2700 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2700 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * TI EDMA DMA engine driver
 | |
|  *
 | |
|  * Copyright 2012 Texas Instruments
 | |
|  */
 | |
| 
 | |
| #include <linux/dmaengine.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/bitmap.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/of_dma.h>
 | |
| #include <linux/of_irq.h>
 | |
| #include <linux/of_address.h>
 | |
| #include <linux/of_device.h>
 | |
| #include <linux/pm_runtime.h>
 | |
| 
 | |
| #include <linux/platform_data/edma.h>
 | |
| 
 | |
| #include "../dmaengine.h"
 | |
| #include "../virt-dma.h"
 | |
| 
 | |
| /* Offsets matching "struct edmacc_param" */
 | |
| #define PARM_OPT		0x00
 | |
| #define PARM_SRC		0x04
 | |
| #define PARM_A_B_CNT		0x08
 | |
| #define PARM_DST		0x0c
 | |
| #define PARM_SRC_DST_BIDX	0x10
 | |
| #define PARM_LINK_BCNTRLD	0x14
 | |
| #define PARM_SRC_DST_CIDX	0x18
 | |
| #define PARM_CCNT		0x1c
 | |
| 
 | |
| #define PARM_SIZE		0x20
 | |
| 
 | |
| /* Offsets for EDMA CC global channel registers and their shadows */
 | |
| #define SH_ER			0x00	/* 64 bits */
 | |
| #define SH_ECR			0x08	/* 64 bits */
 | |
| #define SH_ESR			0x10	/* 64 bits */
 | |
| #define SH_CER			0x18	/* 64 bits */
 | |
| #define SH_EER			0x20	/* 64 bits */
 | |
| #define SH_EECR			0x28	/* 64 bits */
 | |
| #define SH_EESR			0x30	/* 64 bits */
 | |
| #define SH_SER			0x38	/* 64 bits */
 | |
| #define SH_SECR			0x40	/* 64 bits */
 | |
| #define SH_IER			0x50	/* 64 bits */
 | |
| #define SH_IECR			0x58	/* 64 bits */
 | |
| #define SH_IESR			0x60	/* 64 bits */
 | |
| #define SH_IPR			0x68	/* 64 bits */
 | |
| #define SH_ICR			0x70	/* 64 bits */
 | |
| #define SH_IEVAL		0x78
 | |
| #define SH_QER			0x80
 | |
| #define SH_QEER			0x84
 | |
| #define SH_QEECR		0x88
 | |
| #define SH_QEESR		0x8c
 | |
| #define SH_QSER			0x90
 | |
| #define SH_QSECR		0x94
 | |
| #define SH_SIZE			0x200
 | |
| 
 | |
| /* Offsets for EDMA CC global registers */
 | |
| #define EDMA_REV		0x0000
 | |
| #define EDMA_CCCFG		0x0004
 | |
| #define EDMA_QCHMAP		0x0200	/* 8 registers */
 | |
| #define EDMA_DMAQNUM		0x0240	/* 8 registers (4 on OMAP-L1xx) */
 | |
| #define EDMA_QDMAQNUM		0x0260
 | |
| #define EDMA_QUETCMAP		0x0280
 | |
| #define EDMA_QUEPRI		0x0284
 | |
| #define EDMA_EMR		0x0300	/* 64 bits */
 | |
| #define EDMA_EMCR		0x0308	/* 64 bits */
 | |
| #define EDMA_QEMR		0x0310
 | |
| #define EDMA_QEMCR		0x0314
 | |
| #define EDMA_CCERR		0x0318
 | |
| #define EDMA_CCERRCLR		0x031c
 | |
| #define EDMA_EEVAL		0x0320
 | |
| #define EDMA_DRAE		0x0340	/* 4 x 64 bits*/
 | |
| #define EDMA_QRAE		0x0380	/* 4 registers */
 | |
| #define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */
 | |
| #define EDMA_QSTAT		0x0600	/* 2 registers */
 | |
| #define EDMA_QWMTHRA		0x0620
 | |
| #define EDMA_QWMTHRB		0x0624
 | |
| #define EDMA_CCSTAT		0x0640
 | |
| 
 | |
| #define EDMA_M			0x1000	/* global channel registers */
 | |
| #define EDMA_ECR		0x1008
 | |
| #define EDMA_ECRH		0x100C
 | |
| #define EDMA_SHADOW0		0x2000	/* 4 shadow regions */
 | |
| #define EDMA_PARM		0x4000	/* PaRAM entries */
 | |
| 
 | |
| #define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5))
 | |
| 
 | |
| #define EDMA_DCHMAP		0x0100  /* 64 registers */
 | |
| 
 | |
| /* CCCFG register */
 | |
| #define GET_NUM_DMACH(x)	(x & 0x7) /* bits 0-2 */
 | |
| #define GET_NUM_QDMACH(x)	((x & 0x70) >> 4) /* bits 4-6 */
 | |
| #define GET_NUM_PAENTRY(x)	((x & 0x7000) >> 12) /* bits 12-14 */
 | |
| #define GET_NUM_EVQUE(x)	((x & 0x70000) >> 16) /* bits 16-18 */
 | |
| #define GET_NUM_REGN(x)		((x & 0x300000) >> 20) /* bits 20-21 */
 | |
| #define CHMAP_EXIST		BIT(24)
 | |
| 
 | |
| /* CCSTAT register */
 | |
| #define EDMA_CCSTAT_ACTV	BIT(4)
 | |
| 
 | |
| /*
 | |
|  * Max of 20 segments per channel to conserve PaRAM slots
 | |
|  * Also note that MAX_NR_SG should be at least the no.of periods
 | |
|  * that are required for ASoC, otherwise DMA prep calls will
 | |
|  * fail. Today davinci-pcm is the only user of this driver and
 | |
|  * requires at least 17 slots, so we setup the default to 20.
 | |
|  */
 | |
| #define MAX_NR_SG		20
 | |
| #define EDMA_MAX_SLOTS		MAX_NR_SG
 | |
| #define EDMA_DESCRIPTORS	16
 | |
| 
 | |
| #define EDMA_CHANNEL_ANY		-1	/* for edma_alloc_channel() */
 | |
| #define EDMA_SLOT_ANY			-1	/* for edma_alloc_slot() */
 | |
| #define EDMA_CONT_PARAMS_ANY		 1001
 | |
| #define EDMA_CONT_PARAMS_FIXED_EXACT	 1002
 | |
| #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
 | |
| 
 | |
| /*
 | |
|  * 64bit array registers are split into two 32bit registers:
 | |
|  * reg0: channel/event 0-31
 | |
|  * reg1: channel/event 32-63
 | |
|  *
 | |
|  * bit 5 in the channel number tells the array index (0/1)
 | |
|  * bit 0-4 (0x1f) is the bit offset within the register
 | |
|  */
 | |
| #define EDMA_REG_ARRAY_INDEX(channel)	((channel) >> 5)
 | |
| #define EDMA_CHANNEL_BIT(channel)	(BIT((channel) & 0x1f))
 | |
| 
 | |
| /* PaRAM slots are laid out like this */
 | |
| struct edmacc_param {
 | |
| 	u32 opt;
 | |
| 	u32 src;
 | |
| 	u32 a_b_cnt;
 | |
| 	u32 dst;
 | |
| 	u32 src_dst_bidx;
 | |
| 	u32 link_bcntrld;
 | |
| 	u32 src_dst_cidx;
 | |
| 	u32 ccnt;
 | |
| } __packed;
 | |
| 
 | |
| /* fields in edmacc_param.opt */
 | |
| #define SAM		BIT(0)
 | |
| #define DAM		BIT(1)
 | |
| #define SYNCDIM		BIT(2)
 | |
| #define STATIC		BIT(3)
 | |
| #define EDMA_FWID	(0x07 << 8)
 | |
| #define TCCMODE		BIT(11)
 | |
| #define EDMA_TCC(t)	((t) << 12)
 | |
| #define TCINTEN		BIT(20)
 | |
| #define ITCINTEN	BIT(21)
 | |
| #define TCCHEN		BIT(22)
 | |
| #define ITCCHEN		BIT(23)
 | |
| 
 | |
| struct edma_pset {
 | |
| 	u32				len;
 | |
| 	dma_addr_t			addr;
 | |
| 	struct edmacc_param		param;
 | |
| };
 | |
| 
 | |
| struct edma_desc {
 | |
| 	struct virt_dma_desc		vdesc;
 | |
| 	struct list_head		node;
 | |
| 	enum dma_transfer_direction	direction;
 | |
| 	int				cyclic;
 | |
| 	bool				polled;
 | |
| 	int				absync;
 | |
| 	int				pset_nr;
 | |
| 	struct edma_chan		*echan;
 | |
| 	int				processed;
 | |
| 
 | |
| 	/*
 | |
| 	 * The following 4 elements are used for residue accounting.
 | |
| 	 *
 | |
| 	 * - processed_stat: the number of SG elements we have traversed
 | |
| 	 * so far to cover accounting. This is updated directly to processed
 | |
| 	 * during edma_callback and is always <= processed, because processed
 | |
| 	 * refers to the number of pending transfer (programmed to EDMA
 | |
| 	 * controller), where as processed_stat tracks number of transfers
 | |
| 	 * accounted for so far.
 | |
| 	 *
 | |
| 	 * - residue: The amount of bytes we have left to transfer for this desc
 | |
| 	 *
 | |
| 	 * - residue_stat: The residue in bytes of data we have covered
 | |
| 	 * so far for accounting. This is updated directly to residue
 | |
| 	 * during callbacks to keep it current.
 | |
| 	 *
 | |
| 	 * - sg_len: Tracks the length of the current intermediate transfer,
 | |
| 	 * this is required to update the residue during intermediate transfer
 | |
| 	 * completion callback.
 | |
| 	 */
 | |
| 	int				processed_stat;
 | |
| 	u32				sg_len;
 | |
| 	u32				residue;
 | |
| 	u32				residue_stat;
 | |
| 
 | |
| 	struct edma_pset		pset[] __counted_by(pset_nr);
 | |
| };
 | |
| 
 | |
| struct edma_cc;
 | |
| 
 | |
| struct edma_tc {
 | |
| 	struct device_node		*node;
 | |
| 	u16				id;
 | |
| };
 | |
| 
 | |
| struct edma_chan {
 | |
| 	struct virt_dma_chan		vchan;
 | |
| 	struct list_head		node;
 | |
| 	struct edma_desc		*edesc;
 | |
| 	struct edma_cc			*ecc;
 | |
| 	struct edma_tc			*tc;
 | |
| 	int				ch_num;
 | |
| 	bool				alloced;
 | |
| 	bool				hw_triggered;
 | |
| 	int				slot[EDMA_MAX_SLOTS];
 | |
| 	int				missed;
 | |
| 	struct dma_slave_config		cfg;
 | |
| };
 | |
| 
 | |
| struct edma_cc {
 | |
| 	struct device			*dev;
 | |
| 	struct edma_soc_info		*info;
 | |
| 	void __iomem			*base;
 | |
| 	int				id;
 | |
| 	bool				legacy_mode;
 | |
| 
 | |
| 	/* eDMA3 resource information */
 | |
| 	unsigned			num_channels;
 | |
| 	unsigned			num_qchannels;
 | |
| 	unsigned			num_region;
 | |
| 	unsigned			num_slots;
 | |
| 	unsigned			num_tc;
 | |
| 	bool				chmap_exist;
 | |
| 	enum dma_event_q		default_queue;
 | |
| 
 | |
| 	unsigned int			ccint;
 | |
| 	unsigned int			ccerrint;
 | |
| 
 | |
| 	/*
 | |
| 	 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
 | |
| 	 * in use by Linux or if it is allocated to be used by DSP.
 | |
| 	 */
 | |
| 	unsigned long *slot_inuse;
 | |
| 
 | |
| 	/*
 | |
| 	 * For tracking reserved channels used by DSP.
 | |
| 	 * If the bit is cleared, the channel is allocated to be used by DSP
 | |
| 	 * and Linux must not touch it.
 | |
| 	 */
 | |
| 	unsigned long *channels_mask;
 | |
| 
 | |
| 	struct dma_device		dma_slave;
 | |
| 	struct dma_device		*dma_memcpy;
 | |
| 	struct edma_chan		*slave_chans;
 | |
| 	struct edma_tc			*tc_list;
 | |
| 	int				dummy_slot;
 | |
| };
 | |
| 
 | |
| /* dummy param set used to (re)initialize parameter RAM slots */
 | |
| static const struct edmacc_param dummy_paramset = {
 | |
| 	.link_bcntrld = 0xffff,
 | |
| 	.ccnt = 1,
 | |
| };
 | |
| 
 | |
| #define EDMA_BINDING_LEGACY	0
 | |
| #define EDMA_BINDING_TPCC	1
 | |
| static const u32 edma_binding_type[] = {
 | |
| 	[EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY,
 | |
| 	[EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC,
 | |
| };
 | |
| 
 | |
| static const struct of_device_id edma_of_ids[] = {
 | |
| 	{
 | |
| 		.compatible = "ti,edma3",
 | |
| 		.data = &edma_binding_type[EDMA_BINDING_LEGACY],
 | |
| 	},
 | |
| 	{
 | |
| 		.compatible = "ti,edma3-tpcc",
 | |
| 		.data = &edma_binding_type[EDMA_BINDING_TPCC],
 | |
| 	},
 | |
| 	{}
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, edma_of_ids);
 | |
| 
 | |
| static const struct of_device_id edma_tptc_of_ids[] = {
 | |
| 	{ .compatible = "ti,edma3-tptc", },
 | |
| 	{}
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, edma_tptc_of_ids);
 | |
| 
 | |
| static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
 | |
| {
 | |
| 	return (unsigned int)__raw_readl(ecc->base + offset);
 | |
| }
 | |
| 
 | |
| static inline void edma_write(struct edma_cc *ecc, int offset, int val)
 | |
| {
 | |
| 	__raw_writel(val, ecc->base + offset);
 | |
| }
 | |
| 
 | |
| static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
 | |
| 			       unsigned or)
 | |
| {
 | |
| 	unsigned val = edma_read(ecc, offset);
 | |
| 
 | |
| 	val &= and;
 | |
| 	val |= or;
 | |
| 	edma_write(ecc, offset, val);
 | |
| }
 | |
| 
 | |
| static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
 | |
| {
 | |
| 	unsigned val = edma_read(ecc, offset);
 | |
| 
 | |
| 	val |= or;
 | |
| 	edma_write(ecc, offset, val);
 | |
| }
 | |
| 
 | |
| static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
 | |
| 					   int i)
 | |
| {
 | |
| 	return edma_read(ecc, offset + (i << 2));
 | |
| }
 | |
| 
 | |
| static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
 | |
| 				    unsigned val)
 | |
| {
 | |
| 	edma_write(ecc, offset + (i << 2), val);
 | |
| }
 | |
| 
 | |
| static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
 | |
| 				     unsigned and, unsigned or)
 | |
| {
 | |
| 	edma_modify(ecc, offset + (i << 2), and, or);
 | |
| }
 | |
| 
 | |
| static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
 | |
| 				  unsigned or)
 | |
| {
 | |
| 	edma_or(ecc, offset + ((i * 2 + j) << 2), or);
 | |
| }
 | |
| 
 | |
| static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
 | |
| 				     int j, unsigned val)
 | |
| {
 | |
| 	edma_write(ecc, offset + ((i * 2 + j) << 2), val);
 | |
| }
 | |
| 
 | |
| static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
 | |
| 						   int offset, int i)
 | |
| {
 | |
| 	return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
 | |
| }
 | |
| 
 | |
| static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
 | |
| 				      unsigned val)
 | |
| {
 | |
| 	edma_write(ecc, EDMA_SHADOW0 + offset, val);
 | |
| }
 | |
| 
 | |
| static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
 | |
| 					    int i, unsigned val)
 | |
| {
 | |
| 	edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
 | |
| }
 | |
| 
 | |
| static inline void edma_param_modify(struct edma_cc *ecc, int offset,
 | |
| 				     int param_no, unsigned and, unsigned or)
 | |
| {
 | |
| 	edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
 | |
| }
 | |
| 
 | |
| static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
 | |
| 					  int priority)
 | |
| {
 | |
| 	int bit = queue_no * 4;
 | |
| 
 | |
| 	edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
 | |
| }
 | |
| 
 | |
| static void edma_set_chmap(struct edma_chan *echan, int slot)
 | |
| {
 | |
| 	struct edma_cc *ecc = echan->ecc;
 | |
| 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 | |
| 
 | |
| 	if (ecc->chmap_exist) {
 | |
| 		slot = EDMA_CHAN_SLOT(slot);
 | |
| 		edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
 | |
| {
 | |
| 	struct edma_cc *ecc = echan->ecc;
 | |
| 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 | |
| 	int idx = EDMA_REG_ARRAY_INDEX(channel);
 | |
| 	int ch_bit = EDMA_CHANNEL_BIT(channel);
 | |
| 
 | |
| 	if (enable) {
 | |
| 		edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
 | |
| 		edma_shadow0_write_array(ecc, SH_IESR, idx, ch_bit);
 | |
| 	} else {
 | |
| 		edma_shadow0_write_array(ecc, SH_IECR, idx, ch_bit);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * paRAM slot management functions
 | |
|  */
 | |
| static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
 | |
| 			    const struct edmacc_param *param)
 | |
| {
 | |
| 	slot = EDMA_CHAN_SLOT(slot);
 | |
| 	if (slot >= ecc->num_slots)
 | |
| 		return;
 | |
| 	memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
 | |
| }
 | |
| 
 | |
| static int edma_read_slot(struct edma_cc *ecc, unsigned slot,
 | |
| 			   struct edmacc_param *param)
 | |
| {
 | |
| 	slot = EDMA_CHAN_SLOT(slot);
 | |
| 	if (slot >= ecc->num_slots)
 | |
| 		return -EINVAL;
 | |
| 	memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * edma_alloc_slot - allocate DMA parameter RAM
 | |
|  * @ecc: pointer to edma_cc struct
 | |
|  * @slot: specific slot to allocate; negative for "any unused slot"
 | |
|  *
 | |
|  * This allocates a parameter RAM slot, initializing it to hold a
 | |
|  * dummy transfer.  Slots allocated using this routine have not been
 | |
|  * mapped to a hardware DMA channel, and will normally be used by
 | |
|  * linking to them from a slot associated with a DMA channel.
 | |
|  *
 | |
|  * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
 | |
|  * slots may be allocated on behalf of DSP firmware.
 | |
|  *
 | |
|  * Returns the number of the slot, else negative errno.
 | |
|  */
 | |
| static int edma_alloc_slot(struct edma_cc *ecc, int slot)
 | |
| {
 | |
| 	if (slot >= 0) {
 | |
| 		slot = EDMA_CHAN_SLOT(slot);
 | |
| 		/* Requesting entry paRAM slot for a HW triggered channel. */
 | |
| 		if (ecc->chmap_exist && slot < ecc->num_channels)
 | |
| 			slot = EDMA_SLOT_ANY;
 | |
| 	}
 | |
| 
 | |
| 	if (slot < 0) {
 | |
| 		if (ecc->chmap_exist)
 | |
| 			slot = 0;
 | |
| 		else
 | |
| 			slot = ecc->num_channels;
 | |
| 		for (;;) {
 | |
| 			slot = find_next_zero_bit(ecc->slot_inuse,
 | |
| 						  ecc->num_slots,
 | |
| 						  slot);
 | |
| 			if (slot == ecc->num_slots)
 | |
| 				return -ENOMEM;
 | |
| 			if (!test_and_set_bit(slot, ecc->slot_inuse))
 | |
| 				break;
 | |
| 		}
 | |
| 	} else if (slot >= ecc->num_slots) {
 | |
| 		return -EINVAL;
 | |
| 	} else if (test_and_set_bit(slot, ecc->slot_inuse)) {
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	edma_write_slot(ecc, slot, &dummy_paramset);
 | |
| 
 | |
| 	return EDMA_CTLR_CHAN(ecc->id, slot);
 | |
| }
 | |
| 
 | |
| static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
 | |
| {
 | |
| 	slot = EDMA_CHAN_SLOT(slot);
 | |
| 	if (slot >= ecc->num_slots)
 | |
| 		return;
 | |
| 
 | |
| 	edma_write_slot(ecc, slot, &dummy_paramset);
 | |
| 	clear_bit(slot, ecc->slot_inuse);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * edma_link - link one parameter RAM slot to another
 | |
|  * @ecc: pointer to edma_cc struct
 | |
|  * @from: parameter RAM slot originating the link
 | |
|  * @to: parameter RAM slot which is the link target
 | |
|  *
 | |
|  * The originating slot should not be part of any active DMA transfer.
 | |
|  */
 | |
| static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
 | |
| {
 | |
| 	if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
 | |
| 		dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
 | |
| 
 | |
| 	from = EDMA_CHAN_SLOT(from);
 | |
| 	to = EDMA_CHAN_SLOT(to);
 | |
| 	if (from >= ecc->num_slots || to >= ecc->num_slots)
 | |
| 		return;
 | |
| 
 | |
| 	edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
 | |
| 			  PARM_OFFSET(to));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * edma_get_position - returns the current transfer point
 | |
|  * @ecc: pointer to edma_cc struct
 | |
|  * @slot: parameter RAM slot being examined
 | |
|  * @dst:  true selects the dest position, false the source
 | |
|  *
 | |
|  * Returns the position of the current active slot
 | |
|  */
 | |
| static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
 | |
| 				    bool dst)
 | |
| {
 | |
| 	u32 offs;
 | |
| 
 | |
| 	slot = EDMA_CHAN_SLOT(slot);
 | |
| 	offs = PARM_OFFSET(slot);
 | |
| 	offs += dst ? PARM_DST : PARM_SRC;
 | |
| 
 | |
| 	return edma_read(ecc, offs);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Channels with event associations will be triggered by their hardware
 | |
|  * events, and channels without such associations will be triggered by
 | |
|  * software.  (At this writing there is no interface for using software
 | |
|  * triggers except with channels that don't support hardware triggers.)
 | |
|  */
 | |
| static void edma_start(struct edma_chan *echan)
 | |
| {
 | |
| 	struct edma_cc *ecc = echan->ecc;
 | |
| 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 | |
| 	int idx = EDMA_REG_ARRAY_INDEX(channel);
 | |
| 	int ch_bit = EDMA_CHANNEL_BIT(channel);
 | |
| 
 | |
| 	if (!echan->hw_triggered) {
 | |
| 		/* EDMA channels without event association */
 | |
| 		dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
 | |
| 			edma_shadow0_read_array(ecc, SH_ESR, idx));
 | |
| 		edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
 | |
| 	} else {
 | |
| 		/* EDMA channel with event association */
 | |
| 		dev_dbg(ecc->dev, "ER%d %08x\n", idx,
 | |
| 			edma_shadow0_read_array(ecc, SH_ER, idx));
 | |
| 		/* Clear any pending event or error */
 | |
| 		edma_write_array(ecc, EDMA_ECR, idx, ch_bit);
 | |
| 		edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
 | |
| 		/* Clear any SER */
 | |
| 		edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
 | |
| 		edma_shadow0_write_array(ecc, SH_EESR, idx, ch_bit);
 | |
| 		dev_dbg(ecc->dev, "EER%d %08x\n", idx,
 | |
| 			edma_shadow0_read_array(ecc, SH_EER, idx));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void edma_stop(struct edma_chan *echan)
 | |
| {
 | |
| 	struct edma_cc *ecc = echan->ecc;
 | |
| 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 | |
| 	int idx = EDMA_REG_ARRAY_INDEX(channel);
 | |
| 	int ch_bit = EDMA_CHANNEL_BIT(channel);
 | |
| 
 | |
| 	edma_shadow0_write_array(ecc, SH_EECR, idx, ch_bit);
 | |
| 	edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
 | |
| 	edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
 | |
| 	edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
 | |
| 
 | |
| 	/* clear possibly pending completion interrupt */
 | |
| 	edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
 | |
| 
 | |
| 	dev_dbg(ecc->dev, "EER%d %08x\n", idx,
 | |
| 		edma_shadow0_read_array(ecc, SH_EER, idx));
 | |
| 
 | |
| 	/* REVISIT:  consider guarding against inappropriate event
 | |
| 	 * chaining by overwriting with dummy_paramset.
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Temporarily disable EDMA hardware events on the specified channel,
 | |
|  * preventing them from triggering new transfers
 | |
|  */
 | |
| static void edma_pause(struct edma_chan *echan)
 | |
| {
 | |
| 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 | |
| 
 | |
| 	edma_shadow0_write_array(echan->ecc, SH_EECR,
 | |
| 				 EDMA_REG_ARRAY_INDEX(channel),
 | |
| 				 EDMA_CHANNEL_BIT(channel));
 | |
| }
 | |
| 
 | |
| /* Re-enable EDMA hardware events on the specified channel.  */
 | |
| static void edma_resume(struct edma_chan *echan)
 | |
| {
 | |
| 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 | |
| 
 | |
| 	edma_shadow0_write_array(echan->ecc, SH_EESR,
 | |
| 				 EDMA_REG_ARRAY_INDEX(channel),
 | |
| 				 EDMA_CHANNEL_BIT(channel));
 | |
| }
 | |
| 
 | |
| static void edma_trigger_channel(struct edma_chan *echan)
 | |
| {
 | |
| 	struct edma_cc *ecc = echan->ecc;
 | |
| 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 | |
| 	int idx = EDMA_REG_ARRAY_INDEX(channel);
 | |
| 	int ch_bit = EDMA_CHANNEL_BIT(channel);
 | |
| 
 | |
| 	edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
 | |
| 
 | |
| 	dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
 | |
| 		edma_shadow0_read_array(ecc, SH_ESR, idx));
 | |
| }
 | |
| 
 | |
| static void edma_clean_channel(struct edma_chan *echan)
 | |
| {
 | |
| 	struct edma_cc *ecc = echan->ecc;
 | |
| 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 | |
| 	int idx = EDMA_REG_ARRAY_INDEX(channel);
 | |
| 	int ch_bit = EDMA_CHANNEL_BIT(channel);
 | |
| 
 | |
| 	dev_dbg(ecc->dev, "EMR%d %08x\n", idx,
 | |
| 		edma_read_array(ecc, EDMA_EMR, idx));
 | |
| 	edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
 | |
| 	/* Clear the corresponding EMR bits */
 | |
| 	edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
 | |
| 	/* Clear any SER */
 | |
| 	edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
 | |
| 	edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
 | |
| }
 | |
| 
 | |
| /* Move channel to a specific event queue */
 | |
| static void edma_assign_channel_eventq(struct edma_chan *echan,
 | |
| 				       enum dma_event_q eventq_no)
 | |
| {
 | |
| 	struct edma_cc *ecc = echan->ecc;
 | |
| 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 | |
| 	int bit = (channel & 0x7) * 4;
 | |
| 
 | |
| 	/* default to low priority queue */
 | |
| 	if (eventq_no == EVENTQ_DEFAULT)
 | |
| 		eventq_no = ecc->default_queue;
 | |
| 	if (eventq_no >= ecc->num_tc)
 | |
| 		return;
 | |
| 
 | |
| 	eventq_no &= 7;
 | |
| 	edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
 | |
| 			  eventq_no << bit);
 | |
| }
 | |
| 
 | |
| static int edma_alloc_channel(struct edma_chan *echan,
 | |
| 			      enum dma_event_q eventq_no)
 | |
| {
 | |
| 	struct edma_cc *ecc = echan->ecc;
 | |
| 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 | |
| 
 | |
| 	if (!test_bit(echan->ch_num, ecc->channels_mask)) {
 | |
| 		dev_err(ecc->dev, "Channel%d is reserved, can not be used!\n",
 | |
| 			echan->ch_num);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* ensure access through shadow region 0 */
 | |
| 	edma_or_array2(ecc, EDMA_DRAE, 0, EDMA_REG_ARRAY_INDEX(channel),
 | |
| 		       EDMA_CHANNEL_BIT(channel));
 | |
| 
 | |
| 	/* ensure no events are pending */
 | |
| 	edma_stop(echan);
 | |
| 
 | |
| 	edma_setup_interrupt(echan, true);
 | |
| 
 | |
| 	edma_assign_channel_eventq(echan, eventq_no);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void edma_free_channel(struct edma_chan *echan)
 | |
| {
 | |
| 	/* ensure no events are pending */
 | |
| 	edma_stop(echan);
 | |
| 	/* REVISIT should probably take out of shadow region 0 */
 | |
| 	edma_setup_interrupt(echan, false);
 | |
| }
 | |
| 
 | |
| static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
 | |
| {
 | |
| 	return container_of(c, struct edma_chan, vchan.chan);
 | |
| }
 | |
| 
 | |
| static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
 | |
| {
 | |
| 	return container_of(tx, struct edma_desc, vdesc.tx);
 | |
| }
 | |
| 
 | |
| static void edma_desc_free(struct virt_dma_desc *vdesc)
 | |
| {
 | |
| 	kfree(container_of(vdesc, struct edma_desc, vdesc));
 | |
| }
 | |
| 
 | |
| /* Dispatch a queued descriptor to the controller (caller holds lock) */
 | |
| static void edma_execute(struct edma_chan *echan)
 | |
| {
 | |
| 	struct edma_cc *ecc = echan->ecc;
 | |
| 	struct virt_dma_desc *vdesc;
 | |
| 	struct edma_desc *edesc;
 | |
| 	struct device *dev = echan->vchan.chan.device->dev;
 | |
| 	int i, j, left, nslots;
 | |
| 
 | |
| 	if (!echan->edesc) {
 | |
| 		/* Setup is needed for the first transfer */
 | |
| 		vdesc = vchan_next_desc(&echan->vchan);
 | |
| 		if (!vdesc)
 | |
| 			return;
 | |
| 		list_del(&vdesc->node);
 | |
| 		echan->edesc = to_edma_desc(&vdesc->tx);
 | |
| 	}
 | |
| 
 | |
| 	edesc = echan->edesc;
 | |
| 
 | |
| 	/* Find out how many left */
 | |
| 	left = edesc->pset_nr - edesc->processed;
 | |
| 	nslots = min(MAX_NR_SG, left);
 | |
| 	edesc->sg_len = 0;
 | |
| 
 | |
| 	/* Write descriptor PaRAM set(s) */
 | |
| 	for (i = 0; i < nslots; i++) {
 | |
| 		j = i + edesc->processed;
 | |
| 		edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
 | |
| 		edesc->sg_len += edesc->pset[j].len;
 | |
| 		dev_vdbg(dev,
 | |
| 			 "\n pset[%d]:\n"
 | |
| 			 "  chnum\t%d\n"
 | |
| 			 "  slot\t%d\n"
 | |
| 			 "  opt\t%08x\n"
 | |
| 			 "  src\t%08x\n"
 | |
| 			 "  dst\t%08x\n"
 | |
| 			 "  abcnt\t%08x\n"
 | |
| 			 "  ccnt\t%08x\n"
 | |
| 			 "  bidx\t%08x\n"
 | |
| 			 "  cidx\t%08x\n"
 | |
| 			 "  lkrld\t%08x\n",
 | |
| 			 j, echan->ch_num, echan->slot[i],
 | |
| 			 edesc->pset[j].param.opt,
 | |
| 			 edesc->pset[j].param.src,
 | |
| 			 edesc->pset[j].param.dst,
 | |
| 			 edesc->pset[j].param.a_b_cnt,
 | |
| 			 edesc->pset[j].param.ccnt,
 | |
| 			 edesc->pset[j].param.src_dst_bidx,
 | |
| 			 edesc->pset[j].param.src_dst_cidx,
 | |
| 			 edesc->pset[j].param.link_bcntrld);
 | |
| 		/* Link to the previous slot if not the last set */
 | |
| 		if (i != (nslots - 1))
 | |
| 			edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
 | |
| 	}
 | |
| 
 | |
| 	edesc->processed += nslots;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is either the last set in a set of SG-list transactions
 | |
| 	 * then setup a link to the dummy slot, this results in all future
 | |
| 	 * events being absorbed and that's OK because we're done
 | |
| 	 */
 | |
| 	if (edesc->processed == edesc->pset_nr) {
 | |
| 		if (edesc->cyclic)
 | |
| 			edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
 | |
| 		else
 | |
| 			edma_link(ecc, echan->slot[nslots - 1],
 | |
| 				  echan->ecc->dummy_slot);
 | |
| 	}
 | |
| 
 | |
| 	if (echan->missed) {
 | |
| 		/*
 | |
| 		 * This happens due to setup times between intermediate
 | |
| 		 * transfers in long SG lists which have to be broken up into
 | |
| 		 * transfers of MAX_NR_SG
 | |
| 		 */
 | |
| 		dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
 | |
| 		edma_clean_channel(echan);
 | |
| 		edma_stop(echan);
 | |
| 		edma_start(echan);
 | |
| 		edma_trigger_channel(echan);
 | |
| 		echan->missed = 0;
 | |
| 	} else if (edesc->processed <= MAX_NR_SG) {
 | |
| 		dev_dbg(dev, "first transfer starting on channel %d\n",
 | |
| 			echan->ch_num);
 | |
| 		edma_start(echan);
 | |
| 	} else {
 | |
| 		dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
 | |
| 			echan->ch_num, edesc->processed);
 | |
| 		edma_resume(echan);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int edma_terminate_all(struct dma_chan *chan)
 | |
| {
 | |
| 	struct edma_chan *echan = to_edma_chan(chan);
 | |
| 	unsigned long flags;
 | |
| 	LIST_HEAD(head);
 | |
| 
 | |
| 	spin_lock_irqsave(&echan->vchan.lock, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Stop DMA activity: we assume the callback will not be called
 | |
| 	 * after edma_dma() returns (even if it does, it will see
 | |
| 	 * echan->edesc is NULL and exit.)
 | |
| 	 */
 | |
| 	if (echan->edesc) {
 | |
| 		edma_stop(echan);
 | |
| 		/* Move the cyclic channel back to default queue */
 | |
| 		if (!echan->tc && echan->edesc->cyclic)
 | |
| 			edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
 | |
| 
 | |
| 		vchan_terminate_vdesc(&echan->edesc->vdesc);
 | |
| 		echan->edesc = NULL;
 | |
| 	}
 | |
| 
 | |
| 	vchan_get_all_descriptors(&echan->vchan, &head);
 | |
| 	spin_unlock_irqrestore(&echan->vchan.lock, flags);
 | |
| 	vchan_dma_desc_free_list(&echan->vchan, &head);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void edma_synchronize(struct dma_chan *chan)
 | |
| {
 | |
| 	struct edma_chan *echan = to_edma_chan(chan);
 | |
| 
 | |
| 	vchan_synchronize(&echan->vchan);
 | |
| }
 | |
| 
 | |
| static int edma_slave_config(struct dma_chan *chan,
 | |
| 	struct dma_slave_config *cfg)
 | |
| {
 | |
| 	struct edma_chan *echan = to_edma_chan(chan);
 | |
| 
 | |
| 	if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
 | |
| 	    cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (cfg->src_maxburst > chan->device->max_burst ||
 | |
| 	    cfg->dst_maxburst > chan->device->max_burst)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int edma_dma_pause(struct dma_chan *chan)
 | |
| {
 | |
| 	struct edma_chan *echan = to_edma_chan(chan);
 | |
| 
 | |
| 	if (!echan->edesc)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	edma_pause(echan);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int edma_dma_resume(struct dma_chan *chan)
 | |
| {
 | |
| 	struct edma_chan *echan = to_edma_chan(chan);
 | |
| 
 | |
| 	edma_resume(echan);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A PaRAM set configuration abstraction used by other modes
 | |
|  * @chan: Channel who's PaRAM set we're configuring
 | |
|  * @pset: PaRAM set to initialize and setup.
 | |
|  * @src_addr: Source address of the DMA
 | |
|  * @dst_addr: Destination address of the DMA
 | |
|  * @burst: In units of dev_width, how much to send
 | |
|  * @dev_width: How much is the dev_width
 | |
|  * @dma_length: Total length of the DMA transfer
 | |
|  * @direction: Direction of the transfer
 | |
|  */
 | |
| static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
 | |
| 			    dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
 | |
| 			    unsigned int acnt, unsigned int dma_length,
 | |
| 			    enum dma_transfer_direction direction)
 | |
| {
 | |
| 	struct edma_chan *echan = to_edma_chan(chan);
 | |
| 	struct device *dev = chan->device->dev;
 | |
| 	struct edmacc_param *param = &epset->param;
 | |
| 	int bcnt, ccnt, cidx;
 | |
| 	int src_bidx, dst_bidx, src_cidx, dst_cidx;
 | |
| 	int absync;
 | |
| 
 | |
| 	/* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
 | |
| 	if (!burst)
 | |
| 		burst = 1;
 | |
| 	/*
 | |
| 	 * If the maxburst is equal to the fifo width, use
 | |
| 	 * A-synced transfers. This allows for large contiguous
 | |
| 	 * buffer transfers using only one PaRAM set.
 | |
| 	 */
 | |
| 	if (burst == 1) {
 | |
| 		/*
 | |
| 		 * For the A-sync case, bcnt and ccnt are the remainder
 | |
| 		 * and quotient respectively of the division of:
 | |
| 		 * (dma_length / acnt) by (SZ_64K -1). This is so
 | |
| 		 * that in case bcnt over flows, we have ccnt to use.
 | |
| 		 * Note: In A-sync transfer only, bcntrld is used, but it
 | |
| 		 * only applies for sg_dma_len(sg) >= SZ_64K.
 | |
| 		 * In this case, the best way adopted is- bccnt for the
 | |
| 		 * first frame will be the remainder below. Then for
 | |
| 		 * every successive frame, bcnt will be SZ_64K-1. This
 | |
| 		 * is assured as bcntrld = 0xffff in end of function.
 | |
| 		 */
 | |
| 		absync = false;
 | |
| 		ccnt = dma_length / acnt / (SZ_64K - 1);
 | |
| 		bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
 | |
| 		/*
 | |
| 		 * If bcnt is non-zero, we have a remainder and hence an
 | |
| 		 * extra frame to transfer, so increment ccnt.
 | |
| 		 */
 | |
| 		if (bcnt)
 | |
| 			ccnt++;
 | |
| 		else
 | |
| 			bcnt = SZ_64K - 1;
 | |
| 		cidx = acnt;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * If maxburst is greater than the fifo address_width,
 | |
| 		 * use AB-synced transfers where A count is the fifo
 | |
| 		 * address_width and B count is the maxburst. In this
 | |
| 		 * case, we are limited to transfers of C count frames
 | |
| 		 * of (address_width * maxburst) where C count is limited
 | |
| 		 * to SZ_64K-1. This places an upper bound on the length
 | |
| 		 * of an SG segment that can be handled.
 | |
| 		 */
 | |
| 		absync = true;
 | |
| 		bcnt = burst;
 | |
| 		ccnt = dma_length / (acnt * bcnt);
 | |
| 		if (ccnt > (SZ_64K - 1)) {
 | |
| 			dev_err(dev, "Exceeded max SG segment size\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		cidx = acnt * bcnt;
 | |
| 	}
 | |
| 
 | |
| 	epset->len = dma_length;
 | |
| 
 | |
| 	if (direction == DMA_MEM_TO_DEV) {
 | |
| 		src_bidx = acnt;
 | |
| 		src_cidx = cidx;
 | |
| 		dst_bidx = 0;
 | |
| 		dst_cidx = 0;
 | |
| 		epset->addr = src_addr;
 | |
| 	} else if (direction == DMA_DEV_TO_MEM)  {
 | |
| 		src_bidx = 0;
 | |
| 		src_cidx = 0;
 | |
| 		dst_bidx = acnt;
 | |
| 		dst_cidx = cidx;
 | |
| 		epset->addr = dst_addr;
 | |
| 	} else if (direction == DMA_MEM_TO_MEM)  {
 | |
| 		src_bidx = acnt;
 | |
| 		src_cidx = cidx;
 | |
| 		dst_bidx = acnt;
 | |
| 		dst_cidx = cidx;
 | |
| 		epset->addr = src_addr;
 | |
| 	} else {
 | |
| 		dev_err(dev, "%s: direction not implemented yet\n", __func__);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
 | |
| 	/* Configure A or AB synchronized transfers */
 | |
| 	if (absync)
 | |
| 		param->opt |= SYNCDIM;
 | |
| 
 | |
| 	param->src = src_addr;
 | |
| 	param->dst = dst_addr;
 | |
| 
 | |
| 	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
 | |
| 	param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
 | |
| 
 | |
| 	param->a_b_cnt = bcnt << 16 | acnt;
 | |
| 	param->ccnt = ccnt;
 | |
| 	/*
 | |
| 	 * Only time when (bcntrld) auto reload is required is for
 | |
| 	 * A-sync case, and in this case, a requirement of reload value
 | |
| 	 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
 | |
| 	 * and then later will be populated by edma_execute.
 | |
| 	 */
 | |
| 	param->link_bcntrld = 0xffffffff;
 | |
| 	return absync;
 | |
| }
 | |
| 
 | |
| static struct dma_async_tx_descriptor *edma_prep_slave_sg(
 | |
| 	struct dma_chan *chan, struct scatterlist *sgl,
 | |
| 	unsigned int sg_len, enum dma_transfer_direction direction,
 | |
| 	unsigned long tx_flags, void *context)
 | |
| {
 | |
| 	struct edma_chan *echan = to_edma_chan(chan);
 | |
| 	struct device *dev = chan->device->dev;
 | |
| 	struct edma_desc *edesc;
 | |
| 	dma_addr_t src_addr = 0, dst_addr = 0;
 | |
| 	enum dma_slave_buswidth dev_width;
 | |
| 	u32 burst;
 | |
| 	struct scatterlist *sg;
 | |
| 	int i, nslots, ret;
 | |
| 
 | |
| 	if (unlikely(!echan || !sgl || !sg_len))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (direction == DMA_DEV_TO_MEM) {
 | |
| 		src_addr = echan->cfg.src_addr;
 | |
| 		dev_width = echan->cfg.src_addr_width;
 | |
| 		burst = echan->cfg.src_maxburst;
 | |
| 	} else if (direction == DMA_MEM_TO_DEV) {
 | |
| 		dst_addr = echan->cfg.dst_addr;
 | |
| 		dev_width = echan->cfg.dst_addr_width;
 | |
| 		burst = echan->cfg.dst_maxburst;
 | |
| 	} else {
 | |
| 		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
 | |
| 		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC);
 | |
| 	if (!edesc)
 | |
| 		return NULL;
 | |
| 
 | |
| 	edesc->pset_nr = sg_len;
 | |
| 	edesc->residue = 0;
 | |
| 	edesc->direction = direction;
 | |
| 	edesc->echan = echan;
 | |
| 
 | |
| 	/* Allocate a PaRAM slot, if needed */
 | |
| 	nslots = min_t(unsigned, MAX_NR_SG, sg_len);
 | |
| 
 | |
| 	for (i = 0; i < nslots; i++) {
 | |
| 		if (echan->slot[i] < 0) {
 | |
| 			echan->slot[i] =
 | |
| 				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
 | |
| 			if (echan->slot[i] < 0) {
 | |
| 				kfree(edesc);
 | |
| 				dev_err(dev, "%s: Failed to allocate slot\n",
 | |
| 					__func__);
 | |
| 				return NULL;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Configure PaRAM sets for each SG */
 | |
| 	for_each_sg(sgl, sg, sg_len, i) {
 | |
| 		/* Get address for each SG */
 | |
| 		if (direction == DMA_DEV_TO_MEM)
 | |
| 			dst_addr = sg_dma_address(sg);
 | |
| 		else
 | |
| 			src_addr = sg_dma_address(sg);
 | |
| 
 | |
| 		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
 | |
| 				       dst_addr, burst, dev_width,
 | |
| 				       sg_dma_len(sg), direction);
 | |
| 		if (ret < 0) {
 | |
| 			kfree(edesc);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		edesc->absync = ret;
 | |
| 		edesc->residue += sg_dma_len(sg);
 | |
| 
 | |
| 		if (i == sg_len - 1)
 | |
| 			/* Enable completion interrupt */
 | |
| 			edesc->pset[i].param.opt |= TCINTEN;
 | |
| 		else if (!((i+1) % MAX_NR_SG))
 | |
| 			/*
 | |
| 			 * Enable early completion interrupt for the
 | |
| 			 * intermediateset. In this case the driver will be
 | |
| 			 * notified when the paRAM set is submitted to TC. This
 | |
| 			 * will allow more time to set up the next set of slots.
 | |
| 			 */
 | |
| 			edesc->pset[i].param.opt |= (TCINTEN | TCCMODE);
 | |
| 	}
 | |
| 	edesc->residue_stat = edesc->residue;
 | |
| 
 | |
| 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
 | |
| }
 | |
| 
 | |
| static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
 | |
| 	struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
 | |
| 	size_t len, unsigned long tx_flags)
 | |
| {
 | |
| 	int ret, nslots;
 | |
| 	struct edma_desc *edesc;
 | |
| 	struct device *dev = chan->device->dev;
 | |
| 	struct edma_chan *echan = to_edma_chan(chan);
 | |
| 	unsigned int width, pset_len, array_size;
 | |
| 
 | |
| 	if (unlikely(!echan || !len))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* Align the array size (acnt block) with the transfer properties */
 | |
| 	switch (__ffs((src | dest | len))) {
 | |
| 	case 0:
 | |
| 		array_size = SZ_32K - 1;
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		array_size = SZ_32K - 2;
 | |
| 		break;
 | |
| 	default:
 | |
| 		array_size = SZ_32K - 4;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (len < SZ_64K) {
 | |
| 		/*
 | |
| 		 * Transfer size less than 64K can be handled with one paRAM
 | |
| 		 * slot and with one burst.
 | |
| 		 * ACNT = length
 | |
| 		 */
 | |
| 		width = len;
 | |
| 		pset_len = len;
 | |
| 		nslots = 1;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Transfer size bigger than 64K will be handled with maximum of
 | |
| 		 * two paRAM slots.
 | |
| 		 * slot1: (full_length / 32767) times 32767 bytes bursts.
 | |
| 		 *	  ACNT = 32767, length1: (full_length / 32767) * 32767
 | |
| 		 * slot2: the remaining amount of data after slot1.
 | |
| 		 *	  ACNT = full_length - length1, length2 = ACNT
 | |
| 		 *
 | |
| 		 * When the full_length is a multiple of 32767 one slot can be
 | |
| 		 * used to complete the transfer.
 | |
| 		 */
 | |
| 		width = array_size;
 | |
| 		pset_len = rounddown(len, width);
 | |
| 		/* One slot is enough for lengths multiple of (SZ_32K -1) */
 | |
| 		if (unlikely(pset_len == len))
 | |
| 			nslots = 1;
 | |
| 		else
 | |
| 			nslots = 2;
 | |
| 	}
 | |
| 
 | |
| 	edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
 | |
| 	if (!edesc)
 | |
| 		return NULL;
 | |
| 
 | |
| 	edesc->pset_nr = nslots;
 | |
| 	edesc->residue = edesc->residue_stat = len;
 | |
| 	edesc->direction = DMA_MEM_TO_MEM;
 | |
| 	edesc->echan = echan;
 | |
| 
 | |
| 	ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
 | |
| 			       width, pset_len, DMA_MEM_TO_MEM);
 | |
| 	if (ret < 0) {
 | |
| 		kfree(edesc);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	edesc->absync = ret;
 | |
| 
 | |
| 	edesc->pset[0].param.opt |= ITCCHEN;
 | |
| 	if (nslots == 1) {
 | |
| 		/* Enable transfer complete interrupt if requested */
 | |
| 		if (tx_flags & DMA_PREP_INTERRUPT)
 | |
| 			edesc->pset[0].param.opt |= TCINTEN;
 | |
| 	} else {
 | |
| 		/* Enable transfer complete chaining for the first slot */
 | |
| 		edesc->pset[0].param.opt |= TCCHEN;
 | |
| 
 | |
| 		if (echan->slot[1] < 0) {
 | |
| 			echan->slot[1] = edma_alloc_slot(echan->ecc,
 | |
| 							 EDMA_SLOT_ANY);
 | |
| 			if (echan->slot[1] < 0) {
 | |
| 				kfree(edesc);
 | |
| 				dev_err(dev, "%s: Failed to allocate slot\n",
 | |
| 					__func__);
 | |
| 				return NULL;
 | |
| 			}
 | |
| 		}
 | |
| 		dest += pset_len;
 | |
| 		src += pset_len;
 | |
| 		pset_len = width = len % array_size;
 | |
| 
 | |
| 		ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
 | |
| 				       width, pset_len, DMA_MEM_TO_MEM);
 | |
| 		if (ret < 0) {
 | |
| 			kfree(edesc);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		edesc->pset[1].param.opt |= ITCCHEN;
 | |
| 		/* Enable transfer complete interrupt if requested */
 | |
| 		if (tx_flags & DMA_PREP_INTERRUPT)
 | |
| 			edesc->pset[1].param.opt |= TCINTEN;
 | |
| 	}
 | |
| 
 | |
| 	if (!(tx_flags & DMA_PREP_INTERRUPT))
 | |
| 		edesc->polled = true;
 | |
| 
 | |
| 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
 | |
| }
 | |
| 
 | |
| static struct dma_async_tx_descriptor *
 | |
| edma_prep_dma_interleaved(struct dma_chan *chan,
 | |
| 			  struct dma_interleaved_template *xt,
 | |
| 			  unsigned long tx_flags)
 | |
| {
 | |
| 	struct device *dev = chan->device->dev;
 | |
| 	struct edma_chan *echan = to_edma_chan(chan);
 | |
| 	struct edmacc_param *param;
 | |
| 	struct edma_desc *edesc;
 | |
| 	size_t src_icg, dst_icg;
 | |
| 	int src_bidx, dst_bidx;
 | |
| 
 | |
| 	/* Slave mode is not supported */
 | |
| 	if (is_slave_direction(xt->dir))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (xt->frame_size != 1 || xt->numf == 0)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (xt->sgl[0].size > SZ_64K || xt->numf > SZ_64K)
 | |
| 		return NULL;
 | |
| 
 | |
| 	src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
 | |
| 	if (src_icg) {
 | |
| 		src_bidx = src_icg + xt->sgl[0].size;
 | |
| 	} else if (xt->src_inc) {
 | |
| 		src_bidx = xt->sgl[0].size;
 | |
| 	} else {
 | |
| 		dev_err(dev, "%s: SRC constant addressing is not supported\n",
 | |
| 			__func__);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
 | |
| 	if (dst_icg) {
 | |
| 		dst_bidx = dst_icg + xt->sgl[0].size;
 | |
| 	} else if (xt->dst_inc) {
 | |
| 		dst_bidx = xt->sgl[0].size;
 | |
| 	} else {
 | |
| 		dev_err(dev, "%s: DST constant addressing is not supported\n",
 | |
| 			__func__);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (src_bidx > SZ_64K || dst_bidx > SZ_64K)
 | |
| 		return NULL;
 | |
| 
 | |
| 	edesc = kzalloc(struct_size(edesc, pset, 1), GFP_ATOMIC);
 | |
| 	if (!edesc)
 | |
| 		return NULL;
 | |
| 
 | |
| 	edesc->direction = DMA_MEM_TO_MEM;
 | |
| 	edesc->echan = echan;
 | |
| 	edesc->pset_nr = 1;
 | |
| 
 | |
| 	param = &edesc->pset[0].param;
 | |
| 
 | |
| 	param->src = xt->src_start;
 | |
| 	param->dst = xt->dst_start;
 | |
| 	param->a_b_cnt = xt->numf << 16 | xt->sgl[0].size;
 | |
| 	param->ccnt = 1;
 | |
| 	param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
 | |
| 	param->src_dst_cidx = 0;
 | |
| 
 | |
| 	param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
 | |
| 	param->opt |= ITCCHEN;
 | |
| 	/* Enable transfer complete interrupt if requested */
 | |
| 	if (tx_flags & DMA_PREP_INTERRUPT)
 | |
| 		param->opt |= TCINTEN;
 | |
| 	else
 | |
| 		edesc->polled = true;
 | |
| 
 | |
| 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
 | |
| }
 | |
| 
 | |
| static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
 | |
| 	struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
 | |
| 	size_t period_len, enum dma_transfer_direction direction,
 | |
| 	unsigned long tx_flags)
 | |
| {
 | |
| 	struct edma_chan *echan = to_edma_chan(chan);
 | |
| 	struct device *dev = chan->device->dev;
 | |
| 	struct edma_desc *edesc;
 | |
| 	dma_addr_t src_addr, dst_addr;
 | |
| 	enum dma_slave_buswidth dev_width;
 | |
| 	bool use_intermediate = false;
 | |
| 	u32 burst;
 | |
| 	int i, ret, nslots;
 | |
| 
 | |
| 	if (unlikely(!echan || !buf_len || !period_len))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (direction == DMA_DEV_TO_MEM) {
 | |
| 		src_addr = echan->cfg.src_addr;
 | |
| 		dst_addr = buf_addr;
 | |
| 		dev_width = echan->cfg.src_addr_width;
 | |
| 		burst = echan->cfg.src_maxburst;
 | |
| 	} else if (direction == DMA_MEM_TO_DEV) {
 | |
| 		src_addr = buf_addr;
 | |
| 		dst_addr = echan->cfg.dst_addr;
 | |
| 		dev_width = echan->cfg.dst_addr_width;
 | |
| 		burst = echan->cfg.dst_maxburst;
 | |
| 	} else {
 | |
| 		dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
 | |
| 		dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(buf_len % period_len)) {
 | |
| 		dev_err(dev, "Period should be multiple of Buffer length\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	nslots = (buf_len / period_len) + 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Cyclic DMA users such as audio cannot tolerate delays introduced
 | |
| 	 * by cases where the number of periods is more than the maximum
 | |
| 	 * number of SGs the EDMA driver can handle at a time. For DMA types
 | |
| 	 * such as Slave SGs, such delays are tolerable and synchronized,
 | |
| 	 * but the synchronization is difficult to achieve with Cyclic and
 | |
| 	 * cannot be guaranteed, so we error out early.
 | |
| 	 */
 | |
| 	if (nslots > MAX_NR_SG) {
 | |
| 		/*
 | |
| 		 * If the burst and period sizes are the same, we can put
 | |
| 		 * the full buffer into a single period and activate
 | |
| 		 * intermediate interrupts. This will produce interrupts
 | |
| 		 * after each burst, which is also after each desired period.
 | |
| 		 */
 | |
| 		if (burst == period_len) {
 | |
| 			period_len = buf_len;
 | |
| 			nslots = 2;
 | |
| 			use_intermediate = true;
 | |
| 		} else {
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
 | |
| 	if (!edesc)
 | |
| 		return NULL;
 | |
| 
 | |
| 	edesc->cyclic = 1;
 | |
| 	edesc->pset_nr = nslots;
 | |
| 	edesc->residue = edesc->residue_stat = buf_len;
 | |
| 	edesc->direction = direction;
 | |
| 	edesc->echan = echan;
 | |
| 
 | |
| 	dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
 | |
| 		__func__, echan->ch_num, nslots, period_len, buf_len);
 | |
| 
 | |
| 	for (i = 0; i < nslots; i++) {
 | |
| 		/* Allocate a PaRAM slot, if needed */
 | |
| 		if (echan->slot[i] < 0) {
 | |
| 			echan->slot[i] =
 | |
| 				edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
 | |
| 			if (echan->slot[i] < 0) {
 | |
| 				kfree(edesc);
 | |
| 				dev_err(dev, "%s: Failed to allocate slot\n",
 | |
| 					__func__);
 | |
| 				return NULL;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (i == nslots - 1) {
 | |
| 			memcpy(&edesc->pset[i], &edesc->pset[0],
 | |
| 			       sizeof(edesc->pset[0]));
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
 | |
| 				       dst_addr, burst, dev_width, period_len,
 | |
| 				       direction);
 | |
| 		if (ret < 0) {
 | |
| 			kfree(edesc);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		if (direction == DMA_DEV_TO_MEM)
 | |
| 			dst_addr += period_len;
 | |
| 		else
 | |
| 			src_addr += period_len;
 | |
| 
 | |
| 		dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
 | |
| 		dev_vdbg(dev,
 | |
| 			"\n pset[%d]:\n"
 | |
| 			"  chnum\t%d\n"
 | |
| 			"  slot\t%d\n"
 | |
| 			"  opt\t%08x\n"
 | |
| 			"  src\t%08x\n"
 | |
| 			"  dst\t%08x\n"
 | |
| 			"  abcnt\t%08x\n"
 | |
| 			"  ccnt\t%08x\n"
 | |
| 			"  bidx\t%08x\n"
 | |
| 			"  cidx\t%08x\n"
 | |
| 			"  lkrld\t%08x\n",
 | |
| 			i, echan->ch_num, echan->slot[i],
 | |
| 			edesc->pset[i].param.opt,
 | |
| 			edesc->pset[i].param.src,
 | |
| 			edesc->pset[i].param.dst,
 | |
| 			edesc->pset[i].param.a_b_cnt,
 | |
| 			edesc->pset[i].param.ccnt,
 | |
| 			edesc->pset[i].param.src_dst_bidx,
 | |
| 			edesc->pset[i].param.src_dst_cidx,
 | |
| 			edesc->pset[i].param.link_bcntrld);
 | |
| 
 | |
| 		edesc->absync = ret;
 | |
| 
 | |
| 		/*
 | |
| 		 * Enable period interrupt only if it is requested
 | |
| 		 */
 | |
| 		if (tx_flags & DMA_PREP_INTERRUPT) {
 | |
| 			edesc->pset[i].param.opt |= TCINTEN;
 | |
| 
 | |
| 			/* Also enable intermediate interrupts if necessary */
 | |
| 			if (use_intermediate)
 | |
| 				edesc->pset[i].param.opt |= ITCINTEN;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Place the cyclic channel to highest priority queue */
 | |
| 	if (!echan->tc)
 | |
| 		edma_assign_channel_eventq(echan, EVENTQ_0);
 | |
| 
 | |
| 	return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
 | |
| }
 | |
| 
 | |
| static void edma_completion_handler(struct edma_chan *echan)
 | |
| {
 | |
| 	struct device *dev = echan->vchan.chan.device->dev;
 | |
| 	struct edma_desc *edesc;
 | |
| 
 | |
| 	spin_lock(&echan->vchan.lock);
 | |
| 	edesc = echan->edesc;
 | |
| 	if (edesc) {
 | |
| 		if (edesc->cyclic) {
 | |
| 			vchan_cyclic_callback(&edesc->vdesc);
 | |
| 			spin_unlock(&echan->vchan.lock);
 | |
| 			return;
 | |
| 		} else if (edesc->processed == edesc->pset_nr) {
 | |
| 			edesc->residue = 0;
 | |
| 			edma_stop(echan);
 | |
| 			vchan_cookie_complete(&edesc->vdesc);
 | |
| 			echan->edesc = NULL;
 | |
| 
 | |
| 			dev_dbg(dev, "Transfer completed on channel %d\n",
 | |
| 				echan->ch_num);
 | |
| 		} else {
 | |
| 			dev_dbg(dev, "Sub transfer completed on channel %d\n",
 | |
| 				echan->ch_num);
 | |
| 
 | |
| 			edma_pause(echan);
 | |
| 
 | |
| 			/* Update statistics for tx_status */
 | |
| 			edesc->residue -= edesc->sg_len;
 | |
| 			edesc->residue_stat = edesc->residue;
 | |
| 			edesc->processed_stat = edesc->processed;
 | |
| 		}
 | |
| 		edma_execute(echan);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&echan->vchan.lock);
 | |
| }
 | |
| 
 | |
| /* eDMA interrupt handler */
 | |
| static irqreturn_t dma_irq_handler(int irq, void *data)
 | |
| {
 | |
| 	struct edma_cc *ecc = data;
 | |
| 	int ctlr;
 | |
| 	u32 sh_ier;
 | |
| 	u32 sh_ipr;
 | |
| 	u32 bank;
 | |
| 
 | |
| 	ctlr = ecc->id;
 | |
| 	if (ctlr < 0)
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	dev_vdbg(ecc->dev, "dma_irq_handler\n");
 | |
| 
 | |
| 	sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
 | |
| 	if (!sh_ipr) {
 | |
| 		sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
 | |
| 		if (!sh_ipr)
 | |
| 			return IRQ_NONE;
 | |
| 		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
 | |
| 		bank = 1;
 | |
| 	} else {
 | |
| 		sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
 | |
| 		bank = 0;
 | |
| 	}
 | |
| 
 | |
| 	do {
 | |
| 		u32 slot;
 | |
| 		u32 channel;
 | |
| 
 | |
| 		slot = __ffs(sh_ipr);
 | |
| 		sh_ipr &= ~(BIT(slot));
 | |
| 
 | |
| 		if (sh_ier & BIT(slot)) {
 | |
| 			channel = (bank << 5) | slot;
 | |
| 			/* Clear the corresponding IPR bits */
 | |
| 			edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
 | |
| 			edma_completion_handler(&ecc->slave_chans[channel]);
 | |
| 		}
 | |
| 	} while (sh_ipr);
 | |
| 
 | |
| 	edma_shadow0_write(ecc, SH_IEVAL, 1);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static void edma_error_handler(struct edma_chan *echan)
 | |
| {
 | |
| 	struct edma_cc *ecc = echan->ecc;
 | |
| 	struct device *dev = echan->vchan.chan.device->dev;
 | |
| 	struct edmacc_param p;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!echan->edesc)
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock(&echan->vchan.lock);
 | |
| 
 | |
| 	err = edma_read_slot(ecc, echan->slot[0], &p);
 | |
| 
 | |
| 	/*
 | |
| 	 * Issue later based on missed flag which will be sure
 | |
| 	 * to happen as:
 | |
| 	 * (1) we finished transmitting an intermediate slot and
 | |
| 	 *     edma_execute is coming up.
 | |
| 	 * (2) or we finished current transfer and issue will
 | |
| 	 *     call edma_execute.
 | |
| 	 *
 | |
| 	 * Important note: issuing can be dangerous here and
 | |
| 	 * lead to some nasty recursion when we are in a NULL
 | |
| 	 * slot. So we avoid doing so and set the missed flag.
 | |
| 	 */
 | |
| 	if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) {
 | |
| 		dev_dbg(dev, "Error on null slot, setting miss\n");
 | |
| 		echan->missed = 1;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * The slot is already programmed but the event got
 | |
| 		 * missed, so its safe to issue it here.
 | |
| 		 */
 | |
| 		dev_dbg(dev, "Missed event, TRIGGERING\n");
 | |
| 		edma_clean_channel(echan);
 | |
| 		edma_stop(echan);
 | |
| 		edma_start(echan);
 | |
| 		edma_trigger_channel(echan);
 | |
| 	}
 | |
| 	spin_unlock(&echan->vchan.lock);
 | |
| }
 | |
| 
 | |
| static inline bool edma_error_pending(struct edma_cc *ecc)
 | |
| {
 | |
| 	if (edma_read_array(ecc, EDMA_EMR, 0) ||
 | |
| 	    edma_read_array(ecc, EDMA_EMR, 1) ||
 | |
| 	    edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /* eDMA error interrupt handler */
 | |
| static irqreturn_t dma_ccerr_handler(int irq, void *data)
 | |
| {
 | |
| 	struct edma_cc *ecc = data;
 | |
| 	int i, j;
 | |
| 	int ctlr;
 | |
| 	unsigned int cnt = 0;
 | |
| 	unsigned int val;
 | |
| 
 | |
| 	ctlr = ecc->id;
 | |
| 	if (ctlr < 0)
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
 | |
| 
 | |
| 	if (!edma_error_pending(ecc)) {
 | |
| 		/*
 | |
| 		 * The registers indicate no pending error event but the irq
 | |
| 		 * handler has been called.
 | |
| 		 * Ask eDMA to re-evaluate the error registers.
 | |
| 		 */
 | |
| 		dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
 | |
| 			__func__);
 | |
| 		edma_write(ecc, EDMA_EEVAL, 1);
 | |
| 		return IRQ_NONE;
 | |
| 	}
 | |
| 
 | |
| 	while (1) {
 | |
| 		/* Event missed register(s) */
 | |
| 		for (j = 0; j < 2; j++) {
 | |
| 			unsigned long emr;
 | |
| 
 | |
| 			val = edma_read_array(ecc, EDMA_EMR, j);
 | |
| 			if (!val)
 | |
| 				continue;
 | |
| 
 | |
| 			dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
 | |
| 			emr = val;
 | |
| 			for_each_set_bit(i, &emr, 32) {
 | |
| 				int k = (j << 5) + i;
 | |
| 
 | |
| 				/* Clear the corresponding EMR bits */
 | |
| 				edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
 | |
| 				/* Clear any SER */
 | |
| 				edma_shadow0_write_array(ecc, SH_SECR, j,
 | |
| 							 BIT(i));
 | |
| 				edma_error_handler(&ecc->slave_chans[k]);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		val = edma_read(ecc, EDMA_QEMR);
 | |
| 		if (val) {
 | |
| 			dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
 | |
| 			/* Not reported, just clear the interrupt reason. */
 | |
| 			edma_write(ecc, EDMA_QEMCR, val);
 | |
| 			edma_shadow0_write(ecc, SH_QSECR, val);
 | |
| 		}
 | |
| 
 | |
| 		val = edma_read(ecc, EDMA_CCERR);
 | |
| 		if (val) {
 | |
| 			dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
 | |
| 			/* Not reported, just clear the interrupt reason. */
 | |
| 			edma_write(ecc, EDMA_CCERRCLR, val);
 | |
| 		}
 | |
| 
 | |
| 		if (!edma_error_pending(ecc))
 | |
| 			break;
 | |
| 		cnt++;
 | |
| 		if (cnt > 10)
 | |
| 			break;
 | |
| 	}
 | |
| 	edma_write(ecc, EDMA_EEVAL, 1);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /* Alloc channel resources */
 | |
| static int edma_alloc_chan_resources(struct dma_chan *chan)
 | |
| {
 | |
| 	struct edma_chan *echan = to_edma_chan(chan);
 | |
| 	struct edma_cc *ecc = echan->ecc;
 | |
| 	struct device *dev = ecc->dev;
 | |
| 	enum dma_event_q eventq_no = EVENTQ_DEFAULT;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (echan->tc) {
 | |
| 		eventq_no = echan->tc->id;
 | |
| 	} else if (ecc->tc_list) {
 | |
| 		/* memcpy channel */
 | |
| 		echan->tc = &ecc->tc_list[ecc->info->default_queue];
 | |
| 		eventq_no = echan->tc->id;
 | |
| 	}
 | |
| 
 | |
| 	ret = edma_alloc_channel(echan, eventq_no);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
 | |
| 	if (echan->slot[0] < 0) {
 | |
| 		dev_err(dev, "Entry slot allocation failed for channel %u\n",
 | |
| 			EDMA_CHAN_SLOT(echan->ch_num));
 | |
| 		ret = echan->slot[0];
 | |
| 		goto err_slot;
 | |
| 	}
 | |
| 
 | |
| 	/* Set up channel -> slot mapping for the entry slot */
 | |
| 	edma_set_chmap(echan, echan->slot[0]);
 | |
| 	echan->alloced = true;
 | |
| 
 | |
| 	dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
 | |
| 		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
 | |
| 		echan->hw_triggered ? "HW" : "SW");
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_slot:
 | |
| 	edma_free_channel(echan);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Free channel resources */
 | |
| static void edma_free_chan_resources(struct dma_chan *chan)
 | |
| {
 | |
| 	struct edma_chan *echan = to_edma_chan(chan);
 | |
| 	struct device *dev = echan->ecc->dev;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Terminate transfers */
 | |
| 	edma_stop(echan);
 | |
| 
 | |
| 	vchan_free_chan_resources(&echan->vchan);
 | |
| 
 | |
| 	/* Free EDMA PaRAM slots */
 | |
| 	for (i = 0; i < EDMA_MAX_SLOTS; i++) {
 | |
| 		if (echan->slot[i] >= 0) {
 | |
| 			edma_free_slot(echan->ecc, echan->slot[i]);
 | |
| 			echan->slot[i] = -1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Set entry slot to the dummy slot */
 | |
| 	edma_set_chmap(echan, echan->ecc->dummy_slot);
 | |
| 
 | |
| 	/* Free EDMA channel */
 | |
| 	if (echan->alloced) {
 | |
| 		edma_free_channel(echan);
 | |
| 		echan->alloced = false;
 | |
| 	}
 | |
| 
 | |
| 	echan->tc = NULL;
 | |
| 	echan->hw_triggered = false;
 | |
| 
 | |
| 	dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
 | |
| 		EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
 | |
| }
 | |
| 
 | |
| /* Send pending descriptor to hardware */
 | |
| static void edma_issue_pending(struct dma_chan *chan)
 | |
| {
 | |
| 	struct edma_chan *echan = to_edma_chan(chan);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&echan->vchan.lock, flags);
 | |
| 	if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
 | |
| 		edma_execute(echan);
 | |
| 	spin_unlock_irqrestore(&echan->vchan.lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This limit exists to avoid a possible infinite loop when waiting for proof
 | |
|  * that a particular transfer is completed. This limit can be hit if there
 | |
|  * are large bursts to/from slow devices or the CPU is never able to catch
 | |
|  * the DMA hardware idle. On an AM335x transferring 48 bytes from the UART
 | |
|  * RX-FIFO, as many as 55 loops have been seen.
 | |
|  */
 | |
| #define EDMA_MAX_TR_WAIT_LOOPS 1000
 | |
| 
 | |
| static u32 edma_residue(struct edma_desc *edesc)
 | |
| {
 | |
| 	bool dst = edesc->direction == DMA_DEV_TO_MEM;
 | |
| 	int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
 | |
| 	struct edma_chan *echan = edesc->echan;
 | |
| 	struct edma_pset *pset = edesc->pset;
 | |
| 	dma_addr_t done, pos, pos_old;
 | |
| 	int channel = EDMA_CHAN_SLOT(echan->ch_num);
 | |
| 	int idx = EDMA_REG_ARRAY_INDEX(channel);
 | |
| 	int ch_bit = EDMA_CHANNEL_BIT(channel);
 | |
| 	int event_reg;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * We always read the dst/src position from the first RamPar
 | |
| 	 * pset. That's the one which is active now.
 | |
| 	 */
 | |
| 	pos = edma_get_position(echan->ecc, echan->slot[0], dst);
 | |
| 
 | |
| 	/*
 | |
| 	 * "pos" may represent a transfer request that is still being
 | |
| 	 * processed by the EDMACC or EDMATC. We will busy wait until
 | |
| 	 * any one of the situations occurs:
 | |
| 	 *   1. while and event is pending for the channel
 | |
| 	 *   2. a position updated
 | |
| 	 *   3. we hit the loop limit
 | |
| 	 */
 | |
| 	if (is_slave_direction(edesc->direction))
 | |
| 		event_reg = SH_ER;
 | |
| 	else
 | |
| 		event_reg = SH_ESR;
 | |
| 
 | |
| 	pos_old = pos;
 | |
| 	while (edma_shadow0_read_array(echan->ecc, event_reg, idx) & ch_bit) {
 | |
| 		pos = edma_get_position(echan->ecc, echan->slot[0], dst);
 | |
| 		if (pos != pos_old)
 | |
| 			break;
 | |
| 
 | |
| 		if (!--loop_count) {
 | |
| 			dev_dbg_ratelimited(echan->vchan.chan.device->dev,
 | |
| 				"%s: timeout waiting for PaRAM update\n",
 | |
| 				__func__);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		cpu_relax();
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Cyclic is simple. Just subtract pset[0].addr from pos.
 | |
| 	 *
 | |
| 	 * We never update edesc->residue in the cyclic case, so we
 | |
| 	 * can tell the remaining room to the end of the circular
 | |
| 	 * buffer.
 | |
| 	 */
 | |
| 	if (edesc->cyclic) {
 | |
| 		done = pos - pset->addr;
 | |
| 		edesc->residue_stat = edesc->residue - done;
 | |
| 		return edesc->residue_stat;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the position is 0, then EDMA loaded the closing dummy slot, the
 | |
| 	 * transfer is completed
 | |
| 	 */
 | |
| 	if (!pos)
 | |
| 		return 0;
 | |
| 	/*
 | |
| 	 * For SG operation we catch up with the last processed
 | |
| 	 * status.
 | |
| 	 */
 | |
| 	pset += edesc->processed_stat;
 | |
| 
 | |
| 	for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
 | |
| 		/*
 | |
| 		 * If we are inside this pset address range, we know
 | |
| 		 * this is the active one. Get the current delta and
 | |
| 		 * stop walking the psets.
 | |
| 		 */
 | |
| 		if (pos >= pset->addr && pos < pset->addr + pset->len)
 | |
| 			return edesc->residue_stat - (pos - pset->addr);
 | |
| 
 | |
| 		/* Otherwise mark it done and update residue_stat. */
 | |
| 		edesc->processed_stat++;
 | |
| 		edesc->residue_stat -= pset->len;
 | |
| 	}
 | |
| 	return edesc->residue_stat;
 | |
| }
 | |
| 
 | |
| /* Check request completion status */
 | |
| static enum dma_status edma_tx_status(struct dma_chan *chan,
 | |
| 				      dma_cookie_t cookie,
 | |
| 				      struct dma_tx_state *txstate)
 | |
| {
 | |
| 	struct edma_chan *echan = to_edma_chan(chan);
 | |
| 	struct dma_tx_state txstate_tmp;
 | |
| 	enum dma_status ret;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	ret = dma_cookie_status(chan, cookie, txstate);
 | |
| 
 | |
| 	if (ret == DMA_COMPLETE)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Provide a dummy dma_tx_state for completion checking */
 | |
| 	if (!txstate)
 | |
| 		txstate = &txstate_tmp;
 | |
| 
 | |
| 	spin_lock_irqsave(&echan->vchan.lock, flags);
 | |
| 	if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) {
 | |
| 		txstate->residue = edma_residue(echan->edesc);
 | |
| 	} else {
 | |
| 		struct virt_dma_desc *vdesc = vchan_find_desc(&echan->vchan,
 | |
| 							      cookie);
 | |
| 
 | |
| 		if (vdesc)
 | |
| 			txstate->residue = to_edma_desc(&vdesc->tx)->residue;
 | |
| 		else
 | |
| 			txstate->residue = 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Mark the cookie completed if the residue is 0 for non cyclic
 | |
| 	 * transfers
 | |
| 	 */
 | |
| 	if (ret != DMA_COMPLETE && !txstate->residue &&
 | |
| 	    echan->edesc && echan->edesc->polled &&
 | |
| 	    echan->edesc->vdesc.tx.cookie == cookie) {
 | |
| 		edma_stop(echan);
 | |
| 		vchan_cookie_complete(&echan->edesc->vdesc);
 | |
| 		echan->edesc = NULL;
 | |
| 		edma_execute(echan);
 | |
| 		ret = DMA_COMPLETE;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&echan->vchan.lock, flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
 | |
| {
 | |
| 	if (!memcpy_channels)
 | |
| 		return false;
 | |
| 	while (*memcpy_channels != -1) {
 | |
| 		if (*memcpy_channels == ch_num)
 | |
| 			return true;
 | |
| 		memcpy_channels++;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| #define EDMA_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
 | |
| 				 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
 | |
| 				 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
 | |
| 				 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
 | |
| 
 | |
| static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
 | |
| {
 | |
| 	struct dma_device *s_ddev = &ecc->dma_slave;
 | |
| 	struct dma_device *m_ddev = NULL;
 | |
| 	s32 *memcpy_channels = ecc->info->memcpy_channels;
 | |
| 	int i, j;
 | |
| 
 | |
| 	dma_cap_zero(s_ddev->cap_mask);
 | |
| 	dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
 | |
| 	dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
 | |
| 	if (ecc->legacy_mode && !memcpy_channels) {
 | |
| 		dev_warn(ecc->dev,
 | |
| 			 "Legacy memcpy is enabled, things might not work\n");
 | |
| 
 | |
| 		dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
 | |
| 		dma_cap_set(DMA_INTERLEAVE, s_ddev->cap_mask);
 | |
| 		s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
 | |
| 		s_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved;
 | |
| 		s_ddev->directions = BIT(DMA_MEM_TO_MEM);
 | |
| 	}
 | |
| 
 | |
| 	s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
 | |
| 	s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
 | |
| 	s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
 | |
| 	s_ddev->device_free_chan_resources = edma_free_chan_resources;
 | |
| 	s_ddev->device_issue_pending = edma_issue_pending;
 | |
| 	s_ddev->device_tx_status = edma_tx_status;
 | |
| 	s_ddev->device_config = edma_slave_config;
 | |
| 	s_ddev->device_pause = edma_dma_pause;
 | |
| 	s_ddev->device_resume = edma_dma_resume;
 | |
| 	s_ddev->device_terminate_all = edma_terminate_all;
 | |
| 	s_ddev->device_synchronize = edma_synchronize;
 | |
| 
 | |
| 	s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
 | |
| 	s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
 | |
| 	s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
 | |
| 	s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
 | |
| 	s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */
 | |
| 
 | |
| 	s_ddev->dev = ecc->dev;
 | |
| 	INIT_LIST_HEAD(&s_ddev->channels);
 | |
| 
 | |
| 	if (memcpy_channels) {
 | |
| 		m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
 | |
| 		if (!m_ddev) {
 | |
| 			dev_warn(ecc->dev, "memcpy is disabled due to OoM\n");
 | |
| 			memcpy_channels = NULL;
 | |
| 			goto ch_setup;
 | |
| 		}
 | |
| 		ecc->dma_memcpy = m_ddev;
 | |
| 
 | |
| 		dma_cap_zero(m_ddev->cap_mask);
 | |
| 		dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
 | |
| 		dma_cap_set(DMA_INTERLEAVE, m_ddev->cap_mask);
 | |
| 
 | |
| 		m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
 | |
| 		m_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved;
 | |
| 		m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
 | |
| 		m_ddev->device_free_chan_resources = edma_free_chan_resources;
 | |
| 		m_ddev->device_issue_pending = edma_issue_pending;
 | |
| 		m_ddev->device_tx_status = edma_tx_status;
 | |
| 		m_ddev->device_config = edma_slave_config;
 | |
| 		m_ddev->device_pause = edma_dma_pause;
 | |
| 		m_ddev->device_resume = edma_dma_resume;
 | |
| 		m_ddev->device_terminate_all = edma_terminate_all;
 | |
| 		m_ddev->device_synchronize = edma_synchronize;
 | |
| 
 | |
| 		m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
 | |
| 		m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
 | |
| 		m_ddev->directions = BIT(DMA_MEM_TO_MEM);
 | |
| 		m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
 | |
| 
 | |
| 		m_ddev->dev = ecc->dev;
 | |
| 		INIT_LIST_HEAD(&m_ddev->channels);
 | |
| 	} else if (!ecc->legacy_mode) {
 | |
| 		dev_info(ecc->dev, "memcpy is disabled\n");
 | |
| 	}
 | |
| 
 | |
| ch_setup:
 | |
| 	for (i = 0; i < ecc->num_channels; i++) {
 | |
| 		struct edma_chan *echan = &ecc->slave_chans[i];
 | |
| 		echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
 | |
| 		echan->ecc = ecc;
 | |
| 		echan->vchan.desc_free = edma_desc_free;
 | |
| 
 | |
| 		if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
 | |
| 			vchan_init(&echan->vchan, m_ddev);
 | |
| 		else
 | |
| 			vchan_init(&echan->vchan, s_ddev);
 | |
| 
 | |
| 		INIT_LIST_HEAD(&echan->node);
 | |
| 		for (j = 0; j < EDMA_MAX_SLOTS; j++)
 | |
| 			echan->slot[j] = -1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
 | |
| 			      struct edma_cc *ecc)
 | |
| {
 | |
| 	int i;
 | |
| 	u32 value, cccfg;
 | |
| 	s8 (*queue_priority_map)[2];
 | |
| 
 | |
| 	/* Decode the eDMA3 configuration from CCCFG register */
 | |
| 	cccfg = edma_read(ecc, EDMA_CCCFG);
 | |
| 
 | |
| 	value = GET_NUM_REGN(cccfg);
 | |
| 	ecc->num_region = BIT(value);
 | |
| 
 | |
| 	value = GET_NUM_DMACH(cccfg);
 | |
| 	ecc->num_channels = BIT(value + 1);
 | |
| 
 | |
| 	value = GET_NUM_QDMACH(cccfg);
 | |
| 	ecc->num_qchannels = value * 2;
 | |
| 
 | |
| 	value = GET_NUM_PAENTRY(cccfg);
 | |
| 	ecc->num_slots = BIT(value + 4);
 | |
| 
 | |
| 	value = GET_NUM_EVQUE(cccfg);
 | |
| 	ecc->num_tc = value + 1;
 | |
| 
 | |
| 	ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
 | |
| 
 | |
| 	dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
 | |
| 	dev_dbg(dev, "num_region: %u\n", ecc->num_region);
 | |
| 	dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
 | |
| 	dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
 | |
| 	dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
 | |
| 	dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
 | |
| 	dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
 | |
| 
 | |
| 	/* Nothing need to be done if queue priority is provided */
 | |
| 	if (pdata->queue_priority_mapping)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Configure TC/queue priority as follows:
 | |
| 	 * Q0 - priority 0
 | |
| 	 * Q1 - priority 1
 | |
| 	 * Q2 - priority 2
 | |
| 	 * ...
 | |
| 	 * The meaning of priority numbers: 0 highest priority, 7 lowest
 | |
| 	 * priority. So Q0 is the highest priority queue and the last queue has
 | |
| 	 * the lowest priority.
 | |
| 	 */
 | |
| 	queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
 | |
| 					  GFP_KERNEL);
 | |
| 	if (!queue_priority_map)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	for (i = 0; i < ecc->num_tc; i++) {
 | |
| 		queue_priority_map[i][0] = i;
 | |
| 		queue_priority_map[i][1] = i;
 | |
| 	}
 | |
| 	queue_priority_map[i][0] = -1;
 | |
| 	queue_priority_map[i][1] = -1;
 | |
| 
 | |
| 	pdata->queue_priority_mapping = queue_priority_map;
 | |
| 	/* Default queue has the lowest priority */
 | |
| 	pdata->default_queue = i - 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #if IS_ENABLED(CONFIG_OF)
 | |
| static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
 | |
| 			       size_t sz)
 | |
| {
 | |
| 	const char pname[] = "ti,edma-xbar-event-map";
 | |
| 	struct resource res;
 | |
| 	void __iomem *xbar;
 | |
| 	s16 (*xbar_chans)[2];
 | |
| 	size_t nelm = sz / sizeof(s16);
 | |
| 	u32 shift, offset, mux;
 | |
| 	int ret, i;
 | |
| 
 | |
| 	xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
 | |
| 	if (!xbar_chans)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ret = of_address_to_resource(dev->of_node, 1, &res);
 | |
| 	if (ret)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	xbar = devm_ioremap(dev, res.start, resource_size(&res));
 | |
| 	if (!xbar)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
 | |
| 					 nelm);
 | |
| 	if (ret)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	/* Invalidate last entry for the other user of this mess */
 | |
| 	nelm >>= 1;
 | |
| 	xbar_chans[nelm][0] = -1;
 | |
| 	xbar_chans[nelm][1] = -1;
 | |
| 
 | |
| 	for (i = 0; i < nelm; i++) {
 | |
| 		shift = (xbar_chans[i][1] & 0x03) << 3;
 | |
| 		offset = xbar_chans[i][1] & 0xfffffffc;
 | |
| 		mux = readl(xbar + offset);
 | |
| 		mux &= ~(0xff << shift);
 | |
| 		mux |= xbar_chans[i][0] << shift;
 | |
| 		writel(mux, (xbar + offset));
 | |
| 	}
 | |
| 
 | |
| 	pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
 | |
| 						     bool legacy_mode)
 | |
| {
 | |
| 	struct edma_soc_info *info;
 | |
| 	struct property *prop;
 | |
| 	int sz, ret;
 | |
| 
 | |
| 	info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
 | |
| 	if (!info)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	if (legacy_mode) {
 | |
| 		prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
 | |
| 					&sz);
 | |
| 		if (prop) {
 | |
| 			ret = edma_xbar_event_map(dev, info, sz);
 | |
| 			if (ret)
 | |
| 				return ERR_PTR(ret);
 | |
| 		}
 | |
| 		return info;
 | |
| 	}
 | |
| 
 | |
| 	/* Get the list of channels allocated to be used for memcpy */
 | |
| 	prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
 | |
| 	if (prop) {
 | |
| 		const char pname[] = "ti,edma-memcpy-channels";
 | |
| 		size_t nelm = sz / sizeof(s32);
 | |
| 		s32 *memcpy_ch;
 | |
| 
 | |
| 		memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
 | |
| 					 GFP_KERNEL);
 | |
| 		if (!memcpy_ch)
 | |
| 			return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 		ret = of_property_read_u32_array(dev->of_node, pname,
 | |
| 						 (u32 *)memcpy_ch, nelm);
 | |
| 		if (ret)
 | |
| 			return ERR_PTR(ret);
 | |
| 
 | |
| 		memcpy_ch[nelm] = -1;
 | |
| 		info->memcpy_channels = memcpy_ch;
 | |
| 	}
 | |
| 
 | |
| 	prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
 | |
| 				&sz);
 | |
| 	if (prop) {
 | |
| 		const char pname[] = "ti,edma-reserved-slot-ranges";
 | |
| 		u32 (*tmp)[2];
 | |
| 		s16 (*rsv_slots)[2];
 | |
| 		size_t nelm = sz / sizeof(*tmp);
 | |
| 		struct edma_rsv_info *rsv_info;
 | |
| 		int i;
 | |
| 
 | |
| 		if (!nelm)
 | |
| 			return info;
 | |
| 
 | |
| 		tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
 | |
| 		if (!tmp)
 | |
| 			return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 		rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
 | |
| 		if (!rsv_info) {
 | |
| 			kfree(tmp);
 | |
| 			return ERR_PTR(-ENOMEM);
 | |
| 		}
 | |
| 
 | |
| 		rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
 | |
| 					 GFP_KERNEL);
 | |
| 		if (!rsv_slots) {
 | |
| 			kfree(tmp);
 | |
| 			return ERR_PTR(-ENOMEM);
 | |
| 		}
 | |
| 
 | |
| 		ret = of_property_read_u32_array(dev->of_node, pname,
 | |
| 						 (u32 *)tmp, nelm * 2);
 | |
| 		if (ret) {
 | |
| 			kfree(tmp);
 | |
| 			return ERR_PTR(ret);
 | |
| 		}
 | |
| 
 | |
| 		for (i = 0; i < nelm; i++) {
 | |
| 			rsv_slots[i][0] = tmp[i][0];
 | |
| 			rsv_slots[i][1] = tmp[i][1];
 | |
| 		}
 | |
| 		rsv_slots[nelm][0] = -1;
 | |
| 		rsv_slots[nelm][1] = -1;
 | |
| 
 | |
| 		info->rsv = rsv_info;
 | |
| 		info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
 | |
| 
 | |
| 		kfree(tmp);
 | |
| 	}
 | |
| 
 | |
| 	return info;
 | |
| }
 | |
| 
 | |
| static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
 | |
| 				      struct of_dma *ofdma)
 | |
| {
 | |
| 	struct edma_cc *ecc = ofdma->of_dma_data;
 | |
| 	struct dma_chan *chan = NULL;
 | |
| 	struct edma_chan *echan;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!ecc || dma_spec->args_count < 1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	for (i = 0; i < ecc->num_channels; i++) {
 | |
| 		echan = &ecc->slave_chans[i];
 | |
| 		if (echan->ch_num == dma_spec->args[0]) {
 | |
| 			chan = &echan->vchan.chan;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!chan)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
 | |
| 	    dma_spec->args[1] < echan->ecc->num_tc) {
 | |
| 		echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| out:
 | |
| 	/* The channel is going to be used as HW synchronized */
 | |
| 	echan->hw_triggered = true;
 | |
| 	return dma_get_slave_channel(chan);
 | |
| }
 | |
| #else
 | |
| static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
 | |
| 						     bool legacy_mode)
 | |
| {
 | |
| 	return ERR_PTR(-EINVAL);
 | |
| }
 | |
| 
 | |
| static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
 | |
| 				      struct of_dma *ofdma)
 | |
| {
 | |
| 	return NULL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static bool edma_filter_fn(struct dma_chan *chan, void *param);
 | |
| 
 | |
| static int edma_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	struct edma_soc_info	*info = pdev->dev.platform_data;
 | |
| 	s8			(*queue_priority_mapping)[2];
 | |
| 	const s16		(*reserved)[2];
 | |
| 	int			i, irq;
 | |
| 	char			*irq_name;
 | |
| 	struct resource		*mem;
 | |
| 	struct device_node	*node = pdev->dev.of_node;
 | |
| 	struct device		*dev = &pdev->dev;
 | |
| 	struct edma_cc		*ecc;
 | |
| 	bool			legacy_mode = true;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (node) {
 | |
| 		const struct of_device_id *match;
 | |
| 
 | |
| 		match = of_match_node(edma_of_ids, node);
 | |
| 		if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC)
 | |
| 			legacy_mode = false;
 | |
| 
 | |
| 		info = edma_setup_info_from_dt(dev, legacy_mode);
 | |
| 		if (IS_ERR(info)) {
 | |
| 			dev_err(dev, "failed to get DT data\n");
 | |
| 			return PTR_ERR(info);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!info)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
 | |
| 	if (!ecc)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	ecc->dev = dev;
 | |
| 	ecc->id = pdev->id;
 | |
| 	ecc->legacy_mode = legacy_mode;
 | |
| 	/* When booting with DT the pdev->id is -1 */
 | |
| 	if (ecc->id < 0)
 | |
| 		ecc->id = 0;
 | |
| 
 | |
| 	mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
 | |
| 	if (!mem) {
 | |
| 		dev_dbg(dev, "mem resource not found, using index 0\n");
 | |
| 		mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 | |
| 		if (!mem) {
 | |
| 			dev_err(dev, "no mem resource?\n");
 | |
| 			return -ENODEV;
 | |
| 		}
 | |
| 	}
 | |
| 	ecc->base = devm_ioremap_resource(dev, mem);
 | |
| 	if (IS_ERR(ecc->base))
 | |
| 		return PTR_ERR(ecc->base);
 | |
| 
 | |
| 	platform_set_drvdata(pdev, ecc);
 | |
| 
 | |
| 	pm_runtime_enable(dev);
 | |
| 	ret = pm_runtime_get_sync(dev);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(dev, "pm_runtime_get_sync() failed\n");
 | |
| 		pm_runtime_disable(dev);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	/* Get eDMA3 configuration from IP */
 | |
| 	ret = edma_setup_from_hw(dev, info, ecc);
 | |
| 	if (ret)
 | |
| 		goto err_disable_pm;
 | |
| 
 | |
| 	/* Allocate memory based on the information we got from the IP */
 | |
| 	ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
 | |
| 					sizeof(*ecc->slave_chans), GFP_KERNEL);
 | |
| 
 | |
| 	ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
 | |
| 				       sizeof(unsigned long), GFP_KERNEL);
 | |
| 
 | |
| 	ecc->channels_mask = devm_kcalloc(dev,
 | |
| 					   BITS_TO_LONGS(ecc->num_channels),
 | |
| 					   sizeof(unsigned long), GFP_KERNEL);
 | |
| 	if (!ecc->slave_chans || !ecc->slot_inuse || !ecc->channels_mask) {
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err_disable_pm;
 | |
| 	}
 | |
| 
 | |
| 	/* Mark all channels available initially */
 | |
| 	bitmap_fill(ecc->channels_mask, ecc->num_channels);
 | |
| 
 | |
| 	ecc->default_queue = info->default_queue;
 | |
| 
 | |
| 	if (info->rsv) {
 | |
| 		/* Set the reserved slots in inuse list */
 | |
| 		reserved = info->rsv->rsv_slots;
 | |
| 		if (reserved) {
 | |
| 			for (i = 0; reserved[i][0] != -1; i++)
 | |
| 				bitmap_set(ecc->slot_inuse, reserved[i][0],
 | |
| 					   reserved[i][1]);
 | |
| 		}
 | |
| 
 | |
| 		/* Clear channels not usable for Linux */
 | |
| 		reserved = info->rsv->rsv_chans;
 | |
| 		if (reserved) {
 | |
| 			for (i = 0; reserved[i][0] != -1; i++)
 | |
| 				bitmap_clear(ecc->channels_mask, reserved[i][0],
 | |
| 					     reserved[i][1]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < ecc->num_slots; i++) {
 | |
| 		/* Reset only unused - not reserved - paRAM slots */
 | |
| 		if (!test_bit(i, ecc->slot_inuse))
 | |
| 			edma_write_slot(ecc, i, &dummy_paramset);
 | |
| 	}
 | |
| 
 | |
| 	irq = platform_get_irq_byname(pdev, "edma3_ccint");
 | |
| 	if (irq < 0 && node)
 | |
| 		irq = irq_of_parse_and_map(node, 0);
 | |
| 
 | |
| 	if (irq > 0) {
 | |
| 		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
 | |
| 					  dev_name(dev));
 | |
| 		if (!irq_name) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto err_disable_pm;
 | |
| 		}
 | |
| 
 | |
| 		ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
 | |
| 				       ecc);
 | |
| 		if (ret) {
 | |
| 			dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
 | |
| 			goto err_disable_pm;
 | |
| 		}
 | |
| 		ecc->ccint = irq;
 | |
| 	}
 | |
| 
 | |
| 	irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
 | |
| 	if (irq < 0 && node)
 | |
| 		irq = irq_of_parse_and_map(node, 2);
 | |
| 
 | |
| 	if (irq > 0) {
 | |
| 		irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
 | |
| 					  dev_name(dev));
 | |
| 		if (!irq_name) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto err_disable_pm;
 | |
| 		}
 | |
| 
 | |
| 		ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
 | |
| 				       ecc);
 | |
| 		if (ret) {
 | |
| 			dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
 | |
| 			goto err_disable_pm;
 | |
| 		}
 | |
| 		ecc->ccerrint = irq;
 | |
| 	}
 | |
| 
 | |
| 	ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
 | |
| 	if (ecc->dummy_slot < 0) {
 | |
| 		dev_err(dev, "Can't allocate PaRAM dummy slot\n");
 | |
| 		ret = ecc->dummy_slot;
 | |
| 		goto err_disable_pm;
 | |
| 	}
 | |
| 
 | |
| 	queue_priority_mapping = info->queue_priority_mapping;
 | |
| 
 | |
| 	if (!ecc->legacy_mode) {
 | |
| 		int lowest_priority = 0;
 | |
| 		unsigned int array_max;
 | |
| 		struct of_phandle_args tc_args;
 | |
| 
 | |
| 		ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
 | |
| 					    sizeof(*ecc->tc_list), GFP_KERNEL);
 | |
| 		if (!ecc->tc_list) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto err_reg1;
 | |
| 		}
 | |
| 
 | |
| 		for (i = 0;; i++) {
 | |
| 			ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
 | |
| 							       1, i, &tc_args);
 | |
| 			if (ret || i == ecc->num_tc)
 | |
| 				break;
 | |
| 
 | |
| 			ecc->tc_list[i].node = tc_args.np;
 | |
| 			ecc->tc_list[i].id = i;
 | |
| 			queue_priority_mapping[i][1] = tc_args.args[0];
 | |
| 			if (queue_priority_mapping[i][1] > lowest_priority) {
 | |
| 				lowest_priority = queue_priority_mapping[i][1];
 | |
| 				info->default_queue = i;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* See if we have optional dma-channel-mask array */
 | |
| 		array_max = DIV_ROUND_UP(ecc->num_channels, BITS_PER_TYPE(u32));
 | |
| 		ret = of_property_read_variable_u32_array(node,
 | |
| 						"dma-channel-mask",
 | |
| 						(u32 *)ecc->channels_mask,
 | |
| 						1, array_max);
 | |
| 		if (ret > 0 && ret != array_max)
 | |
| 			dev_warn(dev, "dma-channel-mask is not complete.\n");
 | |
| 		else if (ret == -EOVERFLOW || ret == -ENODATA)
 | |
| 			dev_warn(dev,
 | |
| 				 "dma-channel-mask is out of range or empty\n");
 | |
| 	}
 | |
| 
 | |
| 	/* Event queue priority mapping */
 | |
| 	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
 | |
| 		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
 | |
| 					      queue_priority_mapping[i][1]);
 | |
| 
 | |
| 	edma_write_array2(ecc, EDMA_DRAE, 0, 0, 0x0);
 | |
| 	edma_write_array2(ecc, EDMA_DRAE, 0, 1, 0x0);
 | |
| 	edma_write_array(ecc, EDMA_QRAE, 0, 0x0);
 | |
| 
 | |
| 	ecc->info = info;
 | |
| 
 | |
| 	/* Init the dma device and channels */
 | |
| 	edma_dma_init(ecc, legacy_mode);
 | |
| 
 | |
| 	for (i = 0; i < ecc->num_channels; i++) {
 | |
| 		/* Do not touch reserved channels */
 | |
| 		if (!test_bit(i, ecc->channels_mask))
 | |
| 			continue;
 | |
| 
 | |
| 		/* Assign all channels to the default queue */
 | |
| 		edma_assign_channel_eventq(&ecc->slave_chans[i],
 | |
| 					   info->default_queue);
 | |
| 		/* Set entry slot to the dummy slot */
 | |
| 		edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
 | |
| 	}
 | |
| 
 | |
| 	ecc->dma_slave.filter.map = info->slave_map;
 | |
| 	ecc->dma_slave.filter.mapcnt = info->slavecnt;
 | |
| 	ecc->dma_slave.filter.fn = edma_filter_fn;
 | |
| 
 | |
| 	ret = dma_async_device_register(&ecc->dma_slave);
 | |
| 	if (ret) {
 | |
| 		dev_err(dev, "slave ddev registration failed (%d)\n", ret);
 | |
| 		goto err_reg1;
 | |
| 	}
 | |
| 
 | |
| 	if (ecc->dma_memcpy) {
 | |
| 		ret = dma_async_device_register(ecc->dma_memcpy);
 | |
| 		if (ret) {
 | |
| 			dev_err(dev, "memcpy ddev registration failed (%d)\n",
 | |
| 				ret);
 | |
| 			dma_async_device_unregister(&ecc->dma_slave);
 | |
| 			goto err_reg1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (node)
 | |
| 		of_dma_controller_register(node, of_edma_xlate, ecc);
 | |
| 
 | |
| 	dev_info(dev, "TI EDMA DMA engine driver\n");
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_reg1:
 | |
| 	edma_free_slot(ecc, ecc->dummy_slot);
 | |
| err_disable_pm:
 | |
| 	pm_runtime_put_sync(dev);
 | |
| 	pm_runtime_disable(dev);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void edma_cleanupp_vchan(struct dma_device *dmadev)
 | |
| {
 | |
| 	struct edma_chan *echan, *_echan;
 | |
| 
 | |
| 	list_for_each_entry_safe(echan, _echan,
 | |
| 			&dmadev->channels, vchan.chan.device_node) {
 | |
| 		list_del(&echan->vchan.chan.device_node);
 | |
| 		tasklet_kill(&echan->vchan.task);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void edma_remove(struct platform_device *pdev)
 | |
| {
 | |
| 	struct device *dev = &pdev->dev;
 | |
| 	struct edma_cc *ecc = dev_get_drvdata(dev);
 | |
| 
 | |
| 	devm_free_irq(dev, ecc->ccint, ecc);
 | |
| 	devm_free_irq(dev, ecc->ccerrint, ecc);
 | |
| 
 | |
| 	edma_cleanupp_vchan(&ecc->dma_slave);
 | |
| 
 | |
| 	if (dev->of_node)
 | |
| 		of_dma_controller_free(dev->of_node);
 | |
| 	dma_async_device_unregister(&ecc->dma_slave);
 | |
| 	if (ecc->dma_memcpy)
 | |
| 		dma_async_device_unregister(ecc->dma_memcpy);
 | |
| 	edma_free_slot(ecc, ecc->dummy_slot);
 | |
| 	pm_runtime_put_sync(dev);
 | |
| 	pm_runtime_disable(dev);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PM_SLEEP
 | |
| static int edma_pm_suspend(struct device *dev)
 | |
| {
 | |
| 	struct edma_cc *ecc = dev_get_drvdata(dev);
 | |
| 	struct edma_chan *echan = ecc->slave_chans;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ecc->num_channels; i++) {
 | |
| 		if (echan[i].alloced)
 | |
| 			edma_setup_interrupt(&echan[i], false);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int edma_pm_resume(struct device *dev)
 | |
| {
 | |
| 	struct edma_cc *ecc = dev_get_drvdata(dev);
 | |
| 	struct edma_chan *echan = ecc->slave_chans;
 | |
| 	int i;
 | |
| 	s8 (*queue_priority_mapping)[2];
 | |
| 
 | |
| 	/* re initialize dummy slot to dummy param set */
 | |
| 	edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset);
 | |
| 
 | |
| 	queue_priority_mapping = ecc->info->queue_priority_mapping;
 | |
| 
 | |
| 	/* Event queue priority mapping */
 | |
| 	for (i = 0; queue_priority_mapping[i][0] != -1; i++)
 | |
| 		edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
 | |
| 					      queue_priority_mapping[i][1]);
 | |
| 
 | |
| 	for (i = 0; i < ecc->num_channels; i++) {
 | |
| 		if (echan[i].alloced) {
 | |
| 			/* ensure access through shadow region 0 */
 | |
| 			edma_or_array2(ecc, EDMA_DRAE, 0,
 | |
| 				       EDMA_REG_ARRAY_INDEX(i),
 | |
| 				       EDMA_CHANNEL_BIT(i));
 | |
| 
 | |
| 			edma_setup_interrupt(&echan[i], true);
 | |
| 
 | |
| 			/* Set up channel -> slot mapping for the entry slot */
 | |
| 			edma_set_chmap(&echan[i], echan[i].slot[0]);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static const struct dev_pm_ops edma_pm_ops = {
 | |
| 	SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
 | |
| };
 | |
| 
 | |
| static struct platform_driver edma_driver = {
 | |
| 	.probe		= edma_probe,
 | |
| 	.remove_new	= edma_remove,
 | |
| 	.driver = {
 | |
| 		.name	= "edma",
 | |
| 		.pm	= &edma_pm_ops,
 | |
| 		.of_match_table = edma_of_ids,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static int edma_tptc_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	pm_runtime_enable(&pdev->dev);
 | |
| 	return pm_runtime_get_sync(&pdev->dev);
 | |
| }
 | |
| 
 | |
| static struct platform_driver edma_tptc_driver = {
 | |
| 	.probe		= edma_tptc_probe,
 | |
| 	.driver = {
 | |
| 		.name	= "edma3-tptc",
 | |
| 		.of_match_table = edma_tptc_of_ids,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static bool edma_filter_fn(struct dma_chan *chan, void *param)
 | |
| {
 | |
| 	bool match = false;
 | |
| 
 | |
| 	if (chan->device->dev->driver == &edma_driver.driver) {
 | |
| 		struct edma_chan *echan = to_edma_chan(chan);
 | |
| 		unsigned ch_req = *(unsigned *)param;
 | |
| 		if (ch_req == echan->ch_num) {
 | |
| 			/* The channel is going to be used as HW synchronized */
 | |
| 			echan->hw_triggered = true;
 | |
| 			match = true;
 | |
| 		}
 | |
| 	}
 | |
| 	return match;
 | |
| }
 | |
| 
 | |
| static int edma_init(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = platform_driver_register(&edma_tptc_driver);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return platform_driver_register(&edma_driver);
 | |
| }
 | |
| subsys_initcall(edma_init);
 | |
| 
 | |
| static void __exit edma_exit(void)
 | |
| {
 | |
| 	platform_driver_unregister(&edma_driver);
 | |
| 	platform_driver_unregister(&edma_tptc_driver);
 | |
| }
 | |
| module_exit(edma_exit);
 | |
| 
 | |
| MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
 | |
| MODULE_DESCRIPTION("TI EDMA DMA engine driver");
 | |
| MODULE_LICENSE("GPL v2");
 |