4625 lines
		
	
	
		
			124 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4625 lines
		
	
	
		
			124 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /*
 | |
|  * Copyright (C) 2006-2009 DENX Software Engineering.
 | |
|  *
 | |
|  * Author: Yuri Tikhonov <yur@emcraft.com>
 | |
|  *
 | |
|  * Further porting to arch/powerpc by
 | |
|  * 	Anatolij Gustschin <agust@denx.de>
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This driver supports the asynchronous DMA copy and RAID engines available
 | |
|  * on the AMCC PPC440SPe Processors.
 | |
|  * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
 | |
|  * ADMA driver written by D.Williams.
 | |
|  */
 | |
| 
 | |
| #include <linux/init.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/async_tx.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/of_address.h>
 | |
| #include <linux/of_irq.h>
 | |
| #include <linux/of_platform.h>
 | |
| #include <asm/dcr.h>
 | |
| #include <asm/dcr-regs.h>
 | |
| #include "adma.h"
 | |
| #include "../dmaengine.h"
 | |
| 
 | |
| enum ppc_adma_init_code {
 | |
| 	PPC_ADMA_INIT_OK = 0,
 | |
| 	PPC_ADMA_INIT_MEMRES,
 | |
| 	PPC_ADMA_INIT_MEMREG,
 | |
| 	PPC_ADMA_INIT_ALLOC,
 | |
| 	PPC_ADMA_INIT_COHERENT,
 | |
| 	PPC_ADMA_INIT_CHANNEL,
 | |
| 	PPC_ADMA_INIT_IRQ1,
 | |
| 	PPC_ADMA_INIT_IRQ2,
 | |
| 	PPC_ADMA_INIT_REGISTER
 | |
| };
 | |
| 
 | |
| static char *ppc_adma_errors[] = {
 | |
| 	[PPC_ADMA_INIT_OK] = "ok",
 | |
| 	[PPC_ADMA_INIT_MEMRES] = "failed to get memory resource",
 | |
| 	[PPC_ADMA_INIT_MEMREG] = "failed to request memory region",
 | |
| 	[PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev "
 | |
| 				"structure",
 | |
| 	[PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for "
 | |
| 				   "hardware descriptors",
 | |
| 	[PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel",
 | |
| 	[PPC_ADMA_INIT_IRQ1] = "failed to request first irq",
 | |
| 	[PPC_ADMA_INIT_IRQ2] = "failed to request second irq",
 | |
| 	[PPC_ADMA_INIT_REGISTER] = "failed to register dma async device",
 | |
| };
 | |
| 
 | |
| static enum ppc_adma_init_code
 | |
| ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM];
 | |
| 
 | |
| struct ppc_dma_chan_ref {
 | |
| 	struct dma_chan *chan;
 | |
| 	struct list_head node;
 | |
| };
 | |
| 
 | |
| /* The list of channels exported by ppc440spe ADMA */
 | |
| static struct list_head
 | |
| ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list);
 | |
| 
 | |
| /* This flag is set when want to refetch the xor chain in the interrupt
 | |
|  * handler
 | |
|  */
 | |
| static u32 do_xor_refetch;
 | |
| 
 | |
| /* Pointer to DMA0, DMA1 CP/CS FIFO */
 | |
| static void *ppc440spe_dma_fifo_buf;
 | |
| 
 | |
| /* Pointers to last submitted to DMA0, DMA1 CDBs */
 | |
| static struct ppc440spe_adma_desc_slot *chan_last_sub[3];
 | |
| static struct ppc440spe_adma_desc_slot *chan_first_cdb[3];
 | |
| 
 | |
| /* Pointer to last linked and submitted xor CB */
 | |
| static struct ppc440spe_adma_desc_slot *xor_last_linked;
 | |
| static struct ppc440spe_adma_desc_slot *xor_last_submit;
 | |
| 
 | |
| /* This array is used in data-check operations for storing a pattern */
 | |
| static char ppc440spe_qword[16];
 | |
| 
 | |
| static atomic_t ppc440spe_adma_err_irq_ref;
 | |
| static dcr_host_t ppc440spe_mq_dcr_host;
 | |
| static unsigned int ppc440spe_mq_dcr_len;
 | |
| 
 | |
| /* Since RXOR operations use the common register (MQ0_CF2H) for setting-up
 | |
|  * the block size in transactions, then we do not allow to activate more than
 | |
|  * only one RXOR transactions simultaneously. So use this var to store
 | |
|  * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is
 | |
|  * set) or not (PPC440SPE_RXOR_RUN is clear).
 | |
|  */
 | |
| static unsigned long ppc440spe_rxor_state;
 | |
| 
 | |
| /* These are used in enable & check routines
 | |
|  */
 | |
| static u32 ppc440spe_r6_enabled;
 | |
| static struct ppc440spe_adma_chan *ppc440spe_r6_tchan;
 | |
| static struct completion ppc440spe_r6_test_comp;
 | |
| 
 | |
| static int ppc440spe_adma_dma2rxor_prep_src(
 | |
| 		struct ppc440spe_adma_desc_slot *desc,
 | |
| 		struct ppc440spe_rxor *cursor, int index,
 | |
| 		int src_cnt, u32 addr);
 | |
| static void ppc440spe_adma_dma2rxor_set_src(
 | |
| 		struct ppc440spe_adma_desc_slot *desc,
 | |
| 		int index, dma_addr_t addr);
 | |
| static void ppc440spe_adma_dma2rxor_set_mult(
 | |
| 		struct ppc440spe_adma_desc_slot *desc,
 | |
| 		int index, u8 mult);
 | |
| 
 | |
| #ifdef ADMA_LL_DEBUG
 | |
| #define ADMA_LL_DBG(x) ({ if (1) x; 0; })
 | |
| #else
 | |
| #define ADMA_LL_DBG(x) ({ if (0) x; 0; })
 | |
| #endif
 | |
| 
 | |
| static void print_cb(struct ppc440spe_adma_chan *chan, void *block)
 | |
| {
 | |
| 	struct dma_cdb *cdb;
 | |
| 	struct xor_cb *cb;
 | |
| 	int i;
 | |
| 
 | |
| 	switch (chan->device->id) {
 | |
| 	case 0:
 | |
| 	case 1:
 | |
| 		cdb = block;
 | |
| 
 | |
| 		pr_debug("CDB at %p [%d]:\n"
 | |
| 			"\t attr 0x%02x opc 0x%02x cnt 0x%08x\n"
 | |
| 			"\t sg1u 0x%08x sg1l 0x%08x\n"
 | |
| 			"\t sg2u 0x%08x sg2l 0x%08x\n"
 | |
| 			"\t sg3u 0x%08x sg3l 0x%08x\n",
 | |
| 			cdb, chan->device->id,
 | |
| 			cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt),
 | |
| 			le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l),
 | |
| 			le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l),
 | |
| 			le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l)
 | |
| 		);
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		cb = block;
 | |
| 
 | |
| 		pr_debug("CB at %p [%d]:\n"
 | |
| 			"\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n"
 | |
| 			"\t cbtah 0x%08x cbtal 0x%08x\n"
 | |
| 			"\t cblah 0x%08x cblal 0x%08x\n",
 | |
| 			cb, chan->device->id,
 | |
| 			cb->cbc, cb->cbbc, cb->cbs,
 | |
| 			cb->cbtah, cb->cbtal,
 | |
| 			cb->cblah, cb->cblal);
 | |
| 		for (i = 0; i < 16; i++) {
 | |
| 			if (i && !cb->ops[i].h && !cb->ops[i].l)
 | |
| 				continue;
 | |
| 			pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n",
 | |
| 				i, cb->ops[i].h, cb->ops[i].l);
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void print_cb_list(struct ppc440spe_adma_chan *chan,
 | |
| 			  struct ppc440spe_adma_desc_slot *iter)
 | |
| {
 | |
| 	for (; iter; iter = iter->hw_next)
 | |
| 		print_cb(chan, iter->hw_desc);
 | |
| }
 | |
| 
 | |
| static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src,
 | |
| 			     unsigned int src_cnt)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	pr_debug("\n%s(%d):\nsrc: ", __func__, id);
 | |
| 	for (i = 0; i < src_cnt; i++)
 | |
| 		pr_debug("\t0x%016llx ", src[i]);
 | |
| 	pr_debug("dst:\n\t0x%016llx\n", dst);
 | |
| }
 | |
| 
 | |
| static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src,
 | |
| 			    unsigned int src_cnt)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	pr_debug("\n%s(%d):\nsrc: ", __func__, id);
 | |
| 	for (i = 0; i < src_cnt; i++)
 | |
| 		pr_debug("\t0x%016llx ", src[i]);
 | |
| 	pr_debug("dst: ");
 | |
| 	for (i = 0; i < 2; i++)
 | |
| 		pr_debug("\t0x%016llx ", dst[i]);
 | |
| }
 | |
| 
 | |
| static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src,
 | |
| 				    unsigned int src_cnt,
 | |
| 				    const unsigned char *scf)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id);
 | |
| 	if (scf) {
 | |
| 		for (i = 0; i < src_cnt; i++)
 | |
| 			pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]);
 | |
| 	} else {
 | |
| 		for (i = 0; i < src_cnt; i++)
 | |
| 			pr_debug("\t0x%016llx(no) ", src[i]);
 | |
| 	}
 | |
| 
 | |
| 	pr_debug("dst: ");
 | |
| 	for (i = 0; i < 2; i++)
 | |
| 		pr_debug("\t0x%016llx ", src[src_cnt + i]);
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * Command (Descriptor) Blocks low-level routines
 | |
|  ******************************************************************************/
 | |
| /**
 | |
|  * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT
 | |
|  * pseudo operation
 | |
|  */
 | |
| static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc,
 | |
| 					  struct ppc440spe_adma_chan *chan)
 | |
| {
 | |
| 	struct xor_cb *p;
 | |
| 
 | |
| 	switch (chan->device->id) {
 | |
| 	case PPC440SPE_XOR_ID:
 | |
| 		p = desc->hw_desc;
 | |
| 		memset(desc->hw_desc, 0, sizeof(struct xor_cb));
 | |
| 		/* NOP with Command Block Complete Enable */
 | |
| 		p->cbc = XOR_CBCR_CBCE_BIT;
 | |
| 		break;
 | |
| 	case PPC440SPE_DMA0_ID:
 | |
| 	case PPC440SPE_DMA1_ID:
 | |
| 		memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
 | |
| 		/* NOP with interrupt */
 | |
| 		set_bit(PPC440SPE_DESC_INT, &desc->flags);
 | |
| 		break;
 | |
| 	default:
 | |
| 		printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id,
 | |
| 				__func__);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR
 | |
|  * pseudo operation
 | |
|  */
 | |
| static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc)
 | |
| {
 | |
| 	memset(desc->hw_desc, 0, sizeof(struct xor_cb));
 | |
| 	desc->hw_next = NULL;
 | |
| 	desc->src_cnt = 0;
 | |
| 	desc->dst_cnt = 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation
 | |
|  */
 | |
| static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc,
 | |
| 					 int src_cnt, unsigned long flags)
 | |
| {
 | |
| 	struct xor_cb *hw_desc = desc->hw_desc;
 | |
| 
 | |
| 	memset(desc->hw_desc, 0, sizeof(struct xor_cb));
 | |
| 	desc->hw_next = NULL;
 | |
| 	desc->src_cnt = src_cnt;
 | |
| 	desc->dst_cnt = 1;
 | |
| 
 | |
| 	hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt;
 | |
| 	if (flags & DMA_PREP_INTERRUPT)
 | |
| 		/* Enable interrupt on completion */
 | |
| 		hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ
 | |
|  * operation in DMA2 controller
 | |
|  */
 | |
| static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc,
 | |
| 		int dst_cnt, int src_cnt, unsigned long flags)
 | |
| {
 | |
| 	struct xor_cb *hw_desc = desc->hw_desc;
 | |
| 
 | |
| 	memset(desc->hw_desc, 0, sizeof(struct xor_cb));
 | |
| 	desc->hw_next = NULL;
 | |
| 	desc->src_cnt = src_cnt;
 | |
| 	desc->dst_cnt = dst_cnt;
 | |
| 	memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags));
 | |
| 	desc->descs_per_op = 0;
 | |
| 
 | |
| 	hw_desc->cbc = XOR_CBCR_TGT_BIT;
 | |
| 	if (flags & DMA_PREP_INTERRUPT)
 | |
| 		/* Enable interrupt on completion */
 | |
| 		hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
 | |
| }
 | |
| 
 | |
| #define DMA_CTRL_FLAGS_LAST	DMA_PREP_FENCE
 | |
| #define DMA_PREP_ZERO_P		(DMA_CTRL_FLAGS_LAST << 1)
 | |
| #define DMA_PREP_ZERO_Q		(DMA_PREP_ZERO_P << 1)
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation
 | |
|  * with DMA0/1
 | |
|  */
 | |
| static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc,
 | |
| 				int dst_cnt, int src_cnt, unsigned long flags,
 | |
| 				unsigned long op)
 | |
| {
 | |
| 	struct dma_cdb *hw_desc;
 | |
| 	struct ppc440spe_adma_desc_slot *iter;
 | |
| 	u8 dopc;
 | |
| 
 | |
| 	/* Common initialization of a PQ descriptors chain */
 | |
| 	set_bits(op, &desc->flags);
 | |
| 	desc->src_cnt = src_cnt;
 | |
| 	desc->dst_cnt = dst_cnt;
 | |
| 
 | |
| 	/* WXOR MULTICAST if both P and Q are being computed
 | |
| 	 * MV_SG1_SG2 if Q only
 | |
| 	 */
 | |
| 	dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ?
 | |
| 		DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2;
 | |
| 
 | |
| 	list_for_each_entry(iter, &desc->group_list, chain_node) {
 | |
| 		hw_desc = iter->hw_desc;
 | |
| 		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
 | |
| 
 | |
| 		if (likely(!list_is_last(&iter->chain_node,
 | |
| 				&desc->group_list))) {
 | |
| 			/* set 'next' pointer */
 | |
| 			iter->hw_next = list_entry(iter->chain_node.next,
 | |
| 				struct ppc440spe_adma_desc_slot, chain_node);
 | |
| 			clear_bit(PPC440SPE_DESC_INT, &iter->flags);
 | |
| 		} else {
 | |
| 			/* this is the last descriptor.
 | |
| 			 * this slot will be pasted from ADMA level
 | |
| 			 * each time it wants to configure parameters
 | |
| 			 * of the transaction (src, dst, ...)
 | |
| 			 */
 | |
| 			iter->hw_next = NULL;
 | |
| 			if (flags & DMA_PREP_INTERRUPT)
 | |
| 				set_bit(PPC440SPE_DESC_INT, &iter->flags);
 | |
| 			else
 | |
| 				clear_bit(PPC440SPE_DESC_INT, &iter->flags);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Set OPS depending on WXOR/RXOR type of operation */
 | |
| 	if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) {
 | |
| 		/* This is a WXOR only chain:
 | |
| 		 * - first descriptors are for zeroing destinations
 | |
| 		 *   if PPC440SPE_ZERO_P/Q set;
 | |
| 		 * - descriptors remained are for GF-XOR operations.
 | |
| 		 */
 | |
| 		iter = list_first_entry(&desc->group_list,
 | |
| 					struct ppc440spe_adma_desc_slot,
 | |
| 					chain_node);
 | |
| 
 | |
| 		if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) {
 | |
| 			hw_desc = iter->hw_desc;
 | |
| 			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
 | |
| 			iter = list_first_entry(&iter->chain_node,
 | |
| 					struct ppc440spe_adma_desc_slot,
 | |
| 					chain_node);
 | |
| 		}
 | |
| 
 | |
| 		if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) {
 | |
| 			hw_desc = iter->hw_desc;
 | |
| 			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
 | |
| 			iter = list_first_entry(&iter->chain_node,
 | |
| 					struct ppc440spe_adma_desc_slot,
 | |
| 					chain_node);
 | |
| 		}
 | |
| 
 | |
| 		list_for_each_entry_from(iter, &desc->group_list, chain_node) {
 | |
| 			hw_desc = iter->hw_desc;
 | |
| 			hw_desc->opc = dopc;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* This is either RXOR-only or mixed RXOR/WXOR */
 | |
| 
 | |
| 		/* The first 1 or 2 slots in chain are always RXOR,
 | |
| 		 * if need to calculate P & Q, then there are two
 | |
| 		 * RXOR slots; if only P or only Q, then there is one
 | |
| 		 */
 | |
| 		iter = list_first_entry(&desc->group_list,
 | |
| 					struct ppc440spe_adma_desc_slot,
 | |
| 					chain_node);
 | |
| 		hw_desc = iter->hw_desc;
 | |
| 		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
 | |
| 
 | |
| 		if (desc->dst_cnt == DMA_DEST_MAX_NUM) {
 | |
| 			iter = list_first_entry(&iter->chain_node,
 | |
| 						struct ppc440spe_adma_desc_slot,
 | |
| 						chain_node);
 | |
| 			hw_desc = iter->hw_desc;
 | |
| 			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
 | |
| 		}
 | |
| 
 | |
| 		/* The remaining descs (if any) are WXORs */
 | |
| 		if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) {
 | |
| 			iter = list_first_entry(&iter->chain_node,
 | |
| 						struct ppc440spe_adma_desc_slot,
 | |
| 						chain_node);
 | |
| 			list_for_each_entry_from(iter, &desc->group_list,
 | |
| 						chain_node) {
 | |
| 				hw_desc = iter->hw_desc;
 | |
| 				hw_desc->opc = dopc;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor
 | |
|  * for PQ_ZERO_SUM operation
 | |
|  */
 | |
| static void ppc440spe_desc_init_dma01pqzero_sum(
 | |
| 				struct ppc440spe_adma_desc_slot *desc,
 | |
| 				int dst_cnt, int src_cnt)
 | |
| {
 | |
| 	struct dma_cdb *hw_desc;
 | |
| 	struct ppc440spe_adma_desc_slot *iter;
 | |
| 	int i = 0;
 | |
| 	u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST :
 | |
| 				   DMA_CDB_OPC_MV_SG1_SG2;
 | |
| 	/*
 | |
| 	 * Initialize starting from 2nd or 3rd descriptor dependent
 | |
| 	 * on dst_cnt. First one or two slots are for cloning P
 | |
| 	 * and/or Q to chan->pdest and/or chan->qdest as we have
 | |
| 	 * to preserve original P/Q.
 | |
| 	 */
 | |
| 	iter = list_first_entry(&desc->group_list,
 | |
| 				struct ppc440spe_adma_desc_slot, chain_node);
 | |
| 	iter = list_entry(iter->chain_node.next,
 | |
| 			  struct ppc440spe_adma_desc_slot, chain_node);
 | |
| 
 | |
| 	if (dst_cnt > 1) {
 | |
| 		iter = list_entry(iter->chain_node.next,
 | |
| 				  struct ppc440spe_adma_desc_slot, chain_node);
 | |
| 	}
 | |
| 	/* initialize each source descriptor in chain */
 | |
| 	list_for_each_entry_from(iter, &desc->group_list, chain_node) {
 | |
| 		hw_desc = iter->hw_desc;
 | |
| 		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
 | |
| 		iter->src_cnt = 0;
 | |
| 		iter->dst_cnt = 0;
 | |
| 
 | |
| 		/* This is a ZERO_SUM operation:
 | |
| 		 * - <src_cnt> descriptors starting from 2nd or 3rd
 | |
| 		 *   descriptor are for GF-XOR operations;
 | |
| 		 * - remaining <dst_cnt> descriptors are for checking the result
 | |
| 		 */
 | |
| 		if (i++ < src_cnt)
 | |
| 			/* MV_SG1_SG2 if only Q is being verified
 | |
| 			 * MULTICAST if both P and Q are being verified
 | |
| 			 */
 | |
| 			hw_desc->opc = dopc;
 | |
| 		else
 | |
| 			/* DMA_CDB_OPC_DCHECK128 operation */
 | |
| 			hw_desc->opc = DMA_CDB_OPC_DCHECK128;
 | |
| 
 | |
| 		if (likely(!list_is_last(&iter->chain_node,
 | |
| 					 &desc->group_list))) {
 | |
| 			/* set 'next' pointer */
 | |
| 			iter->hw_next = list_entry(iter->chain_node.next,
 | |
| 						struct ppc440spe_adma_desc_slot,
 | |
| 						chain_node);
 | |
| 		} else {
 | |
| 			/* this is the last descriptor.
 | |
| 			 * this slot will be pasted from ADMA level
 | |
| 			 * each time it wants to configure parameters
 | |
| 			 * of the transaction (src, dst, ...)
 | |
| 			 */
 | |
| 			iter->hw_next = NULL;
 | |
| 			/* always enable interrupt generation since we get
 | |
| 			 * the status of pqzero from the handler
 | |
| 			 */
 | |
| 			set_bit(PPC440SPE_DESC_INT, &iter->flags);
 | |
| 		}
 | |
| 	}
 | |
| 	desc->src_cnt = src_cnt;
 | |
| 	desc->dst_cnt = dst_cnt;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation
 | |
|  */
 | |
| static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc,
 | |
| 					unsigned long flags)
 | |
| {
 | |
| 	struct dma_cdb *hw_desc = desc->hw_desc;
 | |
| 
 | |
| 	memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
 | |
| 	desc->hw_next = NULL;
 | |
| 	desc->src_cnt = 1;
 | |
| 	desc->dst_cnt = 1;
 | |
| 
 | |
| 	if (flags & DMA_PREP_INTERRUPT)
 | |
| 		set_bit(PPC440SPE_DESC_INT, &desc->flags);
 | |
| 	else
 | |
| 		clear_bit(PPC440SPE_DESC_INT, &desc->flags);
 | |
| 
 | |
| 	hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_desc_set_src_addr - set source address into the descriptor
 | |
|  */
 | |
| static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc,
 | |
| 					struct ppc440spe_adma_chan *chan,
 | |
| 					int src_idx, dma_addr_t addrh,
 | |
| 					dma_addr_t addrl)
 | |
| {
 | |
| 	struct dma_cdb *dma_hw_desc;
 | |
| 	struct xor_cb *xor_hw_desc;
 | |
| 	phys_addr_t addr64, tmplow, tmphi;
 | |
| 
 | |
| 	switch (chan->device->id) {
 | |
| 	case PPC440SPE_DMA0_ID:
 | |
| 	case PPC440SPE_DMA1_ID:
 | |
| 		if (!addrh) {
 | |
| 			addr64 = addrl;
 | |
| 			tmphi = (addr64 >> 32);
 | |
| 			tmplow = (addr64 & 0xFFFFFFFF);
 | |
| 		} else {
 | |
| 			tmphi = addrh;
 | |
| 			tmplow = addrl;
 | |
| 		}
 | |
| 		dma_hw_desc = desc->hw_desc;
 | |
| 		dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow);
 | |
| 		dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi);
 | |
| 		break;
 | |
| 	case PPC440SPE_XOR_ID:
 | |
| 		xor_hw_desc = desc->hw_desc;
 | |
| 		xor_hw_desc->ops[src_idx].l = addrl;
 | |
| 		xor_hw_desc->ops[src_idx].h |= addrh;
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_desc_set_src_mult - set source address mult into the descriptor
 | |
|  */
 | |
| static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc,
 | |
| 			struct ppc440spe_adma_chan *chan, u32 mult_index,
 | |
| 			int sg_index, unsigned char mult_value)
 | |
| {
 | |
| 	struct dma_cdb *dma_hw_desc;
 | |
| 	u32 *psgu;
 | |
| 
 | |
| 	switch (chan->device->id) {
 | |
| 	case PPC440SPE_DMA0_ID:
 | |
| 	case PPC440SPE_DMA1_ID:
 | |
| 		dma_hw_desc = desc->hw_desc;
 | |
| 
 | |
| 		switch (sg_index) {
 | |
| 		/* for RXOR operations set multiplier
 | |
| 		 * into source cued address
 | |
| 		 */
 | |
| 		case DMA_CDB_SG_SRC:
 | |
| 			psgu = &dma_hw_desc->sg1u;
 | |
| 			break;
 | |
| 		/* for WXOR operations set multiplier
 | |
| 		 * into destination cued address(es)
 | |
| 		 */
 | |
| 		case DMA_CDB_SG_DST1:
 | |
| 			psgu = &dma_hw_desc->sg2u;
 | |
| 			break;
 | |
| 		case DMA_CDB_SG_DST2:
 | |
| 			psgu = &dma_hw_desc->sg3u;
 | |
| 			break;
 | |
| 		default:
 | |
| 			BUG();
 | |
| 		}
 | |
| 
 | |
| 		*psgu |= cpu_to_le32(mult_value << mult_index);
 | |
| 		break;
 | |
| 	case PPC440SPE_XOR_ID:
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_desc_set_dest_addr - set destination address into the descriptor
 | |
|  */
 | |
| static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc,
 | |
| 				struct ppc440spe_adma_chan *chan,
 | |
| 				dma_addr_t addrh, dma_addr_t addrl,
 | |
| 				u32 dst_idx)
 | |
| {
 | |
| 	struct dma_cdb *dma_hw_desc;
 | |
| 	struct xor_cb *xor_hw_desc;
 | |
| 	phys_addr_t addr64, tmphi, tmplow;
 | |
| 	u32 *psgu, *psgl;
 | |
| 
 | |
| 	switch (chan->device->id) {
 | |
| 	case PPC440SPE_DMA0_ID:
 | |
| 	case PPC440SPE_DMA1_ID:
 | |
| 		if (!addrh) {
 | |
| 			addr64 = addrl;
 | |
| 			tmphi = (addr64 >> 32);
 | |
| 			tmplow = (addr64 & 0xFFFFFFFF);
 | |
| 		} else {
 | |
| 			tmphi = addrh;
 | |
| 			tmplow = addrl;
 | |
| 		}
 | |
| 		dma_hw_desc = desc->hw_desc;
 | |
| 
 | |
| 		psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u;
 | |
| 		psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l;
 | |
| 
 | |
| 		*psgl = cpu_to_le32((u32)tmplow);
 | |
| 		*psgu |= cpu_to_le32((u32)tmphi);
 | |
| 		break;
 | |
| 	case PPC440SPE_XOR_ID:
 | |
| 		xor_hw_desc = desc->hw_desc;
 | |
| 		xor_hw_desc->cbtal = addrl;
 | |
| 		xor_hw_desc->cbtah |= addrh;
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_desc_set_byte_count - set number of data bytes involved
 | |
|  * into the operation
 | |
|  */
 | |
| static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc,
 | |
| 				struct ppc440spe_adma_chan *chan,
 | |
| 				u32 byte_count)
 | |
| {
 | |
| 	struct dma_cdb *dma_hw_desc;
 | |
| 	struct xor_cb *xor_hw_desc;
 | |
| 
 | |
| 	switch (chan->device->id) {
 | |
| 	case PPC440SPE_DMA0_ID:
 | |
| 	case PPC440SPE_DMA1_ID:
 | |
| 		dma_hw_desc = desc->hw_desc;
 | |
| 		dma_hw_desc->cnt = cpu_to_le32(byte_count);
 | |
| 		break;
 | |
| 	case PPC440SPE_XOR_ID:
 | |
| 		xor_hw_desc = desc->hw_desc;
 | |
| 		xor_hw_desc->cbbc = byte_count;
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_desc_set_rxor_block_size - set RXOR block size
 | |
|  */
 | |
| static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count)
 | |
| {
 | |
| 	/* assume that byte_count is aligned on the 512-boundary;
 | |
| 	 * thus write it directly to the register (bits 23:31 are
 | |
| 	 * reserved there).
 | |
| 	 */
 | |
| 	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_desc_set_dcheck - set CHECK pattern
 | |
|  */
 | |
| static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc,
 | |
| 				struct ppc440spe_adma_chan *chan, u8 *qword)
 | |
| {
 | |
| 	struct dma_cdb *dma_hw_desc;
 | |
| 
 | |
| 	switch (chan->device->id) {
 | |
| 	case PPC440SPE_DMA0_ID:
 | |
| 	case PPC440SPE_DMA1_ID:
 | |
| 		dma_hw_desc = desc->hw_desc;
 | |
| 		iowrite32(qword[0], &dma_hw_desc->sg3l);
 | |
| 		iowrite32(qword[4], &dma_hw_desc->sg3u);
 | |
| 		iowrite32(qword[8], &dma_hw_desc->sg2l);
 | |
| 		iowrite32(qword[12], &dma_hw_desc->sg2u);
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_xor_set_link - set link address in xor CB
 | |
|  */
 | |
| static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc,
 | |
| 				struct ppc440spe_adma_desc_slot *next_desc)
 | |
| {
 | |
| 	struct xor_cb *xor_hw_desc = prev_desc->hw_desc;
 | |
| 
 | |
| 	if (unlikely(!next_desc || !(next_desc->phys))) {
 | |
| 		printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n",
 | |
| 			__func__, next_desc,
 | |
| 			next_desc ? next_desc->phys : 0);
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	xor_hw_desc->cbs = 0;
 | |
| 	xor_hw_desc->cblal = next_desc->phys;
 | |
| 	xor_hw_desc->cblah = 0;
 | |
| 	xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_desc_set_link - set the address of descriptor following this
 | |
|  * descriptor in chain
 | |
|  */
 | |
| static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan,
 | |
| 				struct ppc440spe_adma_desc_slot *prev_desc,
 | |
| 				struct ppc440spe_adma_desc_slot *next_desc)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct ppc440spe_adma_desc_slot *tail = next_desc;
 | |
| 
 | |
| 	if (unlikely(!prev_desc || !next_desc ||
 | |
| 		(prev_desc->hw_next && prev_desc->hw_next != next_desc))) {
 | |
| 		/* If previous next is overwritten something is wrong.
 | |
| 		 * though we may refetch from append to initiate list
 | |
| 		 * processing; in this case - it's ok.
 | |
| 		 */
 | |
| 		printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; "
 | |
| 			"prev->hw_next=0x%p\n", __func__, prev_desc,
 | |
| 			next_desc, prev_desc ? prev_desc->hw_next : 0);
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	/* do s/w chaining both for DMA and XOR descriptors */
 | |
| 	prev_desc->hw_next = next_desc;
 | |
| 
 | |
| 	switch (chan->device->id) {
 | |
| 	case PPC440SPE_DMA0_ID:
 | |
| 	case PPC440SPE_DMA1_ID:
 | |
| 		break;
 | |
| 	case PPC440SPE_XOR_ID:
 | |
| 		/* bind descriptor to the chain */
 | |
| 		while (tail->hw_next)
 | |
| 			tail = tail->hw_next;
 | |
| 		xor_last_linked = tail;
 | |
| 
 | |
| 		if (prev_desc == xor_last_submit)
 | |
| 			/* do not link to the last submitted CB */
 | |
| 			break;
 | |
| 		ppc440spe_xor_set_link(prev_desc, next_desc);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_desc_get_link - get the address of the descriptor that
 | |
|  * follows this one
 | |
|  */
 | |
| static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc,
 | |
| 					struct ppc440spe_adma_chan *chan)
 | |
| {
 | |
| 	if (!desc->hw_next)
 | |
| 		return 0;
 | |
| 
 | |
| 	return desc->hw_next->phys;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_desc_is_aligned - check alignment
 | |
|  */
 | |
| static inline int ppc440spe_desc_is_aligned(
 | |
| 	struct ppc440spe_adma_desc_slot *desc, int num_slots)
 | |
| {
 | |
| 	return (desc->idx & (num_slots - 1)) ? 0 : 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_chan_xor_slot_count - get the number of slots necessary for
 | |
|  * XOR operation
 | |
|  */
 | |
| static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt,
 | |
| 			int *slots_per_op)
 | |
| {
 | |
| 	int slot_cnt;
 | |
| 
 | |
| 	/* each XOR descriptor provides up to 16 source operands */
 | |
| 	slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS;
 | |
| 
 | |
| 	if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT))
 | |
| 		return slot_cnt;
 | |
| 
 | |
| 	printk(KERN_ERR "%s: len %d > max %d !!\n",
 | |
| 		__func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
 | |
| 	BUG();
 | |
| 	return slot_cnt;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for
 | |
|  * DMA2 PQ operation
 | |
|  */
 | |
| static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs,
 | |
| 		int src_cnt, size_t len)
 | |
| {
 | |
| 	signed long long order = 0;
 | |
| 	int state = 0;
 | |
| 	int addr_count = 0;
 | |
| 	int i;
 | |
| 	for (i = 1; i < src_cnt; i++) {
 | |
| 		dma_addr_t cur_addr = srcs[i];
 | |
| 		dma_addr_t old_addr = srcs[i-1];
 | |
| 		switch (state) {
 | |
| 		case 0:
 | |
| 			if (cur_addr == old_addr + len) {
 | |
| 				/* direct RXOR */
 | |
| 				order = 1;
 | |
| 				state = 1;
 | |
| 				if (i == src_cnt-1)
 | |
| 					addr_count++;
 | |
| 			} else if (old_addr == cur_addr + len) {
 | |
| 				/* reverse RXOR */
 | |
| 				order = -1;
 | |
| 				state = 1;
 | |
| 				if (i == src_cnt-1)
 | |
| 					addr_count++;
 | |
| 			} else {
 | |
| 				state = 3;
 | |
| 			}
 | |
| 			break;
 | |
| 		case 1:
 | |
| 			if (i == src_cnt-2 || (order == -1
 | |
| 				&& cur_addr != old_addr - len)) {
 | |
| 				order = 0;
 | |
| 				state = 0;
 | |
| 				addr_count++;
 | |
| 			} else if (cur_addr == old_addr + len*order) {
 | |
| 				state = 2;
 | |
| 				if (i == src_cnt-1)
 | |
| 					addr_count++;
 | |
| 			} else if (cur_addr == old_addr + 2*len) {
 | |
| 				state = 2;
 | |
| 				if (i == src_cnt-1)
 | |
| 					addr_count++;
 | |
| 			} else if (cur_addr == old_addr + 3*len) {
 | |
| 				state = 2;
 | |
| 				if (i == src_cnt-1)
 | |
| 					addr_count++;
 | |
| 			} else {
 | |
| 				order = 0;
 | |
| 				state = 0;
 | |
| 				addr_count++;
 | |
| 			}
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			order = 0;
 | |
| 			state = 0;
 | |
| 			addr_count++;
 | |
| 				break;
 | |
| 		}
 | |
| 		if (state == 3)
 | |
| 			break;
 | |
| 	}
 | |
| 	if (src_cnt <= 1 || (state != 1 && state != 2)) {
 | |
| 		pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n",
 | |
| 			__func__, src_cnt, state, addr_count, order);
 | |
| 		for (i = 0; i < src_cnt; i++)
 | |
| 			pr_err("\t[%d] 0x%llx \n", i, srcs[i]);
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS;
 | |
| }
 | |
| 
 | |
| 
 | |
| /******************************************************************************
 | |
|  * ADMA channel low-level routines
 | |
|  ******************************************************************************/
 | |
| 
 | |
| static u32
 | |
| ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan);
 | |
| static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan);
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine
 | |
|  */
 | |
| static void ppc440spe_adma_device_clear_eot_status(
 | |
| 					struct ppc440spe_adma_chan *chan)
 | |
| {
 | |
| 	struct dma_regs *dma_reg;
 | |
| 	struct xor_regs *xor_reg;
 | |
| 	u8 *p = chan->device->dma_desc_pool_virt;
 | |
| 	struct dma_cdb *cdb;
 | |
| 	u32 rv, i;
 | |
| 
 | |
| 	switch (chan->device->id) {
 | |
| 	case PPC440SPE_DMA0_ID:
 | |
| 	case PPC440SPE_DMA1_ID:
 | |
| 		/* read FIFO to ack */
 | |
| 		dma_reg = chan->device->dma_reg;
 | |
| 		while ((rv = ioread32(&dma_reg->csfpl))) {
 | |
| 			i = rv & DMA_CDB_ADDR_MSK;
 | |
| 			cdb = (struct dma_cdb *)&p[i -
 | |
| 			    (u32)chan->device->dma_desc_pool];
 | |
| 
 | |
| 			/* Clear opcode to ack. This is necessary for
 | |
| 			 * ZeroSum operations only
 | |
| 			 */
 | |
| 			cdb->opc = 0;
 | |
| 
 | |
| 			if (test_bit(PPC440SPE_RXOR_RUN,
 | |
| 			    &ppc440spe_rxor_state)) {
 | |
| 				/* probably this is a completed RXOR op,
 | |
| 				 * get pointer to CDB using the fact that
 | |
| 				 * physical and virtual addresses of CDB
 | |
| 				 * in pools have the same offsets
 | |
| 				 */
 | |
| 				if (le32_to_cpu(cdb->sg1u) &
 | |
| 				    DMA_CUED_XOR_BASE) {
 | |
| 					/* this is a RXOR */
 | |
| 					clear_bit(PPC440SPE_RXOR_RUN,
 | |
| 						  &ppc440spe_rxor_state);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (rv & DMA_CDB_STATUS_MSK) {
 | |
| 				/* ZeroSum check failed
 | |
| 				 */
 | |
| 				struct ppc440spe_adma_desc_slot *iter;
 | |
| 				dma_addr_t phys = rv & ~DMA_CDB_MSK;
 | |
| 
 | |
| 				/*
 | |
| 				 * Update the status of corresponding
 | |
| 				 * descriptor.
 | |
| 				 */
 | |
| 				list_for_each_entry(iter, &chan->chain,
 | |
| 				    chain_node) {
 | |
| 					if (iter->phys == phys)
 | |
| 						break;
 | |
| 				}
 | |
| 				/*
 | |
| 				 * if cannot find the corresponding
 | |
| 				 * slot it's a bug
 | |
| 				 */
 | |
| 				BUG_ON(&iter->chain_node == &chan->chain);
 | |
| 
 | |
| 				if (iter->xor_check_result) {
 | |
| 					if (test_bit(PPC440SPE_DESC_PCHECK,
 | |
| 						     &iter->flags)) {
 | |
| 						*iter->xor_check_result |=
 | |
| 							SUM_CHECK_P_RESULT;
 | |
| 					} else
 | |
| 					if (test_bit(PPC440SPE_DESC_QCHECK,
 | |
| 						     &iter->flags)) {
 | |
| 						*iter->xor_check_result |=
 | |
| 							SUM_CHECK_Q_RESULT;
 | |
| 					} else
 | |
| 						BUG();
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		rv = ioread32(&dma_reg->dsts);
 | |
| 		if (rv) {
 | |
| 			pr_err("DMA%d err status: 0x%x\n",
 | |
| 			       chan->device->id, rv);
 | |
| 			/* write back to clear */
 | |
| 			iowrite32(rv, &dma_reg->dsts);
 | |
| 		}
 | |
| 		break;
 | |
| 	case PPC440SPE_XOR_ID:
 | |
| 		/* reset status bits to ack */
 | |
| 		xor_reg = chan->device->xor_reg;
 | |
| 		rv = ioread32be(&xor_reg->sr);
 | |
| 		iowrite32be(rv, &xor_reg->sr);
 | |
| 
 | |
| 		if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) {
 | |
| 			if (rv & XOR_IE_RPTIE_BIT) {
 | |
| 				/* Read PLB Timeout Error.
 | |
| 				 * Try to resubmit the CB
 | |
| 				 */
 | |
| 				u32 val = ioread32be(&xor_reg->ccbalr);
 | |
| 
 | |
| 				iowrite32be(val, &xor_reg->cblalr);
 | |
| 
 | |
| 				val = ioread32be(&xor_reg->crsr);
 | |
| 				iowrite32be(val | XOR_CRSR_XAE_BIT,
 | |
| 					    &xor_reg->crsr);
 | |
| 			} else
 | |
| 				pr_err("XOR ERR 0x%x status\n", rv);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*  if the XORcore is idle, but there are unprocessed CBs
 | |
| 		 * then refetch the s/w chain here
 | |
| 		 */
 | |
| 		if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) &&
 | |
| 		    do_xor_refetch)
 | |
| 			ppc440spe_chan_append(chan);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_chan_is_busy - get the channel status
 | |
|  */
 | |
| static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan)
 | |
| {
 | |
| 	struct dma_regs *dma_reg;
 | |
| 	struct xor_regs *xor_reg;
 | |
| 	int busy = 0;
 | |
| 
 | |
| 	switch (chan->device->id) {
 | |
| 	case PPC440SPE_DMA0_ID:
 | |
| 	case PPC440SPE_DMA1_ID:
 | |
| 		dma_reg = chan->device->dma_reg;
 | |
| 		/*  if command FIFO's head and tail pointers are equal and
 | |
| 		 * status tail is the same as command, then channel is free
 | |
| 		 */
 | |
| 		if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) ||
 | |
| 		    ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp))
 | |
| 			busy = 1;
 | |
| 		break;
 | |
| 	case PPC440SPE_XOR_ID:
 | |
| 		/* use the special status bit for the XORcore
 | |
| 		 */
 | |
| 		xor_reg = chan->device->xor_reg;
 | |
| 		busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return busy;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_chan_set_first_xor_descriptor -  init XORcore chain
 | |
|  */
 | |
| static void ppc440spe_chan_set_first_xor_descriptor(
 | |
| 				struct ppc440spe_adma_chan *chan,
 | |
| 				struct ppc440spe_adma_desc_slot *next_desc)
 | |
| {
 | |
| 	struct xor_regs *xor_reg = chan->device->xor_reg;
 | |
| 
 | |
| 	if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)
 | |
| 		printk(KERN_INFO "%s: Warn: XORcore is running "
 | |
| 			"when try to set the first CDB!\n",
 | |
| 			__func__);
 | |
| 
 | |
| 	xor_last_submit = xor_last_linked = next_desc;
 | |
| 
 | |
| 	iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr);
 | |
| 
 | |
| 	iowrite32be(next_desc->phys, &xor_reg->cblalr);
 | |
| 	iowrite32be(0, &xor_reg->cblahr);
 | |
| 	iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT,
 | |
| 		    &xor_reg->cbcr);
 | |
| 
 | |
| 	chan->hw_chain_inited = 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO.
 | |
|  * called with irqs disabled
 | |
|  */
 | |
| static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan,
 | |
| 		struct ppc440spe_adma_desc_slot *desc)
 | |
| {
 | |
| 	u32 pcdb;
 | |
| 	struct dma_regs *dma_reg = chan->device->dma_reg;
 | |
| 
 | |
| 	pcdb = desc->phys;
 | |
| 	if (!test_bit(PPC440SPE_DESC_INT, &desc->flags))
 | |
| 		pcdb |= DMA_CDB_NO_INT;
 | |
| 
 | |
| 	chan_last_sub[chan->device->id] = desc;
 | |
| 
 | |
| 	ADMA_LL_DBG(print_cb(chan, desc->hw_desc));
 | |
| 
 | |
| 	iowrite32(pcdb, &dma_reg->cpfpl);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_chan_append - update the h/w chain in the channel
 | |
|  */
 | |
| static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan)
 | |
| {
 | |
| 	struct xor_regs *xor_reg;
 | |
| 	struct ppc440spe_adma_desc_slot *iter;
 | |
| 	struct xor_cb *xcb;
 | |
| 	u32 cur_desc;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	switch (chan->device->id) {
 | |
| 	case PPC440SPE_DMA0_ID:
 | |
| 	case PPC440SPE_DMA1_ID:
 | |
| 		cur_desc = ppc440spe_chan_get_current_descriptor(chan);
 | |
| 
 | |
| 		if (likely(cur_desc)) {
 | |
| 			iter = chan_last_sub[chan->device->id];
 | |
| 			BUG_ON(!iter);
 | |
| 		} else {
 | |
| 			/* first peer */
 | |
| 			iter = chan_first_cdb[chan->device->id];
 | |
| 			BUG_ON(!iter);
 | |
| 			ppc440spe_dma_put_desc(chan, iter);
 | |
| 			chan->hw_chain_inited = 1;
 | |
| 		}
 | |
| 
 | |
| 		/* is there something new to append */
 | |
| 		if (!iter->hw_next)
 | |
| 			break;
 | |
| 
 | |
| 		/* flush descriptors from the s/w queue to fifo */
 | |
| 		list_for_each_entry_continue(iter, &chan->chain, chain_node) {
 | |
| 			ppc440spe_dma_put_desc(chan, iter);
 | |
| 			if (!iter->hw_next)
 | |
| 				break;
 | |
| 		}
 | |
| 		break;
 | |
| 	case PPC440SPE_XOR_ID:
 | |
| 		/* update h/w links and refetch */
 | |
| 		if (!xor_last_submit->hw_next)
 | |
| 			break;
 | |
| 
 | |
| 		xor_reg = chan->device->xor_reg;
 | |
| 		/* the last linked CDB has to generate an interrupt
 | |
| 		 * that we'd be able to append the next lists to h/w
 | |
| 		 * regardless of the XOR engine state at the moment of
 | |
| 		 * appending of these next lists
 | |
| 		 */
 | |
| 		xcb = xor_last_linked->hw_desc;
 | |
| 		xcb->cbc |= XOR_CBCR_CBCE_BIT;
 | |
| 
 | |
| 		if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) {
 | |
| 			/* XORcore is idle. Refetch now */
 | |
| 			do_xor_refetch = 0;
 | |
| 			ppc440spe_xor_set_link(xor_last_submit,
 | |
| 				xor_last_submit->hw_next);
 | |
| 
 | |
| 			ADMA_LL_DBG(print_cb_list(chan,
 | |
| 				xor_last_submit->hw_next));
 | |
| 
 | |
| 			xor_last_submit = xor_last_linked;
 | |
| 			iowrite32be(ioread32be(&xor_reg->crsr) |
 | |
| 				    XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT,
 | |
| 				    &xor_reg->crsr);
 | |
| 		} else {
 | |
| 			/* XORcore is running. Refetch later in the handler */
 | |
| 			do_xor_refetch = 1;
 | |
| 		}
 | |
| 
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor
 | |
|  */
 | |
| static u32
 | |
| ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan)
 | |
| {
 | |
| 	struct dma_regs *dma_reg;
 | |
| 	struct xor_regs *xor_reg;
 | |
| 
 | |
| 	if (unlikely(!chan->hw_chain_inited))
 | |
| 		/* h/w descriptor chain is not initialized yet */
 | |
| 		return 0;
 | |
| 
 | |
| 	switch (chan->device->id) {
 | |
| 	case PPC440SPE_DMA0_ID:
 | |
| 	case PPC440SPE_DMA1_ID:
 | |
| 		dma_reg = chan->device->dma_reg;
 | |
| 		return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK);
 | |
| 	case PPC440SPE_XOR_ID:
 | |
| 		xor_reg = chan->device->xor_reg;
 | |
| 		return ioread32be(&xor_reg->ccbalr);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_chan_run - enable the channel
 | |
|  */
 | |
| static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan)
 | |
| {
 | |
| 	struct xor_regs *xor_reg;
 | |
| 
 | |
| 	switch (chan->device->id) {
 | |
| 	case PPC440SPE_DMA0_ID:
 | |
| 	case PPC440SPE_DMA1_ID:
 | |
| 		/* DMAs are always enabled, do nothing */
 | |
| 		break;
 | |
| 	case PPC440SPE_XOR_ID:
 | |
| 		/* drain write buffer */
 | |
| 		xor_reg = chan->device->xor_reg;
 | |
| 
 | |
| 		/* fetch descriptor pointed to in <link> */
 | |
| 		iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT,
 | |
| 			    &xor_reg->crsr);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /******************************************************************************
 | |
|  * ADMA device level
 | |
|  ******************************************************************************/
 | |
| 
 | |
| static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan);
 | |
| static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan);
 | |
| 
 | |
| static dma_cookie_t
 | |
| ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx);
 | |
| 
 | |
| static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx,
 | |
| 				    dma_addr_t addr, int index);
 | |
| static void
 | |
| ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx,
 | |
| 				  dma_addr_t addr, int index);
 | |
| 
 | |
| static void
 | |
| ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx,
 | |
| 			   dma_addr_t *paddr, unsigned long flags);
 | |
| static void
 | |
| ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx,
 | |
| 			  dma_addr_t addr, int index);
 | |
| static void
 | |
| ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx,
 | |
| 			       unsigned char mult, int index, int dst_pos);
 | |
| static void
 | |
| ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx,
 | |
| 				   dma_addr_t paddr, dma_addr_t qaddr);
 | |
| 
 | |
| static struct page *ppc440spe_rxor_srcs[32];
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_can_rxor - check if the operands may be processed with RXOR
 | |
|  */
 | |
| static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len)
 | |
| {
 | |
| 	int i, order = 0, state = 0;
 | |
| 	int idx = 0;
 | |
| 
 | |
| 	if (unlikely(!(src_cnt > 1)))
 | |
| 		return 0;
 | |
| 
 | |
| 	BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs));
 | |
| 
 | |
| 	/* Skip holes in the source list before checking */
 | |
| 	for (i = 0; i < src_cnt; i++) {
 | |
| 		if (!srcs[i])
 | |
| 			continue;
 | |
| 		ppc440spe_rxor_srcs[idx++] = srcs[i];
 | |
| 	}
 | |
| 	src_cnt = idx;
 | |
| 
 | |
| 	for (i = 1; i < src_cnt; i++) {
 | |
| 		char *cur_addr = page_address(ppc440spe_rxor_srcs[i]);
 | |
| 		char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]);
 | |
| 
 | |
| 		switch (state) {
 | |
| 		case 0:
 | |
| 			if (cur_addr == old_addr + len) {
 | |
| 				/* direct RXOR */
 | |
| 				order = 1;
 | |
| 				state = 1;
 | |
| 			} else if (old_addr == cur_addr + len) {
 | |
| 				/* reverse RXOR */
 | |
| 				order = -1;
 | |
| 				state = 1;
 | |
| 			} else
 | |
| 				goto out;
 | |
| 			break;
 | |
| 		case 1:
 | |
| 			if ((i == src_cnt - 2) ||
 | |
| 			    (order == -1 && cur_addr != old_addr - len)) {
 | |
| 				order = 0;
 | |
| 				state = 0;
 | |
| 			} else if ((cur_addr == old_addr + len * order) ||
 | |
| 				   (cur_addr == old_addr + 2 * len) ||
 | |
| 				   (cur_addr == old_addr + 3 * len)) {
 | |
| 				state = 2;
 | |
| 			} else {
 | |
| 				order = 0;
 | |
| 				state = 0;
 | |
| 			}
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			order = 0;
 | |
| 			state = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	if (state == 1 || state == 2)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_adma_device_estimate - estimate the efficiency of processing
 | |
|  *	the operation given on this channel. It's assumed that 'chan' is
 | |
|  *	capable to process 'cap' type of operation.
 | |
|  * @chan: channel to use
 | |
|  * @cap: type of transaction
 | |
|  * @dst_lst: array of destination pointers
 | |
|  * @dst_cnt: number of destination operands
 | |
|  * @src_lst: array of source pointers
 | |
|  * @src_cnt: number of source operands
 | |
|  * @src_sz: size of each source operand
 | |
|  */
 | |
| static int ppc440spe_adma_estimate(struct dma_chan *chan,
 | |
| 	enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt,
 | |
| 	struct page **src_lst, int src_cnt, size_t src_sz)
 | |
| {
 | |
| 	int ef = 1;
 | |
| 
 | |
| 	if (cap == DMA_PQ || cap == DMA_PQ_VAL) {
 | |
| 		/* If RAID-6 capabilities were not activated don't try
 | |
| 		 * to use them
 | |
| 		 */
 | |
| 		if (unlikely(!ppc440spe_r6_enabled))
 | |
| 			return -1;
 | |
| 	}
 | |
| 	/*  In the current implementation of ppc440spe ADMA driver it
 | |
| 	 * makes sense to pick out only pq case, because it may be
 | |
| 	 * processed:
 | |
| 	 * (1) either using Biskup method on DMA2;
 | |
| 	 * (2) or on DMA0/1.
 | |
| 	 *  Thus we give a favour to (1) if the sources are suitable;
 | |
| 	 * else let it be processed on one of the DMA0/1 engines.
 | |
| 	 *  In the sum_product case where destination is also the
 | |
| 	 * source process it on DMA0/1 only.
 | |
| 	 */
 | |
| 	if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) {
 | |
| 
 | |
| 		if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1])
 | |
| 			ef = 0; /* sum_product case, process on DMA0/1 */
 | |
| 		else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz))
 | |
| 			ef = 3; /* override (DMA0/1 + idle) */
 | |
| 		else
 | |
| 			ef = 0; /* can't process on DMA2 if !rxor */
 | |
| 	}
 | |
| 
 | |
| 	/* channel idleness increases the priority */
 | |
| 	if (likely(ef) &&
 | |
| 	    !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan)))
 | |
| 		ef++;
 | |
| 
 | |
| 	return ef;
 | |
| }
 | |
| 
 | |
| struct dma_chan *
 | |
| ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap,
 | |
| 	struct page **dst_lst, int dst_cnt, struct page **src_lst,
 | |
| 	int src_cnt, size_t src_sz)
 | |
| {
 | |
| 	struct dma_chan *best_chan = NULL;
 | |
| 	struct ppc_dma_chan_ref *ref;
 | |
| 	int best_rank = -1;
 | |
| 
 | |
| 	if (unlikely(!src_sz))
 | |
| 		return NULL;
 | |
| 	if (src_sz > PAGE_SIZE) {
 | |
| 		/*
 | |
| 		 * should a user of the api ever pass > PAGE_SIZE requests
 | |
| 		 * we sort out cases where temporary page-sized buffers
 | |
| 		 * are used.
 | |
| 		 */
 | |
| 		switch (cap) {
 | |
| 		case DMA_PQ:
 | |
| 			if (src_cnt == 1 && dst_lst[1] == src_lst[0])
 | |
| 				return NULL;
 | |
| 			if (src_cnt == 2 && dst_lst[1] == src_lst[1])
 | |
| 				return NULL;
 | |
| 			break;
 | |
| 		case DMA_PQ_VAL:
 | |
| 		case DMA_XOR_VAL:
 | |
| 			return NULL;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) {
 | |
| 		if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
 | |
| 			int rank;
 | |
| 
 | |
| 			rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst,
 | |
| 					dst_cnt, src_lst, src_cnt, src_sz);
 | |
| 			if (rank > best_rank) {
 | |
| 				best_rank = rank;
 | |
| 				best_chan = ref->chan;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return best_chan;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel);
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_get_group_entry - get group entry with index idx
 | |
|  * @tdesc: is the last allocated slot in the group.
 | |
|  */
 | |
| static struct ppc440spe_adma_desc_slot *
 | |
| ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx)
 | |
| {
 | |
| 	struct ppc440spe_adma_desc_slot *iter = tdesc->group_head;
 | |
| 	int i = 0;
 | |
| 
 | |
| 	if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) {
 | |
| 		printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n",
 | |
| 			__func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt);
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry(iter, &tdesc->group_list, chain_node) {
 | |
| 		if (i++ == entry_idx)
 | |
| 			break;
 | |
| 	}
 | |
| 	return iter;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_adma_free_slots - flags descriptor slots for reuse
 | |
|  * @slot: Slot to free
 | |
|  * Caller must hold &ppc440spe_chan->lock while calling this function
 | |
|  */
 | |
| static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot,
 | |
| 				      struct ppc440spe_adma_chan *chan)
 | |
| {
 | |
| 	int stride = slot->slots_per_op;
 | |
| 
 | |
| 	while (stride--) {
 | |
| 		slot->slots_per_op = 0;
 | |
| 		slot = list_entry(slot->slot_node.next,
 | |
| 				struct ppc440spe_adma_desc_slot,
 | |
| 				slot_node);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_adma_run_tx_complete_actions - call functions to be called
 | |
|  * upon completion
 | |
|  */
 | |
| static dma_cookie_t ppc440spe_adma_run_tx_complete_actions(
 | |
| 		struct ppc440spe_adma_desc_slot *desc,
 | |
| 		struct ppc440spe_adma_chan *chan,
 | |
| 		dma_cookie_t cookie)
 | |
| {
 | |
| 	BUG_ON(desc->async_tx.cookie < 0);
 | |
| 	if (desc->async_tx.cookie > 0) {
 | |
| 		cookie = desc->async_tx.cookie;
 | |
| 		desc->async_tx.cookie = 0;
 | |
| 
 | |
| 		dma_descriptor_unmap(&desc->async_tx);
 | |
| 		/* call the callback (must not sleep or submit new
 | |
| 		 * operations to this channel)
 | |
| 		 */
 | |
| 		dmaengine_desc_get_callback_invoke(&desc->async_tx, NULL);
 | |
| 	}
 | |
| 
 | |
| 	/* run dependent operations */
 | |
| 	dma_run_dependencies(&desc->async_tx);
 | |
| 
 | |
| 	return cookie;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set)
 | |
|  */
 | |
| static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc,
 | |
| 		struct ppc440spe_adma_chan *chan)
 | |
| {
 | |
| 	/* the client is allowed to attach dependent operations
 | |
| 	 * until 'ack' is set
 | |
| 	 */
 | |
| 	if (!async_tx_test_ack(&desc->async_tx))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* leave the last descriptor in the chain
 | |
| 	 * so we can append to it
 | |
| 	 */
 | |
| 	if (list_is_last(&desc->chain_node, &chan->chain) ||
 | |
| 	    desc->phys == ppc440spe_chan_get_current_descriptor(chan))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (chan->device->id != PPC440SPE_XOR_ID) {
 | |
| 		/* our DMA interrupt handler clears opc field of
 | |
| 		 * each processed descriptor. For all types of
 | |
| 		 * operations except for ZeroSum we do not actually
 | |
| 		 * need ack from the interrupt handler. ZeroSum is a
 | |
| 		 * special case since the result of this operation
 | |
| 		 * is available from the handler only, so if we see
 | |
| 		 * such type of descriptor (which is unprocessed yet)
 | |
| 		 * then leave it in chain.
 | |
| 		 */
 | |
| 		struct dma_cdb *cdb = desc->hw_desc;
 | |
| 		if (cdb->opc == DMA_CDB_OPC_DCHECK128)
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n",
 | |
| 		desc->phys, desc->idx, desc->slots_per_op);
 | |
| 
 | |
| 	list_del(&desc->chain_node);
 | |
| 	ppc440spe_adma_free_slots(desc, chan);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine
 | |
|  *	which runs through the channel CDBs list until reach the descriptor
 | |
|  *	currently processed. When routine determines that all CDBs of group
 | |
|  *	are completed then corresponding callbacks (if any) are called and slots
 | |
|  *	are freed.
 | |
|  */
 | |
| static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
 | |
| {
 | |
| 	struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL;
 | |
| 	dma_cookie_t cookie = 0;
 | |
| 	u32 current_desc = ppc440spe_chan_get_current_descriptor(chan);
 | |
| 	int busy = ppc440spe_chan_is_busy(chan);
 | |
| 	int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
 | |
| 
 | |
| 	dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n",
 | |
| 		chan->device->id, __func__);
 | |
| 
 | |
| 	if (!current_desc) {
 | |
| 		/*  There were no transactions yet, so
 | |
| 		 * nothing to clean
 | |
| 		 */
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* free completed slots from the chain starting with
 | |
| 	 * the oldest descriptor
 | |
| 	 */
 | |
| 	list_for_each_entry_safe(iter, _iter, &chan->chain,
 | |
| 					chain_node) {
 | |
| 		dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d "
 | |
| 		    "busy: %d this_desc: %#llx next_desc: %#x "
 | |
| 		    "cur: %#x ack: %d\n",
 | |
| 		    iter->async_tx.cookie, iter->idx, busy, iter->phys,
 | |
| 		    ppc440spe_desc_get_link(iter, chan), current_desc,
 | |
| 		    async_tx_test_ack(&iter->async_tx));
 | |
| 		prefetch(_iter);
 | |
| 		prefetch(&_iter->async_tx);
 | |
| 
 | |
| 		/* do not advance past the current descriptor loaded into the
 | |
| 		 * hardware channel,subsequent descriptors are either in process
 | |
| 		 * or have not been submitted
 | |
| 		 */
 | |
| 		if (seen_current)
 | |
| 			break;
 | |
| 
 | |
| 		/* stop the search if we reach the current descriptor and the
 | |
| 		 * channel is busy, or if it appears that the current descriptor
 | |
| 		 * needs to be re-read (i.e. has been appended to)
 | |
| 		 */
 | |
| 		if (iter->phys == current_desc) {
 | |
| 			BUG_ON(seen_current++);
 | |
| 			if (busy || ppc440spe_desc_get_link(iter, chan)) {
 | |
| 				/* not all descriptors of the group have
 | |
| 				 * been completed; exit.
 | |
| 				 */
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* detect the start of a group transaction */
 | |
| 		if (!slot_cnt && !slots_per_op) {
 | |
| 			slot_cnt = iter->slot_cnt;
 | |
| 			slots_per_op = iter->slots_per_op;
 | |
| 			if (slot_cnt <= slots_per_op) {
 | |
| 				slot_cnt = 0;
 | |
| 				slots_per_op = 0;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (slot_cnt) {
 | |
| 			if (!group_start)
 | |
| 				group_start = iter;
 | |
| 			slot_cnt -= slots_per_op;
 | |
| 		}
 | |
| 
 | |
| 		/* all the members of a group are complete */
 | |
| 		if (slots_per_op != 0 && slot_cnt == 0) {
 | |
| 			struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter;
 | |
| 			int end_of_chain = 0;
 | |
| 
 | |
| 			/* clean up the group */
 | |
| 			slot_cnt = group_start->slot_cnt;
 | |
| 			grp_iter = group_start;
 | |
| 			list_for_each_entry_safe_from(grp_iter, _grp_iter,
 | |
| 				&chan->chain, chain_node) {
 | |
| 
 | |
| 				cookie = ppc440spe_adma_run_tx_complete_actions(
 | |
| 					grp_iter, chan, cookie);
 | |
| 
 | |
| 				slot_cnt -= slots_per_op;
 | |
| 				end_of_chain = ppc440spe_adma_clean_slot(
 | |
| 				    grp_iter, chan);
 | |
| 				if (end_of_chain && slot_cnt) {
 | |
| 					/* Should wait for ZeroSum completion */
 | |
| 					if (cookie > 0)
 | |
| 						chan->common.completed_cookie = cookie;
 | |
| 					return;
 | |
| 				}
 | |
| 
 | |
| 				if (slot_cnt == 0 || end_of_chain)
 | |
| 					break;
 | |
| 			}
 | |
| 
 | |
| 			/* the group should be complete at this point */
 | |
| 			BUG_ON(slot_cnt);
 | |
| 
 | |
| 			slots_per_op = 0;
 | |
| 			group_start = NULL;
 | |
| 			if (end_of_chain)
 | |
| 				break;
 | |
| 			else
 | |
| 				continue;
 | |
| 		} else if (slots_per_op) /* wait for group completion */
 | |
| 			continue;
 | |
| 
 | |
| 		cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan,
 | |
| 		    cookie);
 | |
| 
 | |
| 		if (ppc440spe_adma_clean_slot(iter, chan))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(!seen_current);
 | |
| 
 | |
| 	if (cookie > 0) {
 | |
| 		chan->common.completed_cookie = cookie;
 | |
| 		pr_debug("\tcompleted cookie %d\n", cookie);
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_adma_tasklet - clean up watch-dog initiator
 | |
|  */
 | |
| static void ppc440spe_adma_tasklet(struct tasklet_struct *t)
 | |
| {
 | |
| 	struct ppc440spe_adma_chan *chan = from_tasklet(chan, t, irq_tasklet);
 | |
| 
 | |
| 	spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING);
 | |
| 	__ppc440spe_adma_slot_cleanup(chan);
 | |
| 	spin_unlock(&chan->lock);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_adma_slot_cleanup - clean up scheduled initiator
 | |
|  */
 | |
| static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
 | |
| {
 | |
| 	spin_lock_bh(&chan->lock);
 | |
| 	__ppc440spe_adma_slot_cleanup(chan);
 | |
| 	spin_unlock_bh(&chan->lock);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_adma_alloc_slots - allocate free slots (if any)
 | |
|  */
 | |
| static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots(
 | |
| 		struct ppc440spe_adma_chan *chan, int num_slots,
 | |
| 		int slots_per_op)
 | |
| {
 | |
| 	struct ppc440spe_adma_desc_slot *iter = NULL, *_iter;
 | |
| 	struct ppc440spe_adma_desc_slot *alloc_start = NULL;
 | |
| 	struct list_head chain = LIST_HEAD_INIT(chain);
 | |
| 	int slots_found, retry = 0;
 | |
| 
 | |
| 
 | |
| 	BUG_ON(!num_slots || !slots_per_op);
 | |
| 	/* start search from the last allocated descrtiptor
 | |
| 	 * if a contiguous allocation can not be found start searching
 | |
| 	 * from the beginning of the list
 | |
| 	 */
 | |
| retry:
 | |
| 	slots_found = 0;
 | |
| 	if (retry == 0)
 | |
| 		iter = chan->last_used;
 | |
| 	else
 | |
| 		iter = list_entry(&chan->all_slots,
 | |
| 				  struct ppc440spe_adma_desc_slot,
 | |
| 				  slot_node);
 | |
| 	list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots,
 | |
| 	    slot_node) {
 | |
| 		prefetch(_iter);
 | |
| 		prefetch(&_iter->async_tx);
 | |
| 		if (iter->slots_per_op) {
 | |
| 			slots_found = 0;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* start the allocation if the slot is correctly aligned */
 | |
| 		if (!slots_found++)
 | |
| 			alloc_start = iter;
 | |
| 
 | |
| 		if (slots_found == num_slots) {
 | |
| 			struct ppc440spe_adma_desc_slot *alloc_tail = NULL;
 | |
| 			struct ppc440spe_adma_desc_slot *last_used = NULL;
 | |
| 
 | |
| 			iter = alloc_start;
 | |
| 			while (num_slots) {
 | |
| 				int i;
 | |
| 				/* pre-ack all but the last descriptor */
 | |
| 				if (num_slots != slots_per_op)
 | |
| 					async_tx_ack(&iter->async_tx);
 | |
| 
 | |
| 				list_add_tail(&iter->chain_node, &chain);
 | |
| 				alloc_tail = iter;
 | |
| 				iter->async_tx.cookie = 0;
 | |
| 				iter->hw_next = NULL;
 | |
| 				iter->flags = 0;
 | |
| 				iter->slot_cnt = num_slots;
 | |
| 				iter->xor_check_result = NULL;
 | |
| 				for (i = 0; i < slots_per_op; i++) {
 | |
| 					iter->slots_per_op = slots_per_op - i;
 | |
| 					last_used = iter;
 | |
| 					iter = list_entry(iter->slot_node.next,
 | |
| 						struct ppc440spe_adma_desc_slot,
 | |
| 						slot_node);
 | |
| 				}
 | |
| 				num_slots -= slots_per_op;
 | |
| 			}
 | |
| 			alloc_tail->group_head = alloc_start;
 | |
| 			alloc_tail->async_tx.cookie = -EBUSY;
 | |
| 			list_splice(&chain, &alloc_tail->group_list);
 | |
| 			chan->last_used = last_used;
 | |
| 			return alloc_tail;
 | |
| 		}
 | |
| 	}
 | |
| 	if (!retry++)
 | |
| 		goto retry;
 | |
| 
 | |
| 	/* try to free some slots if the allocation fails */
 | |
| 	tasklet_schedule(&chan->irq_tasklet);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_adma_alloc_chan_resources -  allocate pools for CDB slots
 | |
|  */
 | |
| static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan)
 | |
| {
 | |
| 	struct ppc440spe_adma_chan *ppc440spe_chan;
 | |
| 	struct ppc440spe_adma_desc_slot *slot = NULL;
 | |
| 	char *hw_desc;
 | |
| 	int i, db_sz;
 | |
| 	int init;
 | |
| 
 | |
| 	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
 | |
| 	init = ppc440spe_chan->slots_allocated ? 0 : 1;
 | |
| 	chan->chan_id = ppc440spe_chan->device->id;
 | |
| 
 | |
| 	/* Allocate descriptor slots */
 | |
| 	i = ppc440spe_chan->slots_allocated;
 | |
| 	if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID)
 | |
| 		db_sz = sizeof(struct dma_cdb);
 | |
| 	else
 | |
| 		db_sz = sizeof(struct xor_cb);
 | |
| 
 | |
| 	for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) {
 | |
| 		slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot),
 | |
| 			       GFP_KERNEL);
 | |
| 		if (!slot) {
 | |
| 			printk(KERN_INFO "SPE ADMA Channel only initialized"
 | |
| 				" %d descriptor slots", i--);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt;
 | |
| 		slot->hw_desc = (void *) &hw_desc[i * db_sz];
 | |
| 		dma_async_tx_descriptor_init(&slot->async_tx, chan);
 | |
| 		slot->async_tx.tx_submit = ppc440spe_adma_tx_submit;
 | |
| 		INIT_LIST_HEAD(&slot->chain_node);
 | |
| 		INIT_LIST_HEAD(&slot->slot_node);
 | |
| 		INIT_LIST_HEAD(&slot->group_list);
 | |
| 		slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz;
 | |
| 		slot->idx = i;
 | |
| 
 | |
| 		spin_lock_bh(&ppc440spe_chan->lock);
 | |
| 		ppc440spe_chan->slots_allocated++;
 | |
| 		list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots);
 | |
| 		spin_unlock_bh(&ppc440spe_chan->lock);
 | |
| 	}
 | |
| 
 | |
| 	if (i && !ppc440spe_chan->last_used) {
 | |
| 		ppc440spe_chan->last_used =
 | |
| 			list_entry(ppc440spe_chan->all_slots.next,
 | |
| 				struct ppc440spe_adma_desc_slot,
 | |
| 				slot_node);
 | |
| 	}
 | |
| 
 | |
| 	dev_dbg(ppc440spe_chan->device->common.dev,
 | |
| 		"ppc440spe adma%d: allocated %d descriptor slots\n",
 | |
| 		ppc440spe_chan->device->id, i);
 | |
| 
 | |
| 	/* initialize the channel and the chain with a null operation */
 | |
| 	if (init) {
 | |
| 		switch (ppc440spe_chan->device->id) {
 | |
| 		case PPC440SPE_DMA0_ID:
 | |
| 		case PPC440SPE_DMA1_ID:
 | |
| 			ppc440spe_chan->hw_chain_inited = 0;
 | |
| 			/* Use WXOR for self-testing */
 | |
| 			if (!ppc440spe_r6_tchan)
 | |
| 				ppc440spe_r6_tchan = ppc440spe_chan;
 | |
| 			break;
 | |
| 		case PPC440SPE_XOR_ID:
 | |
| 			ppc440spe_chan_start_null_xor(ppc440spe_chan);
 | |
| 			break;
 | |
| 		default:
 | |
| 			BUG();
 | |
| 		}
 | |
| 		ppc440spe_chan->needs_unmap = 1;
 | |
| 	}
 | |
| 
 | |
| 	return (i > 0) ? i : -ENOMEM;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_rxor_set_region_data -
 | |
|  */
 | |
| static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc,
 | |
| 	u8 xor_arg_no, u32 mask)
 | |
| {
 | |
| 	struct xor_cb *xcb = desc->hw_desc;
 | |
| 
 | |
| 	xcb->ops[xor_arg_no].h |= mask;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_rxor_set_src -
 | |
|  */
 | |
| static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc,
 | |
| 	u8 xor_arg_no, dma_addr_t addr)
 | |
| {
 | |
| 	struct xor_cb *xcb = desc->hw_desc;
 | |
| 
 | |
| 	xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE;
 | |
| 	xcb->ops[xor_arg_no].l = addr;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_rxor_set_mult -
 | |
|  */
 | |
| static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc,
 | |
| 	u8 xor_arg_no, u8 idx, u8 mult)
 | |
| {
 | |
| 	struct xor_cb *xcb = desc->hw_desc;
 | |
| 
 | |
| 	xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold
 | |
|  *	has been achieved
 | |
|  */
 | |
| static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan)
 | |
| {
 | |
| 	dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n",
 | |
| 		chan->device->id, chan->pending);
 | |
| 
 | |
| 	if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) {
 | |
| 		chan->pending = 0;
 | |
| 		ppc440spe_chan_append(chan);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_adma_tx_submit - submit new descriptor group to the channel
 | |
|  *	(it's not necessary that descriptors will be submitted to the h/w
 | |
|  *	chains too right now)
 | |
|  */
 | |
| static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx)
 | |
| {
 | |
| 	struct ppc440spe_adma_desc_slot *sw_desc;
 | |
| 	struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan);
 | |
| 	struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail;
 | |
| 	int slot_cnt;
 | |
| 	int slots_per_op;
 | |
| 	dma_cookie_t cookie;
 | |
| 
 | |
| 	sw_desc = tx_to_ppc440spe_adma_slot(tx);
 | |
| 
 | |
| 	group_start = sw_desc->group_head;
 | |
| 	slot_cnt = group_start->slot_cnt;
 | |
| 	slots_per_op = group_start->slots_per_op;
 | |
| 
 | |
| 	spin_lock_bh(&chan->lock);
 | |
| 	cookie = dma_cookie_assign(tx);
 | |
| 
 | |
| 	if (unlikely(list_empty(&chan->chain))) {
 | |
| 		/* first peer */
 | |
| 		list_splice_init(&sw_desc->group_list, &chan->chain);
 | |
| 		chan_first_cdb[chan->device->id] = group_start;
 | |
| 	} else {
 | |
| 		/* isn't first peer, bind CDBs to chain */
 | |
| 		old_chain_tail = list_entry(chan->chain.prev,
 | |
| 					struct ppc440spe_adma_desc_slot,
 | |
| 					chain_node);
 | |
| 		list_splice_init(&sw_desc->group_list,
 | |
| 		    &old_chain_tail->chain_node);
 | |
| 		/* fix up the hardware chain */
 | |
| 		ppc440spe_desc_set_link(chan, old_chain_tail, group_start);
 | |
| 	}
 | |
| 
 | |
| 	/* increment the pending count by the number of operations */
 | |
| 	chan->pending += slot_cnt / slots_per_op;
 | |
| 	ppc440spe_adma_check_threshold(chan);
 | |
| 	spin_unlock_bh(&chan->lock);
 | |
| 
 | |
| 	dev_dbg(chan->device->common.dev,
 | |
| 		"ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n",
 | |
| 		chan->device->id, __func__,
 | |
| 		sw_desc->async_tx.cookie, sw_desc->idx, sw_desc);
 | |
| 
 | |
| 	return cookie;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation
 | |
|  */
 | |
| static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt(
 | |
| 		struct dma_chan *chan, unsigned long flags)
 | |
| {
 | |
| 	struct ppc440spe_adma_chan *ppc440spe_chan;
 | |
| 	struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
 | |
| 	int slot_cnt, slots_per_op;
 | |
| 
 | |
| 	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
 | |
| 
 | |
| 	dev_dbg(ppc440spe_chan->device->common.dev,
 | |
| 		"ppc440spe adma%d: %s\n", ppc440spe_chan->device->id,
 | |
| 		__func__);
 | |
| 
 | |
| 	spin_lock_bh(&ppc440spe_chan->lock);
 | |
| 	slot_cnt = slots_per_op = 1;
 | |
| 	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
 | |
| 			slots_per_op);
 | |
| 	if (sw_desc) {
 | |
| 		group_start = sw_desc->group_head;
 | |
| 		ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan);
 | |
| 		group_start->unmap_len = 0;
 | |
| 		sw_desc->async_tx.flags = flags;
 | |
| 	}
 | |
| 	spin_unlock_bh(&ppc440spe_chan->lock);
 | |
| 
 | |
| 	return sw_desc ? &sw_desc->async_tx : NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation
 | |
|  */
 | |
| static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy(
 | |
| 		struct dma_chan *chan, dma_addr_t dma_dest,
 | |
| 		dma_addr_t dma_src, size_t len, unsigned long flags)
 | |
| {
 | |
| 	struct ppc440spe_adma_chan *ppc440spe_chan;
 | |
| 	struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
 | |
| 	int slot_cnt, slots_per_op;
 | |
| 
 | |
| 	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
 | |
| 
 | |
| 	if (unlikely(!len))
 | |
| 		return NULL;
 | |
| 
 | |
| 	BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT);
 | |
| 
 | |
| 	spin_lock_bh(&ppc440spe_chan->lock);
 | |
| 
 | |
| 	dev_dbg(ppc440spe_chan->device->common.dev,
 | |
| 		"ppc440spe adma%d: %s len: %u int_en %d\n",
 | |
| 		ppc440spe_chan->device->id, __func__, len,
 | |
| 		flags & DMA_PREP_INTERRUPT ? 1 : 0);
 | |
| 	slot_cnt = slots_per_op = 1;
 | |
| 	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
 | |
| 		slots_per_op);
 | |
| 	if (sw_desc) {
 | |
| 		group_start = sw_desc->group_head;
 | |
| 		ppc440spe_desc_init_memcpy(group_start, flags);
 | |
| 		ppc440spe_adma_set_dest(group_start, dma_dest, 0);
 | |
| 		ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0);
 | |
| 		ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
 | |
| 		sw_desc->unmap_len = len;
 | |
| 		sw_desc->async_tx.flags = flags;
 | |
| 	}
 | |
| 	spin_unlock_bh(&ppc440spe_chan->lock);
 | |
| 
 | |
| 	return sw_desc ? &sw_desc->async_tx : NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation
 | |
|  */
 | |
| static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor(
 | |
| 		struct dma_chan *chan, dma_addr_t dma_dest,
 | |
| 		dma_addr_t *dma_src, u32 src_cnt, size_t len,
 | |
| 		unsigned long flags)
 | |
| {
 | |
| 	struct ppc440spe_adma_chan *ppc440spe_chan;
 | |
| 	struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
 | |
| 	int slot_cnt, slots_per_op;
 | |
| 
 | |
| 	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
 | |
| 
 | |
| 	ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id,
 | |
| 				     dma_dest, dma_src, src_cnt));
 | |
| 	if (unlikely(!len))
 | |
| 		return NULL;
 | |
| 	BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
 | |
| 
 | |
| 	dev_dbg(ppc440spe_chan->device->common.dev,
 | |
| 		"ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
 | |
| 		ppc440spe_chan->device->id, __func__, src_cnt, len,
 | |
| 		flags & DMA_PREP_INTERRUPT ? 1 : 0);
 | |
| 
 | |
| 	spin_lock_bh(&ppc440spe_chan->lock);
 | |
| 	slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op);
 | |
| 	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
 | |
| 			slots_per_op);
 | |
| 	if (sw_desc) {
 | |
| 		group_start = sw_desc->group_head;
 | |
| 		ppc440spe_desc_init_xor(group_start, src_cnt, flags);
 | |
| 		ppc440spe_adma_set_dest(group_start, dma_dest, 0);
 | |
| 		while (src_cnt--)
 | |
| 			ppc440spe_adma_memcpy_xor_set_src(group_start,
 | |
| 				dma_src[src_cnt], src_cnt);
 | |
| 		ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
 | |
| 		sw_desc->unmap_len = len;
 | |
| 		sw_desc->async_tx.flags = flags;
 | |
| 	}
 | |
| 	spin_unlock_bh(&ppc440spe_chan->lock);
 | |
| 
 | |
| 	return sw_desc ? &sw_desc->async_tx : NULL;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc,
 | |
| 				int src_cnt);
 | |
| static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor);
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_adma_init_dma2rxor_slot -
 | |
|  */
 | |
| static void ppc440spe_adma_init_dma2rxor_slot(
 | |
| 		struct ppc440spe_adma_desc_slot *desc,
 | |
| 		dma_addr_t *src, int src_cnt)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/* initialize CDB */
 | |
| 	for (i = 0; i < src_cnt; i++) {
 | |
| 		ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i,
 | |
| 						 desc->src_cnt, (u32)src[i]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_dma01_prep_mult -
 | |
|  * for Q operation where destination is also the source
 | |
|  */
 | |
| static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult(
 | |
| 		struct ppc440spe_adma_chan *ppc440spe_chan,
 | |
| 		dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
 | |
| 		const unsigned char *scf, size_t len, unsigned long flags)
 | |
| {
 | |
| 	struct ppc440spe_adma_desc_slot *sw_desc = NULL;
 | |
| 	unsigned long op = 0;
 | |
| 	int slot_cnt;
 | |
| 
 | |
| 	set_bit(PPC440SPE_DESC_WXOR, &op);
 | |
| 	slot_cnt = 2;
 | |
| 
 | |
| 	spin_lock_bh(&ppc440spe_chan->lock);
 | |
| 
 | |
| 	/* use WXOR, each descriptor occupies one slot */
 | |
| 	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
 | |
| 	if (sw_desc) {
 | |
| 		struct ppc440spe_adma_chan *chan;
 | |
| 		struct ppc440spe_adma_desc_slot *iter;
 | |
| 		struct dma_cdb *hw_desc;
 | |
| 
 | |
| 		chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
 | |
| 		set_bits(op, &sw_desc->flags);
 | |
| 		sw_desc->src_cnt = src_cnt;
 | |
| 		sw_desc->dst_cnt = dst_cnt;
 | |
| 		/* First descriptor, zero data in the destination and copy it
 | |
| 		 * to q page using MULTICAST transfer.
 | |
| 		 */
 | |
| 		iter = list_first_entry(&sw_desc->group_list,
 | |
| 					struct ppc440spe_adma_desc_slot,
 | |
| 					chain_node);
 | |
| 		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
 | |
| 		/* set 'next' pointer */
 | |
| 		iter->hw_next = list_entry(iter->chain_node.next,
 | |
| 					   struct ppc440spe_adma_desc_slot,
 | |
| 					   chain_node);
 | |
| 		clear_bit(PPC440SPE_DESC_INT, &iter->flags);
 | |
| 		hw_desc = iter->hw_desc;
 | |
| 		hw_desc->opc = DMA_CDB_OPC_MULTICAST;
 | |
| 
 | |
| 		ppc440spe_desc_set_dest_addr(iter, chan,
 | |
| 					     DMA_CUED_XOR_BASE, dst[0], 0);
 | |
| 		ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1);
 | |
| 		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
 | |
| 					    src[0]);
 | |
| 		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
 | |
| 		iter->unmap_len = len;
 | |
| 
 | |
| 		/*
 | |
| 		 * Second descriptor, multiply data from the q page
 | |
| 		 * and store the result in real destination.
 | |
| 		 */
 | |
| 		iter = list_first_entry(&iter->chain_node,
 | |
| 					struct ppc440spe_adma_desc_slot,
 | |
| 					chain_node);
 | |
| 		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
 | |
| 		iter->hw_next = NULL;
 | |
| 		if (flags & DMA_PREP_INTERRUPT)
 | |
| 			set_bit(PPC440SPE_DESC_INT, &iter->flags);
 | |
| 		else
 | |
| 			clear_bit(PPC440SPE_DESC_INT, &iter->flags);
 | |
| 
 | |
| 		hw_desc = iter->hw_desc;
 | |
| 		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
 | |
| 		ppc440spe_desc_set_src_addr(iter, chan, 0,
 | |
| 					    DMA_CUED_XOR_HB, dst[1]);
 | |
| 		ppc440spe_desc_set_dest_addr(iter, chan,
 | |
| 					     DMA_CUED_XOR_BASE, dst[0], 0);
 | |
| 
 | |
| 		ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
 | |
| 					    DMA_CDB_SG_DST1, scf[0]);
 | |
| 		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
 | |
| 		iter->unmap_len = len;
 | |
| 		sw_desc->async_tx.flags = flags;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_bh(&ppc440spe_chan->lock);
 | |
| 
 | |
| 	return sw_desc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_dma01_prep_sum_product -
 | |
|  * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also
 | |
|  * the source.
 | |
|  */
 | |
| static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product(
 | |
| 		struct ppc440spe_adma_chan *ppc440spe_chan,
 | |
| 		dma_addr_t *dst, dma_addr_t *src, int src_cnt,
 | |
| 		const unsigned char *scf, size_t len, unsigned long flags)
 | |
| {
 | |
| 	struct ppc440spe_adma_desc_slot *sw_desc = NULL;
 | |
| 	unsigned long op = 0;
 | |
| 	int slot_cnt;
 | |
| 
 | |
| 	set_bit(PPC440SPE_DESC_WXOR, &op);
 | |
| 	slot_cnt = 3;
 | |
| 
 | |
| 	spin_lock_bh(&ppc440spe_chan->lock);
 | |
| 
 | |
| 	/* WXOR, each descriptor occupies one slot */
 | |
| 	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
 | |
| 	if (sw_desc) {
 | |
| 		struct ppc440spe_adma_chan *chan;
 | |
| 		struct ppc440spe_adma_desc_slot *iter;
 | |
| 		struct dma_cdb *hw_desc;
 | |
| 
 | |
| 		chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
 | |
| 		set_bits(op, &sw_desc->flags);
 | |
| 		sw_desc->src_cnt = src_cnt;
 | |
| 		sw_desc->dst_cnt = 1;
 | |
| 		/* 1st descriptor, src[1] data to q page and zero destination */
 | |
| 		iter = list_first_entry(&sw_desc->group_list,
 | |
| 					struct ppc440spe_adma_desc_slot,
 | |
| 					chain_node);
 | |
| 		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
 | |
| 		iter->hw_next = list_entry(iter->chain_node.next,
 | |
| 					   struct ppc440spe_adma_desc_slot,
 | |
| 					   chain_node);
 | |
| 		clear_bit(PPC440SPE_DESC_INT, &iter->flags);
 | |
| 		hw_desc = iter->hw_desc;
 | |
| 		hw_desc->opc = DMA_CDB_OPC_MULTICAST;
 | |
| 
 | |
| 		ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
 | |
| 					     *dst, 0);
 | |
| 		ppc440spe_desc_set_dest_addr(iter, chan, 0,
 | |
| 					     ppc440spe_chan->qdest, 1);
 | |
| 		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
 | |
| 					    src[1]);
 | |
| 		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
 | |
| 		iter->unmap_len = len;
 | |
| 
 | |
| 		/* 2nd descriptor, multiply src[1] data and store the
 | |
| 		 * result in destination */
 | |
| 		iter = list_first_entry(&iter->chain_node,
 | |
| 					struct ppc440spe_adma_desc_slot,
 | |
| 					chain_node);
 | |
| 		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
 | |
| 		/* set 'next' pointer */
 | |
| 		iter->hw_next = list_entry(iter->chain_node.next,
 | |
| 					   struct ppc440spe_adma_desc_slot,
 | |
| 					   chain_node);
 | |
| 		if (flags & DMA_PREP_INTERRUPT)
 | |
| 			set_bit(PPC440SPE_DESC_INT, &iter->flags);
 | |
| 		else
 | |
| 			clear_bit(PPC440SPE_DESC_INT, &iter->flags);
 | |
| 
 | |
| 		hw_desc = iter->hw_desc;
 | |
| 		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
 | |
| 		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
 | |
| 					    ppc440spe_chan->qdest);
 | |
| 		ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
 | |
| 					     *dst, 0);
 | |
| 		ppc440spe_desc_set_src_mult(iter, chan,	DMA_CUED_MULT1_OFF,
 | |
| 					    DMA_CDB_SG_DST1, scf[1]);
 | |
| 		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
 | |
| 		iter->unmap_len = len;
 | |
| 
 | |
| 		/*
 | |
| 		 * 3rd descriptor, multiply src[0] data and xor it
 | |
| 		 * with destination
 | |
| 		 */
 | |
| 		iter = list_first_entry(&iter->chain_node,
 | |
| 					struct ppc440spe_adma_desc_slot,
 | |
| 					chain_node);
 | |
| 		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
 | |
| 		iter->hw_next = NULL;
 | |
| 		if (flags & DMA_PREP_INTERRUPT)
 | |
| 			set_bit(PPC440SPE_DESC_INT, &iter->flags);
 | |
| 		else
 | |
| 			clear_bit(PPC440SPE_DESC_INT, &iter->flags);
 | |
| 
 | |
| 		hw_desc = iter->hw_desc;
 | |
| 		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
 | |
| 		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
 | |
| 					    src[0]);
 | |
| 		ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
 | |
| 					     *dst, 0);
 | |
| 		ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
 | |
| 					    DMA_CDB_SG_DST1, scf[0]);
 | |
| 		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
 | |
| 		iter->unmap_len = len;
 | |
| 		sw_desc->async_tx.flags = flags;
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_bh(&ppc440spe_chan->lock);
 | |
| 
 | |
| 	return sw_desc;
 | |
| }
 | |
| 
 | |
| static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq(
 | |
| 		struct ppc440spe_adma_chan *ppc440spe_chan,
 | |
| 		dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
 | |
| 		const unsigned char *scf, size_t len, unsigned long flags)
 | |
| {
 | |
| 	int slot_cnt;
 | |
| 	struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
 | |
| 	unsigned long op = 0;
 | |
| 	unsigned char mult = 1;
 | |
| 
 | |
| 	pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
 | |
| 		 __func__, dst_cnt, src_cnt, len);
 | |
| 	/*  select operations WXOR/RXOR depending on the
 | |
| 	 * source addresses of operators and the number
 | |
| 	 * of destinations (RXOR support only Q-parity calculations)
 | |
| 	 */
 | |
| 	set_bit(PPC440SPE_DESC_WXOR, &op);
 | |
| 	if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) {
 | |
| 		/* no active RXOR;
 | |
| 		 * do RXOR if:
 | |
| 		 * - there are more than 1 source,
 | |
| 		 * - len is aligned on 512-byte boundary,
 | |
| 		 * - source addresses fit to one of 4 possible regions.
 | |
| 		 */
 | |
| 		if (src_cnt > 1 &&
 | |
| 		    !(len & MQ0_CF2H_RXOR_BS_MASK) &&
 | |
| 		    (src[0] + len) == src[1]) {
 | |
| 			/* may do RXOR R1 R2 */
 | |
| 			set_bit(PPC440SPE_DESC_RXOR, &op);
 | |
| 			if (src_cnt != 2) {
 | |
| 				/* may try to enhance region of RXOR */
 | |
| 				if ((src[1] + len) == src[2]) {
 | |
| 					/* do RXOR R1 R2 R3 */
 | |
| 					set_bit(PPC440SPE_DESC_RXOR123,
 | |
| 						&op);
 | |
| 				} else if ((src[1] + len * 2) == src[2]) {
 | |
| 					/* do RXOR R1 R2 R4 */
 | |
| 					set_bit(PPC440SPE_DESC_RXOR124, &op);
 | |
| 				} else if ((src[1] + len * 3) == src[2]) {
 | |
| 					/* do RXOR R1 R2 R5 */
 | |
| 					set_bit(PPC440SPE_DESC_RXOR125,
 | |
| 						&op);
 | |
| 				} else {
 | |
| 					/* do RXOR R1 R2 */
 | |
| 					set_bit(PPC440SPE_DESC_RXOR12,
 | |
| 						&op);
 | |
| 				}
 | |
| 			} else {
 | |
| 				/* do RXOR R1 R2 */
 | |
| 				set_bit(PPC440SPE_DESC_RXOR12, &op);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
 | |
| 			/* can not do this operation with RXOR */
 | |
| 			clear_bit(PPC440SPE_RXOR_RUN,
 | |
| 				&ppc440spe_rxor_state);
 | |
| 		} else {
 | |
| 			/* can do; set block size right now */
 | |
| 			ppc440spe_desc_set_rxor_block_size(len);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Number of necessary slots depends on operation type selected */
 | |
| 	if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
 | |
| 		/*  This is a WXOR only chain. Need descriptors for each
 | |
| 		 * source to GF-XOR them with WXOR, and need descriptors
 | |
| 		 * for each destination to zero them with WXOR
 | |
| 		 */
 | |
| 		slot_cnt = src_cnt;
 | |
| 
 | |
| 		if (flags & DMA_PREP_ZERO_P) {
 | |
| 			slot_cnt++;
 | |
| 			set_bit(PPC440SPE_ZERO_P, &op);
 | |
| 		}
 | |
| 		if (flags & DMA_PREP_ZERO_Q) {
 | |
| 			slot_cnt++;
 | |
| 			set_bit(PPC440SPE_ZERO_Q, &op);
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*  Need 1/2 descriptor for RXOR operation, and
 | |
| 		 * need (src_cnt - (2 or 3)) for WXOR of sources
 | |
| 		 * remained (if any)
 | |
| 		 */
 | |
| 		slot_cnt = dst_cnt;
 | |
| 
 | |
| 		if (flags & DMA_PREP_ZERO_P)
 | |
| 			set_bit(PPC440SPE_ZERO_P, &op);
 | |
| 		if (flags & DMA_PREP_ZERO_Q)
 | |
| 			set_bit(PPC440SPE_ZERO_Q, &op);
 | |
| 
 | |
| 		if (test_bit(PPC440SPE_DESC_RXOR12, &op))
 | |
| 			slot_cnt += src_cnt - 2;
 | |
| 		else
 | |
| 			slot_cnt += src_cnt - 3;
 | |
| 
 | |
| 		/*  Thus we have either RXOR only chain or
 | |
| 		 * mixed RXOR/WXOR
 | |
| 		 */
 | |
| 		if (slot_cnt == dst_cnt)
 | |
| 			/* RXOR only chain */
 | |
| 			clear_bit(PPC440SPE_DESC_WXOR, &op);
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_bh(&ppc440spe_chan->lock);
 | |
| 	/* for both RXOR/WXOR each descriptor occupies one slot */
 | |
| 	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
 | |
| 	if (sw_desc) {
 | |
| 		ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt,
 | |
| 				flags, op);
 | |
| 
 | |
| 		/* setup dst/src/mult */
 | |
| 		pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n",
 | |
| 			 __func__, dst[0], dst[1]);
 | |
| 		ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
 | |
| 		while (src_cnt--) {
 | |
| 			ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
 | |
| 						  src_cnt);
 | |
| 
 | |
| 			/* NOTE: "Multi = 0 is equivalent to = 1" as it
 | |
| 			 * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf
 | |
| 			 * doesn't work for RXOR with DMA0/1! Instead, multi=0
 | |
| 			 * leads to zeroing source data after RXOR.
 | |
| 			 * So, for P case set-up mult=1 explicitly.
 | |
| 			 */
 | |
| 			if (!(flags & DMA_PREP_PQ_DISABLE_Q))
 | |
| 				mult = scf[src_cnt];
 | |
| 			ppc440spe_adma_pq_set_src_mult(sw_desc,
 | |
| 				mult, src_cnt,  dst_cnt - 1);
 | |
| 		}
 | |
| 
 | |
| 		/* Setup byte count foreach slot just allocated */
 | |
| 		sw_desc->async_tx.flags = flags;
 | |
| 		list_for_each_entry(iter, &sw_desc->group_list,
 | |
| 				chain_node) {
 | |
| 			ppc440spe_desc_set_byte_count(iter,
 | |
| 				ppc440spe_chan, len);
 | |
| 			iter->unmap_len = len;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_bh(&ppc440spe_chan->lock);
 | |
| 
 | |
| 	return sw_desc;
 | |
| }
 | |
| 
 | |
| static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq(
 | |
| 		struct ppc440spe_adma_chan *ppc440spe_chan,
 | |
| 		dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
 | |
| 		const unsigned char *scf, size_t len, unsigned long flags)
 | |
| {
 | |
| 	int slot_cnt, descs_per_op;
 | |
| 	struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
 | |
| 	unsigned long op = 0;
 | |
| 	unsigned char mult = 1;
 | |
| 
 | |
| 	BUG_ON(!dst_cnt);
 | |
| 	/*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
 | |
| 		 __func__, dst_cnt, src_cnt, len);*/
 | |
| 
 | |
| 	spin_lock_bh(&ppc440spe_chan->lock);
 | |
| 	descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len);
 | |
| 	if (descs_per_op < 0) {
 | |
| 		spin_unlock_bh(&ppc440spe_chan->lock);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* depending on number of sources we have 1 or 2 RXOR chains */
 | |
| 	slot_cnt = descs_per_op * dst_cnt;
 | |
| 
 | |
| 	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
 | |
| 	if (sw_desc) {
 | |
| 		op = slot_cnt;
 | |
| 		sw_desc->async_tx.flags = flags;
 | |
| 		list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
 | |
| 			ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt,
 | |
| 				--op ? 0 : flags);
 | |
| 			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
 | |
| 				len);
 | |
| 			iter->unmap_len = len;
 | |
| 
 | |
| 			ppc440spe_init_rxor_cursor(&(iter->rxor_cursor));
 | |
| 			iter->rxor_cursor.len = len;
 | |
| 			iter->descs_per_op = descs_per_op;
 | |
| 		}
 | |
| 		op = 0;
 | |
| 		list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
 | |
| 			op++;
 | |
| 			if (op % descs_per_op == 0)
 | |
| 				ppc440spe_adma_init_dma2rxor_slot(iter, src,
 | |
| 								  src_cnt);
 | |
| 			if (likely(!list_is_last(&iter->chain_node,
 | |
| 						 &sw_desc->group_list))) {
 | |
| 				/* set 'next' pointer */
 | |
| 				iter->hw_next =
 | |
| 					list_entry(iter->chain_node.next,
 | |
| 						struct ppc440spe_adma_desc_slot,
 | |
| 						chain_node);
 | |
| 				ppc440spe_xor_set_link(iter, iter->hw_next);
 | |
| 			} else {
 | |
| 				/* this is the last descriptor. */
 | |
| 				iter->hw_next = NULL;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* fixup head descriptor */
 | |
| 		sw_desc->dst_cnt = dst_cnt;
 | |
| 		if (flags & DMA_PREP_ZERO_P)
 | |
| 			set_bit(PPC440SPE_ZERO_P, &sw_desc->flags);
 | |
| 		if (flags & DMA_PREP_ZERO_Q)
 | |
| 			set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags);
 | |
| 
 | |
| 		/* setup dst/src/mult */
 | |
| 		ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
 | |
| 
 | |
| 		while (src_cnt--) {
 | |
| 			/* handle descriptors (if dst_cnt == 2) inside
 | |
| 			 * the ppc440spe_adma_pq_set_srcxxx() functions
 | |
| 			 */
 | |
| 			ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
 | |
| 						  src_cnt);
 | |
| 			if (!(flags & DMA_PREP_PQ_DISABLE_Q))
 | |
| 				mult = scf[src_cnt];
 | |
| 			ppc440spe_adma_pq_set_src_mult(sw_desc,
 | |
| 					mult, src_cnt, dst_cnt - 1);
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_bh(&ppc440spe_chan->lock);
 | |
| 	ppc440spe_desc_set_rxor_block_size(len);
 | |
| 	return sw_desc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation
 | |
|  */
 | |
| static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq(
 | |
| 		struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
 | |
| 		unsigned int src_cnt, const unsigned char *scf,
 | |
| 		size_t len, unsigned long flags)
 | |
| {
 | |
| 	struct ppc440spe_adma_chan *ppc440spe_chan;
 | |
| 	struct ppc440spe_adma_desc_slot *sw_desc = NULL;
 | |
| 	int dst_cnt = 0;
 | |
| 
 | |
| 	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
 | |
| 
 | |
| 	ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id,
 | |
| 				    dst, src, src_cnt));
 | |
| 	BUG_ON(!len);
 | |
| 	BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
 | |
| 	BUG_ON(!src_cnt);
 | |
| 
 | |
| 	if (src_cnt == 1 && dst[1] == src[0]) {
 | |
| 		dma_addr_t dest[2];
 | |
| 
 | |
| 		/* dst[1] is real destination (Q) */
 | |
| 		dest[0] = dst[1];
 | |
| 		/* this is the page to multicast source data to */
 | |
| 		dest[1] = ppc440spe_chan->qdest;
 | |
| 		sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan,
 | |
| 				dest, 2, src, src_cnt, scf, len, flags);
 | |
| 		return sw_desc ? &sw_desc->async_tx : NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (src_cnt == 2 && dst[1] == src[1]) {
 | |
| 		sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan,
 | |
| 					&dst[1], src, 2, scf, len, flags);
 | |
| 		return sw_desc ? &sw_desc->async_tx : NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (!(flags & DMA_PREP_PQ_DISABLE_P)) {
 | |
| 		BUG_ON(!dst[0]);
 | |
| 		dst_cnt++;
 | |
| 		flags |= DMA_PREP_ZERO_P;
 | |
| 	}
 | |
| 
 | |
| 	if (!(flags & DMA_PREP_PQ_DISABLE_Q)) {
 | |
| 		BUG_ON(!dst[1]);
 | |
| 		dst_cnt++;
 | |
| 		flags |= DMA_PREP_ZERO_Q;
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(!dst_cnt);
 | |
| 
 | |
| 	dev_dbg(ppc440spe_chan->device->common.dev,
 | |
| 		"ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
 | |
| 		ppc440spe_chan->device->id, __func__, src_cnt, len,
 | |
| 		flags & DMA_PREP_INTERRUPT ? 1 : 0);
 | |
| 
 | |
| 	switch (ppc440spe_chan->device->id) {
 | |
| 	case PPC440SPE_DMA0_ID:
 | |
| 	case PPC440SPE_DMA1_ID:
 | |
| 		sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan,
 | |
| 				dst, dst_cnt, src, src_cnt, scf,
 | |
| 				len, flags);
 | |
| 		break;
 | |
| 
 | |
| 	case PPC440SPE_XOR_ID:
 | |
| 		sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan,
 | |
| 				dst, dst_cnt, src, src_cnt, scf,
 | |
| 				len, flags);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return sw_desc ? &sw_desc->async_tx : NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for
 | |
|  * a PQ_ZERO_SUM operation
 | |
|  */
 | |
| static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum(
 | |
| 		struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
 | |
| 		unsigned int src_cnt, const unsigned char *scf, size_t len,
 | |
| 		enum sum_check_flags *pqres, unsigned long flags)
 | |
| {
 | |
| 	struct ppc440spe_adma_chan *ppc440spe_chan;
 | |
| 	struct ppc440spe_adma_desc_slot *sw_desc, *iter;
 | |
| 	dma_addr_t pdest, qdest;
 | |
| 	int slot_cnt, slots_per_op, idst, dst_cnt;
 | |
| 
 | |
| 	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
 | |
| 
 | |
| 	if (flags & DMA_PREP_PQ_DISABLE_P)
 | |
| 		pdest = 0;
 | |
| 	else
 | |
| 		pdest = pq[0];
 | |
| 
 | |
| 	if (flags & DMA_PREP_PQ_DISABLE_Q)
 | |
| 		qdest = 0;
 | |
| 	else
 | |
| 		qdest = pq[1];
 | |
| 
 | |
| 	ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id,
 | |
| 					    src, src_cnt, scf));
 | |
| 
 | |
| 	/* Always use WXOR for P/Q calculations (two destinations).
 | |
| 	 * Need 1 or 2 extra slots to verify results are zero.
 | |
| 	 */
 | |
| 	idst = dst_cnt = (pdest && qdest) ? 2 : 1;
 | |
| 
 | |
| 	/* One additional slot per destination to clone P/Q
 | |
| 	 * before calculation (we have to preserve destinations).
 | |
| 	 */
 | |
| 	slot_cnt = src_cnt + dst_cnt * 2;
 | |
| 	slots_per_op = 1;
 | |
| 
 | |
| 	spin_lock_bh(&ppc440spe_chan->lock);
 | |
| 	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
 | |
| 					     slots_per_op);
 | |
| 	if (sw_desc) {
 | |
| 		ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt);
 | |
| 
 | |
| 		/* Setup byte count for each slot just allocated */
 | |
| 		sw_desc->async_tx.flags = flags;
 | |
| 		list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
 | |
| 			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
 | |
| 						      len);
 | |
| 			iter->unmap_len = len;
 | |
| 		}
 | |
| 
 | |
| 		if (pdest) {
 | |
| 			struct dma_cdb *hw_desc;
 | |
| 			struct ppc440spe_adma_chan *chan;
 | |
| 
 | |
| 			iter = sw_desc->group_head;
 | |
| 			chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
 | |
| 			memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
 | |
| 			iter->hw_next = list_entry(iter->chain_node.next,
 | |
| 						struct ppc440spe_adma_desc_slot,
 | |
| 						chain_node);
 | |
| 			hw_desc = iter->hw_desc;
 | |
| 			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
 | |
| 			iter->src_cnt = 0;
 | |
| 			iter->dst_cnt = 0;
 | |
| 			ppc440spe_desc_set_dest_addr(iter, chan, 0,
 | |
| 						     ppc440spe_chan->pdest, 0);
 | |
| 			ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest);
 | |
| 			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
 | |
| 						      len);
 | |
| 			iter->unmap_len = 0;
 | |
| 			/* override pdest to preserve original P */
 | |
| 			pdest = ppc440spe_chan->pdest;
 | |
| 		}
 | |
| 		if (qdest) {
 | |
| 			struct dma_cdb *hw_desc;
 | |
| 			struct ppc440spe_adma_chan *chan;
 | |
| 
 | |
| 			iter = list_first_entry(&sw_desc->group_list,
 | |
| 						struct ppc440spe_adma_desc_slot,
 | |
| 						chain_node);
 | |
| 			chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
 | |
| 
 | |
| 			if (pdest) {
 | |
| 				iter = list_entry(iter->chain_node.next,
 | |
| 						struct ppc440spe_adma_desc_slot,
 | |
| 						chain_node);
 | |
| 			}
 | |
| 
 | |
| 			memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
 | |
| 			iter->hw_next = list_entry(iter->chain_node.next,
 | |
| 						struct ppc440spe_adma_desc_slot,
 | |
| 						chain_node);
 | |
| 			hw_desc = iter->hw_desc;
 | |
| 			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
 | |
| 			iter->src_cnt = 0;
 | |
| 			iter->dst_cnt = 0;
 | |
| 			ppc440spe_desc_set_dest_addr(iter, chan, 0,
 | |
| 						     ppc440spe_chan->qdest, 0);
 | |
| 			ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest);
 | |
| 			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
 | |
| 						      len);
 | |
| 			iter->unmap_len = 0;
 | |
| 			/* override qdest to preserve original Q */
 | |
| 			qdest = ppc440spe_chan->qdest;
 | |
| 		}
 | |
| 
 | |
| 		/* Setup destinations for P/Q ops */
 | |
| 		ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest);
 | |
| 
 | |
| 		/* Setup zero QWORDs into DCHECK CDBs */
 | |
| 		idst = dst_cnt;
 | |
| 		list_for_each_entry_reverse(iter, &sw_desc->group_list,
 | |
| 					    chain_node) {
 | |
| 			/*
 | |
| 			 * The last CDB corresponds to Q-parity check,
 | |
| 			 * the one before last CDB corresponds
 | |
| 			 * P-parity check
 | |
| 			 */
 | |
| 			if (idst == DMA_DEST_MAX_NUM) {
 | |
| 				if (idst == dst_cnt) {
 | |
| 					set_bit(PPC440SPE_DESC_QCHECK,
 | |
| 						&iter->flags);
 | |
| 				} else {
 | |
| 					set_bit(PPC440SPE_DESC_PCHECK,
 | |
| 						&iter->flags);
 | |
| 				}
 | |
| 			} else {
 | |
| 				if (qdest) {
 | |
| 					set_bit(PPC440SPE_DESC_QCHECK,
 | |
| 						&iter->flags);
 | |
| 				} else {
 | |
| 					set_bit(PPC440SPE_DESC_PCHECK,
 | |
| 						&iter->flags);
 | |
| 				}
 | |
| 			}
 | |
| 			iter->xor_check_result = pqres;
 | |
| 
 | |
| 			/*
 | |
| 			 * set it to zero, if check fail then result will
 | |
| 			 * be updated
 | |
| 			 */
 | |
| 			*iter->xor_check_result = 0;
 | |
| 			ppc440spe_desc_set_dcheck(iter, ppc440spe_chan,
 | |
| 				ppc440spe_qword);
 | |
| 
 | |
| 			if (!(--dst_cnt))
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		/* Setup sources and mults for P/Q ops */
 | |
| 		list_for_each_entry_continue_reverse(iter, &sw_desc->group_list,
 | |
| 						     chain_node) {
 | |
| 			struct ppc440spe_adma_chan *chan;
 | |
| 			u32 mult_dst;
 | |
| 
 | |
| 			chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
 | |
| 			ppc440spe_desc_set_src_addr(iter, chan, 0,
 | |
| 						    DMA_CUED_XOR_HB,
 | |
| 						    src[src_cnt - 1]);
 | |
| 			if (qdest) {
 | |
| 				mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 :
 | |
| 							   DMA_CDB_SG_DST1;
 | |
| 				ppc440spe_desc_set_src_mult(iter, chan,
 | |
| 							    DMA_CUED_MULT1_OFF,
 | |
| 							    mult_dst,
 | |
| 							    scf[src_cnt - 1]);
 | |
| 			}
 | |
| 			if (!(--src_cnt))
 | |
| 				break;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_bh(&ppc440spe_chan->lock);
 | |
| 	return sw_desc ? &sw_desc->async_tx : NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for
 | |
|  * XOR ZERO_SUM operation
 | |
|  */
 | |
| static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum(
 | |
| 		struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
 | |
| 		size_t len, enum sum_check_flags *result, unsigned long flags)
 | |
| {
 | |
| 	struct dma_async_tx_descriptor *tx;
 | |
| 	dma_addr_t pq[2];
 | |
| 
 | |
| 	/* validate P, disable Q */
 | |
| 	pq[0] = src[0];
 | |
| 	pq[1] = 0;
 | |
| 	flags |= DMA_PREP_PQ_DISABLE_Q;
 | |
| 
 | |
| 	tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1],
 | |
| 						src_cnt - 1, 0, len,
 | |
| 						result, flags);
 | |
| 	return tx;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_adma_set_dest - set destination address into descriptor
 | |
|  */
 | |
| static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
 | |
| 		dma_addr_t addr, int index)
 | |
| {
 | |
| 	struct ppc440spe_adma_chan *chan;
 | |
| 
 | |
| 	BUG_ON(index >= sw_desc->dst_cnt);
 | |
| 
 | |
| 	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
 | |
| 
 | |
| 	switch (chan->device->id) {
 | |
| 	case PPC440SPE_DMA0_ID:
 | |
| 	case PPC440SPE_DMA1_ID:
 | |
| 		/* to do: support transfers lengths >
 | |
| 		 * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT
 | |
| 		 */
 | |
| 		ppc440spe_desc_set_dest_addr(sw_desc->group_head,
 | |
| 			chan, 0, addr, index);
 | |
| 		break;
 | |
| 	case PPC440SPE_XOR_ID:
 | |
| 		sw_desc = ppc440spe_get_group_entry(sw_desc, index);
 | |
| 		ppc440spe_desc_set_dest_addr(sw_desc,
 | |
| 			chan, 0, addr, index);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter,
 | |
| 		struct ppc440spe_adma_chan *chan, dma_addr_t addr)
 | |
| {
 | |
| 	/*  To clear destinations update the descriptor
 | |
| 	 * (P or Q depending on index) as follows:
 | |
| 	 * addr is destination (0 corresponds to SG2):
 | |
| 	 */
 | |
| 	ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0);
 | |
| 
 | |
| 	/* ... and the addr is source: */
 | |
| 	ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr);
 | |
| 
 | |
| 	/* addr is always SG2 then the mult is always DST1 */
 | |
| 	ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
 | |
| 				    DMA_CDB_SG_DST1, 1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_adma_pq_set_dest - set destination address into descriptor
 | |
|  * for the PQXOR operation
 | |
|  */
 | |
| static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
 | |
| 		dma_addr_t *addrs, unsigned long flags)
 | |
| {
 | |
| 	struct ppc440spe_adma_desc_slot *iter;
 | |
| 	struct ppc440spe_adma_chan *chan;
 | |
| 	dma_addr_t paddr, qaddr;
 | |
| 	dma_addr_t addr = 0, ppath, qpath;
 | |
| 	int index = 0, i;
 | |
| 
 | |
| 	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
 | |
| 
 | |
| 	if (flags & DMA_PREP_PQ_DISABLE_P)
 | |
| 		paddr = 0;
 | |
| 	else
 | |
| 		paddr = addrs[0];
 | |
| 
 | |
| 	if (flags & DMA_PREP_PQ_DISABLE_Q)
 | |
| 		qaddr = 0;
 | |
| 	else
 | |
| 		qaddr = addrs[1];
 | |
| 
 | |
| 	if (!paddr || !qaddr)
 | |
| 		addr = paddr ? paddr : qaddr;
 | |
| 
 | |
| 	switch (chan->device->id) {
 | |
| 	case PPC440SPE_DMA0_ID:
 | |
| 	case PPC440SPE_DMA1_ID:
 | |
| 		/* walk through the WXOR source list and set P/Q-destinations
 | |
| 		 * for each slot:
 | |
| 		 */
 | |
| 		if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
 | |
| 			/* This is WXOR-only chain; may have 1/2 zero descs */
 | |
| 			if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
 | |
| 				index++;
 | |
| 			if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
 | |
| 				index++;
 | |
| 
 | |
| 			iter = ppc440spe_get_group_entry(sw_desc, index);
 | |
| 			if (addr) {
 | |
| 				/* one destination */
 | |
| 				list_for_each_entry_from(iter,
 | |
| 					&sw_desc->group_list, chain_node)
 | |
| 					ppc440spe_desc_set_dest_addr(iter, chan,
 | |
| 						DMA_CUED_XOR_BASE, addr, 0);
 | |
| 			} else {
 | |
| 				/* two destinations */
 | |
| 				list_for_each_entry_from(iter,
 | |
| 					&sw_desc->group_list, chain_node) {
 | |
| 					ppc440spe_desc_set_dest_addr(iter, chan,
 | |
| 						DMA_CUED_XOR_BASE, paddr, 0);
 | |
| 					ppc440spe_desc_set_dest_addr(iter, chan,
 | |
| 						DMA_CUED_XOR_BASE, qaddr, 1);
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			if (index) {
 | |
| 				/*  To clear destinations update the descriptor
 | |
| 				 * (1st,2nd, or both depending on flags)
 | |
| 				 */
 | |
| 				index = 0;
 | |
| 				if (test_bit(PPC440SPE_ZERO_P,
 | |
| 						&sw_desc->flags)) {
 | |
| 					iter = ppc440spe_get_group_entry(
 | |
| 							sw_desc, index++);
 | |
| 					ppc440spe_adma_pq_zero_op(iter, chan,
 | |
| 							paddr);
 | |
| 				}
 | |
| 
 | |
| 				if (test_bit(PPC440SPE_ZERO_Q,
 | |
| 						&sw_desc->flags)) {
 | |
| 					iter = ppc440spe_get_group_entry(
 | |
| 							sw_desc, index++);
 | |
| 					ppc440spe_adma_pq_zero_op(iter, chan,
 | |
| 							qaddr);
 | |
| 				}
 | |
| 
 | |
| 				return;
 | |
| 			}
 | |
| 		} else {
 | |
| 			/* This is RXOR-only or RXOR/WXOR mixed chain */
 | |
| 
 | |
| 			/* If we want to include destination into calculations,
 | |
| 			 * then make dest addresses cued with mult=1 (XOR).
 | |
| 			 */
 | |
| 			ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
 | |
| 					DMA_CUED_XOR_HB :
 | |
| 					DMA_CUED_XOR_BASE |
 | |
| 						(1 << DMA_CUED_MULT1_OFF);
 | |
| 			qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
 | |
| 					DMA_CUED_XOR_HB :
 | |
| 					DMA_CUED_XOR_BASE |
 | |
| 						(1 << DMA_CUED_MULT1_OFF);
 | |
| 
 | |
| 			/* Setup destination(s) in RXOR slot(s) */
 | |
| 			iter = ppc440spe_get_group_entry(sw_desc, index++);
 | |
| 			ppc440spe_desc_set_dest_addr(iter, chan,
 | |
| 						paddr ? ppath : qpath,
 | |
| 						paddr ? paddr : qaddr, 0);
 | |
| 			if (!addr) {
 | |
| 				/* two destinations */
 | |
| 				iter = ppc440spe_get_group_entry(sw_desc,
 | |
| 								 index++);
 | |
| 				ppc440spe_desc_set_dest_addr(iter, chan,
 | |
| 						qpath, qaddr, 0);
 | |
| 			}
 | |
| 
 | |
| 			if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) {
 | |
| 				/* Setup destination(s) in remaining WXOR
 | |
| 				 * slots
 | |
| 				 */
 | |
| 				iter = ppc440spe_get_group_entry(sw_desc,
 | |
| 								 index);
 | |
| 				if (addr) {
 | |
| 					/* one destination */
 | |
| 					list_for_each_entry_from(iter,
 | |
| 					    &sw_desc->group_list,
 | |
| 					    chain_node)
 | |
| 						ppc440spe_desc_set_dest_addr(
 | |
| 							iter, chan,
 | |
| 							DMA_CUED_XOR_BASE,
 | |
| 							addr, 0);
 | |
| 
 | |
| 				} else {
 | |
| 					/* two destinations */
 | |
| 					list_for_each_entry_from(iter,
 | |
| 					    &sw_desc->group_list,
 | |
| 					    chain_node) {
 | |
| 						ppc440spe_desc_set_dest_addr(
 | |
| 							iter, chan,
 | |
| 							DMA_CUED_XOR_BASE,
 | |
| 							paddr, 0);
 | |
| 						ppc440spe_desc_set_dest_addr(
 | |
| 							iter, chan,
 | |
| 							DMA_CUED_XOR_BASE,
 | |
| 							qaddr, 1);
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case PPC440SPE_XOR_ID:
 | |
| 		/* DMA2 descriptors have only 1 destination, so there are
 | |
| 		 * two chains - one for each dest.
 | |
| 		 * If we want to include destination into calculations,
 | |
| 		 * then make dest addresses cued with mult=1 (XOR).
 | |
| 		 */
 | |
| 		ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
 | |
| 				DMA_CUED_XOR_HB :
 | |
| 				DMA_CUED_XOR_BASE |
 | |
| 					(1 << DMA_CUED_MULT1_OFF);
 | |
| 
 | |
| 		qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
 | |
| 				DMA_CUED_XOR_HB :
 | |
| 				DMA_CUED_XOR_BASE |
 | |
| 					(1 << DMA_CUED_MULT1_OFF);
 | |
| 
 | |
| 		iter = ppc440spe_get_group_entry(sw_desc, 0);
 | |
| 		for (i = 0; i < sw_desc->descs_per_op; i++) {
 | |
| 			ppc440spe_desc_set_dest_addr(iter, chan,
 | |
| 				paddr ? ppath : qpath,
 | |
| 				paddr ? paddr : qaddr, 0);
 | |
| 			iter = list_entry(iter->chain_node.next,
 | |
| 					  struct ppc440spe_adma_desc_slot,
 | |
| 					  chain_node);
 | |
| 		}
 | |
| 
 | |
| 		if (!addr) {
 | |
| 			/* Two destinations; setup Q here */
 | |
| 			iter = ppc440spe_get_group_entry(sw_desc,
 | |
| 				sw_desc->descs_per_op);
 | |
| 			for (i = 0; i < sw_desc->descs_per_op; i++) {
 | |
| 				ppc440spe_desc_set_dest_addr(iter,
 | |
| 					chan, qpath, qaddr, 0);
 | |
| 				iter = list_entry(iter->chain_node.next,
 | |
| 						struct ppc440spe_adma_desc_slot,
 | |
| 						chain_node);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor
 | |
|  * for the PQ_ZERO_SUM operation
 | |
|  */
 | |
| static void ppc440spe_adma_pqzero_sum_set_dest(
 | |
| 		struct ppc440spe_adma_desc_slot *sw_desc,
 | |
| 		dma_addr_t paddr, dma_addr_t qaddr)
 | |
| {
 | |
| 	struct ppc440spe_adma_desc_slot *iter, *end;
 | |
| 	struct ppc440spe_adma_chan *chan;
 | |
| 	dma_addr_t addr = 0;
 | |
| 	int idx;
 | |
| 
 | |
| 	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
 | |
| 
 | |
| 	/* walk through the WXOR source list and set P/Q-destinations
 | |
| 	 * for each slot
 | |
| 	 */
 | |
| 	idx = (paddr && qaddr) ? 2 : 1;
 | |
| 	/* set end */
 | |
| 	list_for_each_entry_reverse(end, &sw_desc->group_list,
 | |
| 				    chain_node) {
 | |
| 		if (!(--idx))
 | |
| 			break;
 | |
| 	}
 | |
| 	/* set start */
 | |
| 	idx = (paddr && qaddr) ? 2 : 1;
 | |
| 	iter = ppc440spe_get_group_entry(sw_desc, idx);
 | |
| 
 | |
| 	if (paddr && qaddr) {
 | |
| 		/* two destinations */
 | |
| 		list_for_each_entry_from(iter, &sw_desc->group_list,
 | |
| 					 chain_node) {
 | |
| 			if (unlikely(iter == end))
 | |
| 				break;
 | |
| 			ppc440spe_desc_set_dest_addr(iter, chan,
 | |
| 						DMA_CUED_XOR_BASE, paddr, 0);
 | |
| 			ppc440spe_desc_set_dest_addr(iter, chan,
 | |
| 						DMA_CUED_XOR_BASE, qaddr, 1);
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* one destination */
 | |
| 		addr = paddr ? paddr : qaddr;
 | |
| 		list_for_each_entry_from(iter, &sw_desc->group_list,
 | |
| 					 chain_node) {
 | |
| 			if (unlikely(iter == end))
 | |
| 				break;
 | |
| 			ppc440spe_desc_set_dest_addr(iter, chan,
 | |
| 						DMA_CUED_XOR_BASE, addr, 0);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*  The remaining descriptors are DATACHECK. These have no need in
 | |
| 	 * destination. Actually, these destinations are used there
 | |
| 	 * as sources for check operation. So, set addr as source.
 | |
| 	 */
 | |
| 	ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr);
 | |
| 
 | |
| 	if (!addr) {
 | |
| 		end = list_entry(end->chain_node.next,
 | |
| 				 struct ppc440spe_adma_desc_slot, chain_node);
 | |
| 		ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor
 | |
|  */
 | |
| static inline void ppc440spe_desc_set_xor_src_cnt(
 | |
| 			struct ppc440spe_adma_desc_slot *desc,
 | |
| 			int src_cnt)
 | |
| {
 | |
| 	struct xor_cb *hw_desc = desc->hw_desc;
 | |
| 
 | |
| 	hw_desc->cbc &= ~XOR_CDCR_OAC_MSK;
 | |
| 	hw_desc->cbc |= src_cnt;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_adma_pq_set_src - set source address into descriptor
 | |
|  */
 | |
| static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc,
 | |
| 		dma_addr_t addr, int index)
 | |
| {
 | |
| 	struct ppc440spe_adma_chan *chan;
 | |
| 	dma_addr_t haddr = 0;
 | |
| 	struct ppc440spe_adma_desc_slot *iter = NULL;
 | |
| 
 | |
| 	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
 | |
| 
 | |
| 	switch (chan->device->id) {
 | |
| 	case PPC440SPE_DMA0_ID:
 | |
| 	case PPC440SPE_DMA1_ID:
 | |
| 		/* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain
 | |
| 		 */
 | |
| 		if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
 | |
| 			/* RXOR-only or RXOR/WXOR operation */
 | |
| 			int iskip = test_bit(PPC440SPE_DESC_RXOR12,
 | |
| 				&sw_desc->flags) ?  2 : 3;
 | |
| 
 | |
| 			if (index == 0) {
 | |
| 				/* 1st slot (RXOR) */
 | |
| 				/* setup sources region (R1-2-3, R1-2-4,
 | |
| 				 * or R1-2-5)
 | |
| 				 */
 | |
| 				if (test_bit(PPC440SPE_DESC_RXOR12,
 | |
| 						&sw_desc->flags))
 | |
| 					haddr = DMA_RXOR12 <<
 | |
| 						DMA_CUED_REGION_OFF;
 | |
| 				else if (test_bit(PPC440SPE_DESC_RXOR123,
 | |
| 				    &sw_desc->flags))
 | |
| 					haddr = DMA_RXOR123 <<
 | |
| 						DMA_CUED_REGION_OFF;
 | |
| 				else if (test_bit(PPC440SPE_DESC_RXOR124,
 | |
| 				    &sw_desc->flags))
 | |
| 					haddr = DMA_RXOR124 <<
 | |
| 						DMA_CUED_REGION_OFF;
 | |
| 				else if (test_bit(PPC440SPE_DESC_RXOR125,
 | |
| 				    &sw_desc->flags))
 | |
| 					haddr = DMA_RXOR125 <<
 | |
| 						DMA_CUED_REGION_OFF;
 | |
| 				else
 | |
| 					BUG();
 | |
| 				haddr |= DMA_CUED_XOR_BASE;
 | |
| 				iter = ppc440spe_get_group_entry(sw_desc, 0);
 | |
| 			} else if (index < iskip) {
 | |
| 				/* 1st slot (RXOR)
 | |
| 				 * shall actually set source address only once
 | |
| 				 * instead of first <iskip>
 | |
| 				 */
 | |
| 				iter = NULL;
 | |
| 			} else {
 | |
| 				/* 2nd/3d and next slots (WXOR);
 | |
| 				 * skip first slot with RXOR
 | |
| 				 */
 | |
| 				haddr = DMA_CUED_XOR_HB;
 | |
| 				iter = ppc440spe_get_group_entry(sw_desc,
 | |
| 				    index - iskip + sw_desc->dst_cnt);
 | |
| 			}
 | |
| 		} else {
 | |
| 			int znum = 0;
 | |
| 
 | |
| 			/* WXOR-only operation; skip first slots with
 | |
| 			 * zeroing destinations
 | |
| 			 */
 | |
| 			if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
 | |
| 				znum++;
 | |
| 			if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
 | |
| 				znum++;
 | |
| 
 | |
| 			haddr = DMA_CUED_XOR_HB;
 | |
| 			iter = ppc440spe_get_group_entry(sw_desc,
 | |
| 					index + znum);
 | |
| 		}
 | |
| 
 | |
| 		if (likely(iter)) {
 | |
| 			ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr);
 | |
| 
 | |
| 			if (!index &&
 | |
| 			    test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) &&
 | |
| 			    sw_desc->dst_cnt == 2) {
 | |
| 				/* if we have two destinations for RXOR, then
 | |
| 				 * setup source in the second descr too
 | |
| 				 */
 | |
| 				iter = ppc440spe_get_group_entry(sw_desc, 1);
 | |
| 				ppc440spe_desc_set_src_addr(iter, chan, 0,
 | |
| 					haddr, addr);
 | |
| 			}
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case PPC440SPE_XOR_ID:
 | |
| 		/* DMA2 may do Biskup */
 | |
| 		iter = sw_desc->group_head;
 | |
| 		if (iter->dst_cnt == 2) {
 | |
| 			/* both P & Q calculations required; set P src here */
 | |
| 			ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
 | |
| 
 | |
| 			/* this is for Q */
 | |
| 			iter = ppc440spe_get_group_entry(sw_desc,
 | |
| 				sw_desc->descs_per_op);
 | |
| 		}
 | |
| 		ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor
 | |
|  */
 | |
| static void ppc440spe_adma_memcpy_xor_set_src(
 | |
| 		struct ppc440spe_adma_desc_slot *sw_desc,
 | |
| 		dma_addr_t addr, int index)
 | |
| {
 | |
| 	struct ppc440spe_adma_chan *chan;
 | |
| 
 | |
| 	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
 | |
| 	sw_desc = sw_desc->group_head;
 | |
| 
 | |
| 	if (likely(sw_desc))
 | |
| 		ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_adma_dma2rxor_inc_addr  -
 | |
|  */
 | |
| static void ppc440spe_adma_dma2rxor_inc_addr(
 | |
| 		struct ppc440spe_adma_desc_slot *desc,
 | |
| 		struct ppc440spe_rxor *cursor, int index, int src_cnt)
 | |
| {
 | |
| 	cursor->addr_count++;
 | |
| 	if (index == src_cnt - 1) {
 | |
| 		ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
 | |
| 	} else if (cursor->addr_count == XOR_MAX_OPS) {
 | |
| 		ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
 | |
| 		cursor->addr_count = 0;
 | |
| 		cursor->desc_count++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB
 | |
|  */
 | |
| static int ppc440spe_adma_dma2rxor_prep_src(
 | |
| 		struct ppc440spe_adma_desc_slot *hdesc,
 | |
| 		struct ppc440spe_rxor *cursor, int index,
 | |
| 		int src_cnt, u32 addr)
 | |
| {
 | |
| 	int rval = 0;
 | |
| 	u32 sign;
 | |
| 	struct ppc440spe_adma_desc_slot *desc = hdesc;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < cursor->desc_count; i++) {
 | |
| 		desc = list_entry(hdesc->chain_node.next,
 | |
| 				  struct ppc440spe_adma_desc_slot,
 | |
| 				  chain_node);
 | |
| 	}
 | |
| 
 | |
| 	switch (cursor->state) {
 | |
| 	case 0:
 | |
| 		if (addr == cursor->addrl + cursor->len) {
 | |
| 			/* direct RXOR */
 | |
| 			cursor->state = 1;
 | |
| 			cursor->xor_count++;
 | |
| 			if (index == src_cnt-1) {
 | |
| 				ppc440spe_rxor_set_region(desc,
 | |
| 					cursor->addr_count,
 | |
| 					DMA_RXOR12 << DMA_CUED_REGION_OFF);
 | |
| 				ppc440spe_adma_dma2rxor_inc_addr(
 | |
| 					desc, cursor, index, src_cnt);
 | |
| 			}
 | |
| 		} else if (cursor->addrl == addr + cursor->len) {
 | |
| 			/* reverse RXOR */
 | |
| 			cursor->state = 1;
 | |
| 			cursor->xor_count++;
 | |
| 			set_bit(cursor->addr_count, &desc->reverse_flags[0]);
 | |
| 			if (index == src_cnt-1) {
 | |
| 				ppc440spe_rxor_set_region(desc,
 | |
| 					cursor->addr_count,
 | |
| 					DMA_RXOR12 << DMA_CUED_REGION_OFF);
 | |
| 				ppc440spe_adma_dma2rxor_inc_addr(
 | |
| 					desc, cursor, index, src_cnt);
 | |
| 			}
 | |
| 		} else {
 | |
| 			printk(KERN_ERR "Cannot build "
 | |
| 				"DMA2 RXOR command block.\n");
 | |
| 			BUG();
 | |
| 		}
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		sign = test_bit(cursor->addr_count,
 | |
| 				desc->reverse_flags)
 | |
| 			? -1 : 1;
 | |
| 		if (index == src_cnt-2 || (sign == -1
 | |
| 			&& addr != cursor->addrl - 2*cursor->len)) {
 | |
| 			cursor->state = 0;
 | |
| 			cursor->xor_count = 1;
 | |
| 			cursor->addrl = addr;
 | |
| 			ppc440spe_rxor_set_region(desc,
 | |
| 				cursor->addr_count,
 | |
| 				DMA_RXOR12 << DMA_CUED_REGION_OFF);
 | |
| 			ppc440spe_adma_dma2rxor_inc_addr(
 | |
| 				desc, cursor, index, src_cnt);
 | |
| 		} else if (addr == cursor->addrl + 2*sign*cursor->len) {
 | |
| 			cursor->state = 2;
 | |
| 			cursor->xor_count = 0;
 | |
| 			ppc440spe_rxor_set_region(desc,
 | |
| 				cursor->addr_count,
 | |
| 				DMA_RXOR123 << DMA_CUED_REGION_OFF);
 | |
| 			if (index == src_cnt-1) {
 | |
| 				ppc440spe_adma_dma2rxor_inc_addr(
 | |
| 					desc, cursor, index, src_cnt);
 | |
| 			}
 | |
| 		} else if (addr == cursor->addrl + 3*cursor->len) {
 | |
| 			cursor->state = 2;
 | |
| 			cursor->xor_count = 0;
 | |
| 			ppc440spe_rxor_set_region(desc,
 | |
| 				cursor->addr_count,
 | |
| 				DMA_RXOR124 << DMA_CUED_REGION_OFF);
 | |
| 			if (index == src_cnt-1) {
 | |
| 				ppc440spe_adma_dma2rxor_inc_addr(
 | |
| 					desc, cursor, index, src_cnt);
 | |
| 			}
 | |
| 		} else if (addr == cursor->addrl + 4*cursor->len) {
 | |
| 			cursor->state = 2;
 | |
| 			cursor->xor_count = 0;
 | |
| 			ppc440spe_rxor_set_region(desc,
 | |
| 				cursor->addr_count,
 | |
| 				DMA_RXOR125 << DMA_CUED_REGION_OFF);
 | |
| 			if (index == src_cnt-1) {
 | |
| 				ppc440spe_adma_dma2rxor_inc_addr(
 | |
| 					desc, cursor, index, src_cnt);
 | |
| 			}
 | |
| 		} else {
 | |
| 			cursor->state = 0;
 | |
| 			cursor->xor_count = 1;
 | |
| 			cursor->addrl = addr;
 | |
| 			ppc440spe_rxor_set_region(desc,
 | |
| 				cursor->addr_count,
 | |
| 				DMA_RXOR12 << DMA_CUED_REGION_OFF);
 | |
| 			ppc440spe_adma_dma2rxor_inc_addr(
 | |
| 				desc, cursor, index, src_cnt);
 | |
| 		}
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		cursor->state = 0;
 | |
| 		cursor->addrl = addr;
 | |
| 		cursor->xor_count++;
 | |
| 		if (index) {
 | |
| 			ppc440spe_adma_dma2rxor_inc_addr(
 | |
| 				desc, cursor, index, src_cnt);
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return rval;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that
 | |
|  *	ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
 | |
|  */
 | |
| static void ppc440spe_adma_dma2rxor_set_src(
 | |
| 		struct ppc440spe_adma_desc_slot *desc,
 | |
| 		int index, dma_addr_t addr)
 | |
| {
 | |
| 	struct xor_cb *xcb = desc->hw_desc;
 | |
| 	int k = 0, op = 0, lop = 0;
 | |
| 
 | |
| 	/* get the RXOR operand which corresponds to index addr */
 | |
| 	while (op <= index) {
 | |
| 		lop = op;
 | |
| 		if (k == XOR_MAX_OPS) {
 | |
| 			k = 0;
 | |
| 			desc = list_entry(desc->chain_node.next,
 | |
| 				struct ppc440spe_adma_desc_slot, chain_node);
 | |
| 			xcb = desc->hw_desc;
 | |
| 
 | |
| 		}
 | |
| 		if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
 | |
| 		    (DMA_RXOR12 << DMA_CUED_REGION_OFF))
 | |
| 			op += 2;
 | |
| 		else
 | |
| 			op += 3;
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(k < 1);
 | |
| 
 | |
| 	if (test_bit(k-1, desc->reverse_flags)) {
 | |
| 		/* reverse operand order; put last op in RXOR group */
 | |
| 		if (index == op - 1)
 | |
| 			ppc440spe_rxor_set_src(desc, k - 1, addr);
 | |
| 	} else {
 | |
| 		/* direct operand order; put first op in RXOR group */
 | |
| 		if (index == lop)
 | |
| 			ppc440spe_rxor_set_src(desc, k - 1, addr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that
 | |
|  *	ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
 | |
|  */
 | |
| static void ppc440spe_adma_dma2rxor_set_mult(
 | |
| 		struct ppc440spe_adma_desc_slot *desc,
 | |
| 		int index, u8 mult)
 | |
| {
 | |
| 	struct xor_cb *xcb = desc->hw_desc;
 | |
| 	int k = 0, op = 0, lop = 0;
 | |
| 
 | |
| 	/* get the RXOR operand which corresponds to index mult */
 | |
| 	while (op <= index) {
 | |
| 		lop = op;
 | |
| 		if (k == XOR_MAX_OPS) {
 | |
| 			k = 0;
 | |
| 			desc = list_entry(desc->chain_node.next,
 | |
| 					  struct ppc440spe_adma_desc_slot,
 | |
| 					  chain_node);
 | |
| 			xcb = desc->hw_desc;
 | |
| 
 | |
| 		}
 | |
| 		if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
 | |
| 		    (DMA_RXOR12 << DMA_CUED_REGION_OFF))
 | |
| 			op += 2;
 | |
| 		else
 | |
| 			op += 3;
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(k < 1);
 | |
| 	if (test_bit(k-1, desc->reverse_flags)) {
 | |
| 		/* reverse order */
 | |
| 		ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult);
 | |
| 	} else {
 | |
| 		/* direct order */
 | |
| 		ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_init_rxor_cursor -
 | |
|  */
 | |
| static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor)
 | |
| {
 | |
| 	memset(cursor, 0, sizeof(struct ppc440spe_rxor));
 | |
| 	cursor->state = 2;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into
 | |
|  * descriptor for the PQXOR operation
 | |
|  */
 | |
| static void ppc440spe_adma_pq_set_src_mult(
 | |
| 		struct ppc440spe_adma_desc_slot *sw_desc,
 | |
| 		unsigned char mult, int index, int dst_pos)
 | |
| {
 | |
| 	struct ppc440spe_adma_chan *chan;
 | |
| 	u32 mult_idx, mult_dst;
 | |
| 	struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL;
 | |
| 
 | |
| 	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
 | |
| 
 | |
| 	switch (chan->device->id) {
 | |
| 	case PPC440SPE_DMA0_ID:
 | |
| 	case PPC440SPE_DMA1_ID:
 | |
| 		if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
 | |
| 			int region = test_bit(PPC440SPE_DESC_RXOR12,
 | |
| 					&sw_desc->flags) ? 2 : 3;
 | |
| 
 | |
| 			if (index < region) {
 | |
| 				/* RXOR multipliers */
 | |
| 				iter = ppc440spe_get_group_entry(sw_desc,
 | |
| 					sw_desc->dst_cnt - 1);
 | |
| 				if (sw_desc->dst_cnt == 2)
 | |
| 					iter1 = ppc440spe_get_group_entry(
 | |
| 							sw_desc, 0);
 | |
| 
 | |
| 				mult_idx = DMA_CUED_MULT1_OFF + (index << 3);
 | |
| 				mult_dst = DMA_CDB_SG_SRC;
 | |
| 			} else {
 | |
| 				/* WXOR multiplier */
 | |
| 				iter = ppc440spe_get_group_entry(sw_desc,
 | |
| 							index - region +
 | |
| 							sw_desc->dst_cnt);
 | |
| 				mult_idx = DMA_CUED_MULT1_OFF;
 | |
| 				mult_dst = dst_pos ? DMA_CDB_SG_DST2 :
 | |
| 						     DMA_CDB_SG_DST1;
 | |
| 			}
 | |
| 		} else {
 | |
| 			int znum = 0;
 | |
| 
 | |
| 			/* WXOR-only;
 | |
| 			 * skip first slots with destinations (if ZERO_DST has
 | |
| 			 * place)
 | |
| 			 */
 | |
| 			if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
 | |
| 				znum++;
 | |
| 			if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
 | |
| 				znum++;
 | |
| 
 | |
| 			iter = ppc440spe_get_group_entry(sw_desc, index + znum);
 | |
| 			mult_idx = DMA_CUED_MULT1_OFF;
 | |
| 			mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1;
 | |
| 		}
 | |
| 
 | |
| 		if (likely(iter)) {
 | |
| 			ppc440spe_desc_set_src_mult(iter, chan,
 | |
| 				mult_idx, mult_dst, mult);
 | |
| 
 | |
| 			if (unlikely(iter1)) {
 | |
| 				/* if we have two destinations for RXOR, then
 | |
| 				 * we've just set Q mult. Set-up P now.
 | |
| 				 */
 | |
| 				ppc440spe_desc_set_src_mult(iter1, chan,
 | |
| 					mult_idx, mult_dst, 1);
 | |
| 			}
 | |
| 
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case PPC440SPE_XOR_ID:
 | |
| 		iter = sw_desc->group_head;
 | |
| 		if (sw_desc->dst_cnt == 2) {
 | |
| 			/* both P & Q calculations required; set P mult here */
 | |
| 			ppc440spe_adma_dma2rxor_set_mult(iter, index, 1);
 | |
| 
 | |
| 			/* and then set Q mult */
 | |
| 			iter = ppc440spe_get_group_entry(sw_desc,
 | |
| 			       sw_desc->descs_per_op);
 | |
| 		}
 | |
| 		ppc440spe_adma_dma2rxor_set_mult(iter, index, mult);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_adma_free_chan_resources - free the resources allocated
 | |
|  */
 | |
| static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan)
 | |
| {
 | |
| 	struct ppc440spe_adma_chan *ppc440spe_chan;
 | |
| 	struct ppc440spe_adma_desc_slot *iter, *_iter;
 | |
| 	int in_use_descs = 0;
 | |
| 
 | |
| 	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
 | |
| 	ppc440spe_adma_slot_cleanup(ppc440spe_chan);
 | |
| 
 | |
| 	spin_lock_bh(&ppc440spe_chan->lock);
 | |
| 	list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain,
 | |
| 					chain_node) {
 | |
| 		in_use_descs++;
 | |
| 		list_del(&iter->chain_node);
 | |
| 	}
 | |
| 	list_for_each_entry_safe_reverse(iter, _iter,
 | |
| 			&ppc440spe_chan->all_slots, slot_node) {
 | |
| 		list_del(&iter->slot_node);
 | |
| 		kfree(iter);
 | |
| 		ppc440spe_chan->slots_allocated--;
 | |
| 	}
 | |
| 	ppc440spe_chan->last_used = NULL;
 | |
| 
 | |
| 	dev_dbg(ppc440spe_chan->device->common.dev,
 | |
| 		"ppc440spe adma%d %s slots_allocated %d\n",
 | |
| 		ppc440spe_chan->device->id,
 | |
| 		__func__, ppc440spe_chan->slots_allocated);
 | |
| 	spin_unlock_bh(&ppc440spe_chan->lock);
 | |
| 
 | |
| 	/* one is ok since we left it on there on purpose */
 | |
| 	if (in_use_descs > 1)
 | |
| 		printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n",
 | |
| 			in_use_descs - 1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_adma_tx_status - poll the status of an ADMA transaction
 | |
|  * @chan: ADMA channel handle
 | |
|  * @cookie: ADMA transaction identifier
 | |
|  * @txstate: a holder for the current state of the channel
 | |
|  */
 | |
| static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan,
 | |
| 			dma_cookie_t cookie, struct dma_tx_state *txstate)
 | |
| {
 | |
| 	struct ppc440spe_adma_chan *ppc440spe_chan;
 | |
| 	enum dma_status ret;
 | |
| 
 | |
| 	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
 | |
| 	ret = dma_cookie_status(chan, cookie, txstate);
 | |
| 	if (ret == DMA_COMPLETE)
 | |
| 		return ret;
 | |
| 
 | |
| 	ppc440spe_adma_slot_cleanup(ppc440spe_chan);
 | |
| 
 | |
| 	return dma_cookie_status(chan, cookie, txstate);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_adma_eot_handler - end of transfer interrupt handler
 | |
|  */
 | |
| static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data)
 | |
| {
 | |
| 	struct ppc440spe_adma_chan *chan = data;
 | |
| 
 | |
| 	dev_dbg(chan->device->common.dev,
 | |
| 		"ppc440spe adma%d: %s\n", chan->device->id, __func__);
 | |
| 
 | |
| 	tasklet_schedule(&chan->irq_tasklet);
 | |
| 	ppc440spe_adma_device_clear_eot_status(chan);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_adma_err_handler - DMA error interrupt handler;
 | |
|  *	do the same things as a eot handler
 | |
|  */
 | |
| static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data)
 | |
| {
 | |
| 	struct ppc440spe_adma_chan *chan = data;
 | |
| 
 | |
| 	dev_dbg(chan->device->common.dev,
 | |
| 		"ppc440spe adma%d: %s\n", chan->device->id, __func__);
 | |
| 
 | |
| 	tasklet_schedule(&chan->irq_tasklet);
 | |
| 	ppc440spe_adma_device_clear_eot_status(chan);
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_test_callback - called when test operation has been done
 | |
|  */
 | |
| static void ppc440spe_test_callback(void *unused)
 | |
| {
 | |
| 	complete(&ppc440spe_r6_test_comp);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w
 | |
|  */
 | |
| static void ppc440spe_adma_issue_pending(struct dma_chan *chan)
 | |
| {
 | |
| 	struct ppc440spe_adma_chan *ppc440spe_chan;
 | |
| 
 | |
| 	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
 | |
| 	dev_dbg(ppc440spe_chan->device->common.dev,
 | |
| 		"ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id,
 | |
| 		__func__, ppc440spe_chan->pending);
 | |
| 
 | |
| 	if (ppc440spe_chan->pending) {
 | |
| 		ppc440spe_chan->pending = 0;
 | |
| 		ppc440spe_chan_append(ppc440spe_chan);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines
 | |
|  *	use FIFOs (as opposite to chains used in XOR) so this is a XOR
 | |
|  *	specific operation)
 | |
|  */
 | |
| static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan)
 | |
| {
 | |
| 	struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
 | |
| 	dma_cookie_t cookie;
 | |
| 	int slot_cnt, slots_per_op;
 | |
| 
 | |
| 	dev_dbg(chan->device->common.dev,
 | |
| 		"ppc440spe adma%d: %s\n", chan->device->id, __func__);
 | |
| 
 | |
| 	spin_lock_bh(&chan->lock);
 | |
| 	slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op);
 | |
| 	sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op);
 | |
| 	if (sw_desc) {
 | |
| 		group_start = sw_desc->group_head;
 | |
| 		list_splice_init(&sw_desc->group_list, &chan->chain);
 | |
| 		async_tx_ack(&sw_desc->async_tx);
 | |
| 		ppc440spe_desc_init_null_xor(group_start);
 | |
| 
 | |
| 		cookie = dma_cookie_assign(&sw_desc->async_tx);
 | |
| 
 | |
| 		/* initialize the completed cookie to be less than
 | |
| 		 * the most recently used cookie
 | |
| 		 */
 | |
| 		chan->common.completed_cookie = cookie - 1;
 | |
| 
 | |
| 		/* channel should not be busy */
 | |
| 		BUG_ON(ppc440spe_chan_is_busy(chan));
 | |
| 
 | |
| 		/* set the descriptor address */
 | |
| 		ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc);
 | |
| 
 | |
| 		/* run the descriptor */
 | |
| 		ppc440spe_chan_run(chan);
 | |
| 	} else
 | |
| 		printk(KERN_ERR "ppc440spe adma%d"
 | |
| 			" failed to allocate null descriptor\n",
 | |
| 			chan->device->id);
 | |
| 	spin_unlock_bh(&chan->lock);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully.
 | |
|  *	For this we just perform one WXOR operation with the same source
 | |
|  *	and destination addresses, the GF-multiplier is 1; so if RAID-6
 | |
|  *	capabilities are enabled then we'll get src/dst filled with zero.
 | |
|  */
 | |
| static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan)
 | |
| {
 | |
| 	struct ppc440spe_adma_desc_slot *sw_desc, *iter;
 | |
| 	struct page *pg;
 | |
| 	char *a;
 | |
| 	dma_addr_t dma_addr, addrs[2];
 | |
| 	unsigned long op = 0;
 | |
| 	int rval = 0;
 | |
| 
 | |
| 	set_bit(PPC440SPE_DESC_WXOR, &op);
 | |
| 
 | |
| 	pg = alloc_page(GFP_KERNEL);
 | |
| 	if (!pg)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	spin_lock_bh(&chan->lock);
 | |
| 	sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1);
 | |
| 	if (sw_desc) {
 | |
| 		/* 1 src, 1 dsr, int_ena, WXOR */
 | |
| 		ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op);
 | |
| 		list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
 | |
| 			ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE);
 | |
| 			iter->unmap_len = PAGE_SIZE;
 | |
| 		}
 | |
| 	} else {
 | |
| 		rval = -EFAULT;
 | |
| 		spin_unlock_bh(&chan->lock);
 | |
| 		goto exit;
 | |
| 	}
 | |
| 	spin_unlock_bh(&chan->lock);
 | |
| 
 | |
| 	/* Fill the test page with ones */
 | |
| 	memset(page_address(pg), 0xFF, PAGE_SIZE);
 | |
| 	dma_addr = dma_map_page(chan->device->dev, pg, 0,
 | |
| 				PAGE_SIZE, DMA_BIDIRECTIONAL);
 | |
| 
 | |
| 	/* Setup addresses */
 | |
| 	ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0);
 | |
| 	ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0);
 | |
| 	addrs[0] = dma_addr;
 | |
| 	addrs[1] = 0;
 | |
| 	ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q);
 | |
| 
 | |
| 	async_tx_ack(&sw_desc->async_tx);
 | |
| 	sw_desc->async_tx.callback = ppc440spe_test_callback;
 | |
| 	sw_desc->async_tx.callback_param = NULL;
 | |
| 
 | |
| 	init_completion(&ppc440spe_r6_test_comp);
 | |
| 
 | |
| 	ppc440spe_adma_tx_submit(&sw_desc->async_tx);
 | |
| 	ppc440spe_adma_issue_pending(&chan->common);
 | |
| 
 | |
| 	wait_for_completion(&ppc440spe_r6_test_comp);
 | |
| 
 | |
| 	/* Now check if the test page is zeroed */
 | |
| 	a = page_address(pg);
 | |
| 	if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) {
 | |
| 		/* page is zero - RAID-6 enabled */
 | |
| 		rval = 0;
 | |
| 	} else {
 | |
| 		/* RAID-6 was not enabled */
 | |
| 		rval = -EINVAL;
 | |
| 	}
 | |
| exit:
 | |
| 	__free_page(pg);
 | |
| 	return rval;
 | |
| }
 | |
| 
 | |
| static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev)
 | |
| {
 | |
| 	switch (adev->id) {
 | |
| 	case PPC440SPE_DMA0_ID:
 | |
| 	case PPC440SPE_DMA1_ID:
 | |
| 		dma_cap_set(DMA_MEMCPY, adev->common.cap_mask);
 | |
| 		dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
 | |
| 		dma_cap_set(DMA_PQ, adev->common.cap_mask);
 | |
| 		dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask);
 | |
| 		dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask);
 | |
| 		break;
 | |
| 	case PPC440SPE_XOR_ID:
 | |
| 		dma_cap_set(DMA_XOR, adev->common.cap_mask);
 | |
| 		dma_cap_set(DMA_PQ, adev->common.cap_mask);
 | |
| 		dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
 | |
| 		adev->common.cap_mask = adev->common.cap_mask;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* Set base routines */
 | |
| 	adev->common.device_alloc_chan_resources =
 | |
| 				ppc440spe_adma_alloc_chan_resources;
 | |
| 	adev->common.device_free_chan_resources =
 | |
| 				ppc440spe_adma_free_chan_resources;
 | |
| 	adev->common.device_tx_status = ppc440spe_adma_tx_status;
 | |
| 	adev->common.device_issue_pending = ppc440spe_adma_issue_pending;
 | |
| 
 | |
| 	/* Set prep routines based on capability */
 | |
| 	if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) {
 | |
| 		adev->common.device_prep_dma_memcpy =
 | |
| 			ppc440spe_adma_prep_dma_memcpy;
 | |
| 	}
 | |
| 	if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) {
 | |
| 		adev->common.max_xor = XOR_MAX_OPS;
 | |
| 		adev->common.device_prep_dma_xor =
 | |
| 			ppc440spe_adma_prep_dma_xor;
 | |
| 	}
 | |
| 	if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) {
 | |
| 		switch (adev->id) {
 | |
| 		case PPC440SPE_DMA0_ID:
 | |
| 			dma_set_maxpq(&adev->common,
 | |
| 				DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0);
 | |
| 			break;
 | |
| 		case PPC440SPE_DMA1_ID:
 | |
| 			dma_set_maxpq(&adev->common,
 | |
| 				DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0);
 | |
| 			break;
 | |
| 		case PPC440SPE_XOR_ID:
 | |
| 			adev->common.max_pq = XOR_MAX_OPS * 3;
 | |
| 			break;
 | |
| 		}
 | |
| 		adev->common.device_prep_dma_pq =
 | |
| 			ppc440spe_adma_prep_dma_pq;
 | |
| 	}
 | |
| 	if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) {
 | |
| 		switch (adev->id) {
 | |
| 		case PPC440SPE_DMA0_ID:
 | |
| 			adev->common.max_pq = DMA0_FIFO_SIZE /
 | |
| 						sizeof(struct dma_cdb);
 | |
| 			break;
 | |
| 		case PPC440SPE_DMA1_ID:
 | |
| 			adev->common.max_pq = DMA1_FIFO_SIZE /
 | |
| 						sizeof(struct dma_cdb);
 | |
| 			break;
 | |
| 		}
 | |
| 		adev->common.device_prep_dma_pq_val =
 | |
| 			ppc440spe_adma_prep_dma_pqzero_sum;
 | |
| 	}
 | |
| 	if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) {
 | |
| 		switch (adev->id) {
 | |
| 		case PPC440SPE_DMA0_ID:
 | |
| 			adev->common.max_xor = DMA0_FIFO_SIZE /
 | |
| 						sizeof(struct dma_cdb);
 | |
| 			break;
 | |
| 		case PPC440SPE_DMA1_ID:
 | |
| 			adev->common.max_xor = DMA1_FIFO_SIZE /
 | |
| 						sizeof(struct dma_cdb);
 | |
| 			break;
 | |
| 		}
 | |
| 		adev->common.device_prep_dma_xor_val =
 | |
| 			ppc440spe_adma_prep_dma_xor_zero_sum;
 | |
| 	}
 | |
| 	if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) {
 | |
| 		adev->common.device_prep_dma_interrupt =
 | |
| 			ppc440spe_adma_prep_dma_interrupt;
 | |
| 	}
 | |
| 	pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: "
 | |
| 	  "( %s%s%s%s%s%s)\n",
 | |
| 	  dev_name(adev->dev),
 | |
| 	  dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "",
 | |
| 	  dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "",
 | |
| 	  dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "",
 | |
| 	  dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "",
 | |
| 	  dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "",
 | |
| 	  dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : "");
 | |
| }
 | |
| 
 | |
| static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev,
 | |
| 				     struct ppc440spe_adma_chan *chan,
 | |
| 				     int *initcode)
 | |
| {
 | |
| 	struct platform_device *ofdev;
 | |
| 	struct device_node *np;
 | |
| 	int ret;
 | |
| 
 | |
| 	ofdev = container_of(adev->dev, struct platform_device, dev);
 | |
| 	np = ofdev->dev.of_node;
 | |
| 	if (adev->id != PPC440SPE_XOR_ID) {
 | |
| 		adev->err_irq = irq_of_parse_and_map(np, 1);
 | |
| 		if (!adev->err_irq) {
 | |
| 			dev_warn(adev->dev, "no err irq resource?\n");
 | |
| 			*initcode = PPC_ADMA_INIT_IRQ2;
 | |
| 			adev->err_irq = -ENXIO;
 | |
| 		} else
 | |
| 			atomic_inc(&ppc440spe_adma_err_irq_ref);
 | |
| 	} else {
 | |
| 		adev->err_irq = -ENXIO;
 | |
| 	}
 | |
| 
 | |
| 	adev->irq = irq_of_parse_and_map(np, 0);
 | |
| 	if (!adev->irq) {
 | |
| 		dev_err(adev->dev, "no irq resource\n");
 | |
| 		*initcode = PPC_ADMA_INIT_IRQ1;
 | |
| 		ret = -ENXIO;
 | |
| 		goto err_irq_map;
 | |
| 	}
 | |
| 	dev_dbg(adev->dev, "irq %d, err irq %d\n",
 | |
| 		adev->irq, adev->err_irq);
 | |
| 
 | |
| 	ret = request_irq(adev->irq, ppc440spe_adma_eot_handler,
 | |
| 			  0, dev_driver_string(adev->dev), chan);
 | |
| 	if (ret) {
 | |
| 		dev_err(adev->dev, "can't request irq %d\n",
 | |
| 			adev->irq);
 | |
| 		*initcode = PPC_ADMA_INIT_IRQ1;
 | |
| 		ret = -EIO;
 | |
| 		goto err_req1;
 | |
| 	}
 | |
| 
 | |
| 	/* only DMA engines have a separate error IRQ
 | |
| 	 * so it's Ok if err_irq < 0 in XOR engine case.
 | |
| 	 */
 | |
| 	if (adev->err_irq > 0) {
 | |
| 		/* both DMA engines share common error IRQ */
 | |
| 		ret = request_irq(adev->err_irq,
 | |
| 				  ppc440spe_adma_err_handler,
 | |
| 				  IRQF_SHARED,
 | |
| 				  dev_driver_string(adev->dev),
 | |
| 				  chan);
 | |
| 		if (ret) {
 | |
| 			dev_err(adev->dev, "can't request irq %d\n",
 | |
| 				adev->err_irq);
 | |
| 			*initcode = PPC_ADMA_INIT_IRQ2;
 | |
| 			ret = -EIO;
 | |
| 			goto err_req2;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (adev->id == PPC440SPE_XOR_ID) {
 | |
| 		/* enable XOR engine interrupts */
 | |
| 		iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
 | |
| 			    XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT,
 | |
| 			    &adev->xor_reg->ier);
 | |
| 	} else {
 | |
| 		u32 mask, enable;
 | |
| 
 | |
| 		np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
 | |
| 		if (!np) {
 | |
| 			pr_err("%s: can't find I2O device tree node\n",
 | |
| 				__func__);
 | |
| 			ret = -ENODEV;
 | |
| 			goto err_req2;
 | |
| 		}
 | |
| 		adev->i2o_reg = of_iomap(np, 0);
 | |
| 		if (!adev->i2o_reg) {
 | |
| 			pr_err("%s: failed to map I2O registers\n", __func__);
 | |
| 			of_node_put(np);
 | |
| 			ret = -EINVAL;
 | |
| 			goto err_req2;
 | |
| 		}
 | |
| 		of_node_put(np);
 | |
| 		/* Unmask 'CS FIFO Attention' interrupts and
 | |
| 		 * enable generating interrupts on errors
 | |
| 		 */
 | |
| 		enable = (adev->id == PPC440SPE_DMA0_ID) ?
 | |
| 			 ~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
 | |
| 			 ~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
 | |
| 		mask = ioread32(&adev->i2o_reg->iopim) & enable;
 | |
| 		iowrite32(mask, &adev->i2o_reg->iopim);
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| err_req2:
 | |
| 	free_irq(adev->irq, chan);
 | |
| err_req1:
 | |
| 	irq_dispose_mapping(adev->irq);
 | |
| err_irq_map:
 | |
| 	if (adev->err_irq > 0) {
 | |
| 		if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref))
 | |
| 			irq_dispose_mapping(adev->err_irq);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev,
 | |
| 					struct ppc440spe_adma_chan *chan)
 | |
| {
 | |
| 	u32 mask, disable;
 | |
| 
 | |
| 	if (adev->id == PPC440SPE_XOR_ID) {
 | |
| 		/* disable XOR engine interrupts */
 | |
| 		mask = ioread32be(&adev->xor_reg->ier);
 | |
| 		mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
 | |
| 			  XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT);
 | |
| 		iowrite32be(mask, &adev->xor_reg->ier);
 | |
| 	} else {
 | |
| 		/* disable DMAx engine interrupts */
 | |
| 		disable = (adev->id == PPC440SPE_DMA0_ID) ?
 | |
| 			  (I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
 | |
| 			  (I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
 | |
| 		mask = ioread32(&adev->i2o_reg->iopim) | disable;
 | |
| 		iowrite32(mask, &adev->i2o_reg->iopim);
 | |
| 	}
 | |
| 	free_irq(adev->irq, chan);
 | |
| 	irq_dispose_mapping(adev->irq);
 | |
| 	if (adev->err_irq > 0) {
 | |
| 		free_irq(adev->err_irq, chan);
 | |
| 		if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) {
 | |
| 			irq_dispose_mapping(adev->err_irq);
 | |
| 			iounmap(adev->i2o_reg);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_adma_probe - probe the asynch device
 | |
|  */
 | |
| static int ppc440spe_adma_probe(struct platform_device *ofdev)
 | |
| {
 | |
| 	struct device_node *np = ofdev->dev.of_node;
 | |
| 	struct resource res;
 | |
| 	struct ppc440spe_adma_device *adev;
 | |
| 	struct ppc440spe_adma_chan *chan;
 | |
| 	struct ppc_dma_chan_ref *ref, *_ref;
 | |
| 	int ret = 0, initcode = PPC_ADMA_INIT_OK;
 | |
| 	const u32 *idx;
 | |
| 	int len;
 | |
| 	void *regs;
 | |
| 	u32 id, pool_size;
 | |
| 
 | |
| 	if (of_device_is_compatible(np, "amcc,xor-accelerator")) {
 | |
| 		id = PPC440SPE_XOR_ID;
 | |
| 		/* As far as the XOR engine is concerned, it does not
 | |
| 		 * use FIFOs but uses linked list. So there is no dependency
 | |
| 		 * between pool size to allocate and the engine configuration.
 | |
| 		 */
 | |
| 		pool_size = PAGE_SIZE << 1;
 | |
| 	} else {
 | |
| 		/* it is DMA0 or DMA1 */
 | |
| 		idx = of_get_property(np, "cell-index", &len);
 | |
| 		if (!idx || (len != sizeof(u32))) {
 | |
| 			dev_err(&ofdev->dev, "Device node %pOF has missing "
 | |
| 				"or invalid cell-index property\n",
 | |
| 				np);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		id = *idx;
 | |
| 		/* DMA0,1 engines use FIFO to maintain CDBs, so we
 | |
| 		 * should allocate the pool accordingly to size of this
 | |
| 		 * FIFO. Thus, the pool size depends on the FIFO depth:
 | |
| 		 * how much CDBs pointers the FIFO may contain then so
 | |
| 		 * much CDBs we should provide in the pool.
 | |
| 		 * That is
 | |
| 		 *   CDB size = 32B;
 | |
| 		 *   CDBs number = (DMA0_FIFO_SIZE >> 3);
 | |
| 		 *   Pool size = CDBs number * CDB size =
 | |
| 		 *      = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2.
 | |
| 		 */
 | |
| 		pool_size = (id == PPC440SPE_DMA0_ID) ?
 | |
| 			    DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
 | |
| 		pool_size <<= 2;
 | |
| 	}
 | |
| 
 | |
| 	if (of_address_to_resource(np, 0, &res)) {
 | |
| 		dev_err(&ofdev->dev, "failed to get memory resource\n");
 | |
| 		initcode = PPC_ADMA_INIT_MEMRES;
 | |
| 		ret = -ENODEV;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (!request_mem_region(res.start, resource_size(&res),
 | |
| 				dev_driver_string(&ofdev->dev))) {
 | |
| 		dev_err(&ofdev->dev, "failed to request memory region %pR\n",
 | |
| 			&res);
 | |
| 		initcode = PPC_ADMA_INIT_MEMREG;
 | |
| 		ret = -EBUSY;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* create a device */
 | |
| 	adev = kzalloc(sizeof(*adev), GFP_KERNEL);
 | |
| 	if (!adev) {
 | |
| 		initcode = PPC_ADMA_INIT_ALLOC;
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err_adev_alloc;
 | |
| 	}
 | |
| 
 | |
| 	adev->id = id;
 | |
| 	adev->pool_size = pool_size;
 | |
| 	/* allocate coherent memory for hardware descriptors */
 | |
| 	adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev,
 | |
| 					adev->pool_size, &adev->dma_desc_pool,
 | |
| 					GFP_KERNEL);
 | |
| 	if (adev->dma_desc_pool_virt == NULL) {
 | |
| 		dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent "
 | |
| 			"memory for hardware descriptors\n",
 | |
| 			adev->pool_size);
 | |
| 		initcode = PPC_ADMA_INIT_COHERENT;
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err_dma_alloc;
 | |
| 	}
 | |
| 	dev_dbg(&ofdev->dev, "allocated descriptor pool virt 0x%p phys 0x%llx\n",
 | |
| 		adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool);
 | |
| 
 | |
| 	regs = ioremap(res.start, resource_size(&res));
 | |
| 	if (!regs) {
 | |
| 		dev_err(&ofdev->dev, "failed to ioremap regs!\n");
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err_regs_alloc;
 | |
| 	}
 | |
| 
 | |
| 	if (adev->id == PPC440SPE_XOR_ID) {
 | |
| 		adev->xor_reg = regs;
 | |
| 		/* Reset XOR */
 | |
| 		iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr);
 | |
| 		iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr);
 | |
| 	} else {
 | |
| 		size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ?
 | |
| 				   DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
 | |
| 		adev->dma_reg = regs;
 | |
| 		/* DMAx_FIFO_SIZE is defined in bytes,
 | |
| 		 * <fsiz> - is defined in number of CDB pointers (8byte).
 | |
| 		 * DMA FIFO Length = CSlength + CPlength, where
 | |
| 		 * CSlength = CPlength = (fsiz + 1) * 8.
 | |
| 		 */
 | |
| 		iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2),
 | |
| 			  &adev->dma_reg->fsiz);
 | |
| 		/* Configure DMA engine */
 | |
| 		iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN,
 | |
| 			  &adev->dma_reg->cfg);
 | |
| 		/* Clear Status */
 | |
| 		iowrite32(~0, &adev->dma_reg->dsts);
 | |
| 	}
 | |
| 
 | |
| 	adev->dev = &ofdev->dev;
 | |
| 	adev->common.dev = &ofdev->dev;
 | |
| 	INIT_LIST_HEAD(&adev->common.channels);
 | |
| 	platform_set_drvdata(ofdev, adev);
 | |
| 
 | |
| 	/* create a channel */
 | |
| 	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
 | |
| 	if (!chan) {
 | |
| 		initcode = PPC_ADMA_INIT_CHANNEL;
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err_chan_alloc;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_init(&chan->lock);
 | |
| 	INIT_LIST_HEAD(&chan->chain);
 | |
| 	INIT_LIST_HEAD(&chan->all_slots);
 | |
| 	chan->device = adev;
 | |
| 	chan->common.device = &adev->common;
 | |
| 	dma_cookie_init(&chan->common);
 | |
| 	list_add_tail(&chan->common.device_node, &adev->common.channels);
 | |
| 	tasklet_setup(&chan->irq_tasklet, ppc440spe_adma_tasklet);
 | |
| 
 | |
| 	/* allocate and map helper pages for async validation or
 | |
| 	 * async_mult/async_sum_product operations on DMA0/1.
 | |
| 	 */
 | |
| 	if (adev->id != PPC440SPE_XOR_ID) {
 | |
| 		chan->pdest_page = alloc_page(GFP_KERNEL);
 | |
| 		chan->qdest_page = alloc_page(GFP_KERNEL);
 | |
| 		if (!chan->pdest_page ||
 | |
| 		    !chan->qdest_page) {
 | |
| 			if (chan->pdest_page)
 | |
| 				__free_page(chan->pdest_page);
 | |
| 			if (chan->qdest_page)
 | |
| 				__free_page(chan->qdest_page);
 | |
| 			ret = -ENOMEM;
 | |
| 			goto err_page_alloc;
 | |
| 		}
 | |
| 		chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0,
 | |
| 					   PAGE_SIZE, DMA_BIDIRECTIONAL);
 | |
| 		chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0,
 | |
| 					   PAGE_SIZE, DMA_BIDIRECTIONAL);
 | |
| 	}
 | |
| 
 | |
| 	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
 | |
| 	if (ref) {
 | |
| 		ref->chan = &chan->common;
 | |
| 		INIT_LIST_HEAD(&ref->node);
 | |
| 		list_add_tail(&ref->node, &ppc440spe_adma_chan_list);
 | |
| 	} else {
 | |
| 		dev_err(&ofdev->dev, "failed to allocate channel reference!\n");
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err_ref_alloc;
 | |
| 	}
 | |
| 
 | |
| 	ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode);
 | |
| 	if (ret)
 | |
| 		goto err_irq;
 | |
| 
 | |
| 	ppc440spe_adma_init_capabilities(adev);
 | |
| 
 | |
| 	ret = dma_async_device_register(&adev->common);
 | |
| 	if (ret) {
 | |
| 		initcode = PPC_ADMA_INIT_REGISTER;
 | |
| 		dev_err(&ofdev->dev, "failed to register dma device\n");
 | |
| 		goto err_dev_reg;
 | |
| 	}
 | |
| 
 | |
| 	goto out;
 | |
| 
 | |
| err_dev_reg:
 | |
| 	ppc440spe_adma_release_irqs(adev, chan);
 | |
| err_irq:
 | |
| 	list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) {
 | |
| 		if (chan == to_ppc440spe_adma_chan(ref->chan)) {
 | |
| 			list_del(&ref->node);
 | |
| 			kfree(ref);
 | |
| 		}
 | |
| 	}
 | |
| err_ref_alloc:
 | |
| 	if (adev->id != PPC440SPE_XOR_ID) {
 | |
| 		dma_unmap_page(&ofdev->dev, chan->pdest,
 | |
| 			       PAGE_SIZE, DMA_BIDIRECTIONAL);
 | |
| 		dma_unmap_page(&ofdev->dev, chan->qdest,
 | |
| 			       PAGE_SIZE, DMA_BIDIRECTIONAL);
 | |
| 		__free_page(chan->pdest_page);
 | |
| 		__free_page(chan->qdest_page);
 | |
| 	}
 | |
| err_page_alloc:
 | |
| 	kfree(chan);
 | |
| err_chan_alloc:
 | |
| 	if (adev->id == PPC440SPE_XOR_ID)
 | |
| 		iounmap(adev->xor_reg);
 | |
| 	else
 | |
| 		iounmap(adev->dma_reg);
 | |
| err_regs_alloc:
 | |
| 	dma_free_coherent(adev->dev, adev->pool_size,
 | |
| 			  adev->dma_desc_pool_virt,
 | |
| 			  adev->dma_desc_pool);
 | |
| err_dma_alloc:
 | |
| 	kfree(adev);
 | |
| err_adev_alloc:
 | |
| 	release_mem_region(res.start, resource_size(&res));
 | |
| out:
 | |
| 	if (id < PPC440SPE_ADMA_ENGINES_NUM)
 | |
| 		ppc440spe_adma_devices[id] = initcode;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ppc440spe_adma_remove - remove the asynch device
 | |
|  */
 | |
| static int ppc440spe_adma_remove(struct platform_device *ofdev)
 | |
| {
 | |
| 	struct ppc440spe_adma_device *adev = platform_get_drvdata(ofdev);
 | |
| 	struct device_node *np = ofdev->dev.of_node;
 | |
| 	struct resource res;
 | |
| 	struct dma_chan *chan, *_chan;
 | |
| 	struct ppc_dma_chan_ref *ref, *_ref;
 | |
| 	struct ppc440spe_adma_chan *ppc440spe_chan;
 | |
| 
 | |
| 	if (adev->id < PPC440SPE_ADMA_ENGINES_NUM)
 | |
| 		ppc440spe_adma_devices[adev->id] = -1;
 | |
| 
 | |
| 	dma_async_device_unregister(&adev->common);
 | |
| 
 | |
| 	list_for_each_entry_safe(chan, _chan, &adev->common.channels,
 | |
| 				 device_node) {
 | |
| 		ppc440spe_chan = to_ppc440spe_adma_chan(chan);
 | |
| 		ppc440spe_adma_release_irqs(adev, ppc440spe_chan);
 | |
| 		tasklet_kill(&ppc440spe_chan->irq_tasklet);
 | |
| 		if (adev->id != PPC440SPE_XOR_ID) {
 | |
| 			dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest,
 | |
| 					PAGE_SIZE, DMA_BIDIRECTIONAL);
 | |
| 			dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest,
 | |
| 					PAGE_SIZE, DMA_BIDIRECTIONAL);
 | |
| 			__free_page(ppc440spe_chan->pdest_page);
 | |
| 			__free_page(ppc440spe_chan->qdest_page);
 | |
| 		}
 | |
| 		list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list,
 | |
| 					 node) {
 | |
| 			if (ppc440spe_chan ==
 | |
| 			    to_ppc440spe_adma_chan(ref->chan)) {
 | |
| 				list_del(&ref->node);
 | |
| 				kfree(ref);
 | |
| 			}
 | |
| 		}
 | |
| 		list_del(&chan->device_node);
 | |
| 		kfree(ppc440spe_chan);
 | |
| 	}
 | |
| 
 | |
| 	dma_free_coherent(adev->dev, adev->pool_size,
 | |
| 			  adev->dma_desc_pool_virt, adev->dma_desc_pool);
 | |
| 	if (adev->id == PPC440SPE_XOR_ID)
 | |
| 		iounmap(adev->xor_reg);
 | |
| 	else
 | |
| 		iounmap(adev->dma_reg);
 | |
| 	of_address_to_resource(np, 0, &res);
 | |
| 	release_mem_region(res.start, resource_size(&res));
 | |
| 	kfree(adev);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * /sys driver interface to enable h/w RAID-6 capabilities
 | |
|  * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/
 | |
|  * directory are "devices", "enable" and "poly".
 | |
|  * "devices" shows available engines.
 | |
|  * "enable" is used to enable RAID-6 capabilities or to check
 | |
|  * whether these has been activated.
 | |
|  * "poly" allows setting/checking used polynomial (for PPC440SPe only).
 | |
|  */
 | |
| 
 | |
| static ssize_t devices_show(struct device_driver *dev, char *buf)
 | |
| {
 | |
| 	ssize_t size = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) {
 | |
| 		if (ppc440spe_adma_devices[i] == -1)
 | |
| 			continue;
 | |
| 		size += scnprintf(buf + size, PAGE_SIZE - size,
 | |
| 				 "PPC440SP(E)-ADMA.%d: %s\n", i,
 | |
| 				 ppc_adma_errors[ppc440spe_adma_devices[i]]);
 | |
| 	}
 | |
| 	return size;
 | |
| }
 | |
| static DRIVER_ATTR_RO(devices);
 | |
| 
 | |
| static ssize_t enable_show(struct device_driver *dev, char *buf)
 | |
| {
 | |
| 	return snprintf(buf, PAGE_SIZE,
 | |
| 			"PPC440SP(e) RAID-6 capabilities are %sABLED.\n",
 | |
| 			ppc440spe_r6_enabled ? "EN" : "DIS");
 | |
| }
 | |
| 
 | |
| static ssize_t enable_store(struct device_driver *dev, const char *buf,
 | |
| 			    size_t count)
 | |
| {
 | |
| 	unsigned long val;
 | |
| 
 | |
| 	if (!count || count > 11)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!ppc440spe_r6_tchan)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	/* Write a key */
 | |
| 	sscanf(buf, "%lx", &val);
 | |
| 	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val);
 | |
| 	isync();
 | |
| 
 | |
| 	/* Verify whether it really works now */
 | |
| 	if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) {
 | |
| 		pr_info("PPC440SP(e) RAID-6 has been activated "
 | |
| 			"successfully\n");
 | |
| 		ppc440spe_r6_enabled = 1;
 | |
| 	} else {
 | |
| 		pr_info("PPC440SP(e) RAID-6 hasn't been activated!"
 | |
| 			" Error key ?\n");
 | |
| 		ppc440spe_r6_enabled = 0;
 | |
| 	}
 | |
| 	return count;
 | |
| }
 | |
| static DRIVER_ATTR_RW(enable);
 | |
| 
 | |
| static ssize_t poly_show(struct device_driver *dev, char *buf)
 | |
| {
 | |
| 	ssize_t size = 0;
 | |
| 	u32 reg;
 | |
| 
 | |
| #ifdef CONFIG_440SP
 | |
| 	/* 440SP has fixed polynomial */
 | |
| 	reg = 0x4d;
 | |
| #else
 | |
| 	reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
 | |
| 	reg >>= MQ0_CFBHL_POLY;
 | |
| 	reg &= 0xFF;
 | |
| #endif
 | |
| 
 | |
| 	size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver "
 | |
| 			"uses 0x1%02x polynomial.\n", reg);
 | |
| 	return size;
 | |
| }
 | |
| 
 | |
| static ssize_t poly_store(struct device_driver *dev, const char *buf,
 | |
| 			  size_t count)
 | |
| {
 | |
| 	unsigned long reg, val;
 | |
| 
 | |
| #ifdef CONFIG_440SP
 | |
| 	/* 440SP uses default 0x14D polynomial only */
 | |
| 	return -EINVAL;
 | |
| #endif
 | |
| 
 | |
| 	if (!count || count > 6)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* e.g., 0x14D or 0x11D */
 | |
| 	sscanf(buf, "%lx", &val);
 | |
| 
 | |
| 	if (val & ~0x1FF)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	val &= 0xFF;
 | |
| 	reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
 | |
| 	reg &= ~(0xFF << MQ0_CFBHL_POLY);
 | |
| 	reg |= val << MQ0_CFBHL_POLY;
 | |
| 	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg);
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| static DRIVER_ATTR_RW(poly);
 | |
| 
 | |
| /*
 | |
|  * Common initialisation for RAID engines; allocate memory for
 | |
|  * DMAx FIFOs, perform configuration common for all DMA engines.
 | |
|  * Further DMA engine specific configuration is done at probe time.
 | |
|  */
 | |
| static int ppc440spe_configure_raid_devices(void)
 | |
| {
 | |
| 	struct device_node *np;
 | |
| 	struct resource i2o_res;
 | |
| 	struct i2o_regs __iomem *i2o_reg;
 | |
| 	dcr_host_t i2o_dcr_host;
 | |
| 	unsigned int dcr_base, dcr_len;
 | |
| 	int i, ret;
 | |
| 
 | |
| 	np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
 | |
| 	if (!np) {
 | |
| 		pr_err("%s: can't find I2O device tree node\n",
 | |
| 			__func__);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	if (of_address_to_resource(np, 0, &i2o_res)) {
 | |
| 		of_node_put(np);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	i2o_reg = of_iomap(np, 0);
 | |
| 	if (!i2o_reg) {
 | |
| 		pr_err("%s: failed to map I2O registers\n", __func__);
 | |
| 		of_node_put(np);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Get I2O DCRs base */
 | |
| 	dcr_base = dcr_resource_start(np, 0);
 | |
| 	dcr_len = dcr_resource_len(np, 0);
 | |
| 	if (!dcr_base && !dcr_len) {
 | |
| 		pr_err("%pOF: can't get DCR registers base/len!\n", np);
 | |
| 		of_node_put(np);
 | |
| 		iounmap(i2o_reg);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	i2o_dcr_host = dcr_map(np, dcr_base, dcr_len);
 | |
| 	if (!DCR_MAP_OK(i2o_dcr_host)) {
 | |
| 		pr_err("%pOF: failed to map DCRs!\n", np);
 | |
| 		of_node_put(np);
 | |
| 		iounmap(i2o_reg);
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 	of_node_put(np);
 | |
| 
 | |
| 	/* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share
 | |
| 	 * the base address of FIFO memory space.
 | |
| 	 * Actually we need twice more physical memory than programmed in the
 | |
| 	 * <fsiz> register (because there are two FIFOs for each DMA: CP and CS)
 | |
| 	 */
 | |
| 	ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1,
 | |
| 					 GFP_KERNEL);
 | |
| 	if (!ppc440spe_dma_fifo_buf) {
 | |
| 		pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__);
 | |
| 		iounmap(i2o_reg);
 | |
| 		dcr_unmap(i2o_dcr_host, dcr_len);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Configure h/w
 | |
| 	 */
 | |
| 	/* Reset I2O/DMA */
 | |
| 	mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA);
 | |
| 	mtdcri(SDR0, DCRN_SDR0_SRST, 0);
 | |
| 
 | |
| 	/* Setup the base address of mmaped registers */
 | |
| 	dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32));
 | |
| 	dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) |
 | |
| 						I2O_REG_ENABLE);
 | |
| 	dcr_unmap(i2o_dcr_host, dcr_len);
 | |
| 
 | |
| 	/* Setup FIFO memory space base address */
 | |
| 	iowrite32(0, &i2o_reg->ifbah);
 | |
| 	iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal);
 | |
| 
 | |
| 	/* set zero FIFO size for I2O, so the whole
 | |
| 	 * ppc440spe_dma_fifo_buf is used by DMAs.
 | |
| 	 * DMAx_FIFOs will be configured while probe.
 | |
| 	 */
 | |
| 	iowrite32(0, &i2o_reg->ifsiz);
 | |
| 	iounmap(i2o_reg);
 | |
| 
 | |
| 	/* To prepare WXOR/RXOR functionality we need access to
 | |
| 	 * Memory Queue Module DCRs (finally it will be enabled
 | |
| 	 * via /sys interface of the ppc440spe ADMA driver).
 | |
| 	 */
 | |
| 	np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe");
 | |
| 	if (!np) {
 | |
| 		pr_err("%s: can't find MQ device tree node\n",
 | |
| 			__func__);
 | |
| 		ret = -ENODEV;
 | |
| 		goto out_free;
 | |
| 	}
 | |
| 
 | |
| 	/* Get MQ DCRs base */
 | |
| 	dcr_base = dcr_resource_start(np, 0);
 | |
| 	dcr_len = dcr_resource_len(np, 0);
 | |
| 	if (!dcr_base && !dcr_len) {
 | |
| 		pr_err("%pOF: can't get DCR registers base/len!\n", np);
 | |
| 		ret = -ENODEV;
 | |
| 		goto out_mq;
 | |
| 	}
 | |
| 
 | |
| 	ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len);
 | |
| 	if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) {
 | |
| 		pr_err("%pOF: failed to map DCRs!\n", np);
 | |
| 		ret = -ENODEV;
 | |
| 		goto out_mq;
 | |
| 	}
 | |
| 	of_node_put(np);
 | |
| 	ppc440spe_mq_dcr_len = dcr_len;
 | |
| 
 | |
| 	/* Set HB alias */
 | |
| 	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB);
 | |
| 
 | |
| 	/* Set:
 | |
| 	 * - LL transaction passing limit to 1;
 | |
| 	 * - Memory controller cycle limit to 1;
 | |
| 	 * - Galois Polynomial to 0x14d (default)
 | |
| 	 */
 | |
| 	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL,
 | |
| 		  (1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) |
 | |
| 		  (PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY));
 | |
| 
 | |
| 	atomic_set(&ppc440spe_adma_err_irq_ref, 0);
 | |
| 	for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++)
 | |
| 		ppc440spe_adma_devices[i] = -1;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_mq:
 | |
| 	of_node_put(np);
 | |
| out_free:
 | |
| 	kfree(ppc440spe_dma_fifo_buf);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static const struct of_device_id ppc440spe_adma_of_match[] = {
 | |
| 	{ .compatible	= "ibm,dma-440spe", },
 | |
| 	{ .compatible	= "amcc,xor-accelerator", },
 | |
| 	{},
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match);
 | |
| 
 | |
| static struct platform_driver ppc440spe_adma_driver = {
 | |
| 	.probe = ppc440spe_adma_probe,
 | |
| 	.remove = ppc440spe_adma_remove,
 | |
| 	.driver = {
 | |
| 		.name = "PPC440SP(E)-ADMA",
 | |
| 		.of_match_table = ppc440spe_adma_of_match,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static __init int ppc440spe_adma_init(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = ppc440spe_configure_raid_devices();
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = platform_driver_register(&ppc440spe_adma_driver);
 | |
| 	if (ret) {
 | |
| 		pr_err("%s: failed to register platform driver\n",
 | |
| 			__func__);
 | |
| 		goto out_reg;
 | |
| 	}
 | |
| 
 | |
| 	/* Initialization status */
 | |
| 	ret = driver_create_file(&ppc440spe_adma_driver.driver,
 | |
| 				 &driver_attr_devices);
 | |
| 	if (ret)
 | |
| 		goto out_dev;
 | |
| 
 | |
| 	/* RAID-6 h/w enable entry */
 | |
| 	ret = driver_create_file(&ppc440spe_adma_driver.driver,
 | |
| 				 &driver_attr_enable);
 | |
| 	if (ret)
 | |
| 		goto out_en;
 | |
| 
 | |
| 	/* GF polynomial to use */
 | |
| 	ret = driver_create_file(&ppc440spe_adma_driver.driver,
 | |
| 				 &driver_attr_poly);
 | |
| 	if (!ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	driver_remove_file(&ppc440spe_adma_driver.driver,
 | |
| 			   &driver_attr_enable);
 | |
| out_en:
 | |
| 	driver_remove_file(&ppc440spe_adma_driver.driver,
 | |
| 			   &driver_attr_devices);
 | |
| out_dev:
 | |
| 	/* User will not be able to enable h/w RAID-6 */
 | |
| 	pr_err("%s: failed to create RAID-6 driver interface\n",
 | |
| 		__func__);
 | |
| 	platform_driver_unregister(&ppc440spe_adma_driver);
 | |
| out_reg:
 | |
| 	dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
 | |
| 	kfree(ppc440spe_dma_fifo_buf);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void __exit ppc440spe_adma_exit(void)
 | |
| {
 | |
| 	driver_remove_file(&ppc440spe_adma_driver.driver,
 | |
| 			   &driver_attr_poly);
 | |
| 	driver_remove_file(&ppc440spe_adma_driver.driver,
 | |
| 			   &driver_attr_enable);
 | |
| 	driver_remove_file(&ppc440spe_adma_driver.driver,
 | |
| 			   &driver_attr_devices);
 | |
| 	platform_driver_unregister(&ppc440spe_adma_driver);
 | |
| 	dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
 | |
| 	kfree(ppc440spe_dma_fifo_buf);
 | |
| }
 | |
| 
 | |
| arch_initcall(ppc440spe_adma_init);
 | |
| module_exit(ppc440spe_adma_exit);
 | |
| 
 | |
| MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>");
 | |
| MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver");
 | |
| MODULE_LICENSE("GPL");
 |