697 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			697 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0+
 | |
| /*
 | |
|  *  ipmi_bt_sm.c
 | |
|  *
 | |
|  *  The state machine for an Open IPMI BT sub-driver under ipmi_si.c, part
 | |
|  *  of the driver architecture at http://sourceforge.net/projects/openipmi 
 | |
|  *
 | |
|  *  Author:	Rocky Craig <first.last@hp.com>
 | |
|  */
 | |
| 
 | |
| #define DEBUG /* So dev_dbg() is always available. */
 | |
| 
 | |
| #include <linux/kernel.h> /* For printk. */
 | |
| #include <linux/string.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/moduleparam.h>
 | |
| #include <linux/ipmi_msgdefs.h>		/* for completion codes */
 | |
| #include "ipmi_si_sm.h"
 | |
| 
 | |
| #define BT_DEBUG_OFF	0	/* Used in production */
 | |
| #define BT_DEBUG_ENABLE	1	/* Generic messages */
 | |
| #define BT_DEBUG_MSG	2	/* Prints all request/response buffers */
 | |
| #define BT_DEBUG_STATES	4	/* Verbose look at state changes */
 | |
| /*
 | |
|  * BT_DEBUG_OFF must be zero to correspond to the default uninitialized
 | |
|  * value
 | |
|  */
 | |
| 
 | |
| static int bt_debug; /* 0 == BT_DEBUG_OFF */
 | |
| 
 | |
| module_param(bt_debug, int, 0644);
 | |
| MODULE_PARM_DESC(bt_debug, "debug bitmask, 1=enable, 2=messages, 4=states");
 | |
| 
 | |
| /*
 | |
|  * Typical "Get BT Capabilities" values are 2-3 retries, 5-10 seconds,
 | |
|  * and 64 byte buffers.  However, one HP implementation wants 255 bytes of
 | |
|  * buffer (with a documented message of 160 bytes) so go for the max.
 | |
|  * Since the Open IPMI architecture is single-message oriented at this
 | |
|  * stage, the queue depth of BT is of no concern.
 | |
|  */
 | |
| 
 | |
| #define BT_NORMAL_TIMEOUT	5	/* seconds */
 | |
| #define BT_NORMAL_RETRY_LIMIT	2
 | |
| #define BT_RESET_DELAY		6	/* seconds after warm reset */
 | |
| 
 | |
| /*
 | |
|  * States are written in chronological order and usually cover
 | |
|  * multiple rows of the state table discussion in the IPMI spec.
 | |
|  */
 | |
| 
 | |
| enum bt_states {
 | |
| 	BT_STATE_IDLE = 0,	/* Order is critical in this list */
 | |
| 	BT_STATE_XACTION_START,
 | |
| 	BT_STATE_WRITE_BYTES,
 | |
| 	BT_STATE_WRITE_CONSUME,
 | |
| 	BT_STATE_READ_WAIT,
 | |
| 	BT_STATE_CLEAR_B2H,
 | |
| 	BT_STATE_READ_BYTES,
 | |
| 	BT_STATE_RESET1,	/* These must come last */
 | |
| 	BT_STATE_RESET2,
 | |
| 	BT_STATE_RESET3,
 | |
| 	BT_STATE_RESTART,
 | |
| 	BT_STATE_PRINTME,
 | |
| 	BT_STATE_LONG_BUSY	/* BT doesn't get hosed :-) */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Macros seen at the end of state "case" blocks.  They help with legibility
 | |
|  * and debugging.
 | |
|  */
 | |
| 
 | |
| #define BT_STATE_CHANGE(X, Y) { bt->state = X; return Y; }
 | |
| 
 | |
| #define BT_SI_SM_RETURN(Y)   { last_printed = BT_STATE_PRINTME; return Y; }
 | |
| 
 | |
| struct si_sm_data {
 | |
| 	enum bt_states	state;
 | |
| 	unsigned char	seq;		/* BT sequence number */
 | |
| 	struct si_sm_io	*io;
 | |
| 	unsigned char	write_data[IPMI_MAX_MSG_LENGTH + 2]; /* +2 for memcpy */
 | |
| 	int		write_count;
 | |
| 	unsigned char	read_data[IPMI_MAX_MSG_LENGTH + 2]; /* +2 for memcpy */
 | |
| 	int		read_count;
 | |
| 	int		truncated;
 | |
| 	long		timeout;	/* microseconds countdown */
 | |
| 	int		error_retries;	/* end of "common" fields */
 | |
| 	int		nonzero_status;	/* hung BMCs stay all 0 */
 | |
| 	enum bt_states	complete;	/* to divert the state machine */
 | |
| 	long		BT_CAP_req2rsp;
 | |
| 	int		BT_CAP_retries;	/* Recommended retries */
 | |
| };
 | |
| 
 | |
| #define BT_CLR_WR_PTR	0x01	/* See IPMI 1.5 table 11.6.4 */
 | |
| #define BT_CLR_RD_PTR	0x02
 | |
| #define BT_H2B_ATN	0x04
 | |
| #define BT_B2H_ATN	0x08
 | |
| #define BT_SMS_ATN	0x10
 | |
| #define BT_OEM0		0x20
 | |
| #define BT_H_BUSY	0x40
 | |
| #define BT_B_BUSY	0x80
 | |
| 
 | |
| /*
 | |
|  * Some bits are toggled on each write: write once to set it, once
 | |
|  * more to clear it; writing a zero does nothing.  To absolutely
 | |
|  * clear it, check its state and write if set.  This avoids the "get
 | |
|  * current then use as mask" scheme to modify one bit.  Note that the
 | |
|  * variable "bt" is hardcoded into these macros.
 | |
|  */
 | |
| 
 | |
| #define BT_STATUS	bt->io->inputb(bt->io, 0)
 | |
| #define BT_CONTROL(x)	bt->io->outputb(bt->io, 0, x)
 | |
| 
 | |
| #define BMC2HOST	bt->io->inputb(bt->io, 1)
 | |
| #define HOST2BMC(x)	bt->io->outputb(bt->io, 1, x)
 | |
| 
 | |
| #define BT_INTMASK_R	bt->io->inputb(bt->io, 2)
 | |
| #define BT_INTMASK_W(x)	bt->io->outputb(bt->io, 2, x)
 | |
| 
 | |
| /*
 | |
|  * Convenience routines for debugging.  These are not multi-open safe!
 | |
|  * Note the macros have hardcoded variables in them.
 | |
|  */
 | |
| 
 | |
| static char *state2txt(unsigned char state)
 | |
| {
 | |
| 	switch (state) {
 | |
| 	case BT_STATE_IDLE:		return("IDLE");
 | |
| 	case BT_STATE_XACTION_START:	return("XACTION");
 | |
| 	case BT_STATE_WRITE_BYTES:	return("WR_BYTES");
 | |
| 	case BT_STATE_WRITE_CONSUME:	return("WR_CONSUME");
 | |
| 	case BT_STATE_READ_WAIT:	return("RD_WAIT");
 | |
| 	case BT_STATE_CLEAR_B2H:	return("CLEAR_B2H");
 | |
| 	case BT_STATE_READ_BYTES:	return("RD_BYTES");
 | |
| 	case BT_STATE_RESET1:		return("RESET1");
 | |
| 	case BT_STATE_RESET2:		return("RESET2");
 | |
| 	case BT_STATE_RESET3:		return("RESET3");
 | |
| 	case BT_STATE_RESTART:		return("RESTART");
 | |
| 	case BT_STATE_LONG_BUSY:	return("LONG_BUSY");
 | |
| 	}
 | |
| 	return("BAD STATE");
 | |
| }
 | |
| #define STATE2TXT state2txt(bt->state)
 | |
| 
 | |
| static char *status2txt(unsigned char status)
 | |
| {
 | |
| 	/*
 | |
| 	 * This cannot be called by two threads at the same time and
 | |
| 	 * the buffer is always consumed immediately, so the static is
 | |
| 	 * safe to use.
 | |
| 	 */
 | |
| 	static char buf[40];
 | |
| 
 | |
| 	strcpy(buf, "[ ");
 | |
| 	if (status & BT_B_BUSY)
 | |
| 		strcat(buf, "B_BUSY ");
 | |
| 	if (status & BT_H_BUSY)
 | |
| 		strcat(buf, "H_BUSY ");
 | |
| 	if (status & BT_OEM0)
 | |
| 		strcat(buf, "OEM0 ");
 | |
| 	if (status & BT_SMS_ATN)
 | |
| 		strcat(buf, "SMS ");
 | |
| 	if (status & BT_B2H_ATN)
 | |
| 		strcat(buf, "B2H ");
 | |
| 	if (status & BT_H2B_ATN)
 | |
| 		strcat(buf, "H2B ");
 | |
| 	strcat(buf, "]");
 | |
| 	return buf;
 | |
| }
 | |
| #define STATUS2TXT status2txt(status)
 | |
| 
 | |
| /* called externally at insmod time, and internally on cleanup */
 | |
| 
 | |
| static unsigned int bt_init_data(struct si_sm_data *bt, struct si_sm_io *io)
 | |
| {
 | |
| 	memset(bt, 0, sizeof(struct si_sm_data));
 | |
| 	if (bt->io != io) {
 | |
| 		/* external: one-time only things */
 | |
| 		bt->io = io;
 | |
| 		bt->seq = 0;
 | |
| 	}
 | |
| 	bt->state = BT_STATE_IDLE;	/* start here */
 | |
| 	bt->complete = BT_STATE_IDLE;	/* end here */
 | |
| 	bt->BT_CAP_req2rsp = BT_NORMAL_TIMEOUT * USEC_PER_SEC;
 | |
| 	bt->BT_CAP_retries = BT_NORMAL_RETRY_LIMIT;
 | |
| 	return 3; /* We claim 3 bytes of space; ought to check SPMI table */
 | |
| }
 | |
| 
 | |
| /* Jam a completion code (probably an error) into a response */
 | |
| 
 | |
| static void force_result(struct si_sm_data *bt, unsigned char completion_code)
 | |
| {
 | |
| 	bt->read_data[0] = 4;				/* # following bytes */
 | |
| 	bt->read_data[1] = bt->write_data[1] | 4;	/* Odd NetFn/LUN */
 | |
| 	bt->read_data[2] = bt->write_data[2];		/* seq (ignored) */
 | |
| 	bt->read_data[3] = bt->write_data[3];		/* Command */
 | |
| 	bt->read_data[4] = completion_code;
 | |
| 	bt->read_count = 5;
 | |
| }
 | |
| 
 | |
| /* The upper state machine starts here */
 | |
| 
 | |
| static int bt_start_transaction(struct si_sm_data *bt,
 | |
| 				unsigned char *data,
 | |
| 				unsigned int size)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	if (size < 2)
 | |
| 		return IPMI_REQ_LEN_INVALID_ERR;
 | |
| 	if (size > IPMI_MAX_MSG_LENGTH)
 | |
| 		return IPMI_REQ_LEN_EXCEEDED_ERR;
 | |
| 
 | |
| 	if (bt->state == BT_STATE_LONG_BUSY)
 | |
| 		return IPMI_NODE_BUSY_ERR;
 | |
| 
 | |
| 	if (bt->state != BT_STATE_IDLE) {
 | |
| 		dev_warn(bt->io->dev, "BT in invalid state %d\n", bt->state);
 | |
| 		return IPMI_NOT_IN_MY_STATE_ERR;
 | |
| 	}
 | |
| 
 | |
| 	if (bt_debug & BT_DEBUG_MSG) {
 | |
| 		dev_dbg(bt->io->dev, "+++++++++++++++++ New command\n");
 | |
| 		dev_dbg(bt->io->dev, "NetFn/LUN CMD [%d data]:", size - 2);
 | |
| 		for (i = 0; i < size; i ++)
 | |
| 			pr_cont(" %02x", data[i]);
 | |
| 		pr_cont("\n");
 | |
| 	}
 | |
| 	bt->write_data[0] = size + 1;	/* all data plus seq byte */
 | |
| 	bt->write_data[1] = *data;	/* NetFn/LUN */
 | |
| 	bt->write_data[2] = bt->seq++;
 | |
| 	memcpy(bt->write_data + 3, data + 1, size - 1);
 | |
| 	bt->write_count = size + 2;
 | |
| 	bt->error_retries = 0;
 | |
| 	bt->nonzero_status = 0;
 | |
| 	bt->truncated = 0;
 | |
| 	bt->state = BT_STATE_XACTION_START;
 | |
| 	bt->timeout = bt->BT_CAP_req2rsp;
 | |
| 	force_result(bt, IPMI_ERR_UNSPECIFIED);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * After the upper state machine has been told SI_SM_TRANSACTION_COMPLETE
 | |
|  * it calls this.  Strip out the length and seq bytes.
 | |
|  */
 | |
| 
 | |
| static int bt_get_result(struct si_sm_data *bt,
 | |
| 			 unsigned char *data,
 | |
| 			 unsigned int length)
 | |
| {
 | |
| 	int i, msg_len;
 | |
| 
 | |
| 	msg_len = bt->read_count - 2;		/* account for length & seq */
 | |
| 	if (msg_len < 3 || msg_len > IPMI_MAX_MSG_LENGTH) {
 | |
| 		force_result(bt, IPMI_ERR_UNSPECIFIED);
 | |
| 		msg_len = 3;
 | |
| 	}
 | |
| 	data[0] = bt->read_data[1];
 | |
| 	data[1] = bt->read_data[3];
 | |
| 	if (length < msg_len || bt->truncated) {
 | |
| 		data[2] = IPMI_ERR_MSG_TRUNCATED;
 | |
| 		msg_len = 3;
 | |
| 	} else
 | |
| 		memcpy(data + 2, bt->read_data + 4, msg_len - 2);
 | |
| 
 | |
| 	if (bt_debug & BT_DEBUG_MSG) {
 | |
| 		dev_dbg(bt->io->dev, "result %d bytes:", msg_len);
 | |
| 		for (i = 0; i < msg_len; i++)
 | |
| 			pr_cont(" %02x", data[i]);
 | |
| 		pr_cont("\n");
 | |
| 	}
 | |
| 	return msg_len;
 | |
| }
 | |
| 
 | |
| /* This bit's functionality is optional */
 | |
| #define BT_BMC_HWRST	0x80
 | |
| 
 | |
| static void reset_flags(struct si_sm_data *bt)
 | |
| {
 | |
| 	if (bt_debug)
 | |
| 		dev_dbg(bt->io->dev, "flag reset %s\n", status2txt(BT_STATUS));
 | |
| 	if (BT_STATUS & BT_H_BUSY)
 | |
| 		BT_CONTROL(BT_H_BUSY);	/* force clear */
 | |
| 	BT_CONTROL(BT_CLR_WR_PTR);	/* always reset */
 | |
| 	BT_CONTROL(BT_SMS_ATN);		/* always clear */
 | |
| 	BT_INTMASK_W(BT_BMC_HWRST);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get rid of an unwanted/stale response.  This should only be needed for
 | |
|  * BMCs that support multiple outstanding requests.
 | |
|  */
 | |
| 
 | |
| static void drain_BMC2HOST(struct si_sm_data *bt)
 | |
| {
 | |
| 	int i, size;
 | |
| 
 | |
| 	if (!(BT_STATUS & BT_B2H_ATN)) 	/* Not signalling a response */
 | |
| 		return;
 | |
| 
 | |
| 	BT_CONTROL(BT_H_BUSY);		/* now set */
 | |
| 	BT_CONTROL(BT_B2H_ATN);		/* always clear */
 | |
| 	BT_STATUS;			/* pause */
 | |
| 	BT_CONTROL(BT_B2H_ATN);		/* some BMCs are stubborn */
 | |
| 	BT_CONTROL(BT_CLR_RD_PTR);	/* always reset */
 | |
| 	if (bt_debug)
 | |
| 		dev_dbg(bt->io->dev, "stale response %s; ",
 | |
| 			status2txt(BT_STATUS));
 | |
| 	size = BMC2HOST;
 | |
| 	for (i = 0; i < size ; i++)
 | |
| 		BMC2HOST;
 | |
| 	BT_CONTROL(BT_H_BUSY);		/* now clear */
 | |
| 	if (bt_debug)
 | |
| 		pr_cont("drained %d bytes\n", size + 1);
 | |
| }
 | |
| 
 | |
| static inline void write_all_bytes(struct si_sm_data *bt)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (bt_debug & BT_DEBUG_MSG) {
 | |
| 		dev_dbg(bt->io->dev, "write %d bytes seq=0x%02X",
 | |
| 			bt->write_count, bt->seq);
 | |
| 		for (i = 0; i < bt->write_count; i++)
 | |
| 			pr_cont(" %02x", bt->write_data[i]);
 | |
| 		pr_cont("\n");
 | |
| 	}
 | |
| 	for (i = 0; i < bt->write_count; i++)
 | |
| 		HOST2BMC(bt->write_data[i]);
 | |
| }
 | |
| 
 | |
| static inline int read_all_bytes(struct si_sm_data *bt)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * length is "framing info", minimum = 4: NetFn, Seq, Cmd, cCode.
 | |
| 	 * Keep layout of first four bytes aligned with write_data[]
 | |
| 	 */
 | |
| 
 | |
| 	bt->read_data[0] = BMC2HOST;
 | |
| 	bt->read_count = bt->read_data[0];
 | |
| 
 | |
| 	if (bt->read_count < 4 || bt->read_count >= IPMI_MAX_MSG_LENGTH) {
 | |
| 		if (bt_debug & BT_DEBUG_MSG)
 | |
| 			dev_dbg(bt->io->dev,
 | |
| 				"bad raw rsp len=%d\n", bt->read_count);
 | |
| 		bt->truncated = 1;
 | |
| 		return 1;	/* let next XACTION START clean it up */
 | |
| 	}
 | |
| 	for (i = 1; i <= bt->read_count; i++)
 | |
| 		bt->read_data[i] = BMC2HOST;
 | |
| 	bt->read_count++;	/* Account internally for length byte */
 | |
| 
 | |
| 	if (bt_debug & BT_DEBUG_MSG) {
 | |
| 		int max = bt->read_count;
 | |
| 
 | |
| 		dev_dbg(bt->io->dev,
 | |
| 			"got %d bytes seq=0x%02X", max, bt->read_data[2]);
 | |
| 		if (max > 16)
 | |
| 			max = 16;
 | |
| 		for (i = 0; i < max; i++)
 | |
| 			pr_cont(" %02x", bt->read_data[i]);
 | |
| 		pr_cont("%s\n", bt->read_count == max ? "" : " ...");
 | |
| 	}
 | |
| 
 | |
| 	/* per the spec, the (NetFn[1], Seq[2], Cmd[3]) tuples must match */
 | |
| 	if ((bt->read_data[3] == bt->write_data[3]) &&
 | |
| 	    (bt->read_data[2] == bt->write_data[2]) &&
 | |
| 	    ((bt->read_data[1] & 0xF8) == (bt->write_data[1] & 0xF8)))
 | |
| 			return 1;
 | |
| 
 | |
| 	if (bt_debug & BT_DEBUG_MSG)
 | |
| 		dev_dbg(bt->io->dev,
 | |
| 			"IPMI BT: bad packet: want 0x(%02X, %02X, %02X) got (%02X, %02X, %02X)\n",
 | |
| 			bt->write_data[1] | 0x04, bt->write_data[2],
 | |
| 			bt->write_data[3],
 | |
| 			bt->read_data[1],  bt->read_data[2],  bt->read_data[3]);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Restart if retries are left, or return an error completion code */
 | |
| 
 | |
| static enum si_sm_result error_recovery(struct si_sm_data *bt,
 | |
| 					unsigned char status,
 | |
| 					unsigned char cCode)
 | |
| {
 | |
| 	char *reason;
 | |
| 
 | |
| 	bt->timeout = bt->BT_CAP_req2rsp;
 | |
| 
 | |
| 	switch (cCode) {
 | |
| 	case IPMI_TIMEOUT_ERR:
 | |
| 		reason = "timeout";
 | |
| 		break;
 | |
| 	default:
 | |
| 		reason = "internal error";
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	dev_warn(bt->io->dev, "IPMI BT: %s in %s %s ", /* open-ended line */
 | |
| 		 reason, STATE2TXT, STATUS2TXT);
 | |
| 
 | |
| 	/*
 | |
| 	 * Per the IPMI spec, retries are based on the sequence number
 | |
| 	 * known only to this module, so manage a restart here.
 | |
| 	 */
 | |
| 	(bt->error_retries)++;
 | |
| 	if (bt->error_retries < bt->BT_CAP_retries) {
 | |
| 		pr_cont("%d retries left\n",
 | |
| 			bt->BT_CAP_retries - bt->error_retries);
 | |
| 		bt->state = BT_STATE_RESTART;
 | |
| 		return SI_SM_CALL_WITHOUT_DELAY;
 | |
| 	}
 | |
| 
 | |
| 	dev_warn(bt->io->dev, "failed %d retries, sending error response\n",
 | |
| 		 bt->BT_CAP_retries);
 | |
| 	if (!bt->nonzero_status)
 | |
| 		dev_err(bt->io->dev, "stuck, try power cycle\n");
 | |
| 
 | |
| 	/* this is most likely during insmod */
 | |
| 	else if (bt->seq <= (unsigned char)(bt->BT_CAP_retries & 0xFF)) {
 | |
| 		dev_warn(bt->io->dev, "BT reset (takes 5 secs)\n");
 | |
| 		bt->state = BT_STATE_RESET1;
 | |
| 		return SI_SM_CALL_WITHOUT_DELAY;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Concoct a useful error message, set up the next state, and
 | |
| 	 * be done with this sequence.
 | |
| 	 */
 | |
| 
 | |
| 	bt->state = BT_STATE_IDLE;
 | |
| 	switch (cCode) {
 | |
| 	case IPMI_TIMEOUT_ERR:
 | |
| 		if (status & BT_B_BUSY) {
 | |
| 			cCode = IPMI_NODE_BUSY_ERR;
 | |
| 			bt->state = BT_STATE_LONG_BUSY;
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	force_result(bt, cCode);
 | |
| 	return SI_SM_TRANSACTION_COMPLETE;
 | |
| }
 | |
| 
 | |
| /* Check status and (usually) take action and change this state machine. */
 | |
| 
 | |
| static enum si_sm_result bt_event(struct si_sm_data *bt, long time)
 | |
| {
 | |
| 	unsigned char status;
 | |
| 	static enum bt_states last_printed = BT_STATE_PRINTME;
 | |
| 	int i;
 | |
| 
 | |
| 	status = BT_STATUS;
 | |
| 	bt->nonzero_status |= status;
 | |
| 	if ((bt_debug & BT_DEBUG_STATES) && (bt->state != last_printed)) {
 | |
| 		dev_dbg(bt->io->dev, "BT: %s %s TO=%ld - %ld\n",
 | |
| 			STATE2TXT,
 | |
| 			STATUS2TXT,
 | |
| 			bt->timeout,
 | |
| 			time);
 | |
| 		last_printed = bt->state;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Commands that time out may still (eventually) provide a response.
 | |
| 	 * This stale response will get in the way of a new response so remove
 | |
| 	 * it if possible (hopefully during IDLE).  Even if it comes up later
 | |
| 	 * it will be rejected by its (now-forgotten) seq number.
 | |
| 	 */
 | |
| 
 | |
| 	if ((bt->state < BT_STATE_WRITE_BYTES) && (status & BT_B2H_ATN)) {
 | |
| 		drain_BMC2HOST(bt);
 | |
| 		BT_SI_SM_RETURN(SI_SM_CALL_WITH_DELAY);
 | |
| 	}
 | |
| 
 | |
| 	if ((bt->state != BT_STATE_IDLE) &&
 | |
| 	    (bt->state <  BT_STATE_PRINTME)) {
 | |
| 		/* check timeout */
 | |
| 		bt->timeout -= time;
 | |
| 		if ((bt->timeout < 0) && (bt->state < BT_STATE_RESET1))
 | |
| 			return error_recovery(bt,
 | |
| 					      status,
 | |
| 					      IPMI_TIMEOUT_ERR);
 | |
| 	}
 | |
| 
 | |
| 	switch (bt->state) {
 | |
| 
 | |
| 	/*
 | |
| 	 * Idle state first checks for asynchronous messages from another
 | |
| 	 * channel, then does some opportunistic housekeeping.
 | |
| 	 */
 | |
| 
 | |
| 	case BT_STATE_IDLE:
 | |
| 		if (status & BT_SMS_ATN) {
 | |
| 			BT_CONTROL(BT_SMS_ATN);	/* clear it */
 | |
| 			return SI_SM_ATTN;
 | |
| 		}
 | |
| 
 | |
| 		if (status & BT_H_BUSY)		/* clear a leftover H_BUSY */
 | |
| 			BT_CONTROL(BT_H_BUSY);
 | |
| 
 | |
| 		BT_SI_SM_RETURN(SI_SM_IDLE);
 | |
| 
 | |
| 	case BT_STATE_XACTION_START:
 | |
| 		if (status & (BT_B_BUSY | BT_H2B_ATN))
 | |
| 			BT_SI_SM_RETURN(SI_SM_CALL_WITH_DELAY);
 | |
| 		if (BT_STATUS & BT_H_BUSY)
 | |
| 			BT_CONTROL(BT_H_BUSY);	/* force clear */
 | |
| 		BT_STATE_CHANGE(BT_STATE_WRITE_BYTES,
 | |
| 				SI_SM_CALL_WITHOUT_DELAY);
 | |
| 
 | |
| 	case BT_STATE_WRITE_BYTES:
 | |
| 		if (status & BT_H_BUSY)
 | |
| 			BT_CONTROL(BT_H_BUSY);	/* clear */
 | |
| 		BT_CONTROL(BT_CLR_WR_PTR);
 | |
| 		write_all_bytes(bt);
 | |
| 		BT_CONTROL(BT_H2B_ATN);	/* can clear too fast to catch */
 | |
| 		BT_STATE_CHANGE(BT_STATE_WRITE_CONSUME,
 | |
| 				SI_SM_CALL_WITHOUT_DELAY);
 | |
| 
 | |
| 	case BT_STATE_WRITE_CONSUME:
 | |
| 		if (status & (BT_B_BUSY | BT_H2B_ATN))
 | |
| 			BT_SI_SM_RETURN(SI_SM_CALL_WITH_DELAY);
 | |
| 		BT_STATE_CHANGE(BT_STATE_READ_WAIT,
 | |
| 				SI_SM_CALL_WITHOUT_DELAY);
 | |
| 
 | |
| 	/* Spinning hard can suppress B2H_ATN and force a timeout */
 | |
| 
 | |
| 	case BT_STATE_READ_WAIT:
 | |
| 		if (!(status & BT_B2H_ATN))
 | |
| 			BT_SI_SM_RETURN(SI_SM_CALL_WITH_DELAY);
 | |
| 		BT_CONTROL(BT_H_BUSY);		/* set */
 | |
| 
 | |
| 		/*
 | |
| 		 * Uncached, ordered writes should just proceed serially but
 | |
| 		 * some BMCs don't clear B2H_ATN with one hit.  Fast-path a
 | |
| 		 * workaround without too much penalty to the general case.
 | |
| 		 */
 | |
| 
 | |
| 		BT_CONTROL(BT_B2H_ATN);		/* clear it to ACK the BMC */
 | |
| 		BT_STATE_CHANGE(BT_STATE_CLEAR_B2H,
 | |
| 				SI_SM_CALL_WITHOUT_DELAY);
 | |
| 
 | |
| 	case BT_STATE_CLEAR_B2H:
 | |
| 		if (status & BT_B2H_ATN) {
 | |
| 			/* keep hitting it */
 | |
| 			BT_CONTROL(BT_B2H_ATN);
 | |
| 			BT_SI_SM_RETURN(SI_SM_CALL_WITH_DELAY);
 | |
| 		}
 | |
| 		BT_STATE_CHANGE(BT_STATE_READ_BYTES,
 | |
| 				SI_SM_CALL_WITHOUT_DELAY);
 | |
| 
 | |
| 	case BT_STATE_READ_BYTES:
 | |
| 		if (!(status & BT_H_BUSY))
 | |
| 			/* check in case of retry */
 | |
| 			BT_CONTROL(BT_H_BUSY);
 | |
| 		BT_CONTROL(BT_CLR_RD_PTR);	/* start of BMC2HOST buffer */
 | |
| 		i = read_all_bytes(bt);		/* true == packet seq match */
 | |
| 		BT_CONTROL(BT_H_BUSY);		/* NOW clear */
 | |
| 		if (!i) 			/* Not my message */
 | |
| 			BT_STATE_CHANGE(BT_STATE_READ_WAIT,
 | |
| 					SI_SM_CALL_WITHOUT_DELAY);
 | |
| 		bt->state = bt->complete;
 | |
| 		return bt->state == BT_STATE_IDLE ?	/* where to next? */
 | |
| 			SI_SM_TRANSACTION_COMPLETE :	/* normal */
 | |
| 			SI_SM_CALL_WITHOUT_DELAY;	/* Startup magic */
 | |
| 
 | |
| 	case BT_STATE_LONG_BUSY:	/* For example: after FW update */
 | |
| 		if (!(status & BT_B_BUSY)) {
 | |
| 			reset_flags(bt);	/* next state is now IDLE */
 | |
| 			bt_init_data(bt, bt->io);
 | |
| 		}
 | |
| 		return SI_SM_CALL_WITH_DELAY;	/* No repeat printing */
 | |
| 
 | |
| 	case BT_STATE_RESET1:
 | |
| 		reset_flags(bt);
 | |
| 		drain_BMC2HOST(bt);
 | |
| 		BT_STATE_CHANGE(BT_STATE_RESET2,
 | |
| 				SI_SM_CALL_WITH_DELAY);
 | |
| 
 | |
| 	case BT_STATE_RESET2:		/* Send a soft reset */
 | |
| 		BT_CONTROL(BT_CLR_WR_PTR);
 | |
| 		HOST2BMC(3);		/* number of bytes following */
 | |
| 		HOST2BMC(0x18);		/* NetFn/LUN == Application, LUN 0 */
 | |
| 		HOST2BMC(42);		/* Sequence number */
 | |
| 		HOST2BMC(3);		/* Cmd == Soft reset */
 | |
| 		BT_CONTROL(BT_H2B_ATN);
 | |
| 		bt->timeout = BT_RESET_DELAY * USEC_PER_SEC;
 | |
| 		BT_STATE_CHANGE(BT_STATE_RESET3,
 | |
| 				SI_SM_CALL_WITH_DELAY);
 | |
| 
 | |
| 	case BT_STATE_RESET3:		/* Hold off everything for a bit */
 | |
| 		if (bt->timeout > 0)
 | |
| 			return SI_SM_CALL_WITH_DELAY;
 | |
| 		drain_BMC2HOST(bt);
 | |
| 		BT_STATE_CHANGE(BT_STATE_RESTART,
 | |
| 				SI_SM_CALL_WITH_DELAY);
 | |
| 
 | |
| 	case BT_STATE_RESTART:		/* don't reset retries or seq! */
 | |
| 		bt->read_count = 0;
 | |
| 		bt->nonzero_status = 0;
 | |
| 		bt->timeout = bt->BT_CAP_req2rsp;
 | |
| 		BT_STATE_CHANGE(BT_STATE_XACTION_START,
 | |
| 				SI_SM_CALL_WITH_DELAY);
 | |
| 
 | |
| 	default:	/* should never occur */
 | |
| 		return error_recovery(bt,
 | |
| 				      status,
 | |
| 				      IPMI_ERR_UNSPECIFIED);
 | |
| 	}
 | |
| 	return SI_SM_CALL_WITH_DELAY;
 | |
| }
 | |
| 
 | |
| static int bt_detect(struct si_sm_data *bt)
 | |
| {
 | |
| 	unsigned char GetBT_CAP[] = { 0x18, 0x36 };
 | |
| 	unsigned char BT_CAP[8];
 | |
| 	enum si_sm_result smi_result;
 | |
| 	int rv;
 | |
| 
 | |
| 	/*
 | |
| 	 * It's impossible for the BT status and interrupt registers to be
 | |
| 	 * all 1's, (assuming a properly functioning, self-initialized BMC)
 | |
| 	 * but that's what you get from reading a bogus address, so we
 | |
| 	 * test that first.  The calling routine uses negative logic.
 | |
| 	 */
 | |
| 
 | |
| 	if ((BT_STATUS == 0xFF) && (BT_INTMASK_R == 0xFF))
 | |
| 		return 1;
 | |
| 	reset_flags(bt);
 | |
| 
 | |
| 	/*
 | |
| 	 * Try getting the BT capabilities here.
 | |
| 	 */
 | |
| 	rv = bt_start_transaction(bt, GetBT_CAP, sizeof(GetBT_CAP));
 | |
| 	if (rv) {
 | |
| 		dev_warn(bt->io->dev,
 | |
| 			 "Can't start capabilities transaction: %d\n", rv);
 | |
| 		goto out_no_bt_cap;
 | |
| 	}
 | |
| 
 | |
| 	smi_result = SI_SM_CALL_WITHOUT_DELAY;
 | |
| 	for (;;) {
 | |
| 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
 | |
| 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
 | |
| 			schedule_timeout_uninterruptible(1);
 | |
| 			smi_result = bt_event(bt, jiffies_to_usecs(1));
 | |
| 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
 | |
| 			smi_result = bt_event(bt, 0);
 | |
| 		} else
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	rv = bt_get_result(bt, BT_CAP, sizeof(BT_CAP));
 | |
| 	bt_init_data(bt, bt->io);
 | |
| 	if (rv < 8) {
 | |
| 		dev_warn(bt->io->dev, "bt cap response too short: %d\n", rv);
 | |
| 		goto out_no_bt_cap;
 | |
| 	}
 | |
| 
 | |
| 	if (BT_CAP[2]) {
 | |
| 		dev_warn(bt->io->dev, "Error fetching bt cap: %x\n", BT_CAP[2]);
 | |
| out_no_bt_cap:
 | |
| 		dev_warn(bt->io->dev, "using default values\n");
 | |
| 	} else {
 | |
| 		bt->BT_CAP_req2rsp = BT_CAP[6] * USEC_PER_SEC;
 | |
| 		bt->BT_CAP_retries = BT_CAP[7];
 | |
| 	}
 | |
| 
 | |
| 	dev_info(bt->io->dev, "req2rsp=%ld secs retries=%d\n",
 | |
| 		 bt->BT_CAP_req2rsp / USEC_PER_SEC, bt->BT_CAP_retries);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void bt_cleanup(struct si_sm_data *bt)
 | |
| {
 | |
| }
 | |
| 
 | |
| static int bt_size(void)
 | |
| {
 | |
| 	return sizeof(struct si_sm_data);
 | |
| }
 | |
| 
 | |
| const struct si_sm_handlers bt_smi_handlers = {
 | |
| 	.init_data		= bt_init_data,
 | |
| 	.start_transaction	= bt_start_transaction,
 | |
| 	.get_result		= bt_get_result,
 | |
| 	.event			= bt_event,
 | |
| 	.detect			= bt_detect,
 | |
| 	.cleanup		= bt_cleanup,
 | |
| 	.size			= bt_size,
 | |
| };
 |