img_i2c *i2c, bool t_halt)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	if (i2c->t_halt == t_halt)
 | |
| 		return;
 | |
| 	i2c->t_halt = t_halt;
 | |
| 	val = img_i2c_readl(i2c, SCB_CONTROL_REG);
 | |
| 	if (t_halt)
 | |
| 		val |= SCB_CONTROL_TRANSACTION_HALT;
 | |
| 	else
 | |
| 		val &= ~SCB_CONTROL_TRANSACTION_HALT;
 | |
| 	img_i2c_writel(i2c, SCB_CONTROL_REG, val);
 | |
| }
 | |
| 
 | |
| /* Drain data from the FIFO into the buffer (automatic mode) */
 | |
| static void img_i2c_read_fifo(struct img_i2c *i2c)
 | |
| {
 | |
| 	while (i2c->msg.len) {
 | |
| 		u32 fifo_status;
 | |
| 		u8 data;
 | |
| 
 | |
| 		img_i2c_wr_rd_fence(i2c);
 | |
| 		fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
 | |
| 		if (fifo_status & FIFO_READ_EMPTY)
 | |
| 			break;
 | |
| 
 | |
| 		data = img_i2c_readl(i2c, SCB_READ_DATA_REG);
 | |
| 		*i2c->msg.buf = data;
 | |
| 
 | |
| 		img_i2c_writel(i2c, SCB_READ_FIFO_REG, 0xff);
 | |
| 		i2c->msg.len--;
 | |
| 		i2c->msg.buf++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Fill the FIFO with data from the buffer (automatic mode) */
 | |
| static void img_i2c_write_fifo(struct img_i2c *i2c)
 | |
| {
 | |
| 	while (i2c->msg.len) {
 | |
| 		u32 fifo_status;
 | |
| 
 | |
| 		img_i2c_wr_rd_fence(i2c);
 | |
| 		fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
 | |
| 		if (fifo_status & FIFO_WRITE_FULL)
 | |
| 			break;
 | |
| 
 | |
| 		img_i2c_writel(i2c, SCB_WRITE_DATA_REG, *i2c->msg.buf);
 | |
| 		i2c->msg.len--;
 | |
| 		i2c->msg.buf++;
 | |
| 	}
 | |
| 
 | |
| 	/* Disable fifo emptying interrupt if nothing more to write */
 | |
| 	if (!i2c->msg.len)
 | |
| 		i2c->int_enable &= ~INT_FIFO_EMPTYING;
 | |
| }
 | |
| 
 | |
| /* Start a read transaction in automatic mode */
 | |
| static void img_i2c_read(struct img_i2c *i2c)
 | |
| {
 | |
| 	img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
 | |
| 	if (!i2c->last_msg)
 | |
| 		i2c->int_enable |= INT_SLAVE_EVENT;
 | |
| 
 | |
| 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
 | |
| 	img_i2c_writel(i2c, SCB_READ_ADDR_REG, i2c->msg.addr);
 | |
| 	img_i2c_writel(i2c, SCB_READ_COUNT_REG, i2c->msg.len);
 | |
| 
 | |
| 	mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
 | |
| }
 | |
| 
 | |
| /* Start a write transaction in automatic mode */
 | |
| static void img_i2c_write(struct img_i2c *i2c)
 | |
| {
 | |
| 	img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
 | |
| 	if (!i2c->last_msg)
 | |
| 		i2c->int_enable |= INT_SLAVE_EVENT;
 | |
| 
 | |
| 	img_i2c_writel(i2c, SCB_WRITE_ADDR_REG, i2c->msg.addr);
 | |
| 	img_i2c_writel(i2c, SCB_WRITE_COUNT_REG, i2c->msg.len);
 | |
| 
 | |
| 	mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
 | |
| 	img_i2c_write_fifo(i2c);
 | |
| 
 | |
| 	/* img_i2c_write_fifo() may modify int_enable */
 | |
| 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Indicate that the transaction is complete. This is called from the
 | |
|  * ISR to wake up the waiting thread, after which the ISR must not
 | |
|  * access any more SCB registers.
 | |
|  */
 | |
| static void img_i2c_complete_transaction(struct img_i2c *i2c, int status)
 | |
| {
 | |
| 	img_i2c_switch_mode(i2c, MODE_INACTIVE);
 | |
| 	if (status) {
 | |
| 		i2c->msg_status = status;
 | |
| 		img_i2c_transaction_halt(i2c, false);
 | |
| 	}
 | |
| 	complete(&i2c->msg_complete);
 | |
| }
 | |
| 
 | |
| static unsigned int img_i2c_raw_atomic_delay_handler(struct img_i2c *i2c,
 | |
| 					u32 int_status, u32 line_status)
 | |
| {
 | |
| 	/* Stay in raw mode for this, so we don't just loop infinitely */
 | |
| 	img_i2c_atomic_op(i2c, i2c->at_cur_cmd, i2c->at_cur_data);
 | |
| 	img_i2c_switch_mode(i2c, MODE_ATOMIC);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned int img_i2c_raw(struct img_i2c *i2c, u32 int_status,
 | |
| 				u32 line_status)
 | |
| {
 | |
| 	if (int_status & INT_TIMING) {
 | |
| 		if (i2c->raw_timeout == 0)
 | |
| 			return img_i2c_raw_atomic_delay_handler(i2c,
 | |
| 				int_status, line_status);
 | |
| 		--i2c->raw_timeout;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned int img_i2c_sequence(struct img_i2c *i2c, u32 int_status)
 | |
| {
 | |
| 	static const unsigned int continue_bits[] = {
 | |
| 		[CMD_GEN_START] = LINESTAT_START_BIT_DET,
 | |
| 		[CMD_GEN_DATA]  = LINESTAT_INPUT_HELD_V,
 | |
| 		[CMD_RET_ACK]   = LINESTAT_ACK_DET | LINESTAT_NACK_DET,
 | |
| 		[CMD_RET_DATA]  = LINESTAT_INPUT_HELD_V,
 | |
| 		[CMD_GEN_STOP]  = LINESTAT_STOP_BIT_DET,
 | |
| 	};
 | |
| 	int next_cmd = -1;
 | |
| 	u8 next_data = 0x00;
 | |
| 
 | |
| 	if (int_status & INT_SLAVE_EVENT)
 | |
| 		i2c->at_slave_event = true;
 | |
| 	if (int_status & INT_TRANSACTION_DONE)
 | |
| 		i2c->at_t_done = true;
 | |
| 
 | |
| 	if (!i2c->at_slave_event || !i2c->at_t_done)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* wait if no continue bits are set */
 | |
| 	if (i2c->at_cur_cmd >= 0 &&
 | |
| 	    i2c->at_cur_cmd < ARRAY_SIZE(continue_bits)) {
 | |
| 		unsigned int cont_bits = continue_bits[i2c->at_cur_cmd];
 | |
| 
 | |
| 		if (cont_bits) {
 | |
| 			cont_bits |= LINESTAT_ABORT_DET;
 | |
| 			if (!(i2c->line_status & cont_bits))
 | |
| 				return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* follow the sequence of commands in i2c->seq */
 | |
| 	next_cmd = *i2c->seq;
 | |
| 	/* stop on a nil */
 | |
| 	if (!next_cmd) {
 | |
| 		img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
 | |
| 		return ISR_COMPLETE(0);
 | |
| 	}
 | |
| 	/* when generating data, the next byte is the data */
 | |
| 	if (next_cmd == CMD_GEN_DATA) {
 | |
| 		++i2c->seq;
 | |
| 		next_data = *i2c->seq;
 | |
| 	}
 | |
| 	++i2c->seq;
 | |
| 	img_i2c_atomic_op(i2c, next_cmd, next_data);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void img_i2c_reset_start(struct img_i2c *i2c)
 | |
| {
 | |
| 	/* Initiate the magic dance */
 | |
| 	img_i2c_switch_mode(i2c, MODE_SEQUENCE);
 | |
| 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
 | |
| 	i2c->seq = img_i2c_reset_seq;
 | |
| 	i2c->at_slave_event = true;
 | |
| 	i2c->at_t_done = true;
 | |
| 	i2c->at_cur_cmd = -1;
 | |
| 
 | |
| 	/* img_i2c_reset_seq isn't empty so the following won't fail */
 | |
| 	img_i2c_sequence(i2c, 0);
 | |
| }
 | |
| 
 | |
| static void img_i2c_stop_start(struct img_i2c *i2c)
 | |
| {
 | |
| 	/* Initiate a stop bit sequence */
 | |
| 	img_i2c_switch_mode(i2c, MODE_SEQUENCE);
 | |
| 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
 | |
| 	i2c->seq = img_i2c_stop_seq;
 | |
| 	i2c->at_slave_event = true;
 | |
| 	i2c->at_t_done = true;
 | |
| 	i2c->at_cur_cmd = -1;
 | |
| 
 | |
| 	/* img_i2c_stop_seq isn't empty so the following won't fail */
 | |
| 	img_i2c_sequence(i2c, 0);
 | |
| }
 | |
| 
 | |
| static unsigned int img_i2c_atomic(struct img_i2c *i2c,
 | |
| 				   u32 int_status,
 | |
| 				   u32 line_status)
 | |
| {
 | |
| 	int next_cmd = -1;
 | |
| 	u8 next_data = 0x00;
 | |
| 
 | |
| 	if (int_status & INT_SLAVE_EVENT)
 | |
| 		i2c->at_slave_event = true;
 | |
| 	if (int_status & INT_TRANSACTION_DONE)
 | |
| 		i2c->at_t_done = true;
 | |
| 
 | |
| 	if (!i2c->at_slave_event || !i2c->at_t_done)
 | |
| 		goto next_atomic_cmd;
 | |
| 	if (i2c->line_status & LINESTAT_ABORT_DET) {
 | |
| 		dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
 | |
| 		next_cmd = CMD_GEN_STOP;
 | |
| 		i2c->msg_status = -EIO;
 | |
| 		goto next_atomic_cmd;
 | |
| 	}
 | |
| 
 | |
| 	/* i2c->at_cur_cmd may have completed */
 | |
| 	switch (i2c->at_cur_cmd) {
 | |
| 	case CMD_GEN_START:
 | |
| 		next_cmd = CMD_GEN_DATA;
 | |
| 		next_data = i2c_8bit_addr_from_msg(&i2c->msg);
 | |
| 		break;
 | |
| 	case CMD_GEN_DATA:
 | |
| 		if (i2c->line_status & LINESTAT_INPUT_HELD_V)
 | |
| 			next_cmd = CMD_RET_ACK;
 | |
| 		break;
 | |
| 	case CMD_RET_ACK:
 | |
| 		if (i2c->line_status & LINESTAT_ACK_DET ||
 | |
| 		    (i2c->line_status & LINESTAT_NACK_DET &&
 | |
| 		    i2c->msg.flags & I2C_M_IGNORE_NAK)) {
 | |
| 			if (i2c->msg.len == 0) {
 | |
| 				next_cmd = CMD_GEN_STOP;
 | |
| 			} else if (i2c->msg.flags & I2C_M_RD) {
 | |
| 				next_cmd = CMD_RET_DATA;
 | |
| 			} else {
 | |
| 				next_cmd = CMD_GEN_DATA;
 | |
| 				next_data = *i2c->msg.buf;
 | |
| 				--i2c->msg.len;
 | |
| 				++i2c->msg.buf;
 | |
| 			}
 | |
| 		} else if (i2c->line_status & LINESTAT_NACK_DET) {
 | |
| 			i2c->msg_status = -EIO;
 | |
| 			next_cmd = CMD_GEN_STOP;
 | |
| 		}
 | |
| 		break;
 | |
| 	case CMD_RET_DATA:
 | |
| 		if (i2c->line_status & LINESTAT_INPUT_HELD_V) {
 | |
| 			*i2c->msg.buf = (i2c->line_status &
 | |
| 						LINESTAT_INPUT_DATA)
 | |
| 					>> LINESTAT_INPUT_DATA_SHIFT;
 | |
| 			--i2c->msg.len;
 | |
| 			++i2c->msg.buf;
 | |
| 			if (i2c->msg.len)
 | |
| 				next_cmd = CMD_GEN_ACK;
 | |
| 			else
 | |
| 				next_cmd = CMD_GEN_NACK;
 | |
| 		}
 | |
| 		break;
 | |
| 	case CMD_GEN_ACK:
 | |
| 		if (i2c->line_status & LINESTAT_ACK_DET) {
 | |
| 			next_cmd = CMD_RET_DATA;
 | |
| 		} else {
 | |
| 			i2c->msg_status = -EIO;
 | |
| 			next_cmd = CMD_GEN_STOP;
 | |
| 		}
 | |
| 		break;
 | |
| 	case CMD_GEN_NACK:
 | |
| 		next_cmd = CMD_GEN_STOP;
 | |
| 		break;
 | |
| 	case CMD_GEN_STOP:
 | |
| 		img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
 | |
| 		return ISR_COMPLETE(0);
 | |
| 	default:
 | |
| 		dev_err(i2c->adap.dev.parent, "bad atomic command %d\n",
 | |
| 			i2c->at_cur_cmd);
 | |
| 		i2c->msg_status = -EIO;
 | |
| 		next_cmd = CMD_GEN_STOP;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| next_atomic_cmd:
 | |
| 	if (next_cmd != -1) {
 | |
| 		/* don't actually stop unless we're the last transaction */
 | |
| 		if (next_cmd == CMD_GEN_STOP && !i2c->msg_status &&
 | |
| 						!i2c->last_msg)
 | |
| 			return ISR_COMPLETE(0);
 | |
| 		img_i2c_atomic_op(i2c, next_cmd, next_data);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Timer function to check if something has gone wrong in automatic mode (so we
 | |
|  * don't have to handle so many interrupts just to catch an exception).
 | |
|  */
 | |
| static void img_i2c_check_timer(struct timer_list *t)
 | |
| {
 | |
| 	struct img_i2c *i2c = from_timer(i2c, t, check_timer);
 | |
| 	unsigned long flags;
 | |
| 	unsigned int line_status;
 | |
| 
 | |
| 	spin_lock_irqsave(&i2c->lock, flags);
 | |
| 	line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
 | |
| 
 | |
| 	/* check for an abort condition */
 | |
| 	if (line_status & LINESTAT_ABORT_DET) {
 | |
| 		dev_dbg(i2c->adap.dev.parent,
 | |
| 			"abort condition detected by check timer\n");
 | |
| 		/* enable slave event interrupt mask to trigger irq */
 | |
| 		img_i2c_writel(i2c, SCB_INT_MASK_REG,
 | |
| 			       i2c->int_enable | INT_SLAVE_EVENT);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&i2c->lock, flags);
 | |
| }
 | |
| 
 | |
| static unsigned int img_i2c_auto(struct img_i2c *i2c,
 | |
| 				 unsigned int int_status,
 | |
| 				 unsigned int line_status)
 | |
| {
 | |
| 	if (int_status & (INT_WRITE_ACK_ERR | INT_ADDR_ACK_ERR))
 | |
| 		return ISR_COMPLETE(EIO);
 | |
| 
 | |
| 	if (line_status & LINESTAT_ABORT_DET) {
 | |
| 		dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
 | |
| 		/* empty the read fifo */
 | |
| 		if ((i2c->msg.flags & I2C_M_RD) &&
 | |
| 		    (int_status & INT_FIFO_FULL_FILLING))
 | |
| 			img_i2c_read_fifo(i2c);
 | |
| 		/* use atomic mode and try to force a stop bit */
 | |
| 		i2c->msg_status = -EIO;
 | |
| 		img_i2c_stop_start(i2c);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Enable transaction halt on start bit */
 | |
| 	if (!i2c->last_msg && line_status & LINESTAT_START_BIT_DET) {
 | |
| 		img_i2c_transaction_halt(i2c, !i2c->last_msg);
 | |
| 		/* we're no longer interested in the slave event */
 | |
| 		i2c->int_enable &= ~INT_SLAVE_EVENT;
 | |
| 	}
 | |
| 
 | |
| 	mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
 | |
| 
 | |
| 	if (int_status & INT_STOP_DETECTED) {
 | |
| 		/* Drain remaining data in FIFO and complete transaction */
 | |
| 		if (i2c->msg.flags & I2C_M_RD)
 | |
| 			img_i2c_read_fifo(i2c);
 | |
| 		return ISR_COMPLETE(0);
 | |
| 	}
 | |
| 
 | |
| 	if (i2c->msg.flags & I2C_M_RD) {
 | |
| 		if (int_status & (INT_FIFO_FULL_FILLING | INT_MASTER_HALTED)) {
 | |
| 			img_i2c_read_fifo(i2c);
 | |
| 			if (i2c->msg.len == 0)
 | |
| 				return ISR_WAITSTOP;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (int_status & (INT_FIFO_EMPTY | INT_MASTER_HALTED)) {
 | |
| 			if ((int_status & INT_FIFO_EMPTY) &&
 | |
| 			    i2c->msg.len == 0)
 | |
| 				return ISR_WAITSTOP;
 | |
| 			img_i2c_write_fifo(i2c);
 | |
| 		}
 | |
| 	}
 | |
| 	if (int_status & INT_MASTER_HALTED) {
 | |
| 		/*
 | |
| 		 * Release and then enable transaction halt, to
 | |
| 		 * allow only a single byte to proceed.
 | |
| 		 */
 | |
| 		img_i2c_transaction_halt(i2c, false);
 | |
| 		img_i2c_transaction_halt(i2c, !i2c->last_msg);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static irqreturn_t img_i2c_isr(int irq, void *dev_id)
 | |
| {
 | |
| 	struct img_i2c *i2c = (struct img_i2c *)dev_id;
 | |
| 	u32 int_status, line_status;
 | |
| 	/* We handle transaction completion AFTER accessing registers */
 | |
| 	unsigned int hret;
 | |
| 
 | |
| 	/* Read interrupt status register. */
 | |
| 	int_status = img_i2c_readl(i2c, SCB_INT_STATUS_REG);
 | |
| 	/* Clear detected interrupts. */
 | |
| 	img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status);
 | |
| 
 | |
| 	/*
 | |
| 	 * Read line status and clear it until it actually is clear.  We have
 | |
| 	 * to be careful not to lose any line status bits that get latched.
 | |
| 	 */
 | |
| 	line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
 | |
| 	if (line_status & LINESTAT_LATCHED) {
 | |
| 		img_i2c_writel(i2c, SCB_CLEAR_REG,
 | |
| 			      (line_status & LINESTAT_LATCHED)
 | |
| 				>> LINESTAT_CLEAR_SHIFT);
 | |
| 		img_i2c_wr_rd_fence(i2c);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&i2c->lock);
 | |
| 
 | |
| 	/* Keep track of line status bits received */
 | |
| 	i2c->line_status &= ~LINESTAT_INPUT_DATA;
 | |
| 	i2c->line_status |= line_status;
 | |
| 
 | |
| 	/*
 | |
| 	 * Certain interrupts indicate that sclk low timeout is not
 | |
| 	 * a problem. If any of these are set, just continue.
 | |
| 	 */
 | |
| 	if ((int_status & INT_SCLK_LOW_TIMEOUT) &&
 | |
| 	    !(int_status & (INT_SLAVE_EVENT |
 | |
| 			    INT_FIFO_EMPTY |
 | |
| 			    INT_FIFO_FULL))) {
 | |
| 		dev_crit(i2c->adap.dev.parent,
 | |
| 			 "fatal: clock low timeout occurred %s addr 0x%02x\n",
 | |
| 			 (i2c->msg.flags & I2C_M_RD) ? "reading" : "writing",
 | |
| 			 i2c->msg.addr);
 | |
| 		hret = ISR_FATAL(EIO);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (i2c->mode == MODE_ATOMIC)
 | |
| 		hret = img_i2c_atomic(i2c, int_status, line_status);
 | |
| 	else if (i2c->mode == MODE_AUTOMATIC)
 | |
| 		hret = img_i2c_auto(i2c, int_status, line_status);
 | |
| 	else if (i2c->mode == MODE_SEQUENCE)
 | |
| 		hret = img_i2c_sequence(i2c, int_status);
 | |
| 	else if (i2c->mode == MODE_WAITSTOP && (int_status & INT_SLAVE_EVENT) &&
 | |
| 			 (line_status & LINESTAT_STOP_BIT_DET))
 | |
| 		hret = ISR_COMPLETE(0);
 | |
| 	else if (i2c->mode == MODE_RAW)
 | |
| 		hret = img_i2c_raw(i2c, int_status, line_status);
 | |
| 	else
 | |
| 		hret = 0;
 | |
| 
 | |
| 	/* Clear detected level interrupts. */
 | |
| 	img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status & INT_LEVEL);
 | |
| 
 | |
| out:
 | |
| 	if (hret & ISR_WAITSTOP) {
 | |
| 		/*
 | |
| 		 * Only wait for stop on last message.
 | |
| 		 * Also we may already have detected the stop bit.
 | |
| 		 */
 | |
| 		if (!i2c->last_msg || i2c->line_status & LINESTAT_STOP_BIT_DET)
 | |
| 			hret = ISR_COMPLETE(0);
 | |
| 		else
 | |
| 			img_i2c_switch_mode(i2c, MODE_WAITSTOP);
 | |
| 	}
 | |
| 
 | |
| 	/* now we've finished using regs, handle transaction completion */
 | |
| 	if (hret & ISR_COMPLETE_M) {
 | |
| 		int status = -(hret & ISR_STATUS_M);
 | |
| 
 | |
| 		img_i2c_complete_transaction(i2c, status);
 | |
| 		if (hret & ISR_FATAL_M)
 | |
| 			img_i2c_switch_mode(i2c, MODE_FATAL);
 | |
| 	}
 | |
| 
 | |
| 	/* Enable interrupts (int_enable may be altered by changing mode) */
 | |
| 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
 | |
| 
 | |
| 	spin_unlock(&i2c->lock);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /* Force a bus reset sequence and wait for it to complete */
 | |
| static int img_i2c_reset_bus(struct img_i2c *i2c)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	unsigned long time_left;
 | |
| 
 | |
| 	spin_lock_irqsave(&i2c->lock, flags);
 | |
| 	reinit_completion(&i2c->msg_complete);
 | |
| 	img_i2c_reset_start(i2c);
 | |
| 	spin_unlock_irqrestore(&i2c->lock, flags);
 | |
| 
 | |
| 	time_left = wait_for_completion_timeout(&i2c->msg_complete,
 | |
| 					      IMG_I2C_TIMEOUT);
 | |
| 	if (time_left == 0)
 | |
| 		return -ETIMEDOUT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int img_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
 | |
| 			int num)
 | |
| {
 | |
| 	struct img_i2c *i2c = i2c_get_adapdata(adap);
 | |
| 	bool atomic = false;
 | |
| 	int i, ret;
 | |
| 	unsigned long time_left;
 | |
| 
 | |
| 	if (i2c->mode == MODE_SUSPEND) {
 | |
| 		WARN(1, "refusing to service transaction in suspended state\n");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (i2c->mode == MODE_FATAL)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	for (i = 0; i < num; i++) {
 | |
| 		/*
 | |
| 		 * 0 byte reads are not possible because the slave could try
 | |
| 		 * and pull the data line low, preventing a stop bit.
 | |
| 		 */
 | |
| 		if (!msgs[i].len && msgs[i].flags & I2C_M_RD)
 | |
| 			return -EIO;
 | |
| 		/*
 | |
| 		 * 0 byte writes are possible and used for probing, but we
 | |
| 		 * cannot do them in automatic mode, so use atomic mode
 | |
| 		 * instead.
 | |
| 		 *
 | |
| 		 * Also, the I2C_M_IGNORE_NAK mode can only be implemented
 | |
| 		 * in atomic mode.
 | |
| 		 */
 | |
| 		if (!msgs[i].len ||
 | |
| 		    (msgs[i].flags & I2C_M_IGNORE_NAK))
 | |
| 			atomic = true;
 | |
| 	}
 | |
| 
 | |
| 	ret = pm_runtime_resume_and_get(adap->dev.parent);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	for (i = 0; i < num; i++) {
 | |
| 		struct i2c_msg *msg = &msgs[i];
 | |
| 		unsigned long flags;
 | |
| 
 | |
| 		spin_lock_irqsave(&i2c->lock, flags);
 | |
| 
 | |
| 		/*
 | |
| 		 * Make a copy of the message struct. We mustn't modify the
 | |
| 		 * original or we'll confuse drivers and i2c-dev.
 | |
| 		 */
 | |
| 		i2c->msg = *msg;
 | |
| 		i2c->msg_status = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * After the last message we must have waited for a stop bit.
 | |
| 		 * Not waiting can cause problems when the clock is disabled
 | |
| 		 * before the stop bit is sent, and the linux I2C interface
 | |
| 		 * requires separate transfers not to joined with repeated
 | |
| 		 * start.
 | |
| 		 */
 | |
| 		i2c->last_msg = (i == num - 1);
 | |
| 		reinit_completion(&i2c->msg_complete);
 | |
| 
 | |
| 		/*
 | |
| 		 * Clear line status and all interrupts before starting a
 | |
| 		 * transfer, as we may have unserviced interrupts from
 | |
| 		 * previous transfers that might be handled in the context
 | |
| 		 * of the new transfer.
 | |
| 		 */
 | |
| 		img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
 | |
| 		img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);
 | |
| 
 | |
| 		if (atomic) {
 | |
| 			img_i2c_atomic_start(i2c);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Enable transaction halt if not the last message in
 | |
| 			 * the queue so that we can control repeated starts.
 | |
| 			 */
 | |
| 			img_i2c_transaction_halt(i2c, !i2c->last_msg);
 | |
| 
 | |
| 			if (msg->flags & I2C_M_RD)
 | |
| 				img_i2c_read(i2c);
 | |
| 			else
 | |
| 				img_i2c_write(i2c);
 | |
| 
 | |
| 			/*
 | |
| 			 * Release and then enable transaction halt, to
 | |
| 			 * allow only a single byte to proceed.
 | |
| 			 * This doesn't have an effect on the initial transfer
 | |
| 			 * but will allow the following transfers to start
 | |
| 			 * processing if the previous transfer was marked as
 | |
| 			 * complete while the i2c block was halted.
 | |
| 			 */
 | |
| 			img_i2c_transaction_halt(i2c, false);
 | |
| 			img_i2c_transaction_halt(i2c, !i2c->last_msg);
 | |
| 		}
 | |
| 		spin_unlock_irqrestore(&i2c->lock, flags);
 | |
| 
 | |
| 		time_left = wait_for_completion_timeout(&i2c->msg_complete,
 | |
| 						      IMG_I2C_TIMEOUT);
 | |
| 		del_timer_sync(&i2c->check_timer);
 | |
| 
 | |
| 		if (time_left == 0) {
 | |
| 			dev_err(adap->dev.parent, "i2c transfer timed out\n");
 | |
| 			i2c->msg_status = -ETIMEDOUT;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (i2c->msg_status)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	pm_runtime_mark_last_busy(adap->dev.parent);
 | |
| 	pm_runtime_put_autosuspend(adap->dev.parent);
 | |
| 
 | |
| 	return i2c->msg_status ? i2c->msg_status : num;
 | |
| }
 | |
| 
 | |
| static u32 img_i2c_func(struct i2c_adapter *adap)
 | |
| {
 | |
| 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
 | |
| }
 | |
| 
 | |
| static const struct i2c_algorithm img_i2c_algo = {
 | |
| 	.master_xfer = img_i2c_xfer,
 | |
| 	.functionality = img_i2c_func,
 | |
| };
 | |
| 
 | |
| static int img_i2c_init(struct img_i2c *i2c)
 | |
| {
 | |
| 	unsigned int clk_khz, bitrate_khz, clk_period, tckh, tckl, tsdh;
 | |
| 	unsigned int i, data, prescale, inc, int_bitrate, filt;
 | |
| 	struct img_i2c_timings timing;
 | |
| 	u32 rev;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = pm_runtime_resume_and_get(i2c->adap.dev.parent);
 | |
| 	if (ret < 0)
 | |
| 		return ret;
 | |
| 
 | |
| 	rev = img_i2c_readl(i2c, SCB_CORE_REV_REG);
 | |
| 	if ((rev & 0x00ffffff) < 0x00020200) {
 | |
| 		dev_info(i2c->adap.dev.parent,
 | |
| 			 "Unknown hardware revision (%d.%d.%d.%d)\n",
 | |
| 			 (rev >> 24) & 0xff, (rev >> 16) & 0xff,
 | |
| 			 (rev >> 8) & 0xff, rev & 0xff);
 | |
| 		pm_runtime_mark_last_busy(i2c->adap.dev.parent);
 | |
| 		pm_runtime_put_autosuspend(i2c->adap.dev.parent);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Fencing enabled by default. */
 | |
| 	i2c->need_wr_rd_fence = true;
 | |
| 
 | |
| 	/* Determine what mode we're in from the bitrate */
 | |
| 	timing = timings[0];
 | |
| 	for (i = 0; i < ARRAY_SIZE(timings); i++) {
 | |
| 		if (i2c->bitrate <= timings[i].max_bitrate) {
 | |
| 			timing = timings[i];
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (i2c->bitrate > timings[ARRAY_SIZE(timings) - 1].max_bitrate) {
 | |
| 		dev_warn(i2c->adap.dev.parent,
 | |
| 			 "requested bitrate (%u) is higher than the max bitrate supported (%u)\n",
 | |
| 			 i2c->bitrate,
 | |
| 			 timings[ARRAY_SIZE(timings) - 1].max_bitrate);
 | |
| 		timing = timings[ARRAY_SIZE(timings) - 1];
 | |
| 		i2c->bitrate = timing.max_bitrate;
 | |
| 	}
 | |
| 
 | |
| 	bitrate_khz = i2c->bitrate / 1000;
 | |
| 	clk_khz = clk_get_rate(i2c->scb_clk) / 1000;
 | |
| 
 | |
| 	/* Find the prescale that would give us that inc (approx delay = 0) */
 | |
| 	prescale = SCB_OPT_INC * clk_khz / (256 * 16 * bitrate_khz);
 | |
| 	prescale = clamp_t(unsigned int, prescale, 1, 8);
 | |
| 	clk_khz /= prescale;
 | |
| 
 | |
| 	/* Setup the clock increment value */
 | |
| 	inc = (256 * 16 * bitrate_khz) / clk_khz;
 | |
| 
 | |
| 	/*
 | |
| 	 * The clock generation logic allows to filter glitches on the bus.
 | |
| 	 * This filter is able to remove bus glitches shorter than 50ns.
 | |
| 	 * If the clock enable rate is greater than 20 MHz, no filtering
 | |
| 	 * is required, so we need to disable it.
 | |
| 	 * If it's between the 20-40 MHz range, there's no need to divide
 | |
| 	 * the clock to get a filter.
 | |
| 	 */
 | |
| 	if (clk_khz < 20000) {
 | |
| 		filt = SCB_FILT_DISABLE;
 | |
| 	} else if (clk_khz < 40000) {
 | |
| 		filt = SCB_FILT_BYPASS;
 | |
| 	} else {
 | |
| 		/* Calculate filter clock */
 | |
| 		filt = (64000 / ((clk_khz / 1000) * SCB_FILT_GLITCH));
 | |
| 
 | |
| 		/* Scale up if needed */
 | |
| 		if (64000 % ((clk_khz / 1000) * SCB_FILT_GLITCH))
 | |
| 			inc++;
 | |
| 
 | |
| 		if (filt > SCB_FILT_INC_MASK)
 | |
| 			filt = SCB_FILT_INC_MASK;
 | |
| 
 | |
| 		filt = (filt & SCB_FILT_INC_MASK) << SCB_FILT_INC_SHIFT;
 | |
| 	}
 | |
| 	data = filt | ((inc & SCB_INC_MASK) << SCB_INC_SHIFT) | (prescale - 1);
 | |
| 	img_i2c_writel(i2c, SCB_CLK_SET_REG, data);
 | |
| 
 | |
| 	/* Obtain the clock period of the fx16 clock in ns */
 | |
| 	clk_period = (256 * 1000000) / (clk_khz * inc);
 | |
| 
 | |
| 	/* Calculate the bitrate in terms of internal clock pulses */
 | |
| 	int_bitrate = 1000000 / (bitrate_khz * clk_period);
 | |
| 	if ((1000000 % (bitrate_khz * clk_period)) >=
 | |
| 	    ((bitrate_khz * clk_period) / 2))
 | |
| 		int_bitrate++;
 | |
| 
 | |
| 	/*
 | |
| 	 * Setup clock duty cycle, start with 50% and adjust TCKH and TCKL
 | |
| 	 * values from there if they don't meet minimum timing requirements
 | |
| 	 */
 | |
| 	tckh = int_bitrate / 2;
 | |
| 	tckl = int_bitrate - tckh;
 | |
| 
 | |
| 	/* Adjust TCKH and TCKL values */
 | |
| 	data = DIV_ROUND_UP(timing.tckl, clk_period);
 | |
| 
 | |
| 	if (tckl < data) {
 | |
| 		tckl = data;
 | |
| 		tckh = int_bitrate - tckl;
 | |
| 	}
 | |
| 
 | |
| 	if (tckh > 0)
 | |
| 		--tckh;
 | |
| 
 | |
| 	if (tckl > 0)
 | |
| 		--tckl;
 | |
| 
 | |
| 	img_i2c_writel(i2c, SCB_TIME_TCKH_REG, tckh);
 | |
| 	img_i2c_writel(i2c, SCB_TIME_TCKL_REG, tckl);
 | |
| 
 | |
| 	/* Setup TSDH value */
 | |
| 	tsdh = DIV_ROUND_UP(timing.tsdh, clk_period);
 | |
| 
 | |
| 	if (tsdh > 1)
 | |
| 		data = tsdh - 1;
 | |
| 	else
 | |
| 		data = 0x01;
 | |
| 	img_i2c_writel(i2c, SCB_TIME_TSDH_REG, data);
 | |
| 
 | |
| 	/* This value is used later */
 | |
| 	tsdh = data;
 | |
| 
 | |
| 	/* Setup TPL value */
 | |
| 	data = timing.tpl / clk_period;
 | |
| 	if (data > 0)
 | |
| 		--data;
 | |
| 	img_i2c_writel(i2c, SCB_TIME_TPL_REG, data);
 | |
| 
 | |
| 	/* Setup TPH value */
 | |
| 	data = timing.tph / clk_period;
 | |
| 	if (data > 0)
 | |
| 		--data;
 | |
| 	img_i2c_writel(i2c, SCB_TIME_TPH_REG, data);
 | |
| 
 | |
| 	/* Setup TSDL value to TPL + TSDH + 2 */
 | |
| 	img_i2c_writel(i2c, SCB_TIME_TSDL_REG, data + tsdh + 2);
 | |
| 
 | |
| 	/* Setup TP2S value */
 | |
| 	data = timing.tp2s / clk_period;
 | |
| 	if (data > 0)
 | |
| 		--data;
 | |
| 	img_i2c_writel(i2c, SCB_TIME_TP2S_REG, data);
 | |
| 
 | |
| 	img_i2c_writel(i2c, SCB_TIME_TBI_REG, TIMEOUT_TBI);
 | |
| 	img_i2c_writel(i2c, SCB_TIME_TSL_REG, TIMEOUT_TSL);
 | |
| 	img_i2c_writel(i2c, SCB_TIME_TDL_REG, TIMEOUT_TDL);
 | |
| 
 | |
| 	/* Take module out of soft reset and enable clocks */
 | |
| 	img_i2c_soft_reset(i2c);
 | |
| 
 | |
| 	/* Disable all interrupts */
 | |
| 	img_i2c_writel(i2c, SCB_INT_MASK_REG, 0);
 | |
| 
 | |
| 	/* Clear all interrupts */
 | |
| 	img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
 | |
| 
 | |
| 	/* Clear the scb_line_status events */
 | |
| 	img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);
 | |
| 
 | |
| 	/* Enable interrupts */
 | |
| 	img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
 | |
| 
 | |
| 	/* Perform a synchronous sequence to reset the bus */
 | |
| 	ret = img_i2c_reset_bus(i2c);
 | |
| 
 | |
| 	pm_runtime_mark_last_busy(i2c->adap.dev.parent);
 | |
| 	pm_runtime_put_autosuspend(i2c->adap.dev.parent);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int img_i2c_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct device_node *node = pdev->dev.of_node;
 | |
| 	struct img_i2c *i2c;
 | |
| 	int irq, ret;
 | |
| 	u32 val;
 | |
| 
 | |
| 	i2c = devm_kzalloc(&pdev->dev, sizeof(struct img_i2c), GFP_KERNEL);
 | |
| 	if (!i2c)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	i2c->base = devm_platform_ioremap_resource(pdev, 0);
 | |
| 	if (IS_ERR(i2c->base))
 | |
| 		return PTR_ERR(i2c->base);
 | |
| 
 | |
| 	irq = platform_get_irq(pdev, 0);
 | |
| 	if (irq < 0)
 | |
| 		return irq;
 | |
| 
 | |
| 	i2c->sys_clk = devm_clk_get(&pdev->dev, "sys");
 | |
| 	if (IS_ERR(i2c->sys_clk)) {
 | |
| 		dev_err(&pdev->dev, "can't get system clock\n");
 | |
| 		return PTR_ERR(i2c->sys_clk);
 | |
| 	}
 | |
| 
 | |
| 	i2c->scb_clk = devm_clk_get(&pdev->dev, "scb");
 | |
| 	if (IS_ERR(i2c->scb_clk)) {
 | |
| 		dev_err(&pdev->dev, "can't get core clock\n");
 | |
| 		return PTR_ERR(i2c->scb_clk);
 | |
| 	}
 | |
| 
 | |
| 	ret = devm_request_irq(&pdev->dev, irq, img_i2c_isr, 0,
 | |
| 			       pdev->name, i2c);
 | |
| 	if (ret) {
 | |
| 		dev_err(&pdev->dev, "can't request irq %d\n", irq);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* Set up the exception check timer */
 | |
| 	timer_setup(&i2c->check_timer, img_i2c_check_timer, 0);
 | |
| 
 | |
| 	i2c->bitrate = timings[0].max_bitrate;
 | |
| 	if (!of_property_read_u32(node, "clock-frequency", &val))
 | |
| 		i2c->bitrate = val;
 | |
| 
 | |
| 	i2c_set_adapdata(&i2c->adap, i2c);
 | |
| 	i2c->adap.dev.parent = &pdev->dev;
 | |
| 	i2c->adap.dev.of_node = node;
 | |
| 	i2c->adap.owner = THIS_MODULE;
 | |
| 	i2c->adap.algo = &img_i2c_algo;
 | |
| 	i2c->adap.retries = 5;
 | |
| 	i2c->adap.nr = pdev->id;
 | |
| 	snprintf(i2c->adap.name, sizeof(i2c->adap.name), "IMG SCB I2C");
 | |
| 
 | |
| 	img_i2c_switch_mode(i2c, MODE_INACTIVE);
 | |
| 	spin_lock_init(&i2c->lock);
 | |
| 	init_completion(&i2c->msg_complete);
 | |
| 
 | |
| 	platform_set_drvdata(pdev, i2c);
 | |
| 
 | |
| 	pm_runtime_set_autosuspend_delay(&pdev->dev, IMG_I2C_PM_TIMEOUT);
 | |
| 	pm_runtime_use_autosuspend(&pdev->dev);
 | |
| 	pm_runtime_enable(&pdev->dev);
 | |
| 	if (!pm_runtime_enabled(&pdev->dev)) {
 | |
| 		ret = img_i2c_runtime_resume(&pdev->dev);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = img_i2c_init(i2c);
 | |
| 	if (ret)
 | |
| 		goto rpm_disable;
 | |
| 
 | |
| 	ret = i2c_add_numbered_adapter(&i2c->adap);
 | |
| 	if (ret < 0)
 | |
| 		goto rpm_disable;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| rpm_disable:
 | |
| 	if (!pm_runtime_enabled(&pdev->dev))
 | |
| 		img_i2c_runtime_suspend(&pdev->dev);
 | |
| 	pm_runtime_disable(&pdev->dev);
 | |
| 	pm_runtime_dont_use_autosuspend(&pdev->dev);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int img_i2c_remove(struct platform_device *dev)
 | |
| {
 | |
| 	struct img_i2c *i2c = platform_get_drvdata(dev);
 | |
| 
 | |
| 	i2c_del_adapter(&i2c->adap);
 | |
| 	pm_runtime_disable(&dev->dev);
 | |
| 	if (!pm_runtime_status_suspended(&dev->dev))
 | |
| 		img_i2c_runtime_suspend(&dev->dev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int img_i2c_runtime_suspend(struct device *dev)
 | |
| {
 | |
| 	struct img_i2c *i2c = dev_get_drvdata(dev);
 | |
| 
 | |
| 	clk_disable_unprepare(i2c->scb_clk);
 | |
| 	clk_disable_unprepare(i2c->sys_clk);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int img_i2c_runtime_resume(struct device *dev)
 | |
| {
 | |
| 	struct img_i2c *i2c = dev_get_drvdata(dev);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = clk_prepare_enable(i2c->sys_clk);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "Unable to enable sys clock\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = clk_prepare_enable(i2c->scb_clk);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "Unable to enable scb clock\n");
 | |
| 		clk_disable_unprepare(i2c->sys_clk);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PM_SLEEP
 | |
| static int img_i2c_suspend(struct device *dev)
 | |
| {
 | |
| 	struct img_i2c *i2c = dev_get_drvdata(dev);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = pm_runtime_force_suspend(dev);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	img_i2c_switch_mode(i2c, MODE_SUSPEND);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int img_i2c_resume(struct device *dev)
 | |
| {
 | |
| 	struct img_i2c *i2c = dev_get_drvdata(dev);
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = pm_runtime_force_resume(dev);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	img_i2c_init(i2c);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif /* CONFIG_PM_SLEEP */
 | |
| 
 | |
| static const struct dev_pm_ops img_i2c_pm = {
 | |
| 	SET_RUNTIME_PM_OPS(img_i2c_runtime_suspend,
 | |
| 			   img_i2c_runtime_resume,
 | |
| 			   NULL)
 | |
| 	SET_SYSTEM_SLEEP_PM_OPS(img_i2c_suspend, img_i2c_resume)
 | |
| };
 | |
| 
 | |
| static const struct of_device_id img_scb_i2c_match[] = {
 | |
| 	{ .compatible = "img,scb-i2c" },
 | |
| 	{ }
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, img_scb_i2c_match);
 | |
| 
 | |
| static struct platform_driver img_scb_i2c_driver = {
 | |
| 	.driver = {
 | |
| 		.name		= "img-i2c-scb",
 | |
| 		.of_match_table	= img_scb_i2c_match,
 | |
| 		.pm		= &img_i2c_pm,
 | |
| 	},
 | |
| 	.probe = img_i2c_probe,
 | |
| 	.remove = img_i2c_remove,
 | |
| };
 | |
| module_platform_driver(img_scb_i2c_driver);
 | |
| 
 | |
| MODULE_AUTHOR("James Hogan <jhogan@kernel.org>");
 | |
| MODULE_DESCRIPTION("IMG host I2C driver");
 | |
| MODULE_LICENSE("GPL v2");
 |