1666 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1666 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /*
 | |
|  *
 | |
|  *  Bluetooth support for Intel PCIe devices
 | |
|  *
 | |
|  *  Copyright (C) 2024  Intel Corporation
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/firmware.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/wait.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/interrupt.h>
 | |
| 
 | |
| #include <asm/unaligned.h>
 | |
| 
 | |
| #include <net/bluetooth/bluetooth.h>
 | |
| #include <net/bluetooth/hci_core.h>
 | |
| 
 | |
| #include "btintel.h"
 | |
| #include "btintel_pcie.h"
 | |
| 
 | |
| #define VERSION "0.1"
 | |
| 
 | |
| #define BTINTEL_PCI_DEVICE(dev, subdev)	\
 | |
| 	.vendor = PCI_VENDOR_ID_INTEL,	\
 | |
| 	.device = (dev),		\
 | |
| 	.subvendor = PCI_ANY_ID,	\
 | |
| 	.subdevice = (subdev),		\
 | |
| 	.driver_data = 0
 | |
| 
 | |
| #define POLL_INTERVAL_US	10
 | |
| 
 | |
| /* Intel Bluetooth PCIe device id table */
 | |
| static const struct pci_device_id btintel_pcie_table[] = {
 | |
| 	{ BTINTEL_PCI_DEVICE(0xA876, PCI_ANY_ID) },
 | |
| 	{ 0 }
 | |
| };
 | |
| MODULE_DEVICE_TABLE(pci, btintel_pcie_table);
 | |
| 
 | |
| /* Intel PCIe uses 4 bytes of HCI type instead of 1 byte BT SIG HCI type */
 | |
| #define BTINTEL_PCIE_HCI_TYPE_LEN	4
 | |
| #define BTINTEL_PCIE_HCI_CMD_PKT	0x00000001
 | |
| #define BTINTEL_PCIE_HCI_ACL_PKT	0x00000002
 | |
| #define BTINTEL_PCIE_HCI_SCO_PKT	0x00000003
 | |
| #define BTINTEL_PCIE_HCI_EVT_PKT	0x00000004
 | |
| #define BTINTEL_PCIE_HCI_ISO_PKT	0x00000005
 | |
| 
 | |
| /* Alive interrupt context */
 | |
| enum {
 | |
| 	BTINTEL_PCIE_ROM,
 | |
| 	BTINTEL_PCIE_FW_DL,
 | |
| 	BTINTEL_PCIE_HCI_RESET,
 | |
| 	BTINTEL_PCIE_INTEL_HCI_RESET1,
 | |
| 	BTINTEL_PCIE_INTEL_HCI_RESET2,
 | |
| 	BTINTEL_PCIE_D0,
 | |
| 	BTINTEL_PCIE_D3
 | |
| };
 | |
| 
 | |
| static inline void ipc_print_ia_ring(struct hci_dev *hdev, struct ia *ia,
 | |
| 				     u16 queue_num)
 | |
| {
 | |
| 	bt_dev_dbg(hdev, "IA: %s: tr-h:%02u  tr-t:%02u  cr-h:%02u  cr-t:%02u",
 | |
| 		   queue_num == BTINTEL_PCIE_TXQ_NUM ? "TXQ" : "RXQ",
 | |
| 		   ia->tr_hia[queue_num], ia->tr_tia[queue_num],
 | |
| 		   ia->cr_hia[queue_num], ia->cr_tia[queue_num]);
 | |
| }
 | |
| 
 | |
| static inline void ipc_print_urbd1(struct hci_dev *hdev, struct urbd1 *urbd1,
 | |
| 				   u16 index)
 | |
| {
 | |
| 	bt_dev_dbg(hdev, "RXQ:urbd1(%u) frbd_tag:%u status: 0x%x fixed:0x%x",
 | |
| 		   index, urbd1->frbd_tag, urbd1->status, urbd1->fixed);
 | |
| }
 | |
| 
 | |
| static struct btintel_pcie_data *btintel_pcie_get_data(struct msix_entry *entry)
 | |
| {
 | |
| 	u8 queue = entry->entry;
 | |
| 	struct msix_entry *entries = entry - queue;
 | |
| 
 | |
| 	return container_of(entries, struct btintel_pcie_data, msix_entries[0]);
 | |
| }
 | |
| 
 | |
| /* Set the doorbell for TXQ to notify the device that @index (actually index-1)
 | |
|  * of the TFD is updated and ready to transmit.
 | |
|  */
 | |
| static void btintel_pcie_set_tx_db(struct btintel_pcie_data *data, u16 index)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	val = index;
 | |
| 	val |= (BTINTEL_PCIE_TX_DB_VEC << 16);
 | |
| 
 | |
| 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_HBUS_TARG_WRPTR, val);
 | |
| }
 | |
| 
 | |
| /* Copy the data to next(@tfd_index) data buffer and update the TFD(transfer
 | |
|  * descriptor) with the data length and the DMA address of the data buffer.
 | |
|  */
 | |
| static void btintel_pcie_prepare_tx(struct txq *txq, u16 tfd_index,
 | |
| 				    struct sk_buff *skb)
 | |
| {
 | |
| 	struct data_buf *buf;
 | |
| 	struct tfd *tfd;
 | |
| 
 | |
| 	tfd = &txq->tfds[tfd_index];
 | |
| 	memset(tfd, 0, sizeof(*tfd));
 | |
| 
 | |
| 	buf = &txq->bufs[tfd_index];
 | |
| 
 | |
| 	tfd->size = skb->len;
 | |
| 	tfd->addr = buf->data_p_addr;
 | |
| 
 | |
| 	/* Copy the outgoing data to DMA buffer */
 | |
| 	memcpy(buf->data, skb->data, tfd->size);
 | |
| }
 | |
| 
 | |
| static int btintel_pcie_send_sync(struct btintel_pcie_data *data,
 | |
| 				  struct sk_buff *skb)
 | |
| {
 | |
| 	int ret;
 | |
| 	u16 tfd_index;
 | |
| 	struct txq *txq = &data->txq;
 | |
| 
 | |
| 	tfd_index = data->ia.tr_hia[BTINTEL_PCIE_TXQ_NUM];
 | |
| 
 | |
| 	if (tfd_index > txq->count)
 | |
| 		return -ERANGE;
 | |
| 
 | |
| 	/* Prepare for TX. It updates the TFD with the length of data and
 | |
| 	 * address of the DMA buffer, and copy the data to the DMA buffer
 | |
| 	 */
 | |
| 	btintel_pcie_prepare_tx(txq, tfd_index, skb);
 | |
| 
 | |
| 	tfd_index = (tfd_index + 1) % txq->count;
 | |
| 	data->ia.tr_hia[BTINTEL_PCIE_TXQ_NUM] = tfd_index;
 | |
| 
 | |
| 	/* Arm wait event condition */
 | |
| 	data->tx_wait_done = false;
 | |
| 
 | |
| 	/* Set the doorbell to notify the device */
 | |
| 	btintel_pcie_set_tx_db(data, tfd_index);
 | |
| 
 | |
| 	/* Wait for the complete interrupt - URBD0 */
 | |
| 	ret = wait_event_timeout(data->tx_wait_q, data->tx_wait_done,
 | |
| 				 msecs_to_jiffies(BTINTEL_PCIE_TX_WAIT_TIMEOUT_MS));
 | |
| 	if (!ret)
 | |
| 		return -ETIME;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Set the doorbell for RXQ to notify the device that @index (actually index-1)
 | |
|  * is available to receive the data
 | |
|  */
 | |
| static void btintel_pcie_set_rx_db(struct btintel_pcie_data *data, u16 index)
 | |
| {
 | |
| 	u32 val;
 | |
| 
 | |
| 	val = index;
 | |
| 	val |= (BTINTEL_PCIE_RX_DB_VEC << 16);
 | |
| 
 | |
| 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_HBUS_TARG_WRPTR, val);
 | |
| }
 | |
| 
 | |
| /* Update the FRBD (free buffer descriptor) with the @frbd_index and the
 | |
|  * DMA address of the free buffer.
 | |
|  */
 | |
| static void btintel_pcie_prepare_rx(struct rxq *rxq, u16 frbd_index)
 | |
| {
 | |
| 	struct data_buf *buf;
 | |
| 	struct frbd *frbd;
 | |
| 
 | |
| 	/* Get the buffer of the FRBD for DMA */
 | |
| 	buf = &rxq->bufs[frbd_index];
 | |
| 
 | |
| 	frbd = &rxq->frbds[frbd_index];
 | |
| 	memset(frbd, 0, sizeof(*frbd));
 | |
| 
 | |
| 	/* Update FRBD */
 | |
| 	frbd->tag = frbd_index;
 | |
| 	frbd->addr = buf->data_p_addr;
 | |
| }
 | |
| 
 | |
| static int btintel_pcie_submit_rx(struct btintel_pcie_data *data)
 | |
| {
 | |
| 	u16 frbd_index;
 | |
| 	struct rxq *rxq = &data->rxq;
 | |
| 
 | |
| 	frbd_index = data->ia.tr_hia[BTINTEL_PCIE_RXQ_NUM];
 | |
| 
 | |
| 	if (frbd_index > rxq->count)
 | |
| 		return -ERANGE;
 | |
| 
 | |
| 	/* Prepare for RX submit. It updates the FRBD with the address of DMA
 | |
| 	 * buffer
 | |
| 	 */
 | |
| 	btintel_pcie_prepare_rx(rxq, frbd_index);
 | |
| 
 | |
| 	frbd_index = (frbd_index + 1) % rxq->count;
 | |
| 	data->ia.tr_hia[BTINTEL_PCIE_RXQ_NUM] = frbd_index;
 | |
| 	ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_RXQ_NUM);
 | |
| 
 | |
| 	/* Set the doorbell to notify the device */
 | |
| 	btintel_pcie_set_rx_db(data, frbd_index);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btintel_pcie_start_rx(struct btintel_pcie_data *data)
 | |
| {
 | |
| 	int i, ret;
 | |
| 
 | |
| 	for (i = 0; i < BTINTEL_PCIE_RX_MAX_QUEUE; i++) {
 | |
| 		ret = btintel_pcie_submit_rx(data);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void btintel_pcie_reset_ia(struct btintel_pcie_data *data)
 | |
| {
 | |
| 	memset(data->ia.tr_hia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
 | |
| 	memset(data->ia.tr_tia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
 | |
| 	memset(data->ia.cr_hia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
 | |
| 	memset(data->ia.cr_tia, 0, sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES);
 | |
| }
 | |
| 
 | |
| static int btintel_pcie_reset_bt(struct btintel_pcie_data *data)
 | |
| {
 | |
| 	u32 reg;
 | |
| 	int retry = 3;
 | |
| 
 | |
| 	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
 | |
| 
 | |
| 	reg &= ~(BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_ENA |
 | |
| 			BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT |
 | |
| 			BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT);
 | |
| 	reg |= BTINTEL_PCIE_CSR_FUNC_CTRL_BUS_MASTER_DISCON;
 | |
| 
 | |
| 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg);
 | |
| 
 | |
| 	do {
 | |
| 		reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
 | |
| 		if (reg & BTINTEL_PCIE_CSR_FUNC_CTRL_BUS_MASTER_STS)
 | |
| 			break;
 | |
| 		usleep_range(10000, 12000);
 | |
| 
 | |
| 	} while (--retry > 0);
 | |
| 	usleep_range(10000, 12000);
 | |
| 
 | |
| 	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
 | |
| 
 | |
| 	reg &= ~(BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_ENA |
 | |
| 			BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT |
 | |
| 			BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT);
 | |
| 	reg |= BTINTEL_PCIE_CSR_FUNC_CTRL_SW_RESET;
 | |
| 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg);
 | |
| 	usleep_range(10000, 12000);
 | |
| 
 | |
| 	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
 | |
| 	bt_dev_dbg(data->hdev, "csr register after reset: 0x%8.8x", reg);
 | |
| 
 | |
| 	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_BOOT_STAGE_REG);
 | |
| 
 | |
| 	/* If shared hardware reset is success then boot stage register shall be
 | |
| 	 * set to 0
 | |
| 	 */
 | |
| 	return reg == 0 ? 0 : -ENODEV;
 | |
| }
 | |
| 
 | |
| /* This function enables BT function by setting BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT bit in
 | |
|  * BTINTEL_PCIE_CSR_FUNC_CTRL_REG register and wait for MSI-X with
 | |
|  * BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0.
 | |
|  * Then the host reads firmware version from BTINTEL_CSR_F2D_MBX and the boot stage
 | |
|  * from BTINTEL_PCIE_CSR_BOOT_STAGE_REG.
 | |
|  */
 | |
| static int btintel_pcie_enable_bt(struct btintel_pcie_data *data)
 | |
| {
 | |
| 	int err;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	data->gp0_received = false;
 | |
| 
 | |
| 	/* Update the DMA address of CI struct to CSR */
 | |
| 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_CI_ADDR_LSB_REG,
 | |
| 			      data->ci_p_addr & 0xffffffff);
 | |
| 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_CI_ADDR_MSB_REG,
 | |
| 			      (u64)data->ci_p_addr >> 32);
 | |
| 
 | |
| 	/* Reset the cached value of boot stage. it is updated by the MSI-X
 | |
| 	 * gp0 interrupt handler.
 | |
| 	 */
 | |
| 	data->boot_stage_cache = 0x0;
 | |
| 
 | |
| 	/* Set MAC_INIT bit to start primary bootloader */
 | |
| 	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
 | |
| 	reg &= ~(BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT |
 | |
| 			BTINTEL_PCIE_CSR_FUNC_CTRL_BUS_MASTER_DISCON |
 | |
| 			BTINTEL_PCIE_CSR_FUNC_CTRL_SW_RESET);
 | |
| 	reg |= (BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_ENA |
 | |
| 			BTINTEL_PCIE_CSR_FUNC_CTRL_MAC_INIT);
 | |
| 
 | |
| 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG, reg);
 | |
| 
 | |
| 	/* MAC is ready. Enable BT FUNC */
 | |
| 	btintel_pcie_set_reg_bits(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG,
 | |
| 				  BTINTEL_PCIE_CSR_FUNC_CTRL_FUNC_INIT);
 | |
| 
 | |
| 	btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_FUNC_CTRL_REG);
 | |
| 
 | |
| 	/* wait for interrupt from the device after booting up to primary
 | |
| 	 * bootloader.
 | |
| 	 */
 | |
| 	data->alive_intr_ctxt = BTINTEL_PCIE_ROM;
 | |
| 	err = wait_event_timeout(data->gp0_wait_q, data->gp0_received,
 | |
| 				 msecs_to_jiffies(BTINTEL_DEFAULT_INTR_TIMEOUT_MS));
 | |
| 	if (!err)
 | |
| 		return -ETIME;
 | |
| 
 | |
| 	/* Check cached boot stage is BTINTEL_PCIE_CSR_BOOT_STAGE_ROM(BIT(0)) */
 | |
| 	if (~data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_ROM)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* BIT(0) - ROM, BIT(1) - IML and BIT(3) - OP
 | |
|  * Sometimes during firmware image switching from ROM to IML or IML to OP image,
 | |
|  * the previous image bit is not cleared by firmware when alive interrupt is
 | |
|  * received. Driver needs to take care of these sticky bits when deciding the
 | |
|  * current image running on controller.
 | |
|  * Ex: 0x10 and 0x11 - both represents that controller is running IML
 | |
|  */
 | |
| static inline bool btintel_pcie_in_rom(struct btintel_pcie_data *data)
 | |
| {
 | |
| 	return data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_ROM &&
 | |
| 		!(data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_IML) &&
 | |
| 		!(data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_OPFW);
 | |
| }
 | |
| 
 | |
| static inline bool btintel_pcie_in_op(struct btintel_pcie_data *data)
 | |
| {
 | |
| 	return data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_OPFW;
 | |
| }
 | |
| 
 | |
| static inline bool btintel_pcie_in_iml(struct btintel_pcie_data *data)
 | |
| {
 | |
| 	return data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_IML &&
 | |
| 		!(data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_OPFW);
 | |
| }
 | |
| 
 | |
| static inline bool btintel_pcie_in_d3(struct btintel_pcie_data *data)
 | |
| {
 | |
| 	return data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_D3_STATE_READY;
 | |
| }
 | |
| 
 | |
| static inline bool btintel_pcie_in_d0(struct btintel_pcie_data *data)
 | |
| {
 | |
| 	return !(data->boot_stage_cache & BTINTEL_PCIE_CSR_BOOT_STAGE_D3_STATE_READY);
 | |
| }
 | |
| 
 | |
| static void btintel_pcie_wr_sleep_cntrl(struct btintel_pcie_data *data,
 | |
| 					u32 dxstate)
 | |
| {
 | |
| 	bt_dev_dbg(data->hdev, "writing sleep_ctl_reg: 0x%8.8x", dxstate);
 | |
| 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_IPC_SLEEP_CTL_REG, dxstate);
 | |
| }
 | |
| 
 | |
| static inline char *btintel_pcie_alivectxt_state2str(u32 alive_intr_ctxt)
 | |
| {
 | |
| 	switch (alive_intr_ctxt) {
 | |
| 	case BTINTEL_PCIE_ROM:
 | |
| 		return "rom";
 | |
| 	case BTINTEL_PCIE_FW_DL:
 | |
| 		return "fw_dl";
 | |
| 	case BTINTEL_PCIE_D0:
 | |
| 		return "d0";
 | |
| 	case BTINTEL_PCIE_D3:
 | |
| 		return "d3";
 | |
| 	case BTINTEL_PCIE_HCI_RESET:
 | |
| 		return "hci_reset";
 | |
| 	case BTINTEL_PCIE_INTEL_HCI_RESET1:
 | |
| 		return "intel_reset1";
 | |
| 	case BTINTEL_PCIE_INTEL_HCI_RESET2:
 | |
| 		return "intel_reset2";
 | |
| 	default:
 | |
| 		return "unknown";
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* This function handles the MSI-X interrupt for gp0 cause (bit 0 in
 | |
|  * BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES) which is sent for boot stage and image response.
 | |
|  */
 | |
| static void btintel_pcie_msix_gp0_handler(struct btintel_pcie_data *data)
 | |
| {
 | |
| 	bool submit_rx, signal_waitq;
 | |
| 	u32 reg, old_ctxt;
 | |
| 
 | |
| 	/* This interrupt is for three different causes and it is not easy to
 | |
| 	 * know what causes the interrupt. So, it compares each register value
 | |
| 	 * with cached value and update it before it wake up the queue.
 | |
| 	 */
 | |
| 	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_BOOT_STAGE_REG);
 | |
| 	if (reg != data->boot_stage_cache)
 | |
| 		data->boot_stage_cache = reg;
 | |
| 
 | |
| 	bt_dev_dbg(data->hdev, "Alive context: %s old_boot_stage: 0x%8.8x new_boot_stage: 0x%8.8x",
 | |
| 		   btintel_pcie_alivectxt_state2str(data->alive_intr_ctxt),
 | |
| 		   data->boot_stage_cache, reg);
 | |
| 	reg = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_IMG_RESPONSE_REG);
 | |
| 	if (reg != data->img_resp_cache)
 | |
| 		data->img_resp_cache = reg;
 | |
| 
 | |
| 	data->gp0_received = true;
 | |
| 
 | |
| 	old_ctxt = data->alive_intr_ctxt;
 | |
| 	submit_rx = false;
 | |
| 	signal_waitq = false;
 | |
| 
 | |
| 	switch (data->alive_intr_ctxt) {
 | |
| 	case BTINTEL_PCIE_ROM:
 | |
| 		data->alive_intr_ctxt = BTINTEL_PCIE_FW_DL;
 | |
| 		signal_waitq = true;
 | |
| 		break;
 | |
| 	case BTINTEL_PCIE_FW_DL:
 | |
| 		/* Error case is already handled. Ideally control shall not
 | |
| 		 * reach here
 | |
| 		 */
 | |
| 		break;
 | |
| 	case BTINTEL_PCIE_INTEL_HCI_RESET1:
 | |
| 		if (btintel_pcie_in_op(data)) {
 | |
| 			submit_rx = true;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (btintel_pcie_in_iml(data)) {
 | |
| 			submit_rx = true;
 | |
| 			data->alive_intr_ctxt = BTINTEL_PCIE_FW_DL;
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	case BTINTEL_PCIE_INTEL_HCI_RESET2:
 | |
| 		if (btintel_test_and_clear_flag(data->hdev, INTEL_WAIT_FOR_D0)) {
 | |
| 			btintel_wake_up_flag(data->hdev, INTEL_WAIT_FOR_D0);
 | |
| 			data->alive_intr_ctxt = BTINTEL_PCIE_D0;
 | |
| 		}
 | |
| 		break;
 | |
| 	case BTINTEL_PCIE_D0:
 | |
| 		if (btintel_pcie_in_d3(data)) {
 | |
| 			data->alive_intr_ctxt = BTINTEL_PCIE_D3;
 | |
| 			signal_waitq = true;
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	case BTINTEL_PCIE_D3:
 | |
| 		if (btintel_pcie_in_d0(data)) {
 | |
| 			data->alive_intr_ctxt = BTINTEL_PCIE_D0;
 | |
| 			submit_rx = true;
 | |
| 			signal_waitq = true;
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	case BTINTEL_PCIE_HCI_RESET:
 | |
| 		data->alive_intr_ctxt = BTINTEL_PCIE_D0;
 | |
| 		submit_rx = true;
 | |
| 		signal_waitq = true;
 | |
| 		break;
 | |
| 	default:
 | |
| 		bt_dev_err(data->hdev, "Unknown state: 0x%2.2x",
 | |
| 			   data->alive_intr_ctxt);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (submit_rx) {
 | |
| 		btintel_pcie_reset_ia(data);
 | |
| 		btintel_pcie_start_rx(data);
 | |
| 	}
 | |
| 
 | |
| 	if (signal_waitq) {
 | |
| 		bt_dev_dbg(data->hdev, "wake up gp0 wait_q");
 | |
| 		wake_up(&data->gp0_wait_q);
 | |
| 	}
 | |
| 
 | |
| 	if (old_ctxt != data->alive_intr_ctxt)
 | |
| 		bt_dev_dbg(data->hdev, "alive context changed: %s  ->  %s",
 | |
| 			   btintel_pcie_alivectxt_state2str(old_ctxt),
 | |
| 			   btintel_pcie_alivectxt_state2str(data->alive_intr_ctxt));
 | |
| }
 | |
| 
 | |
| /* This function handles the MSX-X interrupt for rx queue 0 which is for TX
 | |
|  */
 | |
| static void btintel_pcie_msix_tx_handle(struct btintel_pcie_data *data)
 | |
| {
 | |
| 	u16 cr_tia, cr_hia;
 | |
| 	struct txq *txq;
 | |
| 	struct urbd0 *urbd0;
 | |
| 
 | |
| 	cr_tia = data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM];
 | |
| 	cr_hia = data->ia.cr_hia[BTINTEL_PCIE_TXQ_NUM];
 | |
| 
 | |
| 	if (cr_tia == cr_hia)
 | |
| 		return;
 | |
| 
 | |
| 	txq = &data->txq;
 | |
| 
 | |
| 	while (cr_tia != cr_hia) {
 | |
| 		data->tx_wait_done = true;
 | |
| 		wake_up(&data->tx_wait_q);
 | |
| 
 | |
| 		urbd0 = &txq->urbd0s[cr_tia];
 | |
| 
 | |
| 		if (urbd0->tfd_index > txq->count)
 | |
| 			return;
 | |
| 
 | |
| 		cr_tia = (cr_tia + 1) % txq->count;
 | |
| 		data->ia.cr_tia[BTINTEL_PCIE_TXQ_NUM] = cr_tia;
 | |
| 		ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_TXQ_NUM);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int btintel_pcie_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
 | |
| {
 | |
| 	struct hci_event_hdr *hdr = (void *)skb->data;
 | |
| 	const char diagnostics_hdr[] = { 0x87, 0x80, 0x03 };
 | |
| 	struct btintel_pcie_data *data = hci_get_drvdata(hdev);
 | |
| 
 | |
| 	if (skb->len > HCI_EVENT_HDR_SIZE && hdr->evt == 0xff &&
 | |
| 	    hdr->plen > 0) {
 | |
| 		const void *ptr = skb->data + HCI_EVENT_HDR_SIZE + 1;
 | |
| 		unsigned int len = skb->len - HCI_EVENT_HDR_SIZE - 1;
 | |
| 
 | |
| 		if (btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
 | |
| 			switch (skb->data[2]) {
 | |
| 			case 0x02:
 | |
| 				/* When switching to the operational firmware
 | |
| 				 * the device sends a vendor specific event
 | |
| 				 * indicating that the bootup completed.
 | |
| 				 */
 | |
| 				btintel_bootup(hdev, ptr, len);
 | |
| 
 | |
| 				/* If bootup event is from operational image,
 | |
| 				 * driver needs to write sleep control register to
 | |
| 				 * move into D0 state
 | |
| 				 */
 | |
| 				if (btintel_pcie_in_op(data)) {
 | |
| 					btintel_pcie_wr_sleep_cntrl(data, BTINTEL_PCIE_STATE_D0);
 | |
| 					data->alive_intr_ctxt = BTINTEL_PCIE_INTEL_HCI_RESET2;
 | |
| 					kfree_skb(skb);
 | |
| 					return 0;
 | |
| 				}
 | |
| 
 | |
| 				if (btintel_pcie_in_iml(data)) {
 | |
| 					/* In case of IML, there is no concept
 | |
| 					 * of D0 transition. Just mimic as if
 | |
| 					 * IML moved to D0 by clearing INTEL_WAIT_FOR_D0
 | |
| 					 * bit and waking up the task waiting on
 | |
| 					 * INTEL_WAIT_FOR_D0. This is required
 | |
| 					 * as intel_boot() is common function for
 | |
| 					 * both IML and OP image loading.
 | |
| 					 */
 | |
| 					if (btintel_test_and_clear_flag(data->hdev,
 | |
| 									INTEL_WAIT_FOR_D0))
 | |
| 						btintel_wake_up_flag(data->hdev,
 | |
| 								     INTEL_WAIT_FOR_D0);
 | |
| 				}
 | |
| 				kfree_skb(skb);
 | |
| 				return 0;
 | |
| 			case 0x06:
 | |
| 				/* When the firmware loading completes the
 | |
| 				 * device sends out a vendor specific event
 | |
| 				 * indicating the result of the firmware
 | |
| 				 * loading.
 | |
| 				 */
 | |
| 				btintel_secure_send_result(hdev, ptr, len);
 | |
| 				kfree_skb(skb);
 | |
| 				return 0;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Handle all diagnostics events separately. May still call
 | |
| 		 * hci_recv_frame.
 | |
| 		 */
 | |
| 		if (len >= sizeof(diagnostics_hdr) &&
 | |
| 		    memcmp(&skb->data[2], diagnostics_hdr,
 | |
| 			   sizeof(diagnostics_hdr)) == 0) {
 | |
| 			return btintel_diagnostics(hdev, skb);
 | |
| 		}
 | |
| 
 | |
| 		/* This is a debug event that comes from IML and OP image when it
 | |
| 		 * starts execution. There is no need pass this event to stack.
 | |
| 		 */
 | |
| 		if (skb->data[2] == 0x97)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	return hci_recv_frame(hdev, skb);
 | |
| }
 | |
| /* Process the received rx data
 | |
|  * It check the frame header to identify the data type and create skb
 | |
|  * and calling HCI API
 | |
|  */
 | |
| static int btintel_pcie_recv_frame(struct btintel_pcie_data *data,
 | |
| 				       struct sk_buff *skb)
 | |
| {
 | |
| 	int ret;
 | |
| 	u8 pkt_type;
 | |
| 	u16 plen;
 | |
| 	u32 pcie_pkt_type;
 | |
| 	struct sk_buff *new_skb;
 | |
| 	void *pdata;
 | |
| 	struct hci_dev *hdev = data->hdev;
 | |
| 
 | |
| 	spin_lock(&data->hci_rx_lock);
 | |
| 
 | |
| 	/* The first 4 bytes indicates the Intel PCIe specific packet type */
 | |
| 	pdata = skb_pull_data(skb, BTINTEL_PCIE_HCI_TYPE_LEN);
 | |
| 	if (!pdata) {
 | |
| 		bt_dev_err(hdev, "Corrupted packet received");
 | |
| 		ret = -EILSEQ;
 | |
| 		goto exit_error;
 | |
| 	}
 | |
| 
 | |
| 	pcie_pkt_type = get_unaligned_le32(pdata);
 | |
| 
 | |
| 	switch (pcie_pkt_type) {
 | |
| 	case BTINTEL_PCIE_HCI_ACL_PKT:
 | |
| 		if (skb->len >= HCI_ACL_HDR_SIZE) {
 | |
| 			plen = HCI_ACL_HDR_SIZE + __le16_to_cpu(hci_acl_hdr(skb)->dlen);
 | |
| 			pkt_type = HCI_ACLDATA_PKT;
 | |
| 		} else {
 | |
| 			bt_dev_err(hdev, "ACL packet is too short");
 | |
| 			ret = -EILSEQ;
 | |
| 			goto exit_error;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case BTINTEL_PCIE_HCI_SCO_PKT:
 | |
| 		if (skb->len >= HCI_SCO_HDR_SIZE) {
 | |
| 			plen = HCI_SCO_HDR_SIZE + hci_sco_hdr(skb)->dlen;
 | |
| 			pkt_type = HCI_SCODATA_PKT;
 | |
| 		} else {
 | |
| 			bt_dev_err(hdev, "SCO packet is too short");
 | |
| 			ret = -EILSEQ;
 | |
| 			goto exit_error;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case BTINTEL_PCIE_HCI_EVT_PKT:
 | |
| 		if (skb->len >= HCI_EVENT_HDR_SIZE) {
 | |
| 			plen = HCI_EVENT_HDR_SIZE + hci_event_hdr(skb)->plen;
 | |
| 			pkt_type = HCI_EVENT_PKT;
 | |
| 		} else {
 | |
| 			bt_dev_err(hdev, "Event packet is too short");
 | |
| 			ret = -EILSEQ;
 | |
| 			goto exit_error;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case BTINTEL_PCIE_HCI_ISO_PKT:
 | |
| 		if (skb->len >= HCI_ISO_HDR_SIZE) {
 | |
| 			plen = HCI_ISO_HDR_SIZE + __le16_to_cpu(hci_iso_hdr(skb)->dlen);
 | |
| 			pkt_type = HCI_ISODATA_PKT;
 | |
| 		} else {
 | |
| 			bt_dev_err(hdev, "ISO packet is too short");
 | |
| 			ret = -EILSEQ;
 | |
| 			goto exit_error;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		bt_dev_err(hdev, "Invalid packet type received: 0x%4.4x",
 | |
| 			   pcie_pkt_type);
 | |
| 		ret = -EINVAL;
 | |
| 		goto exit_error;
 | |
| 	}
 | |
| 
 | |
| 	if (skb->len < plen) {
 | |
| 		bt_dev_err(hdev, "Received corrupted packet. type: 0x%2.2x",
 | |
| 			   pkt_type);
 | |
| 		ret = -EILSEQ;
 | |
| 		goto exit_error;
 | |
| 	}
 | |
| 
 | |
| 	bt_dev_dbg(hdev, "pkt_type: 0x%2.2x len: %u", pkt_type, plen);
 | |
| 
 | |
| 	new_skb = bt_skb_alloc(plen, GFP_ATOMIC);
 | |
| 	if (!new_skb) {
 | |
| 		bt_dev_err(hdev, "Failed to allocate memory for skb of len: %u",
 | |
| 			   skb->len);
 | |
| 		ret = -ENOMEM;
 | |
| 		goto exit_error;
 | |
| 	}
 | |
| 
 | |
| 	hci_skb_pkt_type(new_skb) = pkt_type;
 | |
| 	skb_put_data(new_skb, skb->data, plen);
 | |
| 	hdev->stat.byte_rx += plen;
 | |
| 
 | |
| 	if (pcie_pkt_type == BTINTEL_PCIE_HCI_EVT_PKT)
 | |
| 		ret = btintel_pcie_recv_event(hdev, new_skb);
 | |
| 	else
 | |
| 		ret = hci_recv_frame(hdev, new_skb);
 | |
| 
 | |
| exit_error:
 | |
| 	if (ret)
 | |
| 		hdev->stat.err_rx++;
 | |
| 
 | |
| 	spin_unlock(&data->hci_rx_lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void btintel_pcie_rx_work(struct work_struct *work)
 | |
| {
 | |
| 	struct btintel_pcie_data *data = container_of(work,
 | |
| 					struct btintel_pcie_data, rx_work);
 | |
| 	struct sk_buff *skb;
 | |
| 	int err;
 | |
| 	struct hci_dev *hdev = data->hdev;
 | |
| 
 | |
| 	/* Process the sk_buf in queue and send to the HCI layer */
 | |
| 	while ((skb = skb_dequeue(&data->rx_skb_q))) {
 | |
| 		err = btintel_pcie_recv_frame(data, skb);
 | |
| 		if (err)
 | |
| 			bt_dev_err(hdev, "Failed to send received frame: %d",
 | |
| 				   err);
 | |
| 		kfree_skb(skb);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* create sk_buff with data and save it to queue and start RX work */
 | |
| static int btintel_pcie_submit_rx_work(struct btintel_pcie_data *data, u8 status,
 | |
| 				       void *buf)
 | |
| {
 | |
| 	int ret, len;
 | |
| 	struct rfh_hdr *rfh_hdr;
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	rfh_hdr = buf;
 | |
| 
 | |
| 	len = rfh_hdr->packet_len;
 | |
| 	if (len <= 0) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto resubmit;
 | |
| 	}
 | |
| 
 | |
| 	/* Remove RFH header */
 | |
| 	buf += sizeof(*rfh_hdr);
 | |
| 
 | |
| 	skb = alloc_skb(len, GFP_ATOMIC);
 | |
| 	if (!skb)
 | |
| 		goto resubmit;
 | |
| 
 | |
| 	skb_put_data(skb, buf, len);
 | |
| 	skb_queue_tail(&data->rx_skb_q, skb);
 | |
| 	queue_work(data->workqueue, &data->rx_work);
 | |
| 
 | |
| resubmit:
 | |
| 	ret = btintel_pcie_submit_rx(data);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Handles the MSI-X interrupt for rx queue 1 which is for RX */
 | |
| static void btintel_pcie_msix_rx_handle(struct btintel_pcie_data *data)
 | |
| {
 | |
| 	u16 cr_hia, cr_tia;
 | |
| 	struct rxq *rxq;
 | |
| 	struct urbd1 *urbd1;
 | |
| 	struct data_buf *buf;
 | |
| 	int ret;
 | |
| 	struct hci_dev *hdev = data->hdev;
 | |
| 
 | |
| 	cr_hia = data->ia.cr_hia[BTINTEL_PCIE_RXQ_NUM];
 | |
| 	cr_tia = data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM];
 | |
| 
 | |
| 	bt_dev_dbg(hdev, "RXQ: cr_hia: %u  cr_tia: %u", cr_hia, cr_tia);
 | |
| 
 | |
| 	/* Check CR_TIA and CR_HIA for change */
 | |
| 	if (cr_tia == cr_hia) {
 | |
| 		bt_dev_warn(hdev, "RXQ: no new CD found");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	rxq = &data->rxq;
 | |
| 
 | |
| 	/* The firmware sends multiple CD in a single MSI-X and it needs to
 | |
| 	 * process all received CDs in this interrupt.
 | |
| 	 */
 | |
| 	while (cr_tia != cr_hia) {
 | |
| 		urbd1 = &rxq->urbd1s[cr_tia];
 | |
| 		ipc_print_urbd1(data->hdev, urbd1, cr_tia);
 | |
| 
 | |
| 		buf = &rxq->bufs[urbd1->frbd_tag];
 | |
| 		if (!buf) {
 | |
| 			bt_dev_err(hdev, "RXQ: failed to get the DMA buffer for %d",
 | |
| 				   urbd1->frbd_tag);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		ret = btintel_pcie_submit_rx_work(data, urbd1->status,
 | |
| 						  buf->data);
 | |
| 		if (ret) {
 | |
| 			bt_dev_err(hdev, "RXQ: failed to submit rx request");
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		cr_tia = (cr_tia + 1) % rxq->count;
 | |
| 		data->ia.cr_tia[BTINTEL_PCIE_RXQ_NUM] = cr_tia;
 | |
| 		ipc_print_ia_ring(data->hdev, &data->ia, BTINTEL_PCIE_RXQ_NUM);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static irqreturn_t btintel_pcie_msix_isr(int irq, void *data)
 | |
| {
 | |
| 	return IRQ_WAKE_THREAD;
 | |
| }
 | |
| 
 | |
| static irqreturn_t btintel_pcie_irq_msix_handler(int irq, void *dev_id)
 | |
| {
 | |
| 	struct msix_entry *entry = dev_id;
 | |
| 	struct btintel_pcie_data *data = btintel_pcie_get_data(entry);
 | |
| 	u32 intr_fh, intr_hw;
 | |
| 
 | |
| 	spin_lock(&data->irq_lock);
 | |
| 	intr_fh = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_CAUSES);
 | |
| 	intr_hw = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES);
 | |
| 
 | |
| 	/* Clear causes registers to avoid being handling the same cause */
 | |
| 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_CAUSES, intr_fh);
 | |
| 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_CAUSES, intr_hw);
 | |
| 	spin_unlock(&data->irq_lock);
 | |
| 
 | |
| 	if (unlikely(!(intr_fh | intr_hw))) {
 | |
| 		/* Ignore interrupt, inta == 0 */
 | |
| 		return IRQ_NONE;
 | |
| 	}
 | |
| 
 | |
| 	/* This interrupt is triggered by the firmware after updating
 | |
| 	 * boot_stage register and image_response register
 | |
| 	 */
 | |
| 	if (intr_hw & BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0)
 | |
| 		btintel_pcie_msix_gp0_handler(data);
 | |
| 
 | |
| 	/* For TX */
 | |
| 	if (intr_fh & BTINTEL_PCIE_MSIX_FH_INT_CAUSES_0)
 | |
| 		btintel_pcie_msix_tx_handle(data);
 | |
| 
 | |
| 	/* For RX */
 | |
| 	if (intr_fh & BTINTEL_PCIE_MSIX_FH_INT_CAUSES_1)
 | |
| 		btintel_pcie_msix_rx_handle(data);
 | |
| 
 | |
| 	/*
 | |
| 	 * Before sending the interrupt the HW disables it to prevent a nested
 | |
| 	 * interrupt. This is done by writing 1 to the corresponding bit in
 | |
| 	 * the mask register. After handling the interrupt, it should be
 | |
| 	 * re-enabled by clearing this bit. This register is defined as write 1
 | |
| 	 * clear (W1C) register, meaning that it's cleared by writing 1
 | |
| 	 * to the bit.
 | |
| 	 */
 | |
| 	btintel_pcie_wr_reg32(data, BTINTEL_PCIE_CSR_MSIX_AUTOMASK_ST,
 | |
| 			      BIT(entry->entry));
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /* This function requests the irq for MSI-X and registers the handlers per irq.
 | |
|  * Currently, it requests only 1 irq for all interrupt causes.
 | |
|  */
 | |
| static int btintel_pcie_setup_irq(struct btintel_pcie_data *data)
 | |
| {
 | |
| 	int err;
 | |
| 	int num_irqs, i;
 | |
| 
 | |
| 	for (i = 0; i < BTINTEL_PCIE_MSIX_VEC_MAX; i++)
 | |
| 		data->msix_entries[i].entry = i;
 | |
| 
 | |
| 	num_irqs = pci_alloc_irq_vectors(data->pdev, BTINTEL_PCIE_MSIX_VEC_MIN,
 | |
| 					 BTINTEL_PCIE_MSIX_VEC_MAX, PCI_IRQ_MSIX);
 | |
| 	if (num_irqs < 0)
 | |
| 		return num_irqs;
 | |
| 
 | |
| 	data->alloc_vecs = num_irqs;
 | |
| 	data->msix_enabled = 1;
 | |
| 	data->def_irq = 0;
 | |
| 
 | |
| 	/* setup irq handler */
 | |
| 	for (i = 0; i < data->alloc_vecs; i++) {
 | |
| 		struct msix_entry *msix_entry;
 | |
| 
 | |
| 		msix_entry = &data->msix_entries[i];
 | |
| 		msix_entry->vector = pci_irq_vector(data->pdev, i);
 | |
| 
 | |
| 		err = devm_request_threaded_irq(&data->pdev->dev,
 | |
| 						msix_entry->vector,
 | |
| 						btintel_pcie_msix_isr,
 | |
| 						btintel_pcie_irq_msix_handler,
 | |
| 						IRQF_SHARED,
 | |
| 						KBUILD_MODNAME,
 | |
| 						msix_entry);
 | |
| 		if (err) {
 | |
| 			pci_free_irq_vectors(data->pdev);
 | |
| 			data->alloc_vecs = 0;
 | |
| 			return err;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct btintel_pcie_causes_list {
 | |
| 	u32 cause;
 | |
| 	u32 mask_reg;
 | |
| 	u8 cause_num;
 | |
| };
 | |
| 
 | |
| static struct btintel_pcie_causes_list causes_list[] = {
 | |
| 	{ BTINTEL_PCIE_MSIX_FH_INT_CAUSES_0,	BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK,	0x00 },
 | |
| 	{ BTINTEL_PCIE_MSIX_FH_INT_CAUSES_1,	BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK,	0x01 },
 | |
| 	{ BTINTEL_PCIE_MSIX_HW_INT_CAUSES_GP0, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK,	0x20 },
 | |
| };
 | |
| 
 | |
| /* This function configures the interrupt masks for both HW_INT_CAUSES and
 | |
|  * FH_INT_CAUSES which are meaningful to us.
 | |
|  *
 | |
|  * After resetting BT function via PCIE FLR or FUNC_CTRL reset, the driver
 | |
|  * need to call this function again to configure since the masks
 | |
|  * are reset to 0xFFFFFFFF after reset.
 | |
|  */
 | |
| static void btintel_pcie_config_msix(struct btintel_pcie_data *data)
 | |
| {
 | |
| 	int i;
 | |
| 	int val = data->def_irq | BTINTEL_PCIE_MSIX_NON_AUTO_CLEAR_CAUSE;
 | |
| 
 | |
| 	/* Set Non Auto Clear Cause */
 | |
| 	for (i = 0; i < ARRAY_SIZE(causes_list); i++) {
 | |
| 		btintel_pcie_wr_reg8(data,
 | |
| 				     BTINTEL_PCIE_CSR_MSIX_IVAR(causes_list[i].cause_num),
 | |
| 				     val);
 | |
| 		btintel_pcie_clr_reg_bits(data,
 | |
| 					  causes_list[i].mask_reg,
 | |
| 					  causes_list[i].cause);
 | |
| 	}
 | |
| 
 | |
| 	/* Save the initial interrupt mask */
 | |
| 	data->fh_init_mask = ~btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_FH_INT_MASK);
 | |
| 	data->hw_init_mask = ~btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_MSIX_HW_INT_MASK);
 | |
| }
 | |
| 
 | |
| static int btintel_pcie_config_pcie(struct pci_dev *pdev,
 | |
| 				    struct btintel_pcie_data *data)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = pcim_enable_device(pdev);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	pci_set_master(pdev);
 | |
| 
 | |
| 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
 | |
| 	if (err) {
 | |
| 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	err = pcim_iomap_regions(pdev, BIT(0), KBUILD_MODNAME);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	data->base_addr = pcim_iomap_table(pdev)[0];
 | |
| 	if (!data->base_addr)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	err = btintel_pcie_setup_irq(data);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	/* Configure MSI-X with causes list */
 | |
| 	btintel_pcie_config_msix(data);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void btintel_pcie_init_ci(struct btintel_pcie_data *data,
 | |
| 				 struct ctx_info *ci)
 | |
| {
 | |
| 	ci->version = 0x1;
 | |
| 	ci->size = sizeof(*ci);
 | |
| 	ci->config = 0x0000;
 | |
| 	ci->addr_cr_hia = data->ia.cr_hia_p_addr;
 | |
| 	ci->addr_tr_tia = data->ia.tr_tia_p_addr;
 | |
| 	ci->addr_cr_tia = data->ia.cr_tia_p_addr;
 | |
| 	ci->addr_tr_hia = data->ia.tr_hia_p_addr;
 | |
| 	ci->num_cr_ia = BTINTEL_PCIE_NUM_QUEUES;
 | |
| 	ci->num_tr_ia = BTINTEL_PCIE_NUM_QUEUES;
 | |
| 	ci->addr_urbdq0 = data->txq.urbd0s_p_addr;
 | |
| 	ci->addr_tfdq = data->txq.tfds_p_addr;
 | |
| 	ci->num_tfdq = data->txq.count;
 | |
| 	ci->num_urbdq0 = data->txq.count;
 | |
| 	ci->tfdq_db_vec = BTINTEL_PCIE_TXQ_NUM;
 | |
| 	ci->urbdq0_db_vec = BTINTEL_PCIE_TXQ_NUM;
 | |
| 	ci->rbd_size = BTINTEL_PCIE_RBD_SIZE_4K;
 | |
| 	ci->addr_frbdq = data->rxq.frbds_p_addr;
 | |
| 	ci->num_frbdq = data->rxq.count;
 | |
| 	ci->frbdq_db_vec = BTINTEL_PCIE_RXQ_NUM;
 | |
| 	ci->addr_urbdq1 = data->rxq.urbd1s_p_addr;
 | |
| 	ci->num_urbdq1 = data->rxq.count;
 | |
| 	ci->urbdq_db_vec = BTINTEL_PCIE_RXQ_NUM;
 | |
| }
 | |
| 
 | |
| static void btintel_pcie_free_txq_bufs(struct btintel_pcie_data *data,
 | |
| 				       struct txq *txq)
 | |
| {
 | |
| 	/* Free data buffers first */
 | |
| 	dma_free_coherent(&data->pdev->dev, txq->count * BTINTEL_PCIE_BUFFER_SIZE,
 | |
| 			  txq->buf_v_addr, txq->buf_p_addr);
 | |
| 	kfree(txq->bufs);
 | |
| }
 | |
| 
 | |
| static int btintel_pcie_setup_txq_bufs(struct btintel_pcie_data *data,
 | |
| 				       struct txq *txq)
 | |
| {
 | |
| 	int i;
 | |
| 	struct data_buf *buf;
 | |
| 
 | |
| 	/* Allocate the same number of buffers as the descriptor */
 | |
| 	txq->bufs = kmalloc_array(txq->count, sizeof(*buf), GFP_KERNEL);
 | |
| 	if (!txq->bufs)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* Allocate full chunk of data buffer for DMA first and do indexing and
 | |
| 	 * initialization next, so it can be freed easily
 | |
| 	 */
 | |
| 	txq->buf_v_addr = dma_alloc_coherent(&data->pdev->dev,
 | |
| 					     txq->count * BTINTEL_PCIE_BUFFER_SIZE,
 | |
| 					     &txq->buf_p_addr,
 | |
| 					     GFP_KERNEL | __GFP_NOWARN);
 | |
| 	if (!txq->buf_v_addr) {
 | |
| 		kfree(txq->bufs);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* Setup the allocated DMA buffer to bufs. Each data_buf should
 | |
| 	 * have virtual address and physical address
 | |
| 	 */
 | |
| 	for (i = 0; i < txq->count; i++) {
 | |
| 		buf = &txq->bufs[i];
 | |
| 		buf->data_p_addr = txq->buf_p_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
 | |
| 		buf->data = txq->buf_v_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void btintel_pcie_free_rxq_bufs(struct btintel_pcie_data *data,
 | |
| 				       struct rxq *rxq)
 | |
| {
 | |
| 	/* Free data buffers first */
 | |
| 	dma_free_coherent(&data->pdev->dev, rxq->count * BTINTEL_PCIE_BUFFER_SIZE,
 | |
| 			  rxq->buf_v_addr, rxq->buf_p_addr);
 | |
| 	kfree(rxq->bufs);
 | |
| }
 | |
| 
 | |
| static int btintel_pcie_setup_rxq_bufs(struct btintel_pcie_data *data,
 | |
| 				       struct rxq *rxq)
 | |
| {
 | |
| 	int i;
 | |
| 	struct data_buf *buf;
 | |
| 
 | |
| 	/* Allocate the same number of buffers as the descriptor */
 | |
| 	rxq->bufs = kmalloc_array(rxq->count, sizeof(*buf), GFP_KERNEL);
 | |
| 	if (!rxq->bufs)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* Allocate full chunk of data buffer for DMA first and do indexing and
 | |
| 	 * initialization next, so it can be freed easily
 | |
| 	 */
 | |
| 	rxq->buf_v_addr = dma_alloc_coherent(&data->pdev->dev,
 | |
| 					     rxq->count * BTINTEL_PCIE_BUFFER_SIZE,
 | |
| 					     &rxq->buf_p_addr,
 | |
| 					     GFP_KERNEL | __GFP_NOWARN);
 | |
| 	if (!rxq->buf_v_addr) {
 | |
| 		kfree(rxq->bufs);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* Setup the allocated DMA buffer to bufs. Each data_buf should
 | |
| 	 * have virtual address and physical address
 | |
| 	 */
 | |
| 	for (i = 0; i < rxq->count; i++) {
 | |
| 		buf = &rxq->bufs[i];
 | |
| 		buf->data_p_addr = rxq->buf_p_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
 | |
| 		buf->data = rxq->buf_v_addr + (i * BTINTEL_PCIE_BUFFER_SIZE);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void btintel_pcie_setup_ia(struct btintel_pcie_data *data,
 | |
| 				  dma_addr_t p_addr, void *v_addr,
 | |
| 				  struct ia *ia)
 | |
| {
 | |
| 	/* TR Head Index Array */
 | |
| 	ia->tr_hia_p_addr = p_addr;
 | |
| 	ia->tr_hia = v_addr;
 | |
| 
 | |
| 	/* TR Tail Index Array */
 | |
| 	ia->tr_tia_p_addr = p_addr + sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES;
 | |
| 	ia->tr_tia = v_addr + sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES;
 | |
| 
 | |
| 	/* CR Head index Array */
 | |
| 	ia->cr_hia_p_addr = p_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 2);
 | |
| 	ia->cr_hia = v_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 2);
 | |
| 
 | |
| 	/* CR Tail Index Array */
 | |
| 	ia->cr_tia_p_addr = p_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 3);
 | |
| 	ia->cr_tia = v_addr + (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 3);
 | |
| }
 | |
| 
 | |
| static void btintel_pcie_free(struct btintel_pcie_data *data)
 | |
| {
 | |
| 	btintel_pcie_free_rxq_bufs(data, &data->rxq);
 | |
| 	btintel_pcie_free_txq_bufs(data, &data->txq);
 | |
| 
 | |
| 	dma_pool_free(data->dma_pool, data->dma_v_addr, data->dma_p_addr);
 | |
| 	dma_pool_destroy(data->dma_pool);
 | |
| }
 | |
| 
 | |
| /* Allocate tx and rx queues, any related data structures and buffers.
 | |
|  */
 | |
| static int btintel_pcie_alloc(struct btintel_pcie_data *data)
 | |
| {
 | |
| 	int err = 0;
 | |
| 	size_t total;
 | |
| 	dma_addr_t p_addr;
 | |
| 	void *v_addr;
 | |
| 
 | |
| 	/* Allocate the chunk of DMA memory for descriptors, index array, and
 | |
| 	 * context information, instead of allocating individually.
 | |
| 	 * The DMA memory for data buffer is allocated while setting up the
 | |
| 	 * each queue.
 | |
| 	 *
 | |
| 	 * Total size is sum of the following
 | |
| 	 *  + size of TFD * Number of descriptors in queue
 | |
| 	 *  + size of URBD0 * Number of descriptors in queue
 | |
| 	 *  + size of FRBD * Number of descriptors in queue
 | |
| 	 *  + size of URBD1 * Number of descriptors in queue
 | |
| 	 *  + size of index * Number of queues(2) * type of index array(4)
 | |
| 	 *  + size of context information
 | |
| 	 */
 | |
| 	total = (sizeof(struct tfd) + sizeof(struct urbd0) + sizeof(struct frbd)
 | |
| 		+ sizeof(struct urbd1)) * BTINTEL_DESCS_COUNT;
 | |
| 
 | |
| 	/* Add the sum of size of index array and size of ci struct */
 | |
| 	total += (sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4) + sizeof(struct ctx_info);
 | |
| 
 | |
| 	/* Allocate DMA Pool */
 | |
| 	data->dma_pool = dma_pool_create(KBUILD_MODNAME, &data->pdev->dev,
 | |
| 					 total, BTINTEL_PCIE_DMA_POOL_ALIGNMENT, 0);
 | |
| 	if (!data->dma_pool) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto exit_error;
 | |
| 	}
 | |
| 
 | |
| 	v_addr = dma_pool_zalloc(data->dma_pool, GFP_KERNEL | __GFP_NOWARN,
 | |
| 				 &p_addr);
 | |
| 	if (!v_addr) {
 | |
| 		dma_pool_destroy(data->dma_pool);
 | |
| 		err = -ENOMEM;
 | |
| 		goto exit_error;
 | |
| 	}
 | |
| 
 | |
| 	data->dma_p_addr = p_addr;
 | |
| 	data->dma_v_addr = v_addr;
 | |
| 
 | |
| 	/* Setup descriptor count */
 | |
| 	data->txq.count = BTINTEL_DESCS_COUNT;
 | |
| 	data->rxq.count = BTINTEL_DESCS_COUNT;
 | |
| 
 | |
| 	/* Setup tfds */
 | |
| 	data->txq.tfds_p_addr = p_addr;
 | |
| 	data->txq.tfds = v_addr;
 | |
| 
 | |
| 	p_addr += (sizeof(struct tfd) * BTINTEL_DESCS_COUNT);
 | |
| 	v_addr += (sizeof(struct tfd) * BTINTEL_DESCS_COUNT);
 | |
| 
 | |
| 	/* Setup urbd0 */
 | |
| 	data->txq.urbd0s_p_addr = p_addr;
 | |
| 	data->txq.urbd0s = v_addr;
 | |
| 
 | |
| 	p_addr += (sizeof(struct urbd0) * BTINTEL_DESCS_COUNT);
 | |
| 	v_addr += (sizeof(struct urbd0) * BTINTEL_DESCS_COUNT);
 | |
| 
 | |
| 	/* Setup FRBD*/
 | |
| 	data->rxq.frbds_p_addr = p_addr;
 | |
| 	data->rxq.frbds = v_addr;
 | |
| 
 | |
| 	p_addr += (sizeof(struct frbd) * BTINTEL_DESCS_COUNT);
 | |
| 	v_addr += (sizeof(struct frbd) * BTINTEL_DESCS_COUNT);
 | |
| 
 | |
| 	/* Setup urbd1 */
 | |
| 	data->rxq.urbd1s_p_addr = p_addr;
 | |
| 	data->rxq.urbd1s = v_addr;
 | |
| 
 | |
| 	p_addr += (sizeof(struct urbd1) * BTINTEL_DESCS_COUNT);
 | |
| 	v_addr += (sizeof(struct urbd1) * BTINTEL_DESCS_COUNT);
 | |
| 
 | |
| 	/* Setup data buffers for txq */
 | |
| 	err = btintel_pcie_setup_txq_bufs(data, &data->txq);
 | |
| 	if (err)
 | |
| 		goto exit_error_pool;
 | |
| 
 | |
| 	/* Setup data buffers for rxq */
 | |
| 	err = btintel_pcie_setup_rxq_bufs(data, &data->rxq);
 | |
| 	if (err)
 | |
| 		goto exit_error_txq;
 | |
| 
 | |
| 	/* Setup Index Array */
 | |
| 	btintel_pcie_setup_ia(data, p_addr, v_addr, &data->ia);
 | |
| 
 | |
| 	/* Setup Context Information */
 | |
| 	p_addr += sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4;
 | |
| 	v_addr += sizeof(u16) * BTINTEL_PCIE_NUM_QUEUES * 4;
 | |
| 
 | |
| 	data->ci = v_addr;
 | |
| 	data->ci_p_addr = p_addr;
 | |
| 
 | |
| 	/* Initialize the CI */
 | |
| 	btintel_pcie_init_ci(data, data->ci);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| exit_error_txq:
 | |
| 	btintel_pcie_free_txq_bufs(data, &data->txq);
 | |
| exit_error_pool:
 | |
| 	dma_pool_free(data->dma_pool, data->dma_v_addr, data->dma_p_addr);
 | |
| 	dma_pool_destroy(data->dma_pool);
 | |
| exit_error:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int btintel_pcie_open(struct hci_dev *hdev)
 | |
| {
 | |
| 	bt_dev_dbg(hdev, "");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btintel_pcie_close(struct hci_dev *hdev)
 | |
| {
 | |
| 	bt_dev_dbg(hdev, "");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int btintel_pcie_inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
 | |
| {
 | |
| 	struct sk_buff *skb;
 | |
| 	struct hci_event_hdr *hdr;
 | |
| 	struct hci_ev_cmd_complete *evt;
 | |
| 
 | |
| 	skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_KERNEL);
 | |
| 	if (!skb)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr));
 | |
| 	hdr->evt = HCI_EV_CMD_COMPLETE;
 | |
| 	hdr->plen = sizeof(*evt) + 1;
 | |
| 
 | |
| 	evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt));
 | |
| 	evt->ncmd = 0x01;
 | |
| 	evt->opcode = cpu_to_le16(opcode);
 | |
| 
 | |
| 	*(u8 *)skb_put(skb, 1) = 0x00;
 | |
| 
 | |
| 	hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
 | |
| 
 | |
| 	return hci_recv_frame(hdev, skb);
 | |
| }
 | |
| 
 | |
| static int btintel_pcie_send_frame(struct hci_dev *hdev,
 | |
| 				       struct sk_buff *skb)
 | |
| {
 | |
| 	struct btintel_pcie_data *data = hci_get_drvdata(hdev);
 | |
| 	struct hci_command_hdr *cmd;
 | |
| 	__u16 opcode = ~0;
 | |
| 	int ret;
 | |
| 	u32 type;
 | |
| 	u32 old_ctxt;
 | |
| 
 | |
| 	/* Due to the fw limitation, the type header of the packet should be
 | |
| 	 * 4 bytes unlike 1 byte for UART. In UART, the firmware can read
 | |
| 	 * the first byte to get the packet type and redirect the rest of data
 | |
| 	 * packet to the right handler.
 | |
| 	 *
 | |
| 	 * But for PCIe, THF(Transfer Flow Handler) fetches the 4 bytes of data
 | |
| 	 * from DMA memory and by the time it reads the first 4 bytes, it has
 | |
| 	 * already consumed some part of packet. Thus the packet type indicator
 | |
| 	 * for iBT PCIe is 4 bytes.
 | |
| 	 *
 | |
| 	 * Luckily, when HCI core creates the skb, it allocates 8 bytes of
 | |
| 	 * head room for profile and driver use, and before sending the data
 | |
| 	 * to the device, append the iBT PCIe packet type in the front.
 | |
| 	 */
 | |
| 	switch (hci_skb_pkt_type(skb)) {
 | |
| 	case HCI_COMMAND_PKT:
 | |
| 		type = BTINTEL_PCIE_HCI_CMD_PKT;
 | |
| 		cmd = (void *)skb->data;
 | |
| 		opcode = le16_to_cpu(cmd->opcode);
 | |
| 		if (btintel_test_flag(hdev, INTEL_BOOTLOADER)) {
 | |
| 			struct hci_command_hdr *cmd = (void *)skb->data;
 | |
| 			__u16 opcode = le16_to_cpu(cmd->opcode);
 | |
| 
 | |
| 			/* When the 0xfc01 command is issued to boot into
 | |
| 			 * the operational firmware, it will actually not
 | |
| 			 * send a command complete event. To keep the flow
 | |
| 			 * control working inject that event here.
 | |
| 			 */
 | |
| 			if (opcode == 0xfc01)
 | |
| 				btintel_pcie_inject_cmd_complete(hdev, opcode);
 | |
| 		}
 | |
| 		hdev->stat.cmd_tx++;
 | |
| 		break;
 | |
| 	case HCI_ACLDATA_PKT:
 | |
| 		type = BTINTEL_PCIE_HCI_ACL_PKT;
 | |
| 		hdev->stat.acl_tx++;
 | |
| 		break;
 | |
| 	case HCI_SCODATA_PKT:
 | |
| 		type = BTINTEL_PCIE_HCI_SCO_PKT;
 | |
| 		hdev->stat.sco_tx++;
 | |
| 		break;
 | |
| 	case HCI_ISODATA_PKT:
 | |
| 		type = BTINTEL_PCIE_HCI_ISO_PKT;
 | |
| 		break;
 | |
| 	default:
 | |
| 		bt_dev_err(hdev, "Unknown HCI packet type");
 | |
| 		return -EILSEQ;
 | |
| 	}
 | |
| 	memcpy(skb_push(skb, BTINTEL_PCIE_HCI_TYPE_LEN), &type,
 | |
| 	       BTINTEL_PCIE_HCI_TYPE_LEN);
 | |
| 
 | |
| 	ret = btintel_pcie_send_sync(data, skb);
 | |
| 	if (ret) {
 | |
| 		hdev->stat.err_tx++;
 | |
| 		bt_dev_err(hdev, "Failed to send frame (%d)", ret);
 | |
| 		goto exit_error;
 | |
| 	}
 | |
| 
 | |
| 	if (type == BTINTEL_PCIE_HCI_CMD_PKT &&
 | |
| 	    (opcode == HCI_OP_RESET || opcode == 0xfc01)) {
 | |
| 		old_ctxt = data->alive_intr_ctxt;
 | |
| 		data->alive_intr_ctxt =
 | |
| 			(opcode == 0xfc01 ? BTINTEL_PCIE_INTEL_HCI_RESET1 :
 | |
| 				BTINTEL_PCIE_HCI_RESET);
 | |
| 		bt_dev_dbg(data->hdev, "sent cmd: 0x%4.4x alive context changed: %s  ->  %s",
 | |
| 			   opcode, btintel_pcie_alivectxt_state2str(old_ctxt),
 | |
| 			   btintel_pcie_alivectxt_state2str(data->alive_intr_ctxt));
 | |
| 		if (opcode == HCI_OP_RESET) {
 | |
| 			data->gp0_received = false;
 | |
| 			ret = wait_event_timeout(data->gp0_wait_q,
 | |
| 						 data->gp0_received,
 | |
| 						 msecs_to_jiffies(BTINTEL_DEFAULT_INTR_TIMEOUT_MS));
 | |
| 			if (!ret) {
 | |
| 				hdev->stat.err_tx++;
 | |
| 				bt_dev_err(hdev, "No alive interrupt received for %s",
 | |
| 					   btintel_pcie_alivectxt_state2str(data->alive_intr_ctxt));
 | |
| 				ret = -ETIME;
 | |
| 				goto exit_error;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	hdev->stat.byte_tx += skb->len;
 | |
| 	kfree_skb(skb);
 | |
| 
 | |
| exit_error:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void btintel_pcie_release_hdev(struct btintel_pcie_data *data)
 | |
| {
 | |
| 	struct hci_dev *hdev;
 | |
| 
 | |
| 	hdev = data->hdev;
 | |
| 	hci_unregister_dev(hdev);
 | |
| 	hci_free_dev(hdev);
 | |
| 	data->hdev = NULL;
 | |
| }
 | |
| 
 | |
| static int btintel_pcie_setup_internal(struct hci_dev *hdev)
 | |
| {
 | |
| 	const u8 param[1] = { 0xFF };
 | |
| 	struct intel_version_tlv ver_tlv;
 | |
| 	struct sk_buff *skb;
 | |
| 	int err;
 | |
| 
 | |
| 	BT_DBG("%s", hdev->name);
 | |
| 
 | |
| 	skb = __hci_cmd_sync(hdev, 0xfc05, 1, param, HCI_CMD_TIMEOUT);
 | |
| 	if (IS_ERR(skb)) {
 | |
| 		bt_dev_err(hdev, "Reading Intel version command failed (%ld)",
 | |
| 			   PTR_ERR(skb));
 | |
| 		return PTR_ERR(skb);
 | |
| 	}
 | |
| 
 | |
| 	/* Check the status */
 | |
| 	if (skb->data[0]) {
 | |
| 		bt_dev_err(hdev, "Intel Read Version command failed (%02x)",
 | |
| 			   skb->data[0]);
 | |
| 		err = -EIO;
 | |
| 		goto exit_error;
 | |
| 	}
 | |
| 
 | |
| 	/* Apply the common HCI quirks for Intel device */
 | |
| 	set_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks);
 | |
| 	set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
 | |
| 	set_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks);
 | |
| 
 | |
| 	/* Set up the quality report callback for Intel devices */
 | |
| 	hdev->set_quality_report = btintel_set_quality_report;
 | |
| 
 | |
| 	memset(&ver_tlv, 0, sizeof(ver_tlv));
 | |
| 	/* For TLV type device, parse the tlv data */
 | |
| 	err = btintel_parse_version_tlv(hdev, &ver_tlv, skb);
 | |
| 	if (err) {
 | |
| 		bt_dev_err(hdev, "Failed to parse TLV version information");
 | |
| 		goto exit_error;
 | |
| 	}
 | |
| 
 | |
| 	switch (INTEL_HW_PLATFORM(ver_tlv.cnvi_bt)) {
 | |
| 	case 0x37:
 | |
| 		break;
 | |
| 	default:
 | |
| 		bt_dev_err(hdev, "Unsupported Intel hardware platform (0x%2x)",
 | |
| 			   INTEL_HW_PLATFORM(ver_tlv.cnvi_bt));
 | |
| 		err = -EINVAL;
 | |
| 		goto exit_error;
 | |
| 	}
 | |
| 
 | |
| 	/* Check for supported iBT hardware variants of this firmware
 | |
| 	 * loading method.
 | |
| 	 *
 | |
| 	 * This check has been put in place to ensure correct forward
 | |
| 	 * compatibility options when newer hardware variants come
 | |
| 	 * along.
 | |
| 	 */
 | |
| 	switch (INTEL_HW_VARIANT(ver_tlv.cnvi_bt)) {
 | |
| 	case 0x1e:	/* BzrI */
 | |
| 		/* Display version information of TLV type */
 | |
| 		btintel_version_info_tlv(hdev, &ver_tlv);
 | |
| 
 | |
| 		/* Apply the device specific HCI quirks for TLV based devices
 | |
| 		 *
 | |
| 		 * All TLV based devices support WBS
 | |
| 		 */
 | |
| 		set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks);
 | |
| 
 | |
| 		/* Setup MSFT Extension support */
 | |
| 		btintel_set_msft_opcode(hdev,
 | |
| 					INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
 | |
| 
 | |
| 		err = btintel_bootloader_setup_tlv(hdev, &ver_tlv);
 | |
| 		if (err)
 | |
| 			goto exit_error;
 | |
| 		break;
 | |
| 	default:
 | |
| 		bt_dev_err(hdev, "Unsupported Intel hw variant (%u)",
 | |
| 			   INTEL_HW_VARIANT(ver_tlv.cnvi_bt));
 | |
| 		err = -EINVAL;
 | |
| 		goto exit_error;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	btintel_print_fseq_info(hdev);
 | |
| exit_error:
 | |
| 	kfree_skb(skb);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int btintel_pcie_setup(struct hci_dev *hdev)
 | |
| {
 | |
| 	int err, fw_dl_retry = 0;
 | |
| 	struct btintel_pcie_data *data = hci_get_drvdata(hdev);
 | |
| 
 | |
| 	while ((err = btintel_pcie_setup_internal(hdev)) && fw_dl_retry++ < 1) {
 | |
| 		bt_dev_err(hdev, "Firmware download retry count: %d",
 | |
| 			   fw_dl_retry);
 | |
| 		err = btintel_pcie_reset_bt(data);
 | |
| 		if (err) {
 | |
| 			bt_dev_err(hdev, "Failed to do shr reset: %d", err);
 | |
| 			break;
 | |
| 		}
 | |
| 		usleep_range(10000, 12000);
 | |
| 		btintel_pcie_reset_ia(data);
 | |
| 		btintel_pcie_config_msix(data);
 | |
| 		err = btintel_pcie_enable_bt(data);
 | |
| 		if (err) {
 | |
| 			bt_dev_err(hdev, "Failed to enable hardware: %d", err);
 | |
| 			break;
 | |
| 		}
 | |
| 		btintel_pcie_start_rx(data);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int btintel_pcie_setup_hdev(struct btintel_pcie_data *data)
 | |
| {
 | |
| 	int err;
 | |
| 	struct hci_dev *hdev;
 | |
| 
 | |
| 	hdev = hci_alloc_dev_priv(sizeof(struct btintel_data));
 | |
| 	if (!hdev)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	hdev->bus = HCI_PCI;
 | |
| 	hci_set_drvdata(hdev, data);
 | |
| 
 | |
| 	data->hdev = hdev;
 | |
| 	SET_HCIDEV_DEV(hdev, &data->pdev->dev);
 | |
| 
 | |
| 	hdev->manufacturer = 2;
 | |
| 	hdev->open = btintel_pcie_open;
 | |
| 	hdev->close = btintel_pcie_close;
 | |
| 	hdev->send = btintel_pcie_send_frame;
 | |
| 	hdev->setup = btintel_pcie_setup;
 | |
| 	hdev->shutdown = btintel_shutdown_combined;
 | |
| 	hdev->hw_error = btintel_hw_error;
 | |
| 	hdev->set_diag = btintel_set_diag;
 | |
| 	hdev->set_bdaddr = btintel_set_bdaddr;
 | |
| 
 | |
| 	err = hci_register_dev(hdev);
 | |
| 	if (err < 0) {
 | |
| 		BT_ERR("Failed to register to hdev (%d)", err);
 | |
| 		goto exit_error;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| exit_error:
 | |
| 	hci_free_dev(hdev);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int btintel_pcie_probe(struct pci_dev *pdev,
 | |
| 			      const struct pci_device_id *ent)
 | |
| {
 | |
| 	int err;
 | |
| 	struct btintel_pcie_data *data;
 | |
| 
 | |
| 	if (!pdev)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL);
 | |
| 	if (!data)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	data->pdev = pdev;
 | |
| 
 | |
| 	spin_lock_init(&data->irq_lock);
 | |
| 	spin_lock_init(&data->hci_rx_lock);
 | |
| 
 | |
| 	init_waitqueue_head(&data->gp0_wait_q);
 | |
| 	data->gp0_received = false;
 | |
| 
 | |
| 	init_waitqueue_head(&data->tx_wait_q);
 | |
| 	data->tx_wait_done = false;
 | |
| 
 | |
| 	data->workqueue = alloc_ordered_workqueue(KBUILD_MODNAME, WQ_HIGHPRI);
 | |
| 	if (!data->workqueue)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	skb_queue_head_init(&data->rx_skb_q);
 | |
| 	INIT_WORK(&data->rx_work, btintel_pcie_rx_work);
 | |
| 
 | |
| 	data->boot_stage_cache = 0x00;
 | |
| 	data->img_resp_cache = 0x00;
 | |
| 
 | |
| 	err = btintel_pcie_config_pcie(pdev, data);
 | |
| 	if (err)
 | |
| 		goto exit_error;
 | |
| 
 | |
| 	pci_set_drvdata(pdev, data);
 | |
| 
 | |
| 	err = btintel_pcie_alloc(data);
 | |
| 	if (err)
 | |
| 		goto exit_error;
 | |
| 
 | |
| 	err = btintel_pcie_enable_bt(data);
 | |
| 	if (err)
 | |
| 		goto exit_error;
 | |
| 
 | |
| 	/* CNV information (CNVi and CNVr) is in CSR */
 | |
| 	data->cnvi = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_HW_REV_REG);
 | |
| 
 | |
| 	data->cnvr = btintel_pcie_rd_reg32(data, BTINTEL_PCIE_CSR_RF_ID_REG);
 | |
| 
 | |
| 	err = btintel_pcie_start_rx(data);
 | |
| 	if (err)
 | |
| 		goto exit_error;
 | |
| 
 | |
| 	err = btintel_pcie_setup_hdev(data);
 | |
| 	if (err)
 | |
| 		goto exit_error;
 | |
| 
 | |
| 	bt_dev_dbg(data->hdev, "cnvi: 0x%8.8x cnvr: 0x%8.8x", data->cnvi,
 | |
| 		   data->cnvr);
 | |
| 	return 0;
 | |
| 
 | |
| exit_error:
 | |
| 	/* reset device before exit */
 | |
| 	btintel_pcie_reset_bt(data);
 | |
| 
 | |
| 	pci_clear_master(pdev);
 | |
| 
 | |
| 	pci_set_drvdata(pdev, NULL);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void btintel_pcie_remove(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct btintel_pcie_data *data;
 | |
| 
 | |
| 	data = pci_get_drvdata(pdev);
 | |
| 
 | |
| 	btintel_pcie_reset_bt(data);
 | |
| 	for (int i = 0; i < data->alloc_vecs; i++) {
 | |
| 		struct msix_entry *msix_entry;
 | |
| 
 | |
| 		msix_entry = &data->msix_entries[i];
 | |
| 		free_irq(msix_entry->vector, msix_entry);
 | |
| 	}
 | |
| 
 | |
| 	pci_free_irq_vectors(pdev);
 | |
| 
 | |
| 	btintel_pcie_release_hdev(data);
 | |
| 
 | |
| 	flush_work(&data->rx_work);
 | |
| 
 | |
| 	destroy_workqueue(data->workqueue);
 | |
| 
 | |
| 	btintel_pcie_free(data);
 | |
| 
 | |
| 	pci_clear_master(pdev);
 | |
| 
 | |
| 	pci_set_drvdata(pdev, NULL);
 | |
| }
 | |
| 
 | |
| static struct pci_driver btintel_pcie_driver = {
 | |
| 	.name = KBUILD_MODNAME,
 | |
| 	.id_table = btintel_pcie_table,
 | |
| 	.probe = btintel_pcie_probe,
 | |
| 	.remove = btintel_pcie_remove,
 | |
| };
 | |
| module_pci_driver(btintel_pcie_driver);
 | |
| 
 | |
| MODULE_AUTHOR("Tedd Ho-Jeong An <tedd.an@intel.com>");
 | |
| MODULE_DESCRIPTION("Intel Bluetooth PCIe transport driver ver " VERSION);
 | |
| MODULE_VERSION(VERSION);
 | |
| MODULE_LICENSE("GPL");
 |