1203 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1203 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Copyright (C) 2020 BAIKAL ELECTRONICS, JSC
 | |
|  *
 | |
|  * Authors:
 | |
|  *   Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>
 | |
|  *   Serge Semin <Sergey.Semin@baikalelectronics.ru>
 | |
|  *
 | |
|  * Baikal-T1 Process, Voltage, Temperature sensor driver
 | |
|  */
 | |
| 
 | |
| #include <linux/bitfield.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/clk.h>
 | |
| #include <linux/completion.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/hwmon-sysfs.h>
 | |
| #include <linux/hwmon.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/ktime.h>
 | |
| #include <linux/limits.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/seqlock.h>
 | |
| #include <linux/sysfs.h>
 | |
| #include <linux/types.h>
 | |
| 
 | |
| #include "bt1-pvt.h"
 | |
| 
 | |
| /*
 | |
|  * For the sake of the code simplification we created the sensors info table
 | |
|  * with the sensor names, activation modes, threshold registers base address
 | |
|  * and the thresholds bit fields.
 | |
|  */
 | |
| static const struct pvt_sensor_info pvt_info[] = {
 | |
| 	PVT_SENSOR_INFO(0, "CPU Core Temperature", hwmon_temp, TEMP, TTHRES),
 | |
| 	PVT_SENSOR_INFO(0, "CPU Core Voltage", hwmon_in, VOLT, VTHRES),
 | |
| 	PVT_SENSOR_INFO(1, "CPU Core Low-Vt", hwmon_in, LVT, LTHRES),
 | |
| 	PVT_SENSOR_INFO(2, "CPU Core High-Vt", hwmon_in, HVT, HTHRES),
 | |
| 	PVT_SENSOR_INFO(3, "CPU Core Standard-Vt", hwmon_in, SVT, STHRES),
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * The original translation formulae of the temperature (in degrees of Celsius)
 | |
|  * to PVT data and vice-versa are following:
 | |
|  * N = 1.8322e-8*(T^4) + 2.343e-5*(T^3) + 8.7018e-3*(T^2) + 3.9269*(T^1) +
 | |
|  *     1.7204e2,
 | |
|  * T = -1.6743e-11*(N^4) + 8.1542e-8*(N^3) + -1.8201e-4*(N^2) +
 | |
|  *     3.1020e-1*(N^1) - 4.838e1,
 | |
|  * where T = [-48.380, 147.438]C and N = [0, 1023].
 | |
|  * They must be accordingly altered to be suitable for the integer arithmetics.
 | |
|  * The technique is called 'factor redistribution', which just makes sure the
 | |
|  * multiplications and divisions are made so to have a result of the operations
 | |
|  * within the integer numbers limit. In addition we need to translate the
 | |
|  * formulae to accept millidegrees of Celsius. Here what they look like after
 | |
|  * the alterations:
 | |
|  * N = (18322e-20*(T^4) + 2343e-13*(T^3) + 87018e-9*(T^2) + 39269e-3*T +
 | |
|  *     17204e2) / 1e4,
 | |
|  * T = -16743e-12*(D^4) + 81542e-9*(D^3) - 182010e-6*(D^2) + 310200e-3*D -
 | |
|  *     48380,
 | |
|  * where T = [-48380, 147438] mC and N = [0, 1023].
 | |
|  */
 | |
| static const struct pvt_poly __maybe_unused poly_temp_to_N = {
 | |
| 	.total_divider = 10000,
 | |
| 	.terms = {
 | |
| 		{4, 18322, 10000, 10000},
 | |
| 		{3, 2343, 10000, 10},
 | |
| 		{2, 87018, 10000, 10},
 | |
| 		{1, 39269, 1000, 1},
 | |
| 		{0, 1720400, 1, 1}
 | |
| 	}
 | |
| };
 | |
| 
 | |
| static const struct pvt_poly poly_N_to_temp = {
 | |
| 	.total_divider = 1,
 | |
| 	.terms = {
 | |
| 		{4, -16743, 1000, 1},
 | |
| 		{3, 81542, 1000, 1},
 | |
| 		{2, -182010, 1000, 1},
 | |
| 		{1, 310200, 1000, 1},
 | |
| 		{0, -48380, 1, 1}
 | |
| 	}
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Similar alterations are performed for the voltage conversion equations.
 | |
|  * The original formulae are:
 | |
|  * N = 1.8658e3*V - 1.1572e3,
 | |
|  * V = (N + 1.1572e3) / 1.8658e3,
 | |
|  * where V = [0.620, 1.168] V and N = [0, 1023].
 | |
|  * After the optimization they looks as follows:
 | |
|  * N = (18658e-3*V - 11572) / 10,
 | |
|  * V = N * 10^5 / 18658 + 11572 * 10^4 / 18658.
 | |
|  */
 | |
| static const struct pvt_poly __maybe_unused poly_volt_to_N = {
 | |
| 	.total_divider = 10,
 | |
| 	.terms = {
 | |
| 		{1, 18658, 1000, 1},
 | |
| 		{0, -11572, 1, 1}
 | |
| 	}
 | |
| };
 | |
| 
 | |
| static const struct pvt_poly poly_N_to_volt = {
 | |
| 	.total_divider = 10,
 | |
| 	.terms = {
 | |
| 		{1, 100000, 18658, 1},
 | |
| 		{0, 115720000, 1, 18658}
 | |
| 	}
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Here is the polynomial calculation function, which performs the
 | |
|  * redistributed terms calculations. It's pretty straightforward. We walk
 | |
|  * over each degree term up to the free one, and perform the redistributed
 | |
|  * multiplication of the term coefficient, its divider (as for the rationale
 | |
|  * fraction representation), data power and the rational fraction divider
 | |
|  * leftover. Then all of this is collected in a total sum variable, which
 | |
|  * value is normalized by the total divider before being returned.
 | |
|  */
 | |
| static long pvt_calc_poly(const struct pvt_poly *poly, long data)
 | |
| {
 | |
| 	const struct pvt_poly_term *term = poly->terms;
 | |
| 	long tmp, ret = 0;
 | |
| 	int deg;
 | |
| 
 | |
| 	do {
 | |
| 		tmp = term->coef;
 | |
| 		for (deg = 0; deg < term->deg; ++deg)
 | |
| 			tmp = mult_frac(tmp, data, term->divider);
 | |
| 		ret += tmp / term->divider_leftover;
 | |
| 	} while ((term++)->deg);
 | |
| 
 | |
| 	return ret / poly->total_divider;
 | |
| }
 | |
| 
 | |
| static inline u32 pvt_update(void __iomem *reg, u32 mask, u32 data)
 | |
| {
 | |
| 	u32 old;
 | |
| 
 | |
| 	old = readl_relaxed(reg);
 | |
| 	writel((old & ~mask) | (data & mask), reg);
 | |
| 
 | |
| 	return old & mask;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Baikal-T1 PVT mode can be updated only when the controller is disabled.
 | |
|  * So first we disable it, then set the new mode together with the controller
 | |
|  * getting back enabled. The same concerns the temperature trim and
 | |
|  * measurements timeout. If it is necessary the interface mutex is supposed
 | |
|  * to be locked at the time the operations are performed.
 | |
|  */
 | |
| static inline void pvt_set_mode(struct pvt_hwmon *pvt, u32 mode)
 | |
| {
 | |
| 	u32 old;
 | |
| 
 | |
| 	mode = FIELD_PREP(PVT_CTRL_MODE_MASK, mode);
 | |
| 
 | |
| 	old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
 | |
| 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_MODE_MASK | PVT_CTRL_EN,
 | |
| 		   mode | old);
 | |
| }
 | |
| 
 | |
| static inline u32 pvt_calc_trim(long temp)
 | |
| {
 | |
| 	temp = clamp_val(temp, 0, PVT_TRIM_TEMP);
 | |
| 
 | |
| 	return DIV_ROUND_UP(temp, PVT_TRIM_STEP);
 | |
| }
 | |
| 
 | |
| static inline void pvt_set_trim(struct pvt_hwmon *pvt, u32 trim)
 | |
| {
 | |
| 	u32 old;
 | |
| 
 | |
| 	trim = FIELD_PREP(PVT_CTRL_TRIM_MASK, trim);
 | |
| 
 | |
| 	old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
 | |
| 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_TRIM_MASK | PVT_CTRL_EN,
 | |
| 		   trim | old);
 | |
| }
 | |
| 
 | |
| static inline void pvt_set_tout(struct pvt_hwmon *pvt, u32 tout)
 | |
| {
 | |
| 	u32 old;
 | |
| 
 | |
| 	old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
 | |
| 	writel(tout, pvt->regs + PVT_TTIMEOUT);
 | |
| 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, old);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This driver can optionally provide the hwmon alarms for each sensor the PVT
 | |
|  * controller supports. The alarms functionality is made compile-time
 | |
|  * configurable due to the hardware interface implementation peculiarity
 | |
|  * described further in this comment. So in case if alarms are unnecessary in
 | |
|  * your system design it's recommended to have them disabled to prevent the PVT
 | |
|  * IRQs being periodically raised to get the data cache/alarms status up to
 | |
|  * date.
 | |
|  *
 | |
|  * Baikal-T1 PVT embedded controller is based on the Analog Bits PVT sensor,
 | |
|  * but is equipped with a dedicated control wrapper. It exposes the PVT
 | |
|  * sub-block registers space via the APB3 bus. In addition the wrapper provides
 | |
|  * a common interrupt vector of the sensors conversion completion events and
 | |
|  * threshold value alarms. Alas the wrapper interface hasn't been fully thought
 | |
|  * through. There is only one sensor can be activated at a time, for which the
 | |
|  * thresholds comparator is enabled right after the data conversion is
 | |
|  * completed. Due to this if alarms need to be implemented for all available
 | |
|  * sensors we can't just set the thresholds and enable the interrupts. We need
 | |
|  * to enable the sensors one after another and let the controller to detect
 | |
|  * the alarms by itself at each conversion. This also makes pointless to handle
 | |
|  * the alarms interrupts, since in occasion they happen synchronously with
 | |
|  * data conversion completion. The best driver design would be to have the
 | |
|  * completion interrupts enabled only and keep the converted value in the
 | |
|  * driver data cache. This solution is implemented if hwmon alarms are enabled
 | |
|  * in this driver. In case if the alarms are disabled, the conversion is
 | |
|  * performed on demand at the time a sensors input file is read.
 | |
|  */
 | |
| 
 | |
| #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
 | |
| 
 | |
| #define pvt_hard_isr NULL
 | |
| 
 | |
| static irqreturn_t pvt_soft_isr(int irq, void *data)
 | |
| {
 | |
| 	const struct pvt_sensor_info *info;
 | |
| 	struct pvt_hwmon *pvt = data;
 | |
| 	struct pvt_cache *cache;
 | |
| 	u32 val, thres_sts, old;
 | |
| 
 | |
| 	/*
 | |
| 	 * DVALID bit will be cleared by reading the data. We need to save the
 | |
| 	 * status before the next conversion happens. Threshold events will be
 | |
| 	 * handled a bit later.
 | |
| 	 */
 | |
| 	thres_sts = readl(pvt->regs + PVT_RAW_INTR_STAT);
 | |
| 
 | |
| 	/*
 | |
| 	 * Then lets recharge the PVT interface with the next sampling mode.
 | |
| 	 * Lock the interface mutex to serialize trim, timeouts and alarm
 | |
| 	 * thresholds settings.
 | |
| 	 */
 | |
| 	cache = &pvt->cache[pvt->sensor];
 | |
| 	info = &pvt_info[pvt->sensor];
 | |
| 	pvt->sensor = (pvt->sensor == PVT_SENSOR_LAST) ?
 | |
| 		      PVT_SENSOR_FIRST : (pvt->sensor + 1);
 | |
| 
 | |
| 	/*
 | |
| 	 * For some reason we have to mask the interrupt before changing the
 | |
| 	 * mode, otherwise sometimes the temperature mode doesn't get
 | |
| 	 * activated even though the actual mode in the ctrl register
 | |
| 	 * corresponds to one. Then we read the data. By doing so we also
 | |
| 	 * recharge the data conversion. After this the mode corresponding
 | |
| 	 * to the next sensor in the row is set. Finally we enable the
 | |
| 	 * interrupts back.
 | |
| 	 */
 | |
| 	mutex_lock(&pvt->iface_mtx);
 | |
| 
 | |
| 	old = pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
 | |
| 			 PVT_INTR_DVALID);
 | |
| 
 | |
| 	val = readl(pvt->regs + PVT_DATA);
 | |
| 
 | |
| 	pvt_set_mode(pvt, pvt_info[pvt->sensor].mode);
 | |
| 
 | |
| 	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, old);
 | |
| 
 | |
| 	mutex_unlock(&pvt->iface_mtx);
 | |
| 
 | |
| 	/*
 | |
| 	 * We can now update the data cache with data just retrieved from the
 | |
| 	 * sensor. Lock write-seqlock to make sure the reader has a coherent
 | |
| 	 * data.
 | |
| 	 */
 | |
| 	write_seqlock(&cache->data_seqlock);
 | |
| 
 | |
| 	cache->data = FIELD_GET(PVT_DATA_DATA_MASK, val);
 | |
| 
 | |
| 	write_sequnlock(&cache->data_seqlock);
 | |
| 
 | |
| 	/*
 | |
| 	 * While PVT core is doing the next mode data conversion, we'll check
 | |
| 	 * whether the alarms were triggered for the current sensor. Note that
 | |
| 	 * according to the documentation only one threshold IRQ status can be
 | |
| 	 * set at a time, that's why if-else statement is utilized.
 | |
| 	 */
 | |
| 	if ((thres_sts & info->thres_sts_lo) ^ cache->thres_sts_lo) {
 | |
| 		WRITE_ONCE(cache->thres_sts_lo, thres_sts & info->thres_sts_lo);
 | |
| 		hwmon_notify_event(pvt->hwmon, info->type, info->attr_min_alarm,
 | |
| 				   info->channel);
 | |
| 	} else if ((thres_sts & info->thres_sts_hi) ^ cache->thres_sts_hi) {
 | |
| 		WRITE_ONCE(cache->thres_sts_hi, thres_sts & info->thres_sts_hi);
 | |
| 		hwmon_notify_event(pvt->hwmon, info->type, info->attr_max_alarm,
 | |
| 				   info->channel);
 | |
| 	}
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static inline umode_t pvt_limit_is_visible(enum pvt_sensor_type type)
 | |
| {
 | |
| 	return 0644;
 | |
| }
 | |
| 
 | |
| static inline umode_t pvt_alarm_is_visible(enum pvt_sensor_type type)
 | |
| {
 | |
| 	return 0444;
 | |
| }
 | |
| 
 | |
| static int pvt_read_data(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
 | |
| 			 long *val)
 | |
| {
 | |
| 	struct pvt_cache *cache = &pvt->cache[type];
 | |
| 	unsigned int seq;
 | |
| 	u32 data;
 | |
| 
 | |
| 	do {
 | |
| 		seq = read_seqbegin(&cache->data_seqlock);
 | |
| 		data = cache->data;
 | |
| 	} while (read_seqretry(&cache->data_seqlock, seq));
 | |
| 
 | |
| 	if (type == PVT_TEMP)
 | |
| 		*val = pvt_calc_poly(&poly_N_to_temp, data);
 | |
| 	else
 | |
| 		*val = pvt_calc_poly(&poly_N_to_volt, data);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int pvt_read_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
 | |
| 			  bool is_low, long *val)
 | |
| {
 | |
| 	u32 data;
 | |
| 
 | |
| 	/* No need in serialization, since it is just read from MMIO. */
 | |
| 	data = readl(pvt->regs + pvt_info[type].thres_base);
 | |
| 
 | |
| 	if (is_low)
 | |
| 		data = FIELD_GET(PVT_THRES_LO_MASK, data);
 | |
| 	else
 | |
| 		data = FIELD_GET(PVT_THRES_HI_MASK, data);
 | |
| 
 | |
| 	if (type == PVT_TEMP)
 | |
| 		*val = pvt_calc_poly(&poly_N_to_temp, data);
 | |
| 	else
 | |
| 		*val = pvt_calc_poly(&poly_N_to_volt, data);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int pvt_write_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
 | |
| 			   bool is_low, long val)
 | |
| {
 | |
| 	u32 data, limit, mask;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (type == PVT_TEMP) {
 | |
| 		val = clamp(val, PVT_TEMP_MIN, PVT_TEMP_MAX);
 | |
| 		data = pvt_calc_poly(&poly_temp_to_N, val);
 | |
| 	} else {
 | |
| 		val = clamp(val, PVT_VOLT_MIN, PVT_VOLT_MAX);
 | |
| 		data = pvt_calc_poly(&poly_volt_to_N, val);
 | |
| 	}
 | |
| 
 | |
| 	/* Serialize limit update, since a part of the register is changed. */
 | |
| 	ret = mutex_lock_interruptible(&pvt->iface_mtx);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Make sure the upper and lower ranges don't intersect. */
 | |
| 	limit = readl(pvt->regs + pvt_info[type].thres_base);
 | |
| 	if (is_low) {
 | |
| 		limit = FIELD_GET(PVT_THRES_HI_MASK, limit);
 | |
| 		data = clamp_val(data, PVT_DATA_MIN, limit);
 | |
| 		data = FIELD_PREP(PVT_THRES_LO_MASK, data);
 | |
| 		mask = PVT_THRES_LO_MASK;
 | |
| 	} else {
 | |
| 		limit = FIELD_GET(PVT_THRES_LO_MASK, limit);
 | |
| 		data = clamp_val(data, limit, PVT_DATA_MAX);
 | |
| 		data = FIELD_PREP(PVT_THRES_HI_MASK, data);
 | |
| 		mask = PVT_THRES_HI_MASK;
 | |
| 	}
 | |
| 
 | |
| 	pvt_update(pvt->regs + pvt_info[type].thres_base, mask, data);
 | |
| 
 | |
| 	mutex_unlock(&pvt->iface_mtx);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int pvt_read_alarm(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
 | |
| 			  bool is_low, long *val)
 | |
| {
 | |
| 	if (is_low)
 | |
| 		*val = !!READ_ONCE(pvt->cache[type].thres_sts_lo);
 | |
| 	else
 | |
| 		*val = !!READ_ONCE(pvt->cache[type].thres_sts_hi);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct hwmon_channel_info *pvt_channel_info[] = {
 | |
| 	HWMON_CHANNEL_INFO(chip,
 | |
| 			   HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL),
 | |
| 	HWMON_CHANNEL_INFO(temp,
 | |
| 			   HWMON_T_INPUT | HWMON_T_TYPE | HWMON_T_LABEL |
 | |
| 			   HWMON_T_MIN | HWMON_T_MIN_ALARM |
 | |
| 			   HWMON_T_MAX | HWMON_T_MAX_ALARM |
 | |
| 			   HWMON_T_OFFSET),
 | |
| 	HWMON_CHANNEL_INFO(in,
 | |
| 			   HWMON_I_INPUT | HWMON_I_LABEL |
 | |
| 			   HWMON_I_MIN | HWMON_I_MIN_ALARM |
 | |
| 			   HWMON_I_MAX | HWMON_I_MAX_ALARM,
 | |
| 			   HWMON_I_INPUT | HWMON_I_LABEL |
 | |
| 			   HWMON_I_MIN | HWMON_I_MIN_ALARM |
 | |
| 			   HWMON_I_MAX | HWMON_I_MAX_ALARM,
 | |
| 			   HWMON_I_INPUT | HWMON_I_LABEL |
 | |
| 			   HWMON_I_MIN | HWMON_I_MIN_ALARM |
 | |
| 			   HWMON_I_MAX | HWMON_I_MAX_ALARM,
 | |
| 			   HWMON_I_INPUT | HWMON_I_LABEL |
 | |
| 			   HWMON_I_MIN | HWMON_I_MIN_ALARM |
 | |
| 			   HWMON_I_MAX | HWMON_I_MAX_ALARM),
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| #else /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
 | |
| 
 | |
| static irqreturn_t pvt_hard_isr(int irq, void *data)
 | |
| {
 | |
| 	struct pvt_hwmon *pvt = data;
 | |
| 	struct pvt_cache *cache;
 | |
| 	u32 val;
 | |
| 
 | |
| 	/*
 | |
| 	 * Mask the DVALID interrupt so after exiting from the handler a
 | |
| 	 * repeated conversion wouldn't happen.
 | |
| 	 */
 | |
| 	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
 | |
| 		   PVT_INTR_DVALID);
 | |
| 
 | |
| 	/*
 | |
| 	 * Nothing special for alarm-less driver. Just read the data, update
 | |
| 	 * the cache and notify a waiter of this event.
 | |
| 	 */
 | |
| 	val = readl(pvt->regs + PVT_DATA);
 | |
| 	if (!(val & PVT_DATA_VALID)) {
 | |
| 		dev_err(pvt->dev, "Got IRQ when data isn't valid\n");
 | |
| 		return IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	cache = &pvt->cache[pvt->sensor];
 | |
| 
 | |
| 	WRITE_ONCE(cache->data, FIELD_GET(PVT_DATA_DATA_MASK, val));
 | |
| 
 | |
| 	complete(&cache->conversion);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| #define pvt_soft_isr NULL
 | |
| 
 | |
| static inline umode_t pvt_limit_is_visible(enum pvt_sensor_type type)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline umode_t pvt_alarm_is_visible(enum pvt_sensor_type type)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int pvt_read_data(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
 | |
| 			 long *val)
 | |
| {
 | |
| 	struct pvt_cache *cache = &pvt->cache[type];
 | |
| 	unsigned long timeout;
 | |
| 	u32 data;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Lock PVT conversion interface until data cache is updated. The
 | |
| 	 * data read procedure is following: set the requested PVT sensor
 | |
| 	 * mode, enable IRQ and conversion, wait until conversion is finished,
 | |
| 	 * then disable conversion and IRQ, and read the cached data.
 | |
| 	 */
 | |
| 	ret = mutex_lock_interruptible(&pvt->iface_mtx);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	pvt->sensor = type;
 | |
| 	pvt_set_mode(pvt, pvt_info[type].mode);
 | |
| 
 | |
| 	/*
 | |
| 	 * Unmask the DVALID interrupt and enable the sensors conversions.
 | |
| 	 * Do the reverse procedure when conversion is done.
 | |
| 	 */
 | |
| 	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, 0);
 | |
| 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait with timeout since in case if the sensor is suddenly powered
 | |
| 	 * down the request won't be completed and the caller will hang up on
 | |
| 	 * this procedure until the power is back up again. Multiply the
 | |
| 	 * timeout by the factor of two to prevent a false timeout.
 | |
| 	 */
 | |
| 	timeout = 2 * usecs_to_jiffies(ktime_to_us(pvt->timeout));
 | |
| 	ret = wait_for_completion_timeout(&cache->conversion, timeout);
 | |
| 
 | |
| 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
 | |
| 	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
 | |
| 		   PVT_INTR_DVALID);
 | |
| 
 | |
| 	data = READ_ONCE(cache->data);
 | |
| 
 | |
| 	mutex_unlock(&pvt->iface_mtx);
 | |
| 
 | |
| 	if (!ret)
 | |
| 		return -ETIMEDOUT;
 | |
| 
 | |
| 	if (type == PVT_TEMP)
 | |
| 		*val = pvt_calc_poly(&poly_N_to_temp, data);
 | |
| 	else
 | |
| 		*val = pvt_calc_poly(&poly_N_to_volt, data);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int pvt_read_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
 | |
| 			  bool is_low, long *val)
 | |
| {
 | |
| 	return -EOPNOTSUPP;
 | |
| }
 | |
| 
 | |
| static int pvt_write_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
 | |
| 			   bool is_low, long val)
 | |
| {
 | |
| 	return -EOPNOTSUPP;
 | |
| }
 | |
| 
 | |
| static int pvt_read_alarm(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
 | |
| 			  bool is_low, long *val)
 | |
| {
 | |
| 	return -EOPNOTSUPP;
 | |
| }
 | |
| 
 | |
| static const struct hwmon_channel_info *pvt_channel_info[] = {
 | |
| 	HWMON_CHANNEL_INFO(chip,
 | |
| 			   HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL),
 | |
| 	HWMON_CHANNEL_INFO(temp,
 | |
| 			   HWMON_T_INPUT | HWMON_T_TYPE | HWMON_T_LABEL |
 | |
| 			   HWMON_T_OFFSET),
 | |
| 	HWMON_CHANNEL_INFO(in,
 | |
| 			   HWMON_I_INPUT | HWMON_I_LABEL,
 | |
| 			   HWMON_I_INPUT | HWMON_I_LABEL,
 | |
| 			   HWMON_I_INPUT | HWMON_I_LABEL,
 | |
| 			   HWMON_I_INPUT | HWMON_I_LABEL),
 | |
| 	NULL
 | |
| };
 | |
| 
 | |
| #endif /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
 | |
| 
 | |
| static inline bool pvt_hwmon_channel_is_valid(enum hwmon_sensor_types type,
 | |
| 					      int ch)
 | |
| {
 | |
| 	switch (type) {
 | |
| 	case hwmon_temp:
 | |
| 		if (ch < 0 || ch >= PVT_TEMP_CHS)
 | |
| 			return false;
 | |
| 		break;
 | |
| 	case hwmon_in:
 | |
| 		if (ch < 0 || ch >= PVT_VOLT_CHS)
 | |
| 			return false;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* The rest of the types are independent from the channel number. */
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static umode_t pvt_hwmon_is_visible(const void *data,
 | |
| 				    enum hwmon_sensor_types type,
 | |
| 				    u32 attr, int ch)
 | |
| {
 | |
| 	if (!pvt_hwmon_channel_is_valid(type, ch))
 | |
| 		return 0;
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case hwmon_chip:
 | |
| 		switch (attr) {
 | |
| 		case hwmon_chip_update_interval:
 | |
| 			return 0644;
 | |
| 		}
 | |
| 		break;
 | |
| 	case hwmon_temp:
 | |
| 		switch (attr) {
 | |
| 		case hwmon_temp_input:
 | |
| 		case hwmon_temp_type:
 | |
| 		case hwmon_temp_label:
 | |
| 			return 0444;
 | |
| 		case hwmon_temp_min:
 | |
| 		case hwmon_temp_max:
 | |
| 			return pvt_limit_is_visible(ch);
 | |
| 		case hwmon_temp_min_alarm:
 | |
| 		case hwmon_temp_max_alarm:
 | |
| 			return pvt_alarm_is_visible(ch);
 | |
| 		case hwmon_temp_offset:
 | |
| 			return 0644;
 | |
| 		}
 | |
| 		break;
 | |
| 	case hwmon_in:
 | |
| 		switch (attr) {
 | |
| 		case hwmon_in_input:
 | |
| 		case hwmon_in_label:
 | |
| 			return 0444;
 | |
| 		case hwmon_in_min:
 | |
| 		case hwmon_in_max:
 | |
| 			return pvt_limit_is_visible(PVT_VOLT + ch);
 | |
| 		case hwmon_in_min_alarm:
 | |
| 		case hwmon_in_max_alarm:
 | |
| 			return pvt_alarm_is_visible(PVT_VOLT + ch);
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int pvt_read_trim(struct pvt_hwmon *pvt, long *val)
 | |
| {
 | |
| 	u32 data;
 | |
| 
 | |
| 	data = readl(pvt->regs + PVT_CTRL);
 | |
| 	*val = FIELD_GET(PVT_CTRL_TRIM_MASK, data) * PVT_TRIM_STEP;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int pvt_write_trim(struct pvt_hwmon *pvt, long val)
 | |
| {
 | |
| 	u32 trim;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Serialize trim update, since a part of the register is changed and
 | |
| 	 * the controller is supposed to be disabled during this operation.
 | |
| 	 */
 | |
| 	ret = mutex_lock_interruptible(&pvt->iface_mtx);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	trim = pvt_calc_trim(val);
 | |
| 	pvt_set_trim(pvt, trim);
 | |
| 
 | |
| 	mutex_unlock(&pvt->iface_mtx);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int pvt_read_timeout(struct pvt_hwmon *pvt, long *val)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = mutex_lock_interruptible(&pvt->iface_mtx);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Return the result in msec as hwmon sysfs interface requires. */
 | |
| 	*val = ktime_to_ms(pvt->timeout);
 | |
| 
 | |
| 	mutex_unlock(&pvt->iface_mtx);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int pvt_write_timeout(struct pvt_hwmon *pvt, long val)
 | |
| {
 | |
| 	unsigned long rate;
 | |
| 	ktime_t kt, cache;
 | |
| 	u32 data;
 | |
| 	int ret;
 | |
| 
 | |
| 	rate = clk_get_rate(pvt->clks[PVT_CLOCK_REF].clk);
 | |
| 	if (!rate)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	/*
 | |
| 	 * If alarms are enabled, the requested timeout must be divided
 | |
| 	 * between all available sensors to have the requested delay
 | |
| 	 * applicable to each individual sensor.
 | |
| 	 */
 | |
| 	cache = kt = ms_to_ktime(val);
 | |
| #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
 | |
| 	kt = ktime_divns(kt, PVT_SENSORS_NUM);
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Subtract a constant lag, which always persists due to the limited
 | |
| 	 * PVT sampling rate. Make sure the timeout is not negative.
 | |
| 	 */
 | |
| 	kt = ktime_sub_ns(kt, PVT_TOUT_MIN);
 | |
| 	if (ktime_to_ns(kt) < 0)
 | |
| 		kt = ktime_set(0, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Finally recalculate the timeout in terms of the reference clock
 | |
| 	 * period.
 | |
| 	 */
 | |
| 	data = ktime_divns(kt * rate, NSEC_PER_SEC);
 | |
| 
 | |
| 	/*
 | |
| 	 * Update the measurements delay, but lock the interface first, since
 | |
| 	 * we have to disable PVT in order to have the new delay actually
 | |
| 	 * updated.
 | |
| 	 */
 | |
| 	ret = mutex_lock_interruptible(&pvt->iface_mtx);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	pvt_set_tout(pvt, data);
 | |
| 	pvt->timeout = cache;
 | |
| 
 | |
| 	mutex_unlock(&pvt->iface_mtx);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int pvt_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
 | |
| 			  u32 attr, int ch, long *val)
 | |
| {
 | |
| 	struct pvt_hwmon *pvt = dev_get_drvdata(dev);
 | |
| 
 | |
| 	if (!pvt_hwmon_channel_is_valid(type, ch))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case hwmon_chip:
 | |
| 		switch (attr) {
 | |
| 		case hwmon_chip_update_interval:
 | |
| 			return pvt_read_timeout(pvt, val);
 | |
| 		}
 | |
| 		break;
 | |
| 	case hwmon_temp:
 | |
| 		switch (attr) {
 | |
| 		case hwmon_temp_input:
 | |
| 			return pvt_read_data(pvt, ch, val);
 | |
| 		case hwmon_temp_type:
 | |
| 			*val = 1;
 | |
| 			return 0;
 | |
| 		case hwmon_temp_min:
 | |
| 			return pvt_read_limit(pvt, ch, true, val);
 | |
| 		case hwmon_temp_max:
 | |
| 			return pvt_read_limit(pvt, ch, false, val);
 | |
| 		case hwmon_temp_min_alarm:
 | |
| 			return pvt_read_alarm(pvt, ch, true, val);
 | |
| 		case hwmon_temp_max_alarm:
 | |
| 			return pvt_read_alarm(pvt, ch, false, val);
 | |
| 		case hwmon_temp_offset:
 | |
| 			return pvt_read_trim(pvt, val);
 | |
| 		}
 | |
| 		break;
 | |
| 	case hwmon_in:
 | |
| 		switch (attr) {
 | |
| 		case hwmon_in_input:
 | |
| 			return pvt_read_data(pvt, PVT_VOLT + ch, val);
 | |
| 		case hwmon_in_min:
 | |
| 			return pvt_read_limit(pvt, PVT_VOLT + ch, true, val);
 | |
| 		case hwmon_in_max:
 | |
| 			return pvt_read_limit(pvt, PVT_VOLT + ch, false, val);
 | |
| 		case hwmon_in_min_alarm:
 | |
| 			return pvt_read_alarm(pvt, PVT_VOLT + ch, true, val);
 | |
| 		case hwmon_in_max_alarm:
 | |
| 			return pvt_read_alarm(pvt, PVT_VOLT + ch, false, val);
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return -EOPNOTSUPP;
 | |
| }
 | |
| 
 | |
| static int pvt_hwmon_read_string(struct device *dev,
 | |
| 				 enum hwmon_sensor_types type,
 | |
| 				 u32 attr, int ch, const char **str)
 | |
| {
 | |
| 	if (!pvt_hwmon_channel_is_valid(type, ch))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case hwmon_temp:
 | |
| 		switch (attr) {
 | |
| 		case hwmon_temp_label:
 | |
| 			*str = pvt_info[ch].label;
 | |
| 			return 0;
 | |
| 		}
 | |
| 		break;
 | |
| 	case hwmon_in:
 | |
| 		switch (attr) {
 | |
| 		case hwmon_in_label:
 | |
| 			*str = pvt_info[PVT_VOLT + ch].label;
 | |
| 			return 0;
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return -EOPNOTSUPP;
 | |
| }
 | |
| 
 | |
| static int pvt_hwmon_write(struct device *dev, enum hwmon_sensor_types type,
 | |
| 			   u32 attr, int ch, long val)
 | |
| {
 | |
| 	struct pvt_hwmon *pvt = dev_get_drvdata(dev);
 | |
| 
 | |
| 	if (!pvt_hwmon_channel_is_valid(type, ch))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case hwmon_chip:
 | |
| 		switch (attr) {
 | |
| 		case hwmon_chip_update_interval:
 | |
| 			return pvt_write_timeout(pvt, val);
 | |
| 		}
 | |
| 		break;
 | |
| 	case hwmon_temp:
 | |
| 		switch (attr) {
 | |
| 		case hwmon_temp_min:
 | |
| 			return pvt_write_limit(pvt, ch, true, val);
 | |
| 		case hwmon_temp_max:
 | |
| 			return pvt_write_limit(pvt, ch, false, val);
 | |
| 		case hwmon_temp_offset:
 | |
| 			return pvt_write_trim(pvt, val);
 | |
| 		}
 | |
| 		break;
 | |
| 	case hwmon_in:
 | |
| 		switch (attr) {
 | |
| 		case hwmon_in_min:
 | |
| 			return pvt_write_limit(pvt, PVT_VOLT + ch, true, val);
 | |
| 		case hwmon_in_max:
 | |
| 			return pvt_write_limit(pvt, PVT_VOLT + ch, false, val);
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return -EOPNOTSUPP;
 | |
| }
 | |
| 
 | |
| static const struct hwmon_ops pvt_hwmon_ops = {
 | |
| 	.is_visible = pvt_hwmon_is_visible,
 | |
| 	.read = pvt_hwmon_read,
 | |
| 	.read_string = pvt_hwmon_read_string,
 | |
| 	.write = pvt_hwmon_write
 | |
| };
 | |
| 
 | |
| static const struct hwmon_chip_info pvt_hwmon_info = {
 | |
| 	.ops = &pvt_hwmon_ops,
 | |
| 	.info = pvt_channel_info
 | |
| };
 | |
| 
 | |
| static void pvt_clear_data(void *data)
 | |
| {
 | |
| 	struct pvt_hwmon *pvt = data;
 | |
| #if !defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
 | |
| 	int idx;
 | |
| 
 | |
| 	for (idx = 0; idx < PVT_SENSORS_NUM; ++idx)
 | |
| 		complete_all(&pvt->cache[idx].conversion);
 | |
| #endif
 | |
| 
 | |
| 	mutex_destroy(&pvt->iface_mtx);
 | |
| }
 | |
| 
 | |
| static struct pvt_hwmon *pvt_create_data(struct platform_device *pdev)
 | |
| {
 | |
| 	struct device *dev = &pdev->dev;
 | |
| 	struct pvt_hwmon *pvt;
 | |
| 	int ret, idx;
 | |
| 
 | |
| 	pvt = devm_kzalloc(dev, sizeof(*pvt), GFP_KERNEL);
 | |
| 	if (!pvt)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	ret = devm_add_action(dev, pvt_clear_data, pvt);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "Can't add PVT data clear action\n");
 | |
| 		return ERR_PTR(ret);
 | |
| 	}
 | |
| 
 | |
| 	pvt->dev = dev;
 | |
| 	pvt->sensor = PVT_SENSOR_FIRST;
 | |
| 	mutex_init(&pvt->iface_mtx);
 | |
| 
 | |
| #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
 | |
| 	for (idx = 0; idx < PVT_SENSORS_NUM; ++idx)
 | |
| 		seqlock_init(&pvt->cache[idx].data_seqlock);
 | |
| #else
 | |
| 	for (idx = 0; idx < PVT_SENSORS_NUM; ++idx)
 | |
| 		init_completion(&pvt->cache[idx].conversion);
 | |
| #endif
 | |
| 
 | |
| 	return pvt;
 | |
| }
 | |
| 
 | |
| static int pvt_request_regs(struct pvt_hwmon *pvt)
 | |
| {
 | |
| 	struct platform_device *pdev = to_platform_device(pvt->dev);
 | |
| 	struct resource *res;
 | |
| 
 | |
| 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 | |
| 	if (!res) {
 | |
| 		dev_err(pvt->dev, "Couldn't find PVT memresource\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	pvt->regs = devm_ioremap_resource(pvt->dev, res);
 | |
| 	if (IS_ERR(pvt->regs))
 | |
| 		return PTR_ERR(pvt->regs);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void pvt_disable_clks(void *data)
 | |
| {
 | |
| 	struct pvt_hwmon *pvt = data;
 | |
| 
 | |
| 	clk_bulk_disable_unprepare(PVT_CLOCK_NUM, pvt->clks);
 | |
| }
 | |
| 
 | |
| static int pvt_request_clks(struct pvt_hwmon *pvt)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	pvt->clks[PVT_CLOCK_APB].id = "pclk";
 | |
| 	pvt->clks[PVT_CLOCK_REF].id = "ref";
 | |
| 
 | |
| 	ret = devm_clk_bulk_get(pvt->dev, PVT_CLOCK_NUM, pvt->clks);
 | |
| 	if (ret) {
 | |
| 		dev_err(pvt->dev, "Couldn't get PVT clocks descriptors\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = clk_bulk_prepare_enable(PVT_CLOCK_NUM, pvt->clks);
 | |
| 	if (ret) {
 | |
| 		dev_err(pvt->dev, "Couldn't enable the PVT clocks\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	ret = devm_add_action_or_reset(pvt->dev, pvt_disable_clks, pvt);
 | |
| 	if (ret) {
 | |
| 		dev_err(pvt->dev, "Can't add PVT clocks disable action\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int pvt_check_pwr(struct pvt_hwmon *pvt)
 | |
| {
 | |
| 	unsigned long tout;
 | |
| 	int ret = 0;
 | |
| 	u32 data;
 | |
| 
 | |
| 	/*
 | |
| 	 * Test out the sensor conversion functionality. If it is not done on
 | |
| 	 * time then the domain must have been unpowered and we won't be able
 | |
| 	 * to use the device later in this driver.
 | |
| 	 * Note If the power source is lost during the normal driver work the
 | |
| 	 * data read procedure will either return -ETIMEDOUT (for the
 | |
| 	 * alarm-less driver configuration) or just stop the repeated
 | |
| 	 * conversion. In the later case alas we won't be able to detect the
 | |
| 	 * problem.
 | |
| 	 */
 | |
| 	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_ALL, PVT_INTR_ALL);
 | |
| 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN);
 | |
| 	pvt_set_tout(pvt, 0);
 | |
| 	readl(pvt->regs + PVT_DATA);
 | |
| 
 | |
| 	tout = PVT_TOUT_MIN / NSEC_PER_USEC;
 | |
| 	usleep_range(tout, 2 * tout);
 | |
| 
 | |
| 	data = readl(pvt->regs + PVT_DATA);
 | |
| 	if (!(data & PVT_DATA_VALID)) {
 | |
| 		ret = -ENODEV;
 | |
| 		dev_err(pvt->dev, "Sensor is powered down\n");
 | |
| 	}
 | |
| 
 | |
| 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int pvt_init_iface(struct pvt_hwmon *pvt)
 | |
| {
 | |
| 	unsigned long rate;
 | |
| 	u32 trim, temp;
 | |
| 
 | |
| 	rate = clk_get_rate(pvt->clks[PVT_CLOCK_REF].clk);
 | |
| 	if (!rate) {
 | |
| 		dev_err(pvt->dev, "Invalid reference clock rate\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure all interrupts and controller are disabled so not to
 | |
| 	 * accidentally have ISR executed before the driver data is fully
 | |
| 	 * initialized. Clear the IRQ status as well.
 | |
| 	 */
 | |
| 	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_ALL, PVT_INTR_ALL);
 | |
| 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
 | |
| 	readl(pvt->regs + PVT_CLR_INTR);
 | |
| 	readl(pvt->regs + PVT_DATA);
 | |
| 
 | |
| 	/* Setup default sensor mode, timeout and temperature trim. */
 | |
| 	pvt_set_mode(pvt, pvt_info[pvt->sensor].mode);
 | |
| 	pvt_set_tout(pvt, PVT_TOUT_DEF);
 | |
| 
 | |
| 	/*
 | |
| 	 * Preserve the current ref-clock based delay (Ttotal) between the
 | |
| 	 * sensors data samples in the driver data so not to recalculate it
 | |
| 	 * each time on the data requests and timeout reads. It consists of the
 | |
| 	 * delay introduced by the internal ref-clock timer (N / Fclk) and the
 | |
| 	 * constant timeout caused by each conversion latency (Tmin):
 | |
| 	 *   Ttotal = N / Fclk + Tmin
 | |
| 	 * If alarms are enabled the sensors are polled one after another and
 | |
| 	 * in order to get the next measurement of a particular sensor the
 | |
| 	 * caller will have to wait for at most until all the others are
 | |
| 	 * polled. In that case the formulae will look a bit different:
 | |
| 	 *   Ttotal = 5 * (N / Fclk + Tmin)
 | |
| 	 */
 | |
| #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
 | |
| 	pvt->timeout = ktime_set(PVT_SENSORS_NUM * PVT_TOUT_DEF, 0);
 | |
| 	pvt->timeout = ktime_divns(pvt->timeout, rate);
 | |
| 	pvt->timeout = ktime_add_ns(pvt->timeout, PVT_SENSORS_NUM * PVT_TOUT_MIN);
 | |
| #else
 | |
| 	pvt->timeout = ktime_set(PVT_TOUT_DEF, 0);
 | |
| 	pvt->timeout = ktime_divns(pvt->timeout, rate);
 | |
| 	pvt->timeout = ktime_add_ns(pvt->timeout, PVT_TOUT_MIN);
 | |
| #endif
 | |
| 
 | |
| 	trim = PVT_TRIM_DEF;
 | |
| 	if (!of_property_read_u32(pvt->dev->of_node,
 | |
| 	     "baikal,pvt-temp-offset-millicelsius", &temp))
 | |
| 		trim = pvt_calc_trim(temp);
 | |
| 
 | |
| 	pvt_set_trim(pvt, trim);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int pvt_request_irq(struct pvt_hwmon *pvt)
 | |
| {
 | |
| 	struct platform_device *pdev = to_platform_device(pvt->dev);
 | |
| 	int ret;
 | |
| 
 | |
| 	pvt->irq = platform_get_irq(pdev, 0);
 | |
| 	if (pvt->irq < 0)
 | |
| 		return pvt->irq;
 | |
| 
 | |
| 	ret = devm_request_threaded_irq(pvt->dev, pvt->irq,
 | |
| 					pvt_hard_isr, pvt_soft_isr,
 | |
| #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
 | |
| 					IRQF_SHARED | IRQF_TRIGGER_HIGH |
 | |
| 					IRQF_ONESHOT,
 | |
| #else
 | |
| 					IRQF_SHARED | IRQF_TRIGGER_HIGH,
 | |
| #endif
 | |
| 					"pvt", pvt);
 | |
| 	if (ret) {
 | |
| 		dev_err(pvt->dev, "Couldn't request PVT IRQ\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int pvt_create_hwmon(struct pvt_hwmon *pvt)
 | |
| {
 | |
| 	pvt->hwmon = devm_hwmon_device_register_with_info(pvt->dev, "pvt", pvt,
 | |
| 		&pvt_hwmon_info, NULL);
 | |
| 	if (IS_ERR(pvt->hwmon)) {
 | |
| 		dev_err(pvt->dev, "Couldn't create hwmon device\n");
 | |
| 		return PTR_ERR(pvt->hwmon);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
 | |
| 
 | |
| static void pvt_disable_iface(void *data)
 | |
| {
 | |
| 	struct pvt_hwmon *pvt = data;
 | |
| 
 | |
| 	mutex_lock(&pvt->iface_mtx);
 | |
| 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
 | |
| 	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
 | |
| 		   PVT_INTR_DVALID);
 | |
| 	mutex_unlock(&pvt->iface_mtx);
 | |
| }
 | |
| 
 | |
| static int pvt_enable_iface(struct pvt_hwmon *pvt)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = devm_add_action(pvt->dev, pvt_disable_iface, pvt);
 | |
| 	if (ret) {
 | |
| 		dev_err(pvt->dev, "Can't add PVT disable interface action\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable sensors data conversion and IRQ. We need to lock the
 | |
| 	 * interface mutex since hwmon has just been created and the
 | |
| 	 * corresponding sysfs files are accessible from user-space,
 | |
| 	 * which theoretically may cause races.
 | |
| 	 */
 | |
| 	mutex_lock(&pvt->iface_mtx);
 | |
| 	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, 0);
 | |
| 	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN);
 | |
| 	mutex_unlock(&pvt->iface_mtx);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #else /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
 | |
| 
 | |
| static int pvt_enable_iface(struct pvt_hwmon *pvt)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #endif /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
 | |
| 
 | |
| static int pvt_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct pvt_hwmon *pvt;
 | |
| 	int ret;
 | |
| 
 | |
| 	pvt = pvt_create_data(pdev);
 | |
| 	if (IS_ERR(pvt))
 | |
| 		return PTR_ERR(pvt);
 | |
| 
 | |
| 	ret = pvt_request_regs(pvt);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = pvt_request_clks(pvt);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = pvt_check_pwr(pvt);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = pvt_init_iface(pvt);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = pvt_request_irq(pvt);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = pvt_create_hwmon(pvt);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = pvt_enable_iface(pvt);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct of_device_id pvt_of_match[] = {
 | |
| 	{ .compatible = "baikal,bt1-pvt" },
 | |
| 	{ }
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, pvt_of_match);
 | |
| 
 | |
| static struct platform_driver pvt_driver = {
 | |
| 	.probe = pvt_probe,
 | |
| 	.driver = {
 | |
| 		.name = "bt1-pvt",
 | |
| 		.of_match_table = pvt_of_match
 | |
| 	}
 | |
| };
 | |
| module_platform_driver(pvt_driver);
 | |
| 
 | |
| MODULE_AUTHOR("Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>");
 | |
| MODULE_DESCRIPTION("Baikal-T1 PVT driver");
 | |
| MODULE_LICENSE("GPL v2");
 |