1017 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1017 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (c) 2018-2019 Synopsys, Inc. and/or its affiliates.
 | |
|  * Synopsys DesignWare eDMA core driver
 | |
|  *
 | |
|  * Author: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/dmaengine.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/irq.h>
 | |
| #include <linux/dma/edma.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| 
 | |
| #include "dw-edma-core.h"
 | |
| #include "dw-edma-v0-core.h"
 | |
| #include "dw-hdma-v0-core.h"
 | |
| #include "../dmaengine.h"
 | |
| #include "../virt-dma.h"
 | |
| 
 | |
| static inline
 | |
| struct device *dchan2dev(struct dma_chan *dchan)
 | |
| {
 | |
| 	return &dchan->dev->device;
 | |
| }
 | |
| 
 | |
| static inline
 | |
| struct device *chan2dev(struct dw_edma_chan *chan)
 | |
| {
 | |
| 	return &chan->vc.chan.dev->device;
 | |
| }
 | |
| 
 | |
| static inline
 | |
| struct dw_edma_desc *vd2dw_edma_desc(struct virt_dma_desc *vd)
 | |
| {
 | |
| 	return container_of(vd, struct dw_edma_desc, vd);
 | |
| }
 | |
| 
 | |
| static inline
 | |
| u64 dw_edma_get_pci_address(struct dw_edma_chan *chan, phys_addr_t cpu_addr)
 | |
| {
 | |
| 	struct dw_edma_chip *chip = chan->dw->chip;
 | |
| 
 | |
| 	if (chip->ops->pci_address)
 | |
| 		return chip->ops->pci_address(chip->dev, cpu_addr);
 | |
| 
 | |
| 	return cpu_addr;
 | |
| }
 | |
| 
 | |
| static struct dw_edma_burst *dw_edma_alloc_burst(struct dw_edma_chunk *chunk)
 | |
| {
 | |
| 	struct dw_edma_burst *burst;
 | |
| 
 | |
| 	burst = kzalloc(sizeof(*burst), GFP_NOWAIT);
 | |
| 	if (unlikely(!burst))
 | |
| 		return NULL;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&burst->list);
 | |
| 	if (chunk->burst) {
 | |
| 		/* Create and add new element into the linked list */
 | |
| 		chunk->bursts_alloc++;
 | |
| 		list_add_tail(&burst->list, &chunk->burst->list);
 | |
| 	} else {
 | |
| 		/* List head */
 | |
| 		chunk->bursts_alloc = 0;
 | |
| 		chunk->burst = burst;
 | |
| 	}
 | |
| 
 | |
| 	return burst;
 | |
| }
 | |
| 
 | |
| static struct dw_edma_chunk *dw_edma_alloc_chunk(struct dw_edma_desc *desc)
 | |
| {
 | |
| 	struct dw_edma_chip *chip = desc->chan->dw->chip;
 | |
| 	struct dw_edma_chan *chan = desc->chan;
 | |
| 	struct dw_edma_chunk *chunk;
 | |
| 
 | |
| 	chunk = kzalloc(sizeof(*chunk), GFP_NOWAIT);
 | |
| 	if (unlikely(!chunk))
 | |
| 		return NULL;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&chunk->list);
 | |
| 	chunk->chan = chan;
 | |
| 	/* Toggling change bit (CB) in each chunk, this is a mechanism to
 | |
| 	 * inform the eDMA HW block that this is a new linked list ready
 | |
| 	 * to be consumed.
 | |
| 	 *  - Odd chunks originate CB equal to 0
 | |
| 	 *  - Even chunks originate CB equal to 1
 | |
| 	 */
 | |
| 	chunk->cb = !(desc->chunks_alloc % 2);
 | |
| 	if (chan->dir == EDMA_DIR_WRITE) {
 | |
| 		chunk->ll_region.paddr = chip->ll_region_wr[chan->id].paddr;
 | |
| 		chunk->ll_region.vaddr = chip->ll_region_wr[chan->id].vaddr;
 | |
| 	} else {
 | |
| 		chunk->ll_region.paddr = chip->ll_region_rd[chan->id].paddr;
 | |
| 		chunk->ll_region.vaddr = chip->ll_region_rd[chan->id].vaddr;
 | |
| 	}
 | |
| 
 | |
| 	if (desc->chunk) {
 | |
| 		/* Create and add new element into the linked list */
 | |
| 		if (!dw_edma_alloc_burst(chunk)) {
 | |
| 			kfree(chunk);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		desc->chunks_alloc++;
 | |
| 		list_add_tail(&chunk->list, &desc->chunk->list);
 | |
| 	} else {
 | |
| 		/* List head */
 | |
| 		chunk->burst = NULL;
 | |
| 		desc->chunks_alloc = 0;
 | |
| 		desc->chunk = chunk;
 | |
| 	}
 | |
| 
 | |
| 	return chunk;
 | |
| }
 | |
| 
 | |
| static struct dw_edma_desc *dw_edma_alloc_desc(struct dw_edma_chan *chan)
 | |
| {
 | |
| 	struct dw_edma_desc *desc;
 | |
| 
 | |
| 	desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
 | |
| 	if (unlikely(!desc))
 | |
| 		return NULL;
 | |
| 
 | |
| 	desc->chan = chan;
 | |
| 	if (!dw_edma_alloc_chunk(desc)) {
 | |
| 		kfree(desc);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return desc;
 | |
| }
 | |
| 
 | |
| static void dw_edma_free_burst(struct dw_edma_chunk *chunk)
 | |
| {
 | |
| 	struct dw_edma_burst *child, *_next;
 | |
| 
 | |
| 	/* Remove all the list elements */
 | |
| 	list_for_each_entry_safe(child, _next, &chunk->burst->list, list) {
 | |
| 		list_del(&child->list);
 | |
| 		kfree(child);
 | |
| 		chunk->bursts_alloc--;
 | |
| 	}
 | |
| 
 | |
| 	/* Remove the list head */
 | |
| 	kfree(child);
 | |
| 	chunk->burst = NULL;
 | |
| }
 | |
| 
 | |
| static void dw_edma_free_chunk(struct dw_edma_desc *desc)
 | |
| {
 | |
| 	struct dw_edma_chunk *child, *_next;
 | |
| 
 | |
| 	if (!desc->chunk)
 | |
| 		return;
 | |
| 
 | |
| 	/* Remove all the list elements */
 | |
| 	list_for_each_entry_safe(child, _next, &desc->chunk->list, list) {
 | |
| 		dw_edma_free_burst(child);
 | |
| 		list_del(&child->list);
 | |
| 		kfree(child);
 | |
| 		desc->chunks_alloc--;
 | |
| 	}
 | |
| 
 | |
| 	/* Remove the list head */
 | |
| 	kfree(child);
 | |
| 	desc->chunk = NULL;
 | |
| }
 | |
| 
 | |
| static void dw_edma_free_desc(struct dw_edma_desc *desc)
 | |
| {
 | |
| 	dw_edma_free_chunk(desc);
 | |
| 	kfree(desc);
 | |
| }
 | |
| 
 | |
| static void vchan_free_desc(struct virt_dma_desc *vdesc)
 | |
| {
 | |
| 	dw_edma_free_desc(vd2dw_edma_desc(vdesc));
 | |
| }
 | |
| 
 | |
| static int dw_edma_start_transfer(struct dw_edma_chan *chan)
 | |
| {
 | |
| 	struct dw_edma *dw = chan->dw;
 | |
| 	struct dw_edma_chunk *child;
 | |
| 	struct dw_edma_desc *desc;
 | |
| 	struct virt_dma_desc *vd;
 | |
| 
 | |
| 	vd = vchan_next_desc(&chan->vc);
 | |
| 	if (!vd)
 | |
| 		return 0;
 | |
| 
 | |
| 	desc = vd2dw_edma_desc(vd);
 | |
| 	if (!desc)
 | |
| 		return 0;
 | |
| 
 | |
| 	child = list_first_entry_or_null(&desc->chunk->list,
 | |
| 					 struct dw_edma_chunk, list);
 | |
| 	if (!child)
 | |
| 		return 0;
 | |
| 
 | |
| 	dw_edma_core_start(dw, child, !desc->xfer_sz);
 | |
| 	desc->xfer_sz += child->ll_region.sz;
 | |
| 	dw_edma_free_burst(child);
 | |
| 	list_del(&child->list);
 | |
| 	kfree(child);
 | |
| 	desc->chunks_alloc--;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void dw_edma_device_caps(struct dma_chan *dchan,
 | |
| 				struct dma_slave_caps *caps)
 | |
| {
 | |
| 	struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
 | |
| 
 | |
| 	if (chan->dw->chip->flags & DW_EDMA_CHIP_LOCAL) {
 | |
| 		if (chan->dir == EDMA_DIR_READ)
 | |
| 			caps->directions = BIT(DMA_DEV_TO_MEM);
 | |
| 		else
 | |
| 			caps->directions = BIT(DMA_MEM_TO_DEV);
 | |
| 	} else {
 | |
| 		if (chan->dir == EDMA_DIR_WRITE)
 | |
| 			caps->directions = BIT(DMA_DEV_TO_MEM);
 | |
| 		else
 | |
| 			caps->directions = BIT(DMA_MEM_TO_DEV);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int dw_edma_device_config(struct dma_chan *dchan,
 | |
| 				 struct dma_slave_config *config)
 | |
| {
 | |
| 	struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
 | |
| 
 | |
| 	memcpy(&chan->config, config, sizeof(*config));
 | |
| 	chan->configured = true;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dw_edma_device_pause(struct dma_chan *dchan)
 | |
| {
 | |
| 	struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (!chan->configured)
 | |
| 		err = -EPERM;
 | |
| 	else if (chan->status != EDMA_ST_BUSY)
 | |
| 		err = -EPERM;
 | |
| 	else if (chan->request != EDMA_REQ_NONE)
 | |
| 		err = -EPERM;
 | |
| 	else
 | |
| 		chan->request = EDMA_REQ_PAUSE;
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int dw_edma_device_resume(struct dma_chan *dchan)
 | |
| {
 | |
| 	struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (!chan->configured) {
 | |
| 		err = -EPERM;
 | |
| 	} else if (chan->status != EDMA_ST_PAUSE) {
 | |
| 		err = -EPERM;
 | |
| 	} else if (chan->request != EDMA_REQ_NONE) {
 | |
| 		err = -EPERM;
 | |
| 	} else {
 | |
| 		chan->status = EDMA_ST_BUSY;
 | |
| 		dw_edma_start_transfer(chan);
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int dw_edma_device_terminate_all(struct dma_chan *dchan)
 | |
| {
 | |
| 	struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (!chan->configured) {
 | |
| 		/* Do nothing */
 | |
| 	} else if (chan->status == EDMA_ST_PAUSE) {
 | |
| 		chan->status = EDMA_ST_IDLE;
 | |
| 		chan->configured = false;
 | |
| 	} else if (chan->status == EDMA_ST_IDLE) {
 | |
| 		chan->configured = false;
 | |
| 	} else if (dw_edma_core_ch_status(chan) == DMA_COMPLETE) {
 | |
| 		/*
 | |
| 		 * The channel is in a false BUSY state, probably didn't
 | |
| 		 * receive or lost an interrupt
 | |
| 		 */
 | |
| 		chan->status = EDMA_ST_IDLE;
 | |
| 		chan->configured = false;
 | |
| 	} else if (chan->request > EDMA_REQ_PAUSE) {
 | |
| 		err = -EPERM;
 | |
| 	} else {
 | |
| 		chan->request = EDMA_REQ_STOP;
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void dw_edma_device_issue_pending(struct dma_chan *dchan)
 | |
| {
 | |
| 	struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!chan->configured)
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock_irqsave(&chan->vc.lock, flags);
 | |
| 	if (vchan_issue_pending(&chan->vc) && chan->request == EDMA_REQ_NONE &&
 | |
| 	    chan->status == EDMA_ST_IDLE) {
 | |
| 		chan->status = EDMA_ST_BUSY;
 | |
| 		dw_edma_start_transfer(chan);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&chan->vc.lock, flags);
 | |
| }
 | |
| 
 | |
| static enum dma_status
 | |
| dw_edma_device_tx_status(struct dma_chan *dchan, dma_cookie_t cookie,
 | |
| 			 struct dma_tx_state *txstate)
 | |
| {
 | |
| 	struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
 | |
| 	struct dw_edma_desc *desc;
 | |
| 	struct virt_dma_desc *vd;
 | |
| 	unsigned long flags;
 | |
| 	enum dma_status ret;
 | |
| 	u32 residue = 0;
 | |
| 
 | |
| 	ret = dma_cookie_status(dchan, cookie, txstate);
 | |
| 	if (ret == DMA_COMPLETE)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (ret == DMA_IN_PROGRESS && chan->status == EDMA_ST_PAUSE)
 | |
| 		ret = DMA_PAUSED;
 | |
| 
 | |
| 	if (!txstate)
 | |
| 		goto ret_residue;
 | |
| 
 | |
| 	spin_lock_irqsave(&chan->vc.lock, flags);
 | |
| 	vd = vchan_find_desc(&chan->vc, cookie);
 | |
| 	if (vd) {
 | |
| 		desc = vd2dw_edma_desc(vd);
 | |
| 		if (desc)
 | |
| 			residue = desc->alloc_sz - desc->xfer_sz;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&chan->vc.lock, flags);
 | |
| 
 | |
| ret_residue:
 | |
| 	dma_set_residue(txstate, residue);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct dma_async_tx_descriptor *
 | |
| dw_edma_device_transfer(struct dw_edma_transfer *xfer)
 | |
| {
 | |
| 	struct dw_edma_chan *chan = dchan2dw_edma_chan(xfer->dchan);
 | |
| 	enum dma_transfer_direction dir = xfer->direction;
 | |
| 	struct scatterlist *sg = NULL;
 | |
| 	struct dw_edma_chunk *chunk;
 | |
| 	struct dw_edma_burst *burst;
 | |
| 	struct dw_edma_desc *desc;
 | |
| 	u64 src_addr, dst_addr;
 | |
| 	size_t fsz = 0;
 | |
| 	u32 cnt = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!chan->configured)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Local Root Port/End-point              Remote End-point
 | |
| 	 * +-----------------------+ PCIe bus +----------------------+
 | |
| 	 * |                       |    +-+   |                      |
 | |
| 	 * |    DEV_TO_MEM   Rx Ch <----+ +---+ Tx Ch  DEV_TO_MEM    |
 | |
| 	 * |                       |    | |   |                      |
 | |
| 	 * |    MEM_TO_DEV   Tx Ch +----+ +---> Rx Ch  MEM_TO_DEV    |
 | |
| 	 * |                       |    +-+   |                      |
 | |
| 	 * +-----------------------+          +----------------------+
 | |
| 	 *
 | |
| 	 * 1. Normal logic:
 | |
| 	 * If eDMA is embedded into the DW PCIe RP/EP and controlled from the
 | |
| 	 * CPU/Application side, the Rx channel (EDMA_DIR_READ) will be used
 | |
| 	 * for the device read operations (DEV_TO_MEM) and the Tx channel
 | |
| 	 * (EDMA_DIR_WRITE) - for the write operations (MEM_TO_DEV).
 | |
| 	 *
 | |
| 	 * 2. Inverted logic:
 | |
| 	 * If eDMA is embedded into a Remote PCIe EP and is controlled by the
 | |
| 	 * MWr/MRd TLPs sent from the CPU's PCIe host controller, the Tx
 | |
| 	 * channel (EDMA_DIR_WRITE) will be used for the device read operations
 | |
| 	 * (DEV_TO_MEM) and the Rx channel (EDMA_DIR_READ) - for the write
 | |
| 	 * operations (MEM_TO_DEV).
 | |
| 	 *
 | |
| 	 * It is the client driver responsibility to choose a proper channel
 | |
| 	 * for the DMA transfers.
 | |
| 	 */
 | |
| 	if (chan->dw->chip->flags & DW_EDMA_CHIP_LOCAL) {
 | |
| 		if ((chan->dir == EDMA_DIR_READ && dir != DMA_DEV_TO_MEM) ||
 | |
| 		    (chan->dir == EDMA_DIR_WRITE && dir != DMA_MEM_TO_DEV))
 | |
| 			return NULL;
 | |
| 	} else {
 | |
| 		if ((chan->dir == EDMA_DIR_WRITE && dir != DMA_DEV_TO_MEM) ||
 | |
| 		    (chan->dir == EDMA_DIR_READ && dir != DMA_MEM_TO_DEV))
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (xfer->type == EDMA_XFER_CYCLIC) {
 | |
| 		if (!xfer->xfer.cyclic.len || !xfer->xfer.cyclic.cnt)
 | |
| 			return NULL;
 | |
| 	} else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
 | |
| 		if (xfer->xfer.sg.len < 1)
 | |
| 			return NULL;
 | |
| 	} else if (xfer->type == EDMA_XFER_INTERLEAVED) {
 | |
| 		if (!xfer->xfer.il->numf || xfer->xfer.il->frame_size < 1)
 | |
| 			return NULL;
 | |
| 		if (!xfer->xfer.il->src_inc || !xfer->xfer.il->dst_inc)
 | |
| 			return NULL;
 | |
| 	} else {
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	desc = dw_edma_alloc_desc(chan);
 | |
| 	if (unlikely(!desc))
 | |
| 		goto err_alloc;
 | |
| 
 | |
| 	chunk = dw_edma_alloc_chunk(desc);
 | |
| 	if (unlikely(!chunk))
 | |
| 		goto err_alloc;
 | |
| 
 | |
| 	if (xfer->type == EDMA_XFER_INTERLEAVED) {
 | |
| 		src_addr = xfer->xfer.il->src_start;
 | |
| 		dst_addr = xfer->xfer.il->dst_start;
 | |
| 	} else {
 | |
| 		src_addr = chan->config.src_addr;
 | |
| 		dst_addr = chan->config.dst_addr;
 | |
| 	}
 | |
| 
 | |
| 	if (dir == DMA_DEV_TO_MEM)
 | |
| 		src_addr = dw_edma_get_pci_address(chan, (phys_addr_t)src_addr);
 | |
| 	else
 | |
| 		dst_addr = dw_edma_get_pci_address(chan, (phys_addr_t)dst_addr);
 | |
| 
 | |
| 	if (xfer->type == EDMA_XFER_CYCLIC) {
 | |
| 		cnt = xfer->xfer.cyclic.cnt;
 | |
| 	} else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
 | |
| 		cnt = xfer->xfer.sg.len;
 | |
| 		sg = xfer->xfer.sg.sgl;
 | |
| 	} else if (xfer->type == EDMA_XFER_INTERLEAVED) {
 | |
| 		cnt = xfer->xfer.il->numf * xfer->xfer.il->frame_size;
 | |
| 		fsz = xfer->xfer.il->frame_size;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < cnt; i++) {
 | |
| 		if (xfer->type == EDMA_XFER_SCATTER_GATHER && !sg)
 | |
| 			break;
 | |
| 
 | |
| 		if (chunk->bursts_alloc == chan->ll_max) {
 | |
| 			chunk = dw_edma_alloc_chunk(desc);
 | |
| 			if (unlikely(!chunk))
 | |
| 				goto err_alloc;
 | |
| 		}
 | |
| 
 | |
| 		burst = dw_edma_alloc_burst(chunk);
 | |
| 		if (unlikely(!burst))
 | |
| 			goto err_alloc;
 | |
| 
 | |
| 		if (xfer->type == EDMA_XFER_CYCLIC)
 | |
| 			burst->sz = xfer->xfer.cyclic.len;
 | |
| 		else if (xfer->type == EDMA_XFER_SCATTER_GATHER)
 | |
| 			burst->sz = sg_dma_len(sg);
 | |
| 		else if (xfer->type == EDMA_XFER_INTERLEAVED)
 | |
| 			burst->sz = xfer->xfer.il->sgl[i % fsz].size;
 | |
| 
 | |
| 		chunk->ll_region.sz += burst->sz;
 | |
| 		desc->alloc_sz += burst->sz;
 | |
| 
 | |
| 		if (dir == DMA_DEV_TO_MEM) {
 | |
| 			burst->sar = src_addr;
 | |
| 			if (xfer->type == EDMA_XFER_CYCLIC) {
 | |
| 				burst->dar = xfer->xfer.cyclic.paddr;
 | |
| 			} else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
 | |
| 				src_addr += sg_dma_len(sg);
 | |
| 				burst->dar = sg_dma_address(sg);
 | |
| 				/* Unlike the typical assumption by other
 | |
| 				 * drivers/IPs the peripheral memory isn't
 | |
| 				 * a FIFO memory, in this case, it's a
 | |
| 				 * linear memory and that why the source
 | |
| 				 * and destination addresses are increased
 | |
| 				 * by the same portion (data length)
 | |
| 				 */
 | |
| 			} else if (xfer->type == EDMA_XFER_INTERLEAVED) {
 | |
| 				burst->dar = dst_addr;
 | |
| 			}
 | |
| 		} else {
 | |
| 			burst->dar = dst_addr;
 | |
| 			if (xfer->type == EDMA_XFER_CYCLIC) {
 | |
| 				burst->sar = xfer->xfer.cyclic.paddr;
 | |
| 			} else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
 | |
| 				dst_addr += sg_dma_len(sg);
 | |
| 				burst->sar = sg_dma_address(sg);
 | |
| 				/* Unlike the typical assumption by other
 | |
| 				 * drivers/IPs the peripheral memory isn't
 | |
| 				 * a FIFO memory, in this case, it's a
 | |
| 				 * linear memory and that why the source
 | |
| 				 * and destination addresses are increased
 | |
| 				 * by the same portion (data length)
 | |
| 				 */
 | |
| 			}  else if (xfer->type == EDMA_XFER_INTERLEAVED) {
 | |
| 				burst->sar = src_addr;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
 | |
| 			sg = sg_next(sg);
 | |
| 		} else if (xfer->type == EDMA_XFER_INTERLEAVED) {
 | |
| 			struct dma_interleaved_template *il = xfer->xfer.il;
 | |
| 			struct data_chunk *dc = &il->sgl[i % fsz];
 | |
| 
 | |
| 			src_addr += burst->sz;
 | |
| 			if (il->src_sgl)
 | |
| 				src_addr += dmaengine_get_src_icg(il, dc);
 | |
| 
 | |
| 			dst_addr += burst->sz;
 | |
| 			if (il->dst_sgl)
 | |
| 				dst_addr += dmaengine_get_dst_icg(il, dc);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return vchan_tx_prep(&chan->vc, &desc->vd, xfer->flags);
 | |
| 
 | |
| err_alloc:
 | |
| 	if (desc)
 | |
| 		dw_edma_free_desc(desc);
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static struct dma_async_tx_descriptor *
 | |
| dw_edma_device_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
 | |
| 			     unsigned int len,
 | |
| 			     enum dma_transfer_direction direction,
 | |
| 			     unsigned long flags, void *context)
 | |
| {
 | |
| 	struct dw_edma_transfer xfer;
 | |
| 
 | |
| 	xfer.dchan = dchan;
 | |
| 	xfer.direction = direction;
 | |
| 	xfer.xfer.sg.sgl = sgl;
 | |
| 	xfer.xfer.sg.len = len;
 | |
| 	xfer.flags = flags;
 | |
| 	xfer.type = EDMA_XFER_SCATTER_GATHER;
 | |
| 
 | |
| 	return dw_edma_device_transfer(&xfer);
 | |
| }
 | |
| 
 | |
| static struct dma_async_tx_descriptor *
 | |
| dw_edma_device_prep_dma_cyclic(struct dma_chan *dchan, dma_addr_t paddr,
 | |
| 			       size_t len, size_t count,
 | |
| 			       enum dma_transfer_direction direction,
 | |
| 			       unsigned long flags)
 | |
| {
 | |
| 	struct dw_edma_transfer xfer;
 | |
| 
 | |
| 	xfer.dchan = dchan;
 | |
| 	xfer.direction = direction;
 | |
| 	xfer.xfer.cyclic.paddr = paddr;
 | |
| 	xfer.xfer.cyclic.len = len;
 | |
| 	xfer.xfer.cyclic.cnt = count;
 | |
| 	xfer.flags = flags;
 | |
| 	xfer.type = EDMA_XFER_CYCLIC;
 | |
| 
 | |
| 	return dw_edma_device_transfer(&xfer);
 | |
| }
 | |
| 
 | |
| static struct dma_async_tx_descriptor *
 | |
| dw_edma_device_prep_interleaved_dma(struct dma_chan *dchan,
 | |
| 				    struct dma_interleaved_template *ilt,
 | |
| 				    unsigned long flags)
 | |
| {
 | |
| 	struct dw_edma_transfer xfer;
 | |
| 
 | |
| 	xfer.dchan = dchan;
 | |
| 	xfer.direction = ilt->dir;
 | |
| 	xfer.xfer.il = ilt;
 | |
| 	xfer.flags = flags;
 | |
| 	xfer.type = EDMA_XFER_INTERLEAVED;
 | |
| 
 | |
| 	return dw_edma_device_transfer(&xfer);
 | |
| }
 | |
| 
 | |
| static void dw_edma_done_interrupt(struct dw_edma_chan *chan)
 | |
| {
 | |
| 	struct dw_edma_desc *desc;
 | |
| 	struct virt_dma_desc *vd;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&chan->vc.lock, flags);
 | |
| 	vd = vchan_next_desc(&chan->vc);
 | |
| 	if (vd) {
 | |
| 		switch (chan->request) {
 | |
| 		case EDMA_REQ_NONE:
 | |
| 			desc = vd2dw_edma_desc(vd);
 | |
| 			if (!desc->chunks_alloc) {
 | |
| 				list_del(&vd->node);
 | |
| 				vchan_cookie_complete(vd);
 | |
| 			}
 | |
| 
 | |
| 			/* Continue transferring if there are remaining chunks or issued requests.
 | |
| 			 */
 | |
| 			chan->status = dw_edma_start_transfer(chan) ? EDMA_ST_BUSY : EDMA_ST_IDLE;
 | |
| 			break;
 | |
| 
 | |
| 		case EDMA_REQ_STOP:
 | |
| 			list_del(&vd->node);
 | |
| 			vchan_cookie_complete(vd);
 | |
| 			chan->request = EDMA_REQ_NONE;
 | |
| 			chan->status = EDMA_ST_IDLE;
 | |
| 			break;
 | |
| 
 | |
| 		case EDMA_REQ_PAUSE:
 | |
| 			chan->request = EDMA_REQ_NONE;
 | |
| 			chan->status = EDMA_ST_PAUSE;
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&chan->vc.lock, flags);
 | |
| }
 | |
| 
 | |
| static void dw_edma_abort_interrupt(struct dw_edma_chan *chan)
 | |
| {
 | |
| 	struct virt_dma_desc *vd;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&chan->vc.lock, flags);
 | |
| 	vd = vchan_next_desc(&chan->vc);
 | |
| 	if (vd) {
 | |
| 		list_del(&vd->node);
 | |
| 		vchan_cookie_complete(vd);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&chan->vc.lock, flags);
 | |
| 	chan->request = EDMA_REQ_NONE;
 | |
| 	chan->status = EDMA_ST_IDLE;
 | |
| }
 | |
| 
 | |
| static inline irqreturn_t dw_edma_interrupt_write(int irq, void *data)
 | |
| {
 | |
| 	struct dw_edma_irq *dw_irq = data;
 | |
| 
 | |
| 	return dw_edma_core_handle_int(dw_irq, EDMA_DIR_WRITE,
 | |
| 				       dw_edma_done_interrupt,
 | |
| 				       dw_edma_abort_interrupt);
 | |
| }
 | |
| 
 | |
| static inline irqreturn_t dw_edma_interrupt_read(int irq, void *data)
 | |
| {
 | |
| 	struct dw_edma_irq *dw_irq = data;
 | |
| 
 | |
| 	return dw_edma_core_handle_int(dw_irq, EDMA_DIR_READ,
 | |
| 				       dw_edma_done_interrupt,
 | |
| 				       dw_edma_abort_interrupt);
 | |
| }
 | |
| 
 | |
| static irqreturn_t dw_edma_interrupt_common(int irq, void *data)
 | |
| {
 | |
| 	irqreturn_t ret = IRQ_NONE;
 | |
| 
 | |
| 	ret |= dw_edma_interrupt_write(irq, data);
 | |
| 	ret |= dw_edma_interrupt_read(irq, data);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int dw_edma_alloc_chan_resources(struct dma_chan *dchan)
 | |
| {
 | |
| 	struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
 | |
| 
 | |
| 	if (chan->status != EDMA_ST_IDLE)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void dw_edma_free_chan_resources(struct dma_chan *dchan)
 | |
| {
 | |
| 	unsigned long timeout = jiffies + msecs_to_jiffies(5000);
 | |
| 	int ret;
 | |
| 
 | |
| 	while (time_before(jiffies, timeout)) {
 | |
| 		ret = dw_edma_device_terminate_all(dchan);
 | |
| 		if (!ret)
 | |
| 			break;
 | |
| 
 | |
| 		if (time_after_eq(jiffies, timeout))
 | |
| 			return;
 | |
| 
 | |
| 		cpu_relax();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int dw_edma_channel_setup(struct dw_edma *dw, u32 wr_alloc, u32 rd_alloc)
 | |
| {
 | |
| 	struct dw_edma_chip *chip = dw->chip;
 | |
| 	struct device *dev = chip->dev;
 | |
| 	struct dw_edma_chan *chan;
 | |
| 	struct dw_edma_irq *irq;
 | |
| 	struct dma_device *dma;
 | |
| 	u32 i, ch_cnt;
 | |
| 	u32 pos;
 | |
| 
 | |
| 	ch_cnt = dw->wr_ch_cnt + dw->rd_ch_cnt;
 | |
| 	dma = &dw->dma;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&dma->channels);
 | |
| 
 | |
| 	for (i = 0; i < ch_cnt; i++) {
 | |
| 		chan = &dw->chan[i];
 | |
| 
 | |
| 		chan->dw = dw;
 | |
| 
 | |
| 		if (i < dw->wr_ch_cnt) {
 | |
| 			chan->id = i;
 | |
| 			chan->dir = EDMA_DIR_WRITE;
 | |
| 		} else {
 | |
| 			chan->id = i - dw->wr_ch_cnt;
 | |
| 			chan->dir = EDMA_DIR_READ;
 | |
| 		}
 | |
| 
 | |
| 		chan->configured = false;
 | |
| 		chan->request = EDMA_REQ_NONE;
 | |
| 		chan->status = EDMA_ST_IDLE;
 | |
| 
 | |
| 		if (chan->dir == EDMA_DIR_WRITE)
 | |
| 			chan->ll_max = (chip->ll_region_wr[chan->id].sz / EDMA_LL_SZ);
 | |
| 		else
 | |
| 			chan->ll_max = (chip->ll_region_rd[chan->id].sz / EDMA_LL_SZ);
 | |
| 		chan->ll_max -= 1;
 | |
| 
 | |
| 		dev_vdbg(dev, "L. List:\tChannel %s[%u] max_cnt=%u\n",
 | |
| 			 chan->dir == EDMA_DIR_WRITE ? "write" : "read",
 | |
| 			 chan->id, chan->ll_max);
 | |
| 
 | |
| 		if (dw->nr_irqs == 1)
 | |
| 			pos = 0;
 | |
| 		else if (chan->dir == EDMA_DIR_WRITE)
 | |
| 			pos = chan->id % wr_alloc;
 | |
| 		else
 | |
| 			pos = wr_alloc + chan->id % rd_alloc;
 | |
| 
 | |
| 		irq = &dw->irq[pos];
 | |
| 
 | |
| 		if (chan->dir == EDMA_DIR_WRITE)
 | |
| 			irq->wr_mask |= BIT(chan->id);
 | |
| 		else
 | |
| 			irq->rd_mask |= BIT(chan->id);
 | |
| 
 | |
| 		irq->dw = dw;
 | |
| 		memcpy(&chan->msi, &irq->msi, sizeof(chan->msi));
 | |
| 
 | |
| 		dev_vdbg(dev, "MSI:\t\tChannel %s[%u] addr=0x%.8x%.8x, data=0x%.8x\n",
 | |
| 			 chan->dir == EDMA_DIR_WRITE  ? "write" : "read", chan->id,
 | |
| 			 chan->msi.address_hi, chan->msi.address_lo,
 | |
| 			 chan->msi.data);
 | |
| 
 | |
| 		chan->vc.desc_free = vchan_free_desc;
 | |
| 		chan->vc.chan.private = chan->dir == EDMA_DIR_WRITE ?
 | |
| 					&dw->chip->dt_region_wr[chan->id] :
 | |
| 					&dw->chip->dt_region_rd[chan->id];
 | |
| 
 | |
| 		vchan_init(&chan->vc, dma);
 | |
| 
 | |
| 		dw_edma_core_ch_config(chan);
 | |
| 	}
 | |
| 
 | |
| 	/* Set DMA channel capabilities */
 | |
| 	dma_cap_zero(dma->cap_mask);
 | |
| 	dma_cap_set(DMA_SLAVE, dma->cap_mask);
 | |
| 	dma_cap_set(DMA_CYCLIC, dma->cap_mask);
 | |
| 	dma_cap_set(DMA_PRIVATE, dma->cap_mask);
 | |
| 	dma_cap_set(DMA_INTERLEAVE, dma->cap_mask);
 | |
| 	dma->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
 | |
| 	dma->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
 | |
| 	dma->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
 | |
| 	dma->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
 | |
| 
 | |
| 	/* Set DMA channel callbacks */
 | |
| 	dma->dev = chip->dev;
 | |
| 	dma->device_alloc_chan_resources = dw_edma_alloc_chan_resources;
 | |
| 	dma->device_free_chan_resources = dw_edma_free_chan_resources;
 | |
| 	dma->device_caps = dw_edma_device_caps;
 | |
| 	dma->device_config = dw_edma_device_config;
 | |
| 	dma->device_pause = dw_edma_device_pause;
 | |
| 	dma->device_resume = dw_edma_device_resume;
 | |
| 	dma->device_terminate_all = dw_edma_device_terminate_all;
 | |
| 	dma->device_issue_pending = dw_edma_device_issue_pending;
 | |
| 	dma->device_tx_status = dw_edma_device_tx_status;
 | |
| 	dma->device_prep_slave_sg = dw_edma_device_prep_slave_sg;
 | |
| 	dma->device_prep_dma_cyclic = dw_edma_device_prep_dma_cyclic;
 | |
| 	dma->device_prep_interleaved_dma = dw_edma_device_prep_interleaved_dma;
 | |
| 
 | |
| 	dma_set_max_seg_size(dma->dev, U32_MAX);
 | |
| 
 | |
| 	/* Register DMA device */
 | |
| 	return dma_async_device_register(dma);
 | |
| }
 | |
| 
 | |
| static inline void dw_edma_dec_irq_alloc(int *nr_irqs, u32 *alloc, u16 cnt)
 | |
| {
 | |
| 	if (*nr_irqs && *alloc < cnt) {
 | |
| 		(*alloc)++;
 | |
| 		(*nr_irqs)--;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void dw_edma_add_irq_mask(u32 *mask, u32 alloc, u16 cnt)
 | |
| {
 | |
| 	while (*mask * alloc < cnt)
 | |
| 		(*mask)++;
 | |
| }
 | |
| 
 | |
| static int dw_edma_irq_request(struct dw_edma *dw,
 | |
| 			       u32 *wr_alloc, u32 *rd_alloc)
 | |
| {
 | |
| 	struct dw_edma_chip *chip = dw->chip;
 | |
| 	struct device *dev = dw->chip->dev;
 | |
| 	u32 wr_mask = 1;
 | |
| 	u32 rd_mask = 1;
 | |
| 	int i, err = 0;
 | |
| 	u32 ch_cnt;
 | |
| 	int irq;
 | |
| 
 | |
| 	ch_cnt = dw->wr_ch_cnt + dw->rd_ch_cnt;
 | |
| 
 | |
| 	if (chip->nr_irqs < 1 || !chip->ops->irq_vector)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	dw->irq = devm_kcalloc(dev, chip->nr_irqs, sizeof(*dw->irq), GFP_KERNEL);
 | |
| 	if (!dw->irq)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (chip->nr_irqs == 1) {
 | |
| 		/* Common IRQ shared among all channels */
 | |
| 		irq = chip->ops->irq_vector(dev, 0);
 | |
| 		err = request_irq(irq, dw_edma_interrupt_common,
 | |
| 				  IRQF_SHARED, dw->name, &dw->irq[0]);
 | |
| 		if (err) {
 | |
| 			dw->nr_irqs = 0;
 | |
| 			return err;
 | |
| 		}
 | |
| 
 | |
| 		if (irq_get_msi_desc(irq))
 | |
| 			get_cached_msi_msg(irq, &dw->irq[0].msi);
 | |
| 
 | |
| 		dw->nr_irqs = 1;
 | |
| 	} else {
 | |
| 		/* Distribute IRQs equally among all channels */
 | |
| 		int tmp = chip->nr_irqs;
 | |
| 
 | |
| 		while (tmp && (*wr_alloc + *rd_alloc) < ch_cnt) {
 | |
| 			dw_edma_dec_irq_alloc(&tmp, wr_alloc, dw->wr_ch_cnt);
 | |
| 			dw_edma_dec_irq_alloc(&tmp, rd_alloc, dw->rd_ch_cnt);
 | |
| 		}
 | |
| 
 | |
| 		dw_edma_add_irq_mask(&wr_mask, *wr_alloc, dw->wr_ch_cnt);
 | |
| 		dw_edma_add_irq_mask(&rd_mask, *rd_alloc, dw->rd_ch_cnt);
 | |
| 
 | |
| 		for (i = 0; i < (*wr_alloc + *rd_alloc); i++) {
 | |
| 			irq = chip->ops->irq_vector(dev, i);
 | |
| 			err = request_irq(irq,
 | |
| 					  i < *wr_alloc ?
 | |
| 						dw_edma_interrupt_write :
 | |
| 						dw_edma_interrupt_read,
 | |
| 					  IRQF_SHARED, dw->name,
 | |
| 					  &dw->irq[i]);
 | |
| 			if (err)
 | |
| 				goto err_irq_free;
 | |
| 
 | |
| 			if (irq_get_msi_desc(irq))
 | |
| 				get_cached_msi_msg(irq, &dw->irq[i].msi);
 | |
| 		}
 | |
| 
 | |
| 		dw->nr_irqs = i;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_irq_free:
 | |
| 	for  (i--; i >= 0; i--) {
 | |
| 		irq = chip->ops->irq_vector(dev, i);
 | |
| 		free_irq(irq, &dw->irq[i]);
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int dw_edma_probe(struct dw_edma_chip *chip)
 | |
| {
 | |
| 	struct device *dev;
 | |
| 	struct dw_edma *dw;
 | |
| 	u32 wr_alloc = 0;
 | |
| 	u32 rd_alloc = 0;
 | |
| 	int i, err;
 | |
| 
 | |
| 	if (!chip)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	dev = chip->dev;
 | |
| 	if (!dev || !chip->ops)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	dw = devm_kzalloc(dev, sizeof(*dw), GFP_KERNEL);
 | |
| 	if (!dw)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	dw->chip = chip;
 | |
| 
 | |
| 	if (dw->chip->mf == EDMA_MF_HDMA_NATIVE)
 | |
| 		dw_hdma_v0_core_register(dw);
 | |
| 	else
 | |
| 		dw_edma_v0_core_register(dw);
 | |
| 
 | |
| 	raw_spin_lock_init(&dw->lock);
 | |
| 
 | |
| 	dw->wr_ch_cnt = min_t(u16, chip->ll_wr_cnt,
 | |
| 			      dw_edma_core_ch_count(dw, EDMA_DIR_WRITE));
 | |
| 	dw->wr_ch_cnt = min_t(u16, dw->wr_ch_cnt, EDMA_MAX_WR_CH);
 | |
| 
 | |
| 	dw->rd_ch_cnt = min_t(u16, chip->ll_rd_cnt,
 | |
| 			      dw_edma_core_ch_count(dw, EDMA_DIR_READ));
 | |
| 	dw->rd_ch_cnt = min_t(u16, dw->rd_ch_cnt, EDMA_MAX_RD_CH);
 | |
| 
 | |
| 	if (!dw->wr_ch_cnt && !dw->rd_ch_cnt)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	dev_vdbg(dev, "Channels:\twrite=%d, read=%d\n",
 | |
| 		 dw->wr_ch_cnt, dw->rd_ch_cnt);
 | |
| 
 | |
| 	/* Allocate channels */
 | |
| 	dw->chan = devm_kcalloc(dev, dw->wr_ch_cnt + dw->rd_ch_cnt,
 | |
| 				sizeof(*dw->chan), GFP_KERNEL);
 | |
| 	if (!dw->chan)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	snprintf(dw->name, sizeof(dw->name), "dw-edma-core:%s",
 | |
| 		 dev_name(chip->dev));
 | |
| 
 | |
| 	/* Disable eDMA, only to establish the ideal initial conditions */
 | |
| 	dw_edma_core_off(dw);
 | |
| 
 | |
| 	/* Request IRQs */
 | |
| 	err = dw_edma_irq_request(dw, &wr_alloc, &rd_alloc);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Setup write/read channels */
 | |
| 	err = dw_edma_channel_setup(dw, wr_alloc, rd_alloc);
 | |
| 	if (err)
 | |
| 		goto err_irq_free;
 | |
| 
 | |
| 	/* Turn debugfs on */
 | |
| 	dw_edma_core_debugfs_on(dw);
 | |
| 
 | |
| 	chip->dw = dw;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_irq_free:
 | |
| 	for (i = (dw->nr_irqs - 1); i >= 0; i--)
 | |
| 		free_irq(chip->ops->irq_vector(dev, i), &dw->irq[i]);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dw_edma_probe);
 | |
| 
 | |
| int dw_edma_remove(struct dw_edma_chip *chip)
 | |
| {
 | |
| 	struct dw_edma_chan *chan, *_chan;
 | |
| 	struct device *dev = chip->dev;
 | |
| 	struct dw_edma *dw = chip->dw;
 | |
| 	int i;
 | |
| 
 | |
| 	/* Skip removal if no private data found */
 | |
| 	if (!dw)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	/* Disable eDMA */
 | |
| 	dw_edma_core_off(dw);
 | |
| 
 | |
| 	/* Free irqs */
 | |
| 	for (i = (dw->nr_irqs - 1); i >= 0; i--)
 | |
| 		free_irq(chip->ops->irq_vector(dev, i), &dw->irq[i]);
 | |
| 
 | |
| 	/* Deregister eDMA device */
 | |
| 	dma_async_device_unregister(&dw->dma);
 | |
| 	list_for_each_entry_safe(chan, _chan, &dw->dma.channels,
 | |
| 				 vc.chan.device_node) {
 | |
| 		tasklet_kill(&chan->vc.task);
 | |
| 		list_del(&chan->vc.chan.device_node);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dw_edma_remove);
 | |
| 
 | |
| MODULE_LICENSE("GPL v2");
 | |
| MODULE_DESCRIPTION("Synopsys DesignWare eDMA controller core driver");
 | |
| MODULE_AUTHOR("Gustavo Pimentel <gustavo.pimentel@synopsys.com>");
 |