374 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			374 lines
		
	
	
		
			8.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  *  linux/arch/arm/mach-sa1100/cpu-sa1110.c
 | |
|  *
 | |
|  *  Copyright (C) 2001 Russell King
 | |
|  *
 | |
|  * Note: there are two erratas that apply to the SA1110 here:
 | |
|  *  7 - SDRAM auto-power-up failure (rev A0)
 | |
|  * 13 - Corruption of internal register reads/writes following
 | |
|  *      SDRAM reads (rev A0, B0, B1)
 | |
|  *
 | |
|  * We ignore rev. A0 and B0 devices; I don't think they're worth supporting.
 | |
|  *
 | |
|  * The SDRAM type can be passed on the command line as cpu_sa1110.sdram=type
 | |
|  */
 | |
| #include <linux/cpufreq.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/moduleparam.h>
 | |
| #include <linux/types.h>
 | |
| 
 | |
| #include <asm/cputype.h>
 | |
| #include <asm/mach-types.h>
 | |
| 
 | |
| #include <mach/generic.h>
 | |
| #include <mach/hardware.h>
 | |
| 
 | |
| #undef DEBUG
 | |
| 
 | |
| struct sdram_params {
 | |
| 	const char name[20];
 | |
| 	u_char  rows;		/* bits				 */
 | |
| 	u_char  cas_latency;	/* cycles			 */
 | |
| 	u_char  tck;		/* clock cycle time (ns)	 */
 | |
| 	u_char  trcd;		/* activate to r/w (ns)		 */
 | |
| 	u_char  trp;		/* precharge to activate (ns)	 */
 | |
| 	u_char  twr;		/* write recovery time (ns)	 */
 | |
| 	u_short refresh;	/* refresh time for array (us)	 */
 | |
| };
 | |
| 
 | |
| struct sdram_info {
 | |
| 	u_int	mdcnfg;
 | |
| 	u_int	mdrefr;
 | |
| 	u_int	mdcas[3];
 | |
| };
 | |
| 
 | |
| static struct sdram_params sdram_tbl[] __initdata = {
 | |
| 	{	/* Toshiba TC59SM716 CL2 */
 | |
| 		.name		= "TC59SM716-CL2",
 | |
| 		.rows		= 12,
 | |
| 		.tck		= 10,
 | |
| 		.trcd		= 20,
 | |
| 		.trp		= 20,
 | |
| 		.twr		= 10,
 | |
| 		.refresh	= 64000,
 | |
| 		.cas_latency	= 2,
 | |
| 	}, {	/* Toshiba TC59SM716 CL3 */
 | |
| 		.name		= "TC59SM716-CL3",
 | |
| 		.rows		= 12,
 | |
| 		.tck		= 8,
 | |
| 		.trcd		= 20,
 | |
| 		.trp		= 20,
 | |
| 		.twr		= 8,
 | |
| 		.refresh	= 64000,
 | |
| 		.cas_latency	= 3,
 | |
| 	}, {	/* Samsung K4S641632D TC75 */
 | |
| 		.name		= "K4S641632D",
 | |
| 		.rows		= 14,
 | |
| 		.tck		= 9,
 | |
| 		.trcd		= 27,
 | |
| 		.trp		= 20,
 | |
| 		.twr		= 9,
 | |
| 		.refresh	= 64000,
 | |
| 		.cas_latency	= 3,
 | |
| 	}, {	/* Samsung K4S281632B-1H */
 | |
| 		.name           = "K4S281632B-1H",
 | |
| 		.rows		= 12,
 | |
| 		.tck		= 10,
 | |
| 		.trp		= 20,
 | |
| 		.twr		= 10,
 | |
| 		.refresh	= 64000,
 | |
| 		.cas_latency	= 3,
 | |
| 	}, {	/* Samsung KM416S4030CT */
 | |
| 		.name		= "KM416S4030CT",
 | |
| 		.rows		= 13,
 | |
| 		.tck		= 8,
 | |
| 		.trcd		= 24,	/* 3 CLKs */
 | |
| 		.trp		= 24,	/* 3 CLKs */
 | |
| 		.twr		= 16,	/* Trdl: 2 CLKs */
 | |
| 		.refresh	= 64000,
 | |
| 		.cas_latency	= 3,
 | |
| 	}, {	/* Winbond W982516AH75L CL3 */
 | |
| 		.name		= "W982516AH75L",
 | |
| 		.rows		= 16,
 | |
| 		.tck		= 8,
 | |
| 		.trcd		= 20,
 | |
| 		.trp		= 20,
 | |
| 		.twr		= 8,
 | |
| 		.refresh	= 64000,
 | |
| 		.cas_latency	= 3,
 | |
| 	}, {	/* Micron MT48LC8M16A2TG-75 */
 | |
| 		.name		= "MT48LC8M16A2TG-75",
 | |
| 		.rows		= 12,
 | |
| 		.tck		= 8,
 | |
| 		.trcd		= 20,
 | |
| 		.trp		= 20,
 | |
| 		.twr		= 8,
 | |
| 		.refresh	= 64000,
 | |
| 		.cas_latency	= 3,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static struct sdram_params sdram_params;
 | |
| 
 | |
| /*
 | |
|  * Given a period in ns and frequency in khz, calculate the number of
 | |
|  * cycles of frequency in period.  Note that we round up to the next
 | |
|  * cycle, even if we are only slightly over.
 | |
|  */
 | |
| static inline u_int ns_to_cycles(u_int ns, u_int khz)
 | |
| {
 | |
| 	return (ns * khz + 999999) / 1000000;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create the MDCAS register bit pattern.
 | |
|  */
 | |
| static inline void set_mdcas(u_int *mdcas, int delayed, u_int rcd)
 | |
| {
 | |
| 	u_int shift;
 | |
| 
 | |
| 	rcd = 2 * rcd - 1;
 | |
| 	shift = delayed + 1 + rcd;
 | |
| 
 | |
| 	mdcas[0]  = (1 << rcd) - 1;
 | |
| 	mdcas[0] |= 0x55555555 << shift;
 | |
| 	mdcas[1]  = mdcas[2] = 0x55555555 << (shift & 1);
 | |
| }
 | |
| 
 | |
| static void
 | |
| sdram_calculate_timing(struct sdram_info *sd, u_int cpu_khz,
 | |
| 		       struct sdram_params *sdram)
 | |
| {
 | |
| 	u_int mem_khz, sd_khz, trp, twr;
 | |
| 
 | |
| 	mem_khz = cpu_khz / 2;
 | |
| 	sd_khz = mem_khz;
 | |
| 
 | |
| 	/*
 | |
| 	 * If SDCLK would invalidate the SDRAM timings,
 | |
| 	 * run SDCLK at half speed.
 | |
| 	 *
 | |
| 	 * CPU steppings prior to B2 must either run the memory at
 | |
| 	 * half speed or use delayed read latching (errata 13).
 | |
| 	 */
 | |
| 	if ((ns_to_cycles(sdram->tck, sd_khz) > 1) ||
 | |
| 	    (read_cpuid_revision() < ARM_CPU_REV_SA1110_B2 && sd_khz < 62000))
 | |
| 		sd_khz /= 2;
 | |
| 
 | |
| 	sd->mdcnfg = MDCNFG & 0x007f007f;
 | |
| 
 | |
| 	twr = ns_to_cycles(sdram->twr, mem_khz);
 | |
| 
 | |
| 	/* trp should always be >1 */
 | |
| 	trp = ns_to_cycles(sdram->trp, mem_khz) - 1;
 | |
| 	if (trp < 1)
 | |
| 		trp = 1;
 | |
| 
 | |
| 	sd->mdcnfg |= trp << 8;
 | |
| 	sd->mdcnfg |= trp << 24;
 | |
| 	sd->mdcnfg |= sdram->cas_latency << 12;
 | |
| 	sd->mdcnfg |= sdram->cas_latency << 28;
 | |
| 	sd->mdcnfg |= twr << 14;
 | |
| 	sd->mdcnfg |= twr << 30;
 | |
| 
 | |
| 	sd->mdrefr = MDREFR & 0xffbffff0;
 | |
| 	sd->mdrefr |= 7;
 | |
| 
 | |
| 	if (sd_khz != mem_khz)
 | |
| 		sd->mdrefr |= MDREFR_K1DB2;
 | |
| 
 | |
| 	/* initial number of '1's in MDCAS + 1 */
 | |
| 	set_mdcas(sd->mdcas, sd_khz >= 62000,
 | |
| 		ns_to_cycles(sdram->trcd, mem_khz));
 | |
| 
 | |
| #ifdef DEBUG
 | |
| 	printk(KERN_DEBUG "MDCNFG: %08x MDREFR: %08x MDCAS0: %08x MDCAS1: %08x MDCAS2: %08x\n",
 | |
| 		sd->mdcnfg, sd->mdrefr, sd->mdcas[0], sd->mdcas[1],
 | |
| 		sd->mdcas[2]);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set the SDRAM refresh rate.
 | |
|  */
 | |
| static inline void sdram_set_refresh(u_int dri)
 | |
| {
 | |
| 	MDREFR = (MDREFR & 0xffff000f) | (dri << 4);
 | |
| 	(void) MDREFR;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the refresh period.  We do this such that we always refresh
 | |
|  * the SDRAMs within their permissible period.  The refresh period is
 | |
|  * always a multiple of the memory clock (fixed at cpu_clock / 2).
 | |
|  *
 | |
|  * FIXME: we don't currently take account of burst accesses here,
 | |
|  * but neither do Intels DM nor Angel.
 | |
|  */
 | |
| static void
 | |
| sdram_update_refresh(u_int cpu_khz, struct sdram_params *sdram)
 | |
| {
 | |
| 	u_int ns_row = (sdram->refresh * 1000) >> sdram->rows;
 | |
| 	u_int dri = ns_to_cycles(ns_row, cpu_khz / 2) / 32;
 | |
| 
 | |
| #ifdef DEBUG
 | |
| 	mdelay(250);
 | |
| 	printk(KERN_DEBUG "new dri value = %d\n", dri);
 | |
| #endif
 | |
| 
 | |
| 	sdram_set_refresh(dri);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Ok, set the CPU frequency.
 | |
|  */
 | |
| static int sa1110_target(struct cpufreq_policy *policy, unsigned int ppcr)
 | |
| {
 | |
| 	struct sdram_params *sdram = &sdram_params;
 | |
| 	struct sdram_info sd;
 | |
| 	unsigned long flags;
 | |
| 	unsigned int unused;
 | |
| 
 | |
| 	sdram_calculate_timing(&sd, sa11x0_freq_table[ppcr].frequency, sdram);
 | |
| 
 | |
| #if 0
 | |
| 	/*
 | |
| 	 * These values are wrong according to the SA1110 documentation
 | |
| 	 * and errata, but they seem to work.  Need to get a storage
 | |
| 	 * scope on to the SDRAM signals to work out why.
 | |
| 	 */
 | |
| 	if (policy->max < 147500) {
 | |
| 		sd.mdrefr |= MDREFR_K1DB2;
 | |
| 		sd.mdcas[0] = 0xaaaaaa7f;
 | |
| 	} else {
 | |
| 		sd.mdrefr &= ~MDREFR_K1DB2;
 | |
| 		sd.mdcas[0] = 0xaaaaaa9f;
 | |
| 	}
 | |
| 	sd.mdcas[1] = 0xaaaaaaaa;
 | |
| 	sd.mdcas[2] = 0xaaaaaaaa;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * The clock could be going away for some time.  Set the SDRAMs
 | |
| 	 * to refresh rapidly (every 64 memory clock cycles).  To get
 | |
| 	 * through the whole array, we need to wait 262144 mclk cycles.
 | |
| 	 * We wait 20ms to be safe.
 | |
| 	 */
 | |
| 	sdram_set_refresh(2);
 | |
| 	if (!irqs_disabled())
 | |
| 		msleep(20);
 | |
| 	else
 | |
| 		mdelay(20);
 | |
| 
 | |
| 	/*
 | |
| 	 * Reprogram the DRAM timings with interrupts disabled, and
 | |
| 	 * ensure that we are doing this within a complete cache line.
 | |
| 	 * This means that we won't access SDRAM for the duration of
 | |
| 	 * the programming.
 | |
| 	 */
 | |
| 	local_irq_save(flags);
 | |
| 	asm("mcr p15, 0, %0, c7, c10, 4" : : "r" (0));
 | |
| 	udelay(10);
 | |
| 	__asm__ __volatile__("\n\
 | |
| 		b	2f					\n\
 | |
| 		.align	5					\n\
 | |
| 1:		str	%3, [%1, #0]		@ MDCNFG	\n\
 | |
| 		str	%4, [%1, #28]		@ MDREFR	\n\
 | |
| 		str	%5, [%1, #4]		@ MDCAS0	\n\
 | |
| 		str	%6, [%1, #8]		@ MDCAS1	\n\
 | |
| 		str	%7, [%1, #12]		@ MDCAS2	\n\
 | |
| 		str	%8, [%2, #0]		@ PPCR		\n\
 | |
| 		ldr	%0, [%1, #0]				\n\
 | |
| 		b	3f					\n\
 | |
| 2:		b	1b					\n\
 | |
| 3:		nop						\n\
 | |
| 		nop"
 | |
| 		: "=&r" (unused)
 | |
| 		: "r" (&MDCNFG), "r" (&PPCR), "0" (sd.mdcnfg),
 | |
| 		  "r" (sd.mdrefr), "r" (sd.mdcas[0]),
 | |
| 		  "r" (sd.mdcas[1]), "r" (sd.mdcas[2]), "r" (ppcr));
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now, return the SDRAM refresh back to normal.
 | |
| 	 */
 | |
| 	sdram_update_refresh(sa11x0_freq_table[ppcr].frequency, sdram);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __init sa1110_cpu_init(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	cpufreq_generic_init(policy, sa11x0_freq_table, 0);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* sa1110_driver needs __refdata because it must remain after init registers
 | |
|  * it with cpufreq_register_driver() */
 | |
| static struct cpufreq_driver sa1110_driver __refdata = {
 | |
| 	.flags		= CPUFREQ_NEED_INITIAL_FREQ_CHECK |
 | |
| 			  CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING,
 | |
| 	.verify		= cpufreq_generic_frequency_table_verify,
 | |
| 	.target_index	= sa1110_target,
 | |
| 	.get		= sa11x0_getspeed,
 | |
| 	.init		= sa1110_cpu_init,
 | |
| 	.name		= "sa1110",
 | |
| };
 | |
| 
 | |
| static struct sdram_params *sa1110_find_sdram(const char *name)
 | |
| {
 | |
| 	struct sdram_params *sdram;
 | |
| 
 | |
| 	for (sdram = sdram_tbl; sdram < sdram_tbl + ARRAY_SIZE(sdram_tbl);
 | |
| 	     sdram++)
 | |
| 		if (strcmp(name, sdram->name) == 0)
 | |
| 			return sdram;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static char sdram_name[16];
 | |
| 
 | |
| static int __init sa1110_clk_init(void)
 | |
| {
 | |
| 	struct sdram_params *sdram;
 | |
| 	const char *name = sdram_name;
 | |
| 
 | |
| 	if (!cpu_is_sa1110())
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	if (!name[0]) {
 | |
| 		if (machine_is_assabet())
 | |
| 			name = "TC59SM716-CL3";
 | |
| 		if (machine_is_pt_system3())
 | |
| 			name = "K4S641632D";
 | |
| 		if (machine_is_h3100())
 | |
| 			name = "KM416S4030CT";
 | |
| 		if (machine_is_jornada720() || machine_is_h3600())
 | |
| 			name = "K4S281632B-1H";
 | |
| 		if (machine_is_nanoengine())
 | |
| 			name = "MT48LC8M16A2TG-75";
 | |
| 	}
 | |
| 
 | |
| 	sdram = sa1110_find_sdram(name);
 | |
| 	if (sdram) {
 | |
| 		printk(KERN_DEBUG "SDRAM: tck: %d trcd: %d trp: %d"
 | |
| 			" twr: %d refresh: %d cas_latency: %d\n",
 | |
| 			sdram->tck, sdram->trcd, sdram->trp,
 | |
| 			sdram->twr, sdram->refresh, sdram->cas_latency);
 | |
| 
 | |
| 		memcpy(&sdram_params, sdram, sizeof(sdram_params));
 | |
| 
 | |
| 		return cpufreq_register_driver(&sa1110_driver);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| module_param_string(sdram, sdram_name, sizeof(sdram_name), 0);
 | |
| arch_initcall(sa1110_clk_init);
 |