3217 lines
		
	
	
		
			80 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3217 lines
		
	
	
		
			80 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /*
 | |
|  *  libata-sff.c - helper library for PCI IDE BMDMA
 | |
|  *
 | |
|  *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
 | |
|  *  Copyright 2003-2006 Jeff Garzik
 | |
|  *
 | |
|  *  libata documentation is available via 'make {ps|pdf}docs',
 | |
|  *  as Documentation/driver-api/libata.rst
 | |
|  *
 | |
|  *  Hardware documentation available from http://www.t13.org/ and
 | |
|  *  http://www.sata-io.org/
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/libata.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <trace/events/libata.h>
 | |
| #include "libata.h"
 | |
| 
 | |
| static struct workqueue_struct *ata_sff_wq;
 | |
| 
 | |
| const struct ata_port_operations ata_sff_port_ops = {
 | |
| 	.inherits		= &ata_base_port_ops,
 | |
| 
 | |
| 	.qc_issue		= ata_sff_qc_issue,
 | |
| 	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
 | |
| 
 | |
| 	.freeze			= ata_sff_freeze,
 | |
| 	.thaw			= ata_sff_thaw,
 | |
| 	.prereset		= ata_sff_prereset,
 | |
| 	.softreset		= ata_sff_softreset,
 | |
| 	.hardreset		= sata_sff_hardreset,
 | |
| 	.postreset		= ata_sff_postreset,
 | |
| 	.error_handler		= ata_sff_error_handler,
 | |
| 
 | |
| 	.sff_dev_select		= ata_sff_dev_select,
 | |
| 	.sff_check_status	= ata_sff_check_status,
 | |
| 	.sff_tf_load		= ata_sff_tf_load,
 | |
| 	.sff_tf_read		= ata_sff_tf_read,
 | |
| 	.sff_exec_command	= ata_sff_exec_command,
 | |
| 	.sff_data_xfer		= ata_sff_data_xfer,
 | |
| 	.sff_drain_fifo		= ata_sff_drain_fifo,
 | |
| 
 | |
| 	.lost_interrupt		= ata_sff_lost_interrupt,
 | |
| };
 | |
| EXPORT_SYMBOL_GPL(ata_sff_port_ops);
 | |
| 
 | |
| /**
 | |
|  *	ata_sff_check_status - Read device status reg & clear interrupt
 | |
|  *	@ap: port where the device is
 | |
|  *
 | |
|  *	Reads ATA taskfile status register for currently-selected device
 | |
|  *	and return its value. This also clears pending interrupts
 | |
|  *      from this device
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from caller.
 | |
|  */
 | |
| u8 ata_sff_check_status(struct ata_port *ap)
 | |
| {
 | |
| 	return ioread8(ap->ioaddr.status_addr);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_sff_check_status);
 | |
| 
 | |
| /**
 | |
|  *	ata_sff_altstatus - Read device alternate status reg
 | |
|  *	@ap: port where the device is
 | |
|  *	@status: pointer to a status value
 | |
|  *
 | |
|  *	Reads ATA alternate status register for currently-selected device
 | |
|  *	and return its value.
 | |
|  *
 | |
|  *	RETURN:
 | |
|  *	true if the register exists, false if not.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from caller.
 | |
|  */
 | |
| static bool ata_sff_altstatus(struct ata_port *ap, u8 *status)
 | |
| {
 | |
| 	u8 tmp;
 | |
| 
 | |
| 	if (ap->ops->sff_check_altstatus) {
 | |
| 		tmp = ap->ops->sff_check_altstatus(ap);
 | |
| 		goto read;
 | |
| 	}
 | |
| 	if (ap->ioaddr.altstatus_addr) {
 | |
| 		tmp = ioread8(ap->ioaddr.altstatus_addr);
 | |
| 		goto read;
 | |
| 	}
 | |
| 	return false;
 | |
| 
 | |
| read:
 | |
| 	if (status)
 | |
| 		*status = tmp;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_sff_irq_status - Check if the device is busy
 | |
|  *	@ap: port where the device is
 | |
|  *
 | |
|  *	Determine if the port is currently busy. Uses altstatus
 | |
|  *	if available in order to avoid clearing shared IRQ status
 | |
|  *	when finding an IRQ source. Non ctl capable devices don't
 | |
|  *	share interrupt lines fortunately for us.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from caller.
 | |
|  */
 | |
| static u8 ata_sff_irq_status(struct ata_port *ap)
 | |
| {
 | |
| 	u8 status;
 | |
| 
 | |
| 	/* Not us: We are busy */
 | |
| 	if (ata_sff_altstatus(ap, &status) && (status & ATA_BUSY))
 | |
| 		return status;
 | |
| 	/* Clear INTRQ latch */
 | |
| 	status = ap->ops->sff_check_status(ap);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_sff_sync - Flush writes
 | |
|  *	@ap: Port to wait for.
 | |
|  *
 | |
|  *	CAUTION:
 | |
|  *	If we have an mmio device with no ctl and no altstatus
 | |
|  *	method this will fail. No such devices are known to exist.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from caller.
 | |
|  */
 | |
| 
 | |
| static void ata_sff_sync(struct ata_port *ap)
 | |
| {
 | |
| 	ata_sff_altstatus(ap, NULL);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_sff_pause		-	Flush writes and wait 400nS
 | |
|  *	@ap: Port to pause for.
 | |
|  *
 | |
|  *	CAUTION:
 | |
|  *	If we have an mmio device with no ctl and no altstatus
 | |
|  *	method this will fail. No such devices are known to exist.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from caller.
 | |
|  */
 | |
| 
 | |
| void ata_sff_pause(struct ata_port *ap)
 | |
| {
 | |
| 	ata_sff_sync(ap);
 | |
| 	ndelay(400);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_sff_pause);
 | |
| 
 | |
| /**
 | |
|  *	ata_sff_dma_pause	-	Pause before commencing DMA
 | |
|  *	@ap: Port to pause for.
 | |
|  *
 | |
|  *	Perform I/O fencing and ensure sufficient cycle delays occur
 | |
|  *	for the HDMA1:0 transition
 | |
|  */
 | |
| 
 | |
| void ata_sff_dma_pause(struct ata_port *ap)
 | |
| {
 | |
| 	/*
 | |
| 	 * An altstatus read will cause the needed delay without
 | |
| 	 * messing up the IRQ status
 | |
| 	 */
 | |
| 	if (ata_sff_altstatus(ap, NULL))
 | |
| 		return;
 | |
| 	/* There are no DMA controllers without ctl. BUG here to ensure
 | |
| 	   we never violate the HDMA1:0 transition timing and risk
 | |
| 	   corruption. */
 | |
| 	BUG();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
 | |
| 
 | |
| static int ata_sff_check_ready(struct ata_link *link)
 | |
| {
 | |
| 	u8 status = link->ap->ops->sff_check_status(link->ap);
 | |
| 
 | |
| 	return ata_check_ready(status);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_sff_wait_ready - sleep until BSY clears, or timeout
 | |
|  *	@link: SFF link to wait ready status for
 | |
|  *	@deadline: deadline jiffies for the operation
 | |
|  *
 | |
|  *	Sleep until ATA Status register bit BSY clears, or timeout
 | |
|  *	occurs.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Kernel thread context (may sleep).
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 on success, -errno otherwise.
 | |
|  */
 | |
| int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
 | |
| {
 | |
| 	return ata_wait_ready(link, deadline, ata_sff_check_ready);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
 | |
| 
 | |
| /**
 | |
|  *	ata_sff_set_devctl - Write device control reg
 | |
|  *	@ap: port where the device is
 | |
|  *	@ctl: value to write
 | |
|  *
 | |
|  *	Writes ATA device control register.
 | |
|  *
 | |
|  *	RETURN:
 | |
|  *	true if the register exists, false if not.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from caller.
 | |
|  */
 | |
| static bool ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
 | |
| {
 | |
| 	if (ap->ops->sff_set_devctl) {
 | |
| 		ap->ops->sff_set_devctl(ap, ctl);
 | |
| 		return true;
 | |
| 	}
 | |
| 	if (ap->ioaddr.ctl_addr) {
 | |
| 		iowrite8(ctl, ap->ioaddr.ctl_addr);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_sff_dev_select - Select device 0/1 on ATA bus
 | |
|  *	@ap: ATA channel to manipulate
 | |
|  *	@device: ATA device (numbered from zero) to select
 | |
|  *
 | |
|  *	Use the method defined in the ATA specification to
 | |
|  *	make either device 0, or device 1, active on the
 | |
|  *	ATA channel.  Works with both PIO and MMIO.
 | |
|  *
 | |
|  *	May be used as the dev_select() entry in ata_port_operations.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	caller.
 | |
|  */
 | |
| void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
 | |
| {
 | |
| 	u8 tmp;
 | |
| 
 | |
| 	if (device == 0)
 | |
| 		tmp = ATA_DEVICE_OBS;
 | |
| 	else
 | |
| 		tmp = ATA_DEVICE_OBS | ATA_DEV1;
 | |
| 
 | |
| 	iowrite8(tmp, ap->ioaddr.device_addr);
 | |
| 	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_sff_dev_select);
 | |
| 
 | |
| /**
 | |
|  *	ata_dev_select - Select device 0/1 on ATA bus
 | |
|  *	@ap: ATA channel to manipulate
 | |
|  *	@device: ATA device (numbered from zero) to select
 | |
|  *	@wait: non-zero to wait for Status register BSY bit to clear
 | |
|  *	@can_sleep: non-zero if context allows sleeping
 | |
|  *
 | |
|  *	Use the method defined in the ATA specification to
 | |
|  *	make either device 0, or device 1, active on the
 | |
|  *	ATA channel.
 | |
|  *
 | |
|  *	This is a high-level version of ata_sff_dev_select(), which
 | |
|  *	additionally provides the services of inserting the proper
 | |
|  *	pauses and status polling, where needed.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	caller.
 | |
|  */
 | |
| static void ata_dev_select(struct ata_port *ap, unsigned int device,
 | |
| 			   unsigned int wait, unsigned int can_sleep)
 | |
| {
 | |
| 	if (wait)
 | |
| 		ata_wait_idle(ap);
 | |
| 
 | |
| 	ap->ops->sff_dev_select(ap, device);
 | |
| 
 | |
| 	if (wait) {
 | |
| 		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
 | |
| 			ata_msleep(ap, 150);
 | |
| 		ata_wait_idle(ap);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_sff_irq_on - Enable interrupts on a port.
 | |
|  *	@ap: Port on which interrupts are enabled.
 | |
|  *
 | |
|  *	Enable interrupts on a legacy IDE device using MMIO or PIO,
 | |
|  *	wait for idle, clear any pending interrupts.
 | |
|  *
 | |
|  *	Note: may NOT be used as the sff_irq_on() entry in
 | |
|  *	ata_port_operations.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from caller.
 | |
|  */
 | |
| void ata_sff_irq_on(struct ata_port *ap)
 | |
| {
 | |
| 	if (ap->ops->sff_irq_on) {
 | |
| 		ap->ops->sff_irq_on(ap);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ap->ctl &= ~ATA_NIEN;
 | |
| 	ap->last_ctl = ap->ctl;
 | |
| 
 | |
| 	ata_sff_set_devctl(ap, ap->ctl);
 | |
| 	ata_wait_idle(ap);
 | |
| 
 | |
| 	if (ap->ops->sff_irq_clear)
 | |
| 		ap->ops->sff_irq_clear(ap);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_sff_irq_on);
 | |
| 
 | |
| /**
 | |
|  *	ata_sff_tf_load - send taskfile registers to host controller
 | |
|  *	@ap: Port to which output is sent
 | |
|  *	@tf: ATA taskfile register set
 | |
|  *
 | |
|  *	Outputs ATA taskfile to standard ATA host controller.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from caller.
 | |
|  */
 | |
| void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
 | |
| {
 | |
| 	struct ata_ioports *ioaddr = &ap->ioaddr;
 | |
| 	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
 | |
| 
 | |
| 	if (tf->ctl != ap->last_ctl) {
 | |
| 		if (ioaddr->ctl_addr)
 | |
| 			iowrite8(tf->ctl, ioaddr->ctl_addr);
 | |
| 		ap->last_ctl = tf->ctl;
 | |
| 		ata_wait_idle(ap);
 | |
| 	}
 | |
| 
 | |
| 	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
 | |
| 		WARN_ON_ONCE(!ioaddr->ctl_addr);
 | |
| 		iowrite8(tf->hob_feature, ioaddr->feature_addr);
 | |
| 		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
 | |
| 		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
 | |
| 		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
 | |
| 		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
 | |
| 	}
 | |
| 
 | |
| 	if (is_addr) {
 | |
| 		iowrite8(tf->feature, ioaddr->feature_addr);
 | |
| 		iowrite8(tf->nsect, ioaddr->nsect_addr);
 | |
| 		iowrite8(tf->lbal, ioaddr->lbal_addr);
 | |
| 		iowrite8(tf->lbam, ioaddr->lbam_addr);
 | |
| 		iowrite8(tf->lbah, ioaddr->lbah_addr);
 | |
| 	}
 | |
| 
 | |
| 	if (tf->flags & ATA_TFLAG_DEVICE)
 | |
| 		iowrite8(tf->device, ioaddr->device_addr);
 | |
| 
 | |
| 	ata_wait_idle(ap);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_sff_tf_load);
 | |
| 
 | |
| /**
 | |
|  *	ata_sff_tf_read - input device's ATA taskfile shadow registers
 | |
|  *	@ap: Port from which input is read
 | |
|  *	@tf: ATA taskfile register set for storing input
 | |
|  *
 | |
|  *	Reads ATA taskfile registers for currently-selected device
 | |
|  *	into @tf. Assumes the device has a fully SFF compliant task file
 | |
|  *	layout and behaviour. If you device does not (eg has a different
 | |
|  *	status method) then you will need to provide a replacement tf_read
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from caller.
 | |
|  */
 | |
| void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
 | |
| {
 | |
| 	struct ata_ioports *ioaddr = &ap->ioaddr;
 | |
| 
 | |
| 	tf->status = ata_sff_check_status(ap);
 | |
| 	tf->error = ioread8(ioaddr->error_addr);
 | |
| 	tf->nsect = ioread8(ioaddr->nsect_addr);
 | |
| 	tf->lbal = ioread8(ioaddr->lbal_addr);
 | |
| 	tf->lbam = ioread8(ioaddr->lbam_addr);
 | |
| 	tf->lbah = ioread8(ioaddr->lbah_addr);
 | |
| 	tf->device = ioread8(ioaddr->device_addr);
 | |
| 
 | |
| 	if (tf->flags & ATA_TFLAG_LBA48) {
 | |
| 		if (likely(ioaddr->ctl_addr)) {
 | |
| 			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
 | |
| 			tf->hob_feature = ioread8(ioaddr->error_addr);
 | |
| 			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
 | |
| 			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
 | |
| 			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
 | |
| 			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
 | |
| 			iowrite8(tf->ctl, ioaddr->ctl_addr);
 | |
| 			ap->last_ctl = tf->ctl;
 | |
| 		} else
 | |
| 			WARN_ON_ONCE(1);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_sff_tf_read);
 | |
| 
 | |
| /**
 | |
|  *	ata_sff_exec_command - issue ATA command to host controller
 | |
|  *	@ap: port to which command is being issued
 | |
|  *	@tf: ATA taskfile register set
 | |
|  *
 | |
|  *	Issues ATA command, with proper synchronization with interrupt
 | |
|  *	handler / other threads.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	spin_lock_irqsave(host lock)
 | |
|  */
 | |
| void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
 | |
| {
 | |
| 	iowrite8(tf->command, ap->ioaddr.command_addr);
 | |
| 	ata_sff_pause(ap);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_sff_exec_command);
 | |
| 
 | |
| /**
 | |
|  *	ata_tf_to_host - issue ATA taskfile to host controller
 | |
|  *	@ap: port to which command is being issued
 | |
|  *	@tf: ATA taskfile register set
 | |
|  *	@tag: tag of the associated command
 | |
|  *
 | |
|  *	Issues ATA taskfile register set to ATA host controller,
 | |
|  *	with proper synchronization with interrupt handler and
 | |
|  *	other threads.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	spin_lock_irqsave(host lock)
 | |
|  */
 | |
| static inline void ata_tf_to_host(struct ata_port *ap,
 | |
| 				  const struct ata_taskfile *tf,
 | |
| 				  unsigned int tag)
 | |
| {
 | |
| 	trace_ata_tf_load(ap, tf);
 | |
| 	ap->ops->sff_tf_load(ap, tf);
 | |
| 	trace_ata_exec_command(ap, tf, tag);
 | |
| 	ap->ops->sff_exec_command(ap, tf);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_sff_data_xfer - Transfer data by PIO
 | |
|  *	@qc: queued command
 | |
|  *	@buf: data buffer
 | |
|  *	@buflen: buffer length
 | |
|  *	@rw: read/write
 | |
|  *
 | |
|  *	Transfer data from/to the device data register by PIO.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from caller.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	Bytes consumed.
 | |
|  */
 | |
| unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
 | |
| 			       unsigned int buflen, int rw)
 | |
| {
 | |
| 	struct ata_port *ap = qc->dev->link->ap;
 | |
| 	void __iomem *data_addr = ap->ioaddr.data_addr;
 | |
| 	unsigned int words = buflen >> 1;
 | |
| 
 | |
| 	/* Transfer multiple of 2 bytes */
 | |
| 	if (rw == READ)
 | |
| 		ioread16_rep(data_addr, buf, words);
 | |
| 	else
 | |
| 		iowrite16_rep(data_addr, buf, words);
 | |
| 
 | |
| 	/* Transfer trailing byte, if any. */
 | |
| 	if (unlikely(buflen & 0x01)) {
 | |
| 		unsigned char pad[2] = { };
 | |
| 
 | |
| 		/* Point buf to the tail of buffer */
 | |
| 		buf += buflen - 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * Use io*16_rep() accessors here as well to avoid pointlessly
 | |
| 		 * swapping bytes to and from on the big endian machines...
 | |
| 		 */
 | |
| 		if (rw == READ) {
 | |
| 			ioread16_rep(data_addr, pad, 1);
 | |
| 			*buf = pad[0];
 | |
| 		} else {
 | |
| 			pad[0] = *buf;
 | |
| 			iowrite16_rep(data_addr, pad, 1);
 | |
| 		}
 | |
| 		words++;
 | |
| 	}
 | |
| 
 | |
| 	return words << 1;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
 | |
| 
 | |
| /**
 | |
|  *	ata_sff_data_xfer32 - Transfer data by PIO
 | |
|  *	@qc: queued command
 | |
|  *	@buf: data buffer
 | |
|  *	@buflen: buffer length
 | |
|  *	@rw: read/write
 | |
|  *
 | |
|  *	Transfer data from/to the device data register by PIO using 32bit
 | |
|  *	I/O operations.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from caller.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	Bytes consumed.
 | |
|  */
 | |
| 
 | |
| unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
 | |
| 			       unsigned int buflen, int rw)
 | |
| {
 | |
| 	struct ata_device *dev = qc->dev;
 | |
| 	struct ata_port *ap = dev->link->ap;
 | |
| 	void __iomem *data_addr = ap->ioaddr.data_addr;
 | |
| 	unsigned int words = buflen >> 2;
 | |
| 	int slop = buflen & 3;
 | |
| 
 | |
| 	if (!(ap->pflags & ATA_PFLAG_PIO32))
 | |
| 		return ata_sff_data_xfer(qc, buf, buflen, rw);
 | |
| 
 | |
| 	/* Transfer multiple of 4 bytes */
 | |
| 	if (rw == READ)
 | |
| 		ioread32_rep(data_addr, buf, words);
 | |
| 	else
 | |
| 		iowrite32_rep(data_addr, buf, words);
 | |
| 
 | |
| 	/* Transfer trailing bytes, if any */
 | |
| 	if (unlikely(slop)) {
 | |
| 		unsigned char pad[4] = { };
 | |
| 
 | |
| 		/* Point buf to the tail of buffer */
 | |
| 		buf += buflen - slop;
 | |
| 
 | |
| 		/*
 | |
| 		 * Use io*_rep() accessors here as well to avoid pointlessly
 | |
| 		 * swapping bytes to and from on the big endian machines...
 | |
| 		 */
 | |
| 		if (rw == READ) {
 | |
| 			if (slop < 3)
 | |
| 				ioread16_rep(data_addr, pad, 1);
 | |
| 			else
 | |
| 				ioread32_rep(data_addr, pad, 1);
 | |
| 			memcpy(buf, pad, slop);
 | |
| 		} else {
 | |
| 			memcpy(pad, buf, slop);
 | |
| 			if (slop < 3)
 | |
| 				iowrite16_rep(data_addr, pad, 1);
 | |
| 			else
 | |
| 				iowrite32_rep(data_addr, pad, 1);
 | |
| 		}
 | |
| 	}
 | |
| 	return (buflen + 1) & ~1;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
 | |
| 
 | |
| static void ata_pio_xfer(struct ata_queued_cmd *qc, struct page *page,
 | |
| 		unsigned int offset, size_t xfer_size)
 | |
| {
 | |
| 	bool do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
 | |
| 	unsigned char *buf;
 | |
| 
 | |
| 	buf = kmap_atomic(page);
 | |
| 	qc->ap->ops->sff_data_xfer(qc, buf + offset, xfer_size, do_write);
 | |
| 	kunmap_atomic(buf);
 | |
| 
 | |
| 	if (!do_write && !PageSlab(page))
 | |
| 		flush_dcache_page(page);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_pio_sector - Transfer a sector of data.
 | |
|  *	@qc: Command on going
 | |
|  *
 | |
|  *	Transfer qc->sect_size bytes of data from/to the ATA device.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from caller.
 | |
|  */
 | |
| static void ata_pio_sector(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	struct ata_port *ap = qc->ap;
 | |
| 	struct page *page;
 | |
| 	unsigned int offset;
 | |
| 
 | |
| 	if (!qc->cursg) {
 | |
| 		qc->curbytes = qc->nbytes;
 | |
| 		return;
 | |
| 	}
 | |
| 	if (qc->curbytes == qc->nbytes - qc->sect_size)
 | |
| 		ap->hsm_task_state = HSM_ST_LAST;
 | |
| 
 | |
| 	page = sg_page(qc->cursg);
 | |
| 	offset = qc->cursg->offset + qc->cursg_ofs;
 | |
| 
 | |
| 	/* get the current page and offset */
 | |
| 	page = nth_page(page, (offset >> PAGE_SHIFT));
 | |
| 	offset %= PAGE_SIZE;
 | |
| 
 | |
| 	trace_ata_sff_pio_transfer_data(qc, offset, qc->sect_size);
 | |
| 
 | |
| 	/*
 | |
| 	 * Split the transfer when it splits a page boundary.  Note that the
 | |
| 	 * split still has to be dword aligned like all ATA data transfers.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(offset % 4);
 | |
| 	if (offset + qc->sect_size > PAGE_SIZE) {
 | |
| 		unsigned int split_len = PAGE_SIZE - offset;
 | |
| 
 | |
| 		ata_pio_xfer(qc, page, offset, split_len);
 | |
| 		ata_pio_xfer(qc, nth_page(page, 1), 0,
 | |
| 			     qc->sect_size - split_len);
 | |
| 	} else {
 | |
| 		ata_pio_xfer(qc, page, offset, qc->sect_size);
 | |
| 	}
 | |
| 
 | |
| 	qc->curbytes += qc->sect_size;
 | |
| 	qc->cursg_ofs += qc->sect_size;
 | |
| 
 | |
| 	if (qc->cursg_ofs == qc->cursg->length) {
 | |
| 		qc->cursg = sg_next(qc->cursg);
 | |
| 		if (!qc->cursg)
 | |
| 			ap->hsm_task_state = HSM_ST_LAST;
 | |
| 		qc->cursg_ofs = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_pio_sectors - Transfer one or many sectors.
 | |
|  *	@qc: Command on going
 | |
|  *
 | |
|  *	Transfer one or many sectors of data from/to the
 | |
|  *	ATA device for the DRQ request.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from caller.
 | |
|  */
 | |
| static void ata_pio_sectors(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	if (is_multi_taskfile(&qc->tf)) {
 | |
| 		/* READ/WRITE MULTIPLE */
 | |
| 		unsigned int nsect;
 | |
| 
 | |
| 		WARN_ON_ONCE(qc->dev->multi_count == 0);
 | |
| 
 | |
| 		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
 | |
| 			    qc->dev->multi_count);
 | |
| 		while (nsect--)
 | |
| 			ata_pio_sector(qc);
 | |
| 	} else
 | |
| 		ata_pio_sector(qc);
 | |
| 
 | |
| 	ata_sff_sync(qc->ap); /* flush */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	atapi_send_cdb - Write CDB bytes to hardware
 | |
|  *	@ap: Port to which ATAPI device is attached.
 | |
|  *	@qc: Taskfile currently active
 | |
|  *
 | |
|  *	When device has indicated its readiness to accept
 | |
|  *	a CDB, this function is called.  Send the CDB.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	caller.
 | |
|  */
 | |
| static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	/* send SCSI cdb */
 | |
| 	trace_atapi_send_cdb(qc, 0, qc->dev->cdb_len);
 | |
| 	WARN_ON_ONCE(qc->dev->cdb_len < 12);
 | |
| 
 | |
| 	ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
 | |
| 	ata_sff_sync(ap);
 | |
| 	/* FIXME: If the CDB is for DMA do we need to do the transition delay
 | |
| 	   or is bmdma_start guaranteed to do it ? */
 | |
| 	switch (qc->tf.protocol) {
 | |
| 	case ATAPI_PROT_PIO:
 | |
| 		ap->hsm_task_state = HSM_ST;
 | |
| 		break;
 | |
| 	case ATAPI_PROT_NODATA:
 | |
| 		ap->hsm_task_state = HSM_ST_LAST;
 | |
| 		break;
 | |
| #ifdef CONFIG_ATA_BMDMA
 | |
| 	case ATAPI_PROT_DMA:
 | |
| 		ap->hsm_task_state = HSM_ST_LAST;
 | |
| 		/* initiate bmdma */
 | |
| 		trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
 | |
| 		ap->ops->bmdma_start(qc);
 | |
| 		break;
 | |
| #endif /* CONFIG_ATA_BMDMA */
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
 | |
|  *	@qc: Command on going
 | |
|  *	@bytes: number of bytes
 | |
|  *
 | |
|  *	Transfer data from/to the ATAPI device.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from caller.
 | |
|  *
 | |
|  */
 | |
| static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
 | |
| {
 | |
| 	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
 | |
| 	struct ata_port *ap = qc->ap;
 | |
| 	struct ata_device *dev = qc->dev;
 | |
| 	struct ata_eh_info *ehi = &dev->link->eh_info;
 | |
| 	struct scatterlist *sg;
 | |
| 	struct page *page;
 | |
| 	unsigned char *buf;
 | |
| 	unsigned int offset, count, consumed;
 | |
| 
 | |
| next_sg:
 | |
| 	sg = qc->cursg;
 | |
| 	if (unlikely(!sg)) {
 | |
| 		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
 | |
| 				  "buf=%u cur=%u bytes=%u",
 | |
| 				  qc->nbytes, qc->curbytes, bytes);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	page = sg_page(sg);
 | |
| 	offset = sg->offset + qc->cursg_ofs;
 | |
| 
 | |
| 	/* get the current page and offset */
 | |
| 	page = nth_page(page, (offset >> PAGE_SHIFT));
 | |
| 	offset %= PAGE_SIZE;
 | |
| 
 | |
| 	/* don't overrun current sg */
 | |
| 	count = min(sg->length - qc->cursg_ofs, bytes);
 | |
| 
 | |
| 	/* don't cross page boundaries */
 | |
| 	count = min(count, (unsigned int)PAGE_SIZE - offset);
 | |
| 
 | |
| 	trace_atapi_pio_transfer_data(qc, offset, count);
 | |
| 
 | |
| 	/* do the actual data transfer */
 | |
| 	buf = kmap_atomic(page);
 | |
| 	consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw);
 | |
| 	kunmap_atomic(buf);
 | |
| 
 | |
| 	bytes -= min(bytes, consumed);
 | |
| 	qc->curbytes += count;
 | |
| 	qc->cursg_ofs += count;
 | |
| 
 | |
| 	if (qc->cursg_ofs == sg->length) {
 | |
| 		qc->cursg = sg_next(qc->cursg);
 | |
| 		qc->cursg_ofs = 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
 | |
| 	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
 | |
| 	 * check correctly as it doesn't know if it is the last request being
 | |
| 	 * made. Somebody should implement a proper sanity check.
 | |
| 	 */
 | |
| 	if (bytes)
 | |
| 		goto next_sg;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
 | |
|  *	@qc: Command on going
 | |
|  *
 | |
|  *	Transfer Transfer data from/to the ATAPI device.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from caller.
 | |
|  */
 | |
| static void atapi_pio_bytes(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	struct ata_port *ap = qc->ap;
 | |
| 	struct ata_device *dev = qc->dev;
 | |
| 	struct ata_eh_info *ehi = &dev->link->eh_info;
 | |
| 	unsigned int ireason, bc_lo, bc_hi, bytes;
 | |
| 	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
 | |
| 
 | |
| 	/* Abuse qc->result_tf for temp storage of intermediate TF
 | |
| 	 * here to save some kernel stack usage.
 | |
| 	 * For normal completion, qc->result_tf is not relevant. For
 | |
| 	 * error, qc->result_tf is later overwritten by ata_qc_complete().
 | |
| 	 * So, the correctness of qc->result_tf is not affected.
 | |
| 	 */
 | |
| 	ap->ops->sff_tf_read(ap, &qc->result_tf);
 | |
| 	ireason = qc->result_tf.nsect;
 | |
| 	bc_lo = qc->result_tf.lbam;
 | |
| 	bc_hi = qc->result_tf.lbah;
 | |
| 	bytes = (bc_hi << 8) | bc_lo;
 | |
| 
 | |
| 	/* shall be cleared to zero, indicating xfer of data */
 | |
| 	if (unlikely(ireason & ATAPI_COD))
 | |
| 		goto atapi_check;
 | |
| 
 | |
| 	/* make sure transfer direction matches expected */
 | |
| 	i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
 | |
| 	if (unlikely(do_write != i_write))
 | |
| 		goto atapi_check;
 | |
| 
 | |
| 	if (unlikely(!bytes))
 | |
| 		goto atapi_check;
 | |
| 
 | |
| 	if (unlikely(__atapi_pio_bytes(qc, bytes)))
 | |
| 		goto err_out;
 | |
| 	ata_sff_sync(ap); /* flush */
 | |
| 
 | |
| 	return;
 | |
| 
 | |
|  atapi_check:
 | |
| 	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
 | |
| 			  ireason, bytes);
 | |
|  err_out:
 | |
| 	qc->err_mask |= AC_ERR_HSM;
 | |
| 	ap->hsm_task_state = HSM_ST_ERR;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
 | |
|  *	@ap: the target ata_port
 | |
|  *	@qc: qc on going
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	1 if ok in workqueue, 0 otherwise.
 | |
|  */
 | |
| static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
 | |
| 						struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	if (qc->tf.flags & ATA_TFLAG_POLLING)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (ap->hsm_task_state == HSM_ST_FIRST) {
 | |
| 		if (qc->tf.protocol == ATA_PROT_PIO &&
 | |
| 		   (qc->tf.flags & ATA_TFLAG_WRITE))
 | |
| 		    return 1;
 | |
| 
 | |
| 		if (ata_is_atapi(qc->tf.protocol) &&
 | |
| 		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_hsm_qc_complete - finish a qc running on standard HSM
 | |
|  *	@qc: Command to complete
 | |
|  *	@in_wq: 1 if called from workqueue, 0 otherwise
 | |
|  *
 | |
|  *	Finish @qc which is running on standard HSM.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	If @in_wq is zero, spin_lock_irqsave(host lock).
 | |
|  *	Otherwise, none on entry and grabs host lock.
 | |
|  */
 | |
| static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
 | |
| {
 | |
| 	struct ata_port *ap = qc->ap;
 | |
| 
 | |
| 	if (ap->ops->error_handler) {
 | |
| 		if (in_wq) {
 | |
| 			/* EH might have kicked in while host lock is
 | |
| 			 * released.
 | |
| 			 */
 | |
| 			qc = ata_qc_from_tag(ap, qc->tag);
 | |
| 			if (qc) {
 | |
| 				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
 | |
| 					ata_sff_irq_on(ap);
 | |
| 					ata_qc_complete(qc);
 | |
| 				} else
 | |
| 					ata_port_freeze(ap);
 | |
| 			}
 | |
| 		} else {
 | |
| 			if (likely(!(qc->err_mask & AC_ERR_HSM)))
 | |
| 				ata_qc_complete(qc);
 | |
| 			else
 | |
| 				ata_port_freeze(ap);
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (in_wq) {
 | |
| 			ata_sff_irq_on(ap);
 | |
| 			ata_qc_complete(qc);
 | |
| 		} else
 | |
| 			ata_qc_complete(qc);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_sff_hsm_move - move the HSM to the next state.
 | |
|  *	@ap: the target ata_port
 | |
|  *	@qc: qc on going
 | |
|  *	@status: current device status
 | |
|  *	@in_wq: 1 if called from workqueue, 0 otherwise
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	1 when poll next status needed, 0 otherwise.
 | |
|  */
 | |
| int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
 | |
| 		     u8 status, int in_wq)
 | |
| {
 | |
| 	struct ata_link *link = qc->dev->link;
 | |
| 	struct ata_eh_info *ehi = &link->eh_info;
 | |
| 	int poll_next;
 | |
| 
 | |
| 	lockdep_assert_held(ap->lock);
 | |
| 
 | |
| 	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
 | |
| 
 | |
| 	/* Make sure ata_sff_qc_issue() does not throw things
 | |
| 	 * like DMA polling into the workqueue. Notice that
 | |
| 	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
 | |
| 
 | |
| fsm_start:
 | |
| 	trace_ata_sff_hsm_state(qc, status);
 | |
| 
 | |
| 	switch (ap->hsm_task_state) {
 | |
| 	case HSM_ST_FIRST:
 | |
| 		/* Send first data block or PACKET CDB */
 | |
| 
 | |
| 		/* If polling, we will stay in the work queue after
 | |
| 		 * sending the data. Otherwise, interrupt handler
 | |
| 		 * takes over after sending the data.
 | |
| 		 */
 | |
| 		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
 | |
| 
 | |
| 		/* check device status */
 | |
| 		if (unlikely((status & ATA_DRQ) == 0)) {
 | |
| 			/* handle BSY=0, DRQ=0 as error */
 | |
| 			if (likely(status & (ATA_ERR | ATA_DF)))
 | |
| 				/* device stops HSM for abort/error */
 | |
| 				qc->err_mask |= AC_ERR_DEV;
 | |
| 			else {
 | |
| 				/* HSM violation. Let EH handle this */
 | |
| 				ata_ehi_push_desc(ehi,
 | |
| 					"ST_FIRST: !(DRQ|ERR|DF)");
 | |
| 				qc->err_mask |= AC_ERR_HSM;
 | |
| 			}
 | |
| 
 | |
| 			ap->hsm_task_state = HSM_ST_ERR;
 | |
| 			goto fsm_start;
 | |
| 		}
 | |
| 
 | |
| 		/* Device should not ask for data transfer (DRQ=1)
 | |
| 		 * when it finds something wrong.
 | |
| 		 * We ignore DRQ here and stop the HSM by
 | |
| 		 * changing hsm_task_state to HSM_ST_ERR and
 | |
| 		 * let the EH abort the command or reset the device.
 | |
| 		 */
 | |
| 		if (unlikely(status & (ATA_ERR | ATA_DF))) {
 | |
| 			/* Some ATAPI tape drives forget to clear the ERR bit
 | |
| 			 * when doing the next command (mostly request sense).
 | |
| 			 * We ignore ERR here to workaround and proceed sending
 | |
| 			 * the CDB.
 | |
| 			 */
 | |
| 			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
 | |
| 				ata_ehi_push_desc(ehi, "ST_FIRST: "
 | |
| 					"DRQ=1 with device error, "
 | |
| 					"dev_stat 0x%X", status);
 | |
| 				qc->err_mask |= AC_ERR_HSM;
 | |
| 				ap->hsm_task_state = HSM_ST_ERR;
 | |
| 				goto fsm_start;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (qc->tf.protocol == ATA_PROT_PIO) {
 | |
| 			/* PIO data out protocol.
 | |
| 			 * send first data block.
 | |
| 			 */
 | |
| 
 | |
| 			/* ata_pio_sectors() might change the state
 | |
| 			 * to HSM_ST_LAST. so, the state is changed here
 | |
| 			 * before ata_pio_sectors().
 | |
| 			 */
 | |
| 			ap->hsm_task_state = HSM_ST;
 | |
| 			ata_pio_sectors(qc);
 | |
| 		} else
 | |
| 			/* send CDB */
 | |
| 			atapi_send_cdb(ap, qc);
 | |
| 
 | |
| 		/* if polling, ata_sff_pio_task() handles the rest.
 | |
| 		 * otherwise, interrupt handler takes over from here.
 | |
| 		 */
 | |
| 		break;
 | |
| 
 | |
| 	case HSM_ST:
 | |
| 		/* complete command or read/write the data register */
 | |
| 		if (qc->tf.protocol == ATAPI_PROT_PIO) {
 | |
| 			/* ATAPI PIO protocol */
 | |
| 			if ((status & ATA_DRQ) == 0) {
 | |
| 				/* No more data to transfer or device error.
 | |
| 				 * Device error will be tagged in HSM_ST_LAST.
 | |
| 				 */
 | |
| 				ap->hsm_task_state = HSM_ST_LAST;
 | |
| 				goto fsm_start;
 | |
| 			}
 | |
| 
 | |
| 			/* Device should not ask for data transfer (DRQ=1)
 | |
| 			 * when it finds something wrong.
 | |
| 			 * We ignore DRQ here and stop the HSM by
 | |
| 			 * changing hsm_task_state to HSM_ST_ERR and
 | |
| 			 * let the EH abort the command or reset the device.
 | |
| 			 */
 | |
| 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
 | |
| 				ata_ehi_push_desc(ehi, "ST-ATAPI: "
 | |
| 					"DRQ=1 with device error, "
 | |
| 					"dev_stat 0x%X", status);
 | |
| 				qc->err_mask |= AC_ERR_HSM;
 | |
| 				ap->hsm_task_state = HSM_ST_ERR;
 | |
| 				goto fsm_start;
 | |
| 			}
 | |
| 
 | |
| 			atapi_pio_bytes(qc);
 | |
| 
 | |
| 			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
 | |
| 				/* bad ireason reported by device */
 | |
| 				goto fsm_start;
 | |
| 
 | |
| 		} else {
 | |
| 			/* ATA PIO protocol */
 | |
| 			if (unlikely((status & ATA_DRQ) == 0)) {
 | |
| 				/* handle BSY=0, DRQ=0 as error */
 | |
| 				if (likely(status & (ATA_ERR | ATA_DF))) {
 | |
| 					/* device stops HSM for abort/error */
 | |
| 					qc->err_mask |= AC_ERR_DEV;
 | |
| 
 | |
| 					/* If diagnostic failed and this is
 | |
| 					 * IDENTIFY, it's likely a phantom
 | |
| 					 * device.  Mark hint.
 | |
| 					 */
 | |
| 					if (qc->dev->horkage &
 | |
| 					    ATA_HORKAGE_DIAGNOSTIC)
 | |
| 						qc->err_mask |=
 | |
| 							AC_ERR_NODEV_HINT;
 | |
| 				} else {
 | |
| 					/* HSM violation. Let EH handle this.
 | |
| 					 * Phantom devices also trigger this
 | |
| 					 * condition.  Mark hint.
 | |
| 					 */
 | |
| 					ata_ehi_push_desc(ehi, "ST-ATA: "
 | |
| 						"DRQ=0 without device error, "
 | |
| 						"dev_stat 0x%X", status);
 | |
| 					qc->err_mask |= AC_ERR_HSM |
 | |
| 							AC_ERR_NODEV_HINT;
 | |
| 				}
 | |
| 
 | |
| 				ap->hsm_task_state = HSM_ST_ERR;
 | |
| 				goto fsm_start;
 | |
| 			}
 | |
| 
 | |
| 			/* For PIO reads, some devices may ask for
 | |
| 			 * data transfer (DRQ=1) alone with ERR=1.
 | |
| 			 * We respect DRQ here and transfer one
 | |
| 			 * block of junk data before changing the
 | |
| 			 * hsm_task_state to HSM_ST_ERR.
 | |
| 			 *
 | |
| 			 * For PIO writes, ERR=1 DRQ=1 doesn't make
 | |
| 			 * sense since the data block has been
 | |
| 			 * transferred to the device.
 | |
| 			 */
 | |
| 			if (unlikely(status & (ATA_ERR | ATA_DF))) {
 | |
| 				/* data might be corrputed */
 | |
| 				qc->err_mask |= AC_ERR_DEV;
 | |
| 
 | |
| 				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
 | |
| 					ata_pio_sectors(qc);
 | |
| 					status = ata_wait_idle(ap);
 | |
| 				}
 | |
| 
 | |
| 				if (status & (ATA_BUSY | ATA_DRQ)) {
 | |
| 					ata_ehi_push_desc(ehi, "ST-ATA: "
 | |
| 						"BUSY|DRQ persists on ERR|DF, "
 | |
| 						"dev_stat 0x%X", status);
 | |
| 					qc->err_mask |= AC_ERR_HSM;
 | |
| 				}
 | |
| 
 | |
| 				/* There are oddball controllers with
 | |
| 				 * status register stuck at 0x7f and
 | |
| 				 * lbal/m/h at zero which makes it
 | |
| 				 * pass all other presence detection
 | |
| 				 * mechanisms we have.  Set NODEV_HINT
 | |
| 				 * for it.  Kernel bz#7241.
 | |
| 				 */
 | |
| 				if (status == 0x7f)
 | |
| 					qc->err_mask |= AC_ERR_NODEV_HINT;
 | |
| 
 | |
| 				/* ata_pio_sectors() might change the
 | |
| 				 * state to HSM_ST_LAST. so, the state
 | |
| 				 * is changed after ata_pio_sectors().
 | |
| 				 */
 | |
| 				ap->hsm_task_state = HSM_ST_ERR;
 | |
| 				goto fsm_start;
 | |
| 			}
 | |
| 
 | |
| 			ata_pio_sectors(qc);
 | |
| 
 | |
| 			if (ap->hsm_task_state == HSM_ST_LAST &&
 | |
| 			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
 | |
| 				/* all data read */
 | |
| 				status = ata_wait_idle(ap);
 | |
| 				goto fsm_start;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		poll_next = 1;
 | |
| 		break;
 | |
| 
 | |
| 	case HSM_ST_LAST:
 | |
| 		if (unlikely(!ata_ok(status))) {
 | |
| 			qc->err_mask |= __ac_err_mask(status);
 | |
| 			ap->hsm_task_state = HSM_ST_ERR;
 | |
| 			goto fsm_start;
 | |
| 		}
 | |
| 
 | |
| 		/* no more data to transfer */
 | |
| 		trace_ata_sff_hsm_command_complete(qc, status);
 | |
| 
 | |
| 		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
 | |
| 
 | |
| 		ap->hsm_task_state = HSM_ST_IDLE;
 | |
| 
 | |
| 		/* complete taskfile transaction */
 | |
| 		ata_hsm_qc_complete(qc, in_wq);
 | |
| 
 | |
| 		poll_next = 0;
 | |
| 		break;
 | |
| 
 | |
| 	case HSM_ST_ERR:
 | |
| 		ap->hsm_task_state = HSM_ST_IDLE;
 | |
| 
 | |
| 		/* complete taskfile transaction */
 | |
| 		ata_hsm_qc_complete(qc, in_wq);
 | |
| 
 | |
| 		poll_next = 0;
 | |
| 		break;
 | |
| 	default:
 | |
| 		poll_next = 0;
 | |
| 		WARN(true, "ata%d: SFF host state machine in invalid state %d",
 | |
| 		     ap->print_id, ap->hsm_task_state);
 | |
| 	}
 | |
| 
 | |
| 	return poll_next;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
 | |
| 
 | |
| void ata_sff_queue_work(struct work_struct *work)
 | |
| {
 | |
| 	queue_work(ata_sff_wq, work);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_sff_queue_work);
 | |
| 
 | |
| void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
 | |
| {
 | |
| 	queue_delayed_work(ata_sff_wq, dwork, delay);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
 | |
| 
 | |
| void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
 | |
| {
 | |
| 	struct ata_port *ap = link->ap;
 | |
| 
 | |
| 	WARN_ON((ap->sff_pio_task_link != NULL) &&
 | |
| 		(ap->sff_pio_task_link != link));
 | |
| 	ap->sff_pio_task_link = link;
 | |
| 
 | |
| 	/* may fail if ata_sff_flush_pio_task() in progress */
 | |
| 	ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
 | |
| 
 | |
| void ata_sff_flush_pio_task(struct ata_port *ap)
 | |
| {
 | |
| 	trace_ata_sff_flush_pio_task(ap);
 | |
| 
 | |
| 	cancel_delayed_work_sync(&ap->sff_pio_task);
 | |
| 
 | |
| 	/*
 | |
| 	 * We wanna reset the HSM state to IDLE.  If we do so without
 | |
| 	 * grabbing the port lock, critical sections protected by it which
 | |
| 	 * expect the HSM state to stay stable may get surprised.  For
 | |
| 	 * example, we may set IDLE in between the time
 | |
| 	 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
 | |
| 	 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
 | |
| 	 */
 | |
| 	spin_lock_irq(ap->lock);
 | |
| 	ap->hsm_task_state = HSM_ST_IDLE;
 | |
| 	spin_unlock_irq(ap->lock);
 | |
| 
 | |
| 	ap->sff_pio_task_link = NULL;
 | |
| }
 | |
| 
 | |
| static void ata_sff_pio_task(struct work_struct *work)
 | |
| {
 | |
| 	struct ata_port *ap =
 | |
| 		container_of(work, struct ata_port, sff_pio_task.work);
 | |
| 	struct ata_link *link = ap->sff_pio_task_link;
 | |
| 	struct ata_queued_cmd *qc;
 | |
| 	u8 status;
 | |
| 	int poll_next;
 | |
| 
 | |
| 	spin_lock_irq(ap->lock);
 | |
| 
 | |
| 	BUG_ON(ap->sff_pio_task_link == NULL);
 | |
| 	/* qc can be NULL if timeout occurred */
 | |
| 	qc = ata_qc_from_tag(ap, link->active_tag);
 | |
| 	if (!qc) {
 | |
| 		ap->sff_pio_task_link = NULL;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| fsm_start:
 | |
| 	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
 | |
| 
 | |
| 	/*
 | |
| 	 * This is purely heuristic.  This is a fast path.
 | |
| 	 * Sometimes when we enter, BSY will be cleared in
 | |
| 	 * a chk-status or two.  If not, the drive is probably seeking
 | |
| 	 * or something.  Snooze for a couple msecs, then
 | |
| 	 * chk-status again.  If still busy, queue delayed work.
 | |
| 	 */
 | |
| 	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
 | |
| 	if (status & ATA_BUSY) {
 | |
| 		spin_unlock_irq(ap->lock);
 | |
| 		ata_msleep(ap, 2);
 | |
| 		spin_lock_irq(ap->lock);
 | |
| 
 | |
| 		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
 | |
| 		if (status & ATA_BUSY) {
 | |
| 			ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * hsm_move() may trigger another command to be processed.
 | |
| 	 * clean the link beforehand.
 | |
| 	 */
 | |
| 	ap->sff_pio_task_link = NULL;
 | |
| 	/* move the HSM */
 | |
| 	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
 | |
| 
 | |
| 	/* another command or interrupt handler
 | |
| 	 * may be running at this point.
 | |
| 	 */
 | |
| 	if (poll_next)
 | |
| 		goto fsm_start;
 | |
| out_unlock:
 | |
| 	spin_unlock_irq(ap->lock);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_sff_qc_issue - issue taskfile to a SFF controller
 | |
|  *	@qc: command to issue to device
 | |
|  *
 | |
|  *	This function issues a PIO or NODATA command to a SFF
 | |
|  *	controller.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	spin_lock_irqsave(host lock)
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	Zero on success, AC_ERR_* mask on failure
 | |
|  */
 | |
| unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	struct ata_port *ap = qc->ap;
 | |
| 	struct ata_link *link = qc->dev->link;
 | |
| 
 | |
| 	/* Use polling pio if the LLD doesn't handle
 | |
| 	 * interrupt driven pio and atapi CDB interrupt.
 | |
| 	 */
 | |
| 	if (ap->flags & ATA_FLAG_PIO_POLLING)
 | |
| 		qc->tf.flags |= ATA_TFLAG_POLLING;
 | |
| 
 | |
| 	/* select the device */
 | |
| 	ata_dev_select(ap, qc->dev->devno, 1, 0);
 | |
| 
 | |
| 	/* start the command */
 | |
| 	switch (qc->tf.protocol) {
 | |
| 	case ATA_PROT_NODATA:
 | |
| 		if (qc->tf.flags & ATA_TFLAG_POLLING)
 | |
| 			ata_qc_set_polling(qc);
 | |
| 
 | |
| 		ata_tf_to_host(ap, &qc->tf, qc->tag);
 | |
| 		ap->hsm_task_state = HSM_ST_LAST;
 | |
| 
 | |
| 		if (qc->tf.flags & ATA_TFLAG_POLLING)
 | |
| 			ata_sff_queue_pio_task(link, 0);
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	case ATA_PROT_PIO:
 | |
| 		if (qc->tf.flags & ATA_TFLAG_POLLING)
 | |
| 			ata_qc_set_polling(qc);
 | |
| 
 | |
| 		ata_tf_to_host(ap, &qc->tf, qc->tag);
 | |
| 
 | |
| 		if (qc->tf.flags & ATA_TFLAG_WRITE) {
 | |
| 			/* PIO data out protocol */
 | |
| 			ap->hsm_task_state = HSM_ST_FIRST;
 | |
| 			ata_sff_queue_pio_task(link, 0);
 | |
| 
 | |
| 			/* always send first data block using the
 | |
| 			 * ata_sff_pio_task() codepath.
 | |
| 			 */
 | |
| 		} else {
 | |
| 			/* PIO data in protocol */
 | |
| 			ap->hsm_task_state = HSM_ST;
 | |
| 
 | |
| 			if (qc->tf.flags & ATA_TFLAG_POLLING)
 | |
| 				ata_sff_queue_pio_task(link, 0);
 | |
| 
 | |
| 			/* if polling, ata_sff_pio_task() handles the
 | |
| 			 * rest.  otherwise, interrupt handler takes
 | |
| 			 * over from here.
 | |
| 			 */
 | |
| 		}
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	case ATAPI_PROT_PIO:
 | |
| 	case ATAPI_PROT_NODATA:
 | |
| 		if (qc->tf.flags & ATA_TFLAG_POLLING)
 | |
| 			ata_qc_set_polling(qc);
 | |
| 
 | |
| 		ata_tf_to_host(ap, &qc->tf, qc->tag);
 | |
| 
 | |
| 		ap->hsm_task_state = HSM_ST_FIRST;
 | |
| 
 | |
| 		/* send cdb by polling if no cdb interrupt */
 | |
| 		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
 | |
| 		    (qc->tf.flags & ATA_TFLAG_POLLING))
 | |
| 			ata_sff_queue_pio_task(link, 0);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		return AC_ERR_SYSTEM;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
 | |
| 
 | |
| /**
 | |
|  *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
 | |
|  *	@qc: qc to fill result TF for
 | |
|  *
 | |
|  *	@qc is finished and result TF needs to be filled.  Fill it
 | |
|  *	using ->sff_tf_read.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	spin_lock_irqsave(host lock)
 | |
|  */
 | |
| void ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
 | |
| 
 | |
| static unsigned int ata_sff_idle_irq(struct ata_port *ap)
 | |
| {
 | |
| 	ap->stats.idle_irq++;
 | |
| 
 | |
| #ifdef ATA_IRQ_TRAP
 | |
| 	if ((ap->stats.idle_irq % 1000) == 0) {
 | |
| 		ap->ops->sff_check_status(ap);
 | |
| 		if (ap->ops->sff_irq_clear)
 | |
| 			ap->ops->sff_irq_clear(ap);
 | |
| 		ata_port_warn(ap, "irq trap\n");
 | |
| 		return 1;
 | |
| 	}
 | |
| #endif
 | |
| 	return 0;	/* irq not handled */
 | |
| }
 | |
| 
 | |
| static unsigned int __ata_sff_port_intr(struct ata_port *ap,
 | |
| 					struct ata_queued_cmd *qc,
 | |
| 					bool hsmv_on_idle)
 | |
| {
 | |
| 	u8 status;
 | |
| 
 | |
| 	trace_ata_sff_port_intr(qc, hsmv_on_idle);
 | |
| 
 | |
| 	/* Check whether we are expecting interrupt in this state */
 | |
| 	switch (ap->hsm_task_state) {
 | |
| 	case HSM_ST_FIRST:
 | |
| 		/* Some pre-ATAPI-4 devices assert INTRQ
 | |
| 		 * at this state when ready to receive CDB.
 | |
| 		 */
 | |
| 
 | |
| 		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
 | |
| 		 * The flag was turned on only for atapi devices.  No
 | |
| 		 * need to check ata_is_atapi(qc->tf.protocol) again.
 | |
| 		 */
 | |
| 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
 | |
| 			return ata_sff_idle_irq(ap);
 | |
| 		break;
 | |
| 	case HSM_ST_IDLE:
 | |
| 		return ata_sff_idle_irq(ap);
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* check main status, clearing INTRQ if needed */
 | |
| 	status = ata_sff_irq_status(ap);
 | |
| 	if (status & ATA_BUSY) {
 | |
| 		if (hsmv_on_idle) {
 | |
| 			/* BMDMA engine is already stopped, we're screwed */
 | |
| 			qc->err_mask |= AC_ERR_HSM;
 | |
| 			ap->hsm_task_state = HSM_ST_ERR;
 | |
| 		} else
 | |
| 			return ata_sff_idle_irq(ap);
 | |
| 	}
 | |
| 
 | |
| 	/* clear irq events */
 | |
| 	if (ap->ops->sff_irq_clear)
 | |
| 		ap->ops->sff_irq_clear(ap);
 | |
| 
 | |
| 	ata_sff_hsm_move(ap, qc, status, 0);
 | |
| 
 | |
| 	return 1;	/* irq handled */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_sff_port_intr - Handle SFF port interrupt
 | |
|  *	@ap: Port on which interrupt arrived (possibly...)
 | |
|  *	@qc: Taskfile currently active in engine
 | |
|  *
 | |
|  *	Handle port interrupt for given queued command.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	spin_lock_irqsave(host lock)
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	One if interrupt was handled, zero if not (shared irq).
 | |
|  */
 | |
| unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	return __ata_sff_port_intr(ap, qc, false);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_sff_port_intr);
 | |
| 
 | |
| static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
 | |
| 	unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
 | |
| {
 | |
| 	struct ata_host *host = dev_instance;
 | |
| 	bool retried = false;
 | |
| 	unsigned int i;
 | |
| 	unsigned int handled, idle, polling;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
 | |
| 	spin_lock_irqsave(&host->lock, flags);
 | |
| 
 | |
| retry:
 | |
| 	handled = idle = polling = 0;
 | |
| 	for (i = 0; i < host->n_ports; i++) {
 | |
| 		struct ata_port *ap = host->ports[i];
 | |
| 		struct ata_queued_cmd *qc;
 | |
| 
 | |
| 		qc = ata_qc_from_tag(ap, ap->link.active_tag);
 | |
| 		if (qc) {
 | |
| 			if (!(qc->tf.flags & ATA_TFLAG_POLLING))
 | |
| 				handled |= port_intr(ap, qc);
 | |
| 			else
 | |
| 				polling |= 1 << i;
 | |
| 		} else
 | |
| 			idle |= 1 << i;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If no port was expecting IRQ but the controller is actually
 | |
| 	 * asserting IRQ line, nobody cared will ensue.  Check IRQ
 | |
| 	 * pending status if available and clear spurious IRQ.
 | |
| 	 */
 | |
| 	if (!handled && !retried) {
 | |
| 		bool retry = false;
 | |
| 
 | |
| 		for (i = 0; i < host->n_ports; i++) {
 | |
| 			struct ata_port *ap = host->ports[i];
 | |
| 
 | |
| 			if (polling & (1 << i))
 | |
| 				continue;
 | |
| 
 | |
| 			if (!ap->ops->sff_irq_check ||
 | |
| 			    !ap->ops->sff_irq_check(ap))
 | |
| 				continue;
 | |
| 
 | |
| 			if (idle & (1 << i)) {
 | |
| 				ap->ops->sff_check_status(ap);
 | |
| 				if (ap->ops->sff_irq_clear)
 | |
| 					ap->ops->sff_irq_clear(ap);
 | |
| 			} else {
 | |
| 				/* clear INTRQ and check if BUSY cleared */
 | |
| 				if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
 | |
| 					retry |= true;
 | |
| 				/*
 | |
| 				 * With command in flight, we can't do
 | |
| 				 * sff_irq_clear() w/o racing with completion.
 | |
| 				 */
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (retry) {
 | |
| 			retried = true;
 | |
| 			goto retry;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&host->lock, flags);
 | |
| 
 | |
| 	return IRQ_RETVAL(handled);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_sff_interrupt - Default SFF ATA host interrupt handler
 | |
|  *	@irq: irq line (unused)
 | |
|  *	@dev_instance: pointer to our ata_host information structure
 | |
|  *
 | |
|  *	Default interrupt handler for PCI IDE devices.  Calls
 | |
|  *	ata_sff_port_intr() for each port that is not disabled.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Obtains host lock during operation.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	IRQ_NONE or IRQ_HANDLED.
 | |
|  */
 | |
| irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
 | |
| {
 | |
| 	return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_sff_interrupt);
 | |
| 
 | |
| /**
 | |
|  *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt
 | |
|  *	@ap: port that appears to have timed out
 | |
|  *
 | |
|  *	Called from the libata error handlers when the core code suspects
 | |
|  *	an interrupt has been lost. If it has complete anything we can and
 | |
|  *	then return. Interface must support altstatus for this faster
 | |
|  *	recovery to occur.
 | |
|  *
 | |
|  *	Locking:
 | |
|  *	Caller holds host lock
 | |
|  */
 | |
| 
 | |
| void ata_sff_lost_interrupt(struct ata_port *ap)
 | |
| {
 | |
| 	u8 status = 0;
 | |
| 	struct ata_queued_cmd *qc;
 | |
| 
 | |
| 	/* Only one outstanding command per SFF channel */
 | |
| 	qc = ata_qc_from_tag(ap, ap->link.active_tag);
 | |
| 	/* We cannot lose an interrupt on a non-existent or polled command */
 | |
| 	if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
 | |
| 		return;
 | |
| 	/* See if the controller thinks it is still busy - if so the command
 | |
| 	   isn't a lost IRQ but is still in progress */
 | |
| 	if (WARN_ON_ONCE(!ata_sff_altstatus(ap, &status)))
 | |
| 		return;
 | |
| 	if (status & ATA_BUSY)
 | |
| 		return;
 | |
| 
 | |
| 	/* There was a command running, we are no longer busy and we have
 | |
| 	   no interrupt. */
 | |
| 	ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", status);
 | |
| 	/* Run the host interrupt logic as if the interrupt had not been
 | |
| 	   lost */
 | |
| 	ata_sff_port_intr(ap, qc);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
 | |
| 
 | |
| /**
 | |
|  *	ata_sff_freeze - Freeze SFF controller port
 | |
|  *	@ap: port to freeze
 | |
|  *
 | |
|  *	Freeze SFF controller port.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from caller.
 | |
|  */
 | |
| void ata_sff_freeze(struct ata_port *ap)
 | |
| {
 | |
| 	ap->ctl |= ATA_NIEN;
 | |
| 	ap->last_ctl = ap->ctl;
 | |
| 
 | |
| 	ata_sff_set_devctl(ap, ap->ctl);
 | |
| 
 | |
| 	/* Under certain circumstances, some controllers raise IRQ on
 | |
| 	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
 | |
| 	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
 | |
| 	 */
 | |
| 	ap->ops->sff_check_status(ap);
 | |
| 
 | |
| 	if (ap->ops->sff_irq_clear)
 | |
| 		ap->ops->sff_irq_clear(ap);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_sff_freeze);
 | |
| 
 | |
| /**
 | |
|  *	ata_sff_thaw - Thaw SFF controller port
 | |
|  *	@ap: port to thaw
 | |
|  *
 | |
|  *	Thaw SFF controller port.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from caller.
 | |
|  */
 | |
| void ata_sff_thaw(struct ata_port *ap)
 | |
| {
 | |
| 	/* clear & re-enable interrupts */
 | |
| 	ap->ops->sff_check_status(ap);
 | |
| 	if (ap->ops->sff_irq_clear)
 | |
| 		ap->ops->sff_irq_clear(ap);
 | |
| 	ata_sff_irq_on(ap);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_sff_thaw);
 | |
| 
 | |
| /**
 | |
|  *	ata_sff_prereset - prepare SFF link for reset
 | |
|  *	@link: SFF link to be reset
 | |
|  *	@deadline: deadline jiffies for the operation
 | |
|  *
 | |
|  *	SFF link @link is about to be reset.  Initialize it.  It first
 | |
|  *	calls ata_std_prereset() and wait for !BSY if the port is
 | |
|  *	being softreset.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Kernel thread context (may sleep)
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	Always 0.
 | |
|  */
 | |
| int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
 | |
| {
 | |
| 	struct ata_eh_context *ehc = &link->eh_context;
 | |
| 	int rc;
 | |
| 
 | |
| 	/* The standard prereset is best-effort and always returns 0 */
 | |
| 	ata_std_prereset(link, deadline);
 | |
| 
 | |
| 	/* if we're about to do hardreset, nothing more to do */
 | |
| 	if (ehc->i.action & ATA_EH_HARDRESET)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* wait for !BSY if we don't know that no device is attached */
 | |
| 	if (!ata_link_offline(link)) {
 | |
| 		rc = ata_sff_wait_ready(link, deadline);
 | |
| 		if (rc && rc != -ENODEV) {
 | |
| 			ata_link_warn(link,
 | |
| 				      "device not ready (errno=%d), forcing hardreset\n",
 | |
| 				      rc);
 | |
| 			ehc->i.action |= ATA_EH_HARDRESET;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_sff_prereset);
 | |
| 
 | |
| /**
 | |
|  *	ata_devchk - PATA device presence detection
 | |
|  *	@ap: ATA channel to examine
 | |
|  *	@device: Device to examine (starting at zero)
 | |
|  *
 | |
|  *	This technique was originally described in
 | |
|  *	Hale Landis's ATADRVR (www.ata-atapi.com), and
 | |
|  *	later found its way into the ATA/ATAPI spec.
 | |
|  *
 | |
|  *	Write a pattern to the ATA shadow registers,
 | |
|  *	and if a device is present, it will respond by
 | |
|  *	correctly storing and echoing back the
 | |
|  *	ATA shadow register contents.
 | |
|  *
 | |
|  *	RETURN:
 | |
|  *	true if device is present, false if not.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	caller.
 | |
|  */
 | |
| static bool ata_devchk(struct ata_port *ap, unsigned int device)
 | |
| {
 | |
| 	struct ata_ioports *ioaddr = &ap->ioaddr;
 | |
| 	u8 nsect, lbal;
 | |
| 
 | |
| 	ap->ops->sff_dev_select(ap, device);
 | |
| 
 | |
| 	iowrite8(0x55, ioaddr->nsect_addr);
 | |
| 	iowrite8(0xaa, ioaddr->lbal_addr);
 | |
| 
 | |
| 	iowrite8(0xaa, ioaddr->nsect_addr);
 | |
| 	iowrite8(0x55, ioaddr->lbal_addr);
 | |
| 
 | |
| 	iowrite8(0x55, ioaddr->nsect_addr);
 | |
| 	iowrite8(0xaa, ioaddr->lbal_addr);
 | |
| 
 | |
| 	nsect = ioread8(ioaddr->nsect_addr);
 | |
| 	lbal = ioread8(ioaddr->lbal_addr);
 | |
| 
 | |
| 	if ((nsect == 0x55) && (lbal == 0xaa))
 | |
| 		return true;	/* we found a device */
 | |
| 
 | |
| 	return false;		/* nothing found */
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_sff_dev_classify - Parse returned ATA device signature
 | |
|  *	@dev: ATA device to classify (starting at zero)
 | |
|  *	@present: device seems present
 | |
|  *	@r_err: Value of error register on completion
 | |
|  *
 | |
|  *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
 | |
|  *	an ATA/ATAPI-defined set of values is placed in the ATA
 | |
|  *	shadow registers, indicating the results of device detection
 | |
|  *	and diagnostics.
 | |
|  *
 | |
|  *	Select the ATA device, and read the values from the ATA shadow
 | |
|  *	registers.  Then parse according to the Error register value,
 | |
|  *	and the spec-defined values examined by ata_dev_classify().
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	caller.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
 | |
|  */
 | |
| unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
 | |
| 				  u8 *r_err)
 | |
| {
 | |
| 	struct ata_port *ap = dev->link->ap;
 | |
| 	struct ata_taskfile tf;
 | |
| 	unsigned int class;
 | |
| 	u8 err;
 | |
| 
 | |
| 	ap->ops->sff_dev_select(ap, dev->devno);
 | |
| 
 | |
| 	memset(&tf, 0, sizeof(tf));
 | |
| 
 | |
| 	ap->ops->sff_tf_read(ap, &tf);
 | |
| 	err = tf.error;
 | |
| 	if (r_err)
 | |
| 		*r_err = err;
 | |
| 
 | |
| 	/* see if device passed diags: continue and warn later */
 | |
| 	if (err == 0)
 | |
| 		/* diagnostic fail : do nothing _YET_ */
 | |
| 		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
 | |
| 	else if (err == 1)
 | |
| 		/* do nothing */ ;
 | |
| 	else if ((dev->devno == 0) && (err == 0x81))
 | |
| 		/* do nothing */ ;
 | |
| 	else
 | |
| 		return ATA_DEV_NONE;
 | |
| 
 | |
| 	/* determine if device is ATA or ATAPI */
 | |
| 	class = ata_port_classify(ap, &tf);
 | |
| 	switch (class) {
 | |
| 	case ATA_DEV_UNKNOWN:
 | |
| 		/*
 | |
| 		 * If the device failed diagnostic, it's likely to
 | |
| 		 * have reported incorrect device signature too.
 | |
| 		 * Assume ATA device if the device seems present but
 | |
| 		 * device signature is invalid with diagnostic
 | |
| 		 * failure.
 | |
| 		 */
 | |
| 		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
 | |
| 			class = ATA_DEV_ATA;
 | |
| 		else
 | |
| 			class = ATA_DEV_NONE;
 | |
| 		break;
 | |
| 	case ATA_DEV_ATA:
 | |
| 		if (ap->ops->sff_check_status(ap) == 0)
 | |
| 			class = ATA_DEV_NONE;
 | |
| 		break;
 | |
| 	}
 | |
| 	return class;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
 | |
| 
 | |
| /**
 | |
|  *	ata_sff_wait_after_reset - wait for devices to become ready after reset
 | |
|  *	@link: SFF link which is just reset
 | |
|  *	@devmask: mask of present devices
 | |
|  *	@deadline: deadline jiffies for the operation
 | |
|  *
 | |
|  *	Wait devices attached to SFF @link to become ready after
 | |
|  *	reset.  It contains preceding 150ms wait to avoid accessing TF
 | |
|  *	status register too early.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Kernel thread context (may sleep).
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 on success, -ENODEV if some or all of devices in @devmask
 | |
|  *	don't seem to exist.  -errno on other errors.
 | |
|  */
 | |
| int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
 | |
| 			     unsigned long deadline)
 | |
| {
 | |
| 	struct ata_port *ap = link->ap;
 | |
| 	struct ata_ioports *ioaddr = &ap->ioaddr;
 | |
| 	unsigned int dev0 = devmask & (1 << 0);
 | |
| 	unsigned int dev1 = devmask & (1 << 1);
 | |
| 	int rc, ret = 0;
 | |
| 
 | |
| 	ata_msleep(ap, ATA_WAIT_AFTER_RESET);
 | |
| 
 | |
| 	/* always check readiness of the master device */
 | |
| 	rc = ata_sff_wait_ready(link, deadline);
 | |
| 	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
 | |
| 	 * and TF status is 0xff, bail out on it too.
 | |
| 	 */
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	/* if device 1 was found in ata_devchk, wait for register
 | |
| 	 * access briefly, then wait for BSY to clear.
 | |
| 	 */
 | |
| 	if (dev1) {
 | |
| 		int i;
 | |
| 
 | |
| 		ap->ops->sff_dev_select(ap, 1);
 | |
| 
 | |
| 		/* Wait for register access.  Some ATAPI devices fail
 | |
| 		 * to set nsect/lbal after reset, so don't waste too
 | |
| 		 * much time on it.  We're gonna wait for !BSY anyway.
 | |
| 		 */
 | |
| 		for (i = 0; i < 2; i++) {
 | |
| 			u8 nsect, lbal;
 | |
| 
 | |
| 			nsect = ioread8(ioaddr->nsect_addr);
 | |
| 			lbal = ioread8(ioaddr->lbal_addr);
 | |
| 			if ((nsect == 1) && (lbal == 1))
 | |
| 				break;
 | |
| 			ata_msleep(ap, 50);	/* give drive a breather */
 | |
| 		}
 | |
| 
 | |
| 		rc = ata_sff_wait_ready(link, deadline);
 | |
| 		if (rc) {
 | |
| 			if (rc != -ENODEV)
 | |
| 				return rc;
 | |
| 			ret = rc;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* is all this really necessary? */
 | |
| 	ap->ops->sff_dev_select(ap, 0);
 | |
| 	if (dev1)
 | |
| 		ap->ops->sff_dev_select(ap, 1);
 | |
| 	if (dev0)
 | |
| 		ap->ops->sff_dev_select(ap, 0);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
 | |
| 
 | |
| static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
 | |
| 			     unsigned long deadline)
 | |
| {
 | |
| 	struct ata_ioports *ioaddr = &ap->ioaddr;
 | |
| 
 | |
| 	if (ap->ioaddr.ctl_addr) {
 | |
| 		/* software reset.  causes dev0 to be selected */
 | |
| 		iowrite8(ap->ctl, ioaddr->ctl_addr);
 | |
| 		udelay(20);	/* FIXME: flush */
 | |
| 		iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
 | |
| 		udelay(20);	/* FIXME: flush */
 | |
| 		iowrite8(ap->ctl, ioaddr->ctl_addr);
 | |
| 		ap->last_ctl = ap->ctl;
 | |
| 	}
 | |
| 
 | |
| 	/* wait the port to become ready */
 | |
| 	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_sff_softreset - reset host port via ATA SRST
 | |
|  *	@link: ATA link to reset
 | |
|  *	@classes: resulting classes of attached devices
 | |
|  *	@deadline: deadline jiffies for the operation
 | |
|  *
 | |
|  *	Reset host port using ATA SRST.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Kernel thread context (may sleep)
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 on success, -errno otherwise.
 | |
|  */
 | |
| int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
 | |
| 		      unsigned long deadline)
 | |
| {
 | |
| 	struct ata_port *ap = link->ap;
 | |
| 	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
 | |
| 	unsigned int devmask = 0;
 | |
| 	int rc;
 | |
| 	u8 err;
 | |
| 
 | |
| 	/* determine if device 0/1 are present */
 | |
| 	if (ata_devchk(ap, 0))
 | |
| 		devmask |= (1 << 0);
 | |
| 	if (slave_possible && ata_devchk(ap, 1))
 | |
| 		devmask |= (1 << 1);
 | |
| 
 | |
| 	/* select device 0 again */
 | |
| 	ap->ops->sff_dev_select(ap, 0);
 | |
| 
 | |
| 	/* issue bus reset */
 | |
| 	rc = ata_bus_softreset(ap, devmask, deadline);
 | |
| 	/* if link is occupied, -ENODEV too is an error */
 | |
| 	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
 | |
| 		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	/* determine by signature whether we have ATA or ATAPI devices */
 | |
| 	classes[0] = ata_sff_dev_classify(&link->device[0],
 | |
| 					  devmask & (1 << 0), &err);
 | |
| 	if (slave_possible && err != 0x81)
 | |
| 		classes[1] = ata_sff_dev_classify(&link->device[1],
 | |
| 						  devmask & (1 << 1), &err);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_sff_softreset);
 | |
| 
 | |
| /**
 | |
|  *	sata_sff_hardreset - reset host port via SATA phy reset
 | |
|  *	@link: link to reset
 | |
|  *	@class: resulting class of attached device
 | |
|  *	@deadline: deadline jiffies for the operation
 | |
|  *
 | |
|  *	SATA phy-reset host port using DET bits of SControl register,
 | |
|  *	wait for !BSY and classify the attached device.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Kernel thread context (may sleep)
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 on success, -errno otherwise.
 | |
|  */
 | |
| int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
 | |
| 		       unsigned long deadline)
 | |
| {
 | |
| 	struct ata_eh_context *ehc = &link->eh_context;
 | |
| 	const unsigned int *timing = sata_ehc_deb_timing(ehc);
 | |
| 	bool online;
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = sata_link_hardreset(link, timing, deadline, &online,
 | |
| 				 ata_sff_check_ready);
 | |
| 	if (online)
 | |
| 		*class = ata_sff_dev_classify(link->device, 1, NULL);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(sata_sff_hardreset);
 | |
| 
 | |
| /**
 | |
|  *	ata_sff_postreset - SFF postreset callback
 | |
|  *	@link: the target SFF ata_link
 | |
|  *	@classes: classes of attached devices
 | |
|  *
 | |
|  *	This function is invoked after a successful reset.  It first
 | |
|  *	calls ata_std_postreset() and performs SFF specific postreset
 | |
|  *	processing.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Kernel thread context (may sleep)
 | |
|  */
 | |
| void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
 | |
| {
 | |
| 	struct ata_port *ap = link->ap;
 | |
| 
 | |
| 	ata_std_postreset(link, classes);
 | |
| 
 | |
| 	/* is double-select really necessary? */
 | |
| 	if (classes[0] != ATA_DEV_NONE)
 | |
| 		ap->ops->sff_dev_select(ap, 1);
 | |
| 	if (classes[1] != ATA_DEV_NONE)
 | |
| 		ap->ops->sff_dev_select(ap, 0);
 | |
| 
 | |
| 	/* bail out if no device is present */
 | |
| 	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE)
 | |
| 		return;
 | |
| 
 | |
| 	/* set up device control */
 | |
| 	if (ata_sff_set_devctl(ap, ap->ctl))
 | |
| 		ap->last_ctl = ap->ctl;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_sff_postreset);
 | |
| 
 | |
| /**
 | |
|  *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
 | |
|  *	@qc: command
 | |
|  *
 | |
|  *	Drain the FIFO and device of any stuck data following a command
 | |
|  *	failing to complete. In some cases this is necessary before a
 | |
|  *	reset will recover the device.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	int count;
 | |
| 	struct ata_port *ap;
 | |
| 
 | |
| 	/* We only need to flush incoming data when a command was running */
 | |
| 	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
 | |
| 		return;
 | |
| 
 | |
| 	ap = qc->ap;
 | |
| 	/* Drain up to 64K of data before we give up this recovery method */
 | |
| 	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
 | |
| 						&& count < 65536; count += 2)
 | |
| 		ioread16(ap->ioaddr.data_addr);
 | |
| 
 | |
| 	if (count)
 | |
| 		ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
 | |
| 
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
 | |
| 
 | |
| /**
 | |
|  *	ata_sff_error_handler - Stock error handler for SFF controller
 | |
|  *	@ap: port to handle error for
 | |
|  *
 | |
|  *	Stock error handler for SFF controller.  It can handle both
 | |
|  *	PATA and SATA controllers.  Many controllers should be able to
 | |
|  *	use this EH as-is or with some added handling before and
 | |
|  *	after.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Kernel thread context (may sleep)
 | |
|  */
 | |
| void ata_sff_error_handler(struct ata_port *ap)
 | |
| {
 | |
| 	ata_reset_fn_t softreset = ap->ops->softreset;
 | |
| 	ata_reset_fn_t hardreset = ap->ops->hardreset;
 | |
| 	struct ata_queued_cmd *qc;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
 | |
| 	if (qc && !(qc->flags & ATA_QCFLAG_EH))
 | |
| 		qc = NULL;
 | |
| 
 | |
| 	spin_lock_irqsave(ap->lock, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * We *MUST* do FIFO draining before we issue a reset as
 | |
| 	 * several devices helpfully clear their internal state and
 | |
| 	 * will lock solid if we touch the data port post reset. Pass
 | |
| 	 * qc in case anyone wants to do different PIO/DMA recovery or
 | |
| 	 * has per command fixups
 | |
| 	 */
 | |
| 	if (ap->ops->sff_drain_fifo)
 | |
| 		ap->ops->sff_drain_fifo(qc);
 | |
| 
 | |
| 	spin_unlock_irqrestore(ap->lock, flags);
 | |
| 
 | |
| 	/* ignore built-in hardresets if SCR access is not available */
 | |
| 	if ((hardreset == sata_std_hardreset ||
 | |
| 	     hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
 | |
| 		hardreset = NULL;
 | |
| 
 | |
| 	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
 | |
| 		  ap->ops->postreset);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_sff_error_handler);
 | |
| 
 | |
| /**
 | |
|  *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
 | |
|  *	@ioaddr: IO address structure to be initialized
 | |
|  *
 | |
|  *	Utility function which initializes data_addr, error_addr,
 | |
|  *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
 | |
|  *	device_addr, status_addr, and command_addr to standard offsets
 | |
|  *	relative to cmd_addr.
 | |
|  *
 | |
|  *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
 | |
|  */
 | |
| void ata_sff_std_ports(struct ata_ioports *ioaddr)
 | |
| {
 | |
| 	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
 | |
| 	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
 | |
| 	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
 | |
| 	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
 | |
| 	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
 | |
| 	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
 | |
| 	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
 | |
| 	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
 | |
| 	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
 | |
| 	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_sff_std_ports);
 | |
| 
 | |
| #ifdef CONFIG_PCI
 | |
| 
 | |
| static bool ata_resources_present(struct pci_dev *pdev, int port)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/* Check the PCI resources for this channel are enabled */
 | |
| 	port *= 2;
 | |
| 	for (i = 0; i < 2; i++) {
 | |
| 		if (pci_resource_start(pdev, port + i) == 0 ||
 | |
| 		    pci_resource_len(pdev, port + i) == 0)
 | |
| 			return false;
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
 | |
|  *	@host: target ATA host
 | |
|  *
 | |
|  *	Acquire native PCI ATA resources for @host and initialize the
 | |
|  *	first two ports of @host accordingly.  Ports marked dummy are
 | |
|  *	skipped and allocation failure makes the port dummy.
 | |
|  *
 | |
|  *	Note that native PCI resources are valid even for legacy hosts
 | |
|  *	as we fix up pdev resources array early in boot, so this
 | |
|  *	function can be used for both native and legacy SFF hosts.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from calling layer (may sleep).
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 if at least one port is initialized, -ENODEV if no port is
 | |
|  *	available.
 | |
|  */
 | |
| int ata_pci_sff_init_host(struct ata_host *host)
 | |
| {
 | |
| 	struct device *gdev = host->dev;
 | |
| 	struct pci_dev *pdev = to_pci_dev(gdev);
 | |
| 	unsigned int mask = 0;
 | |
| 	int i, rc;
 | |
| 
 | |
| 	/* request, iomap BARs and init port addresses accordingly */
 | |
| 	for (i = 0; i < 2; i++) {
 | |
| 		struct ata_port *ap = host->ports[i];
 | |
| 		int base = i * 2;
 | |
| 		void __iomem * const *iomap;
 | |
| 
 | |
| 		if (ata_port_is_dummy(ap))
 | |
| 			continue;
 | |
| 
 | |
| 		/* Discard disabled ports.  Some controllers show
 | |
| 		 * their unused channels this way.  Disabled ports are
 | |
| 		 * made dummy.
 | |
| 		 */
 | |
| 		if (!ata_resources_present(pdev, i)) {
 | |
| 			ap->ops = &ata_dummy_port_ops;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		rc = pcim_iomap_regions(pdev, 0x3 << base,
 | |
| 					dev_driver_string(gdev));
 | |
| 		if (rc) {
 | |
| 			dev_warn(gdev,
 | |
| 				 "failed to request/iomap BARs for port %d (errno=%d)\n",
 | |
| 				 i, rc);
 | |
| 			if (rc == -EBUSY)
 | |
| 				pcim_pin_device(pdev);
 | |
| 			ap->ops = &ata_dummy_port_ops;
 | |
| 			continue;
 | |
| 		}
 | |
| 		host->iomap = iomap = pcim_iomap_table(pdev);
 | |
| 
 | |
| 		ap->ioaddr.cmd_addr = iomap[base];
 | |
| 		ap->ioaddr.altstatus_addr =
 | |
| 		ap->ioaddr.ctl_addr = (void __iomem *)
 | |
| 			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
 | |
| 		ata_sff_std_ports(&ap->ioaddr);
 | |
| 
 | |
| 		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
 | |
| 			(unsigned long long)pci_resource_start(pdev, base),
 | |
| 			(unsigned long long)pci_resource_start(pdev, base + 1));
 | |
| 
 | |
| 		mask |= 1 << i;
 | |
| 	}
 | |
| 
 | |
| 	if (!mask) {
 | |
| 		dev_err(gdev, "no available native port\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
 | |
| 
 | |
| /**
 | |
|  *	ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
 | |
|  *	@pdev: target PCI device
 | |
|  *	@ppi: array of port_info, must be enough for two ports
 | |
|  *	@r_host: out argument for the initialized ATA host
 | |
|  *
 | |
|  *	Helper to allocate PIO-only SFF ATA host for @pdev, acquire
 | |
|  *	all PCI resources and initialize it accordingly in one go.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from calling layer (may sleep).
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 on success, -errno otherwise.
 | |
|  */
 | |
| int ata_pci_sff_prepare_host(struct pci_dev *pdev,
 | |
| 			     const struct ata_port_info * const *ppi,
 | |
| 			     struct ata_host **r_host)
 | |
| {
 | |
| 	struct ata_host *host;
 | |
| 	int rc;
 | |
| 
 | |
| 	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
 | |
| 	if (!host) {
 | |
| 		dev_err(&pdev->dev, "failed to allocate ATA host\n");
 | |
| 		rc = -ENOMEM;
 | |
| 		goto err_out;
 | |
| 	}
 | |
| 
 | |
| 	rc = ata_pci_sff_init_host(host);
 | |
| 	if (rc)
 | |
| 		goto err_out;
 | |
| 
 | |
| 	devres_remove_group(&pdev->dev, NULL);
 | |
| 	*r_host = host;
 | |
| 	return 0;
 | |
| 
 | |
| err_out:
 | |
| 	devres_release_group(&pdev->dev, NULL);
 | |
| 	return rc;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
 | |
| 
 | |
| /**
 | |
|  *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
 | |
|  *	@host: target SFF ATA host
 | |
|  *	@irq_handler: irq_handler used when requesting IRQ(s)
 | |
|  *	@sht: scsi_host_template to use when registering the host
 | |
|  *
 | |
|  *	This is the counterpart of ata_host_activate() for SFF ATA
 | |
|  *	hosts.  This separate helper is necessary because SFF hosts
 | |
|  *	use two separate interrupts in legacy mode.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from calling layer (may sleep).
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 on success, -errno otherwise.
 | |
|  */
 | |
| int ata_pci_sff_activate_host(struct ata_host *host,
 | |
| 			      irq_handler_t irq_handler,
 | |
| 			      struct scsi_host_template *sht)
 | |
| {
 | |
| 	struct device *dev = host->dev;
 | |
| 	struct pci_dev *pdev = to_pci_dev(dev);
 | |
| 	const char *drv_name = dev_driver_string(host->dev);
 | |
| 	int legacy_mode = 0, rc;
 | |
| 
 | |
| 	rc = ata_host_start(host);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
 | |
| 		u8 tmp8, mask = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * ATA spec says we should use legacy mode when one
 | |
| 		 * port is in legacy mode, but disabled ports on some
 | |
| 		 * PCI hosts appear as fixed legacy ports, e.g SB600/700
 | |
| 		 * on which the secondary port is not wired, so
 | |
| 		 * ignore ports that are marked as 'dummy' during
 | |
| 		 * this check
 | |
| 		 */
 | |
| 		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
 | |
| 		if (!ata_port_is_dummy(host->ports[0]))
 | |
| 			mask |= (1 << 0);
 | |
| 		if (!ata_port_is_dummy(host->ports[1]))
 | |
| 			mask |= (1 << 2);
 | |
| 		if ((tmp8 & mask) != mask)
 | |
| 			legacy_mode = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (!legacy_mode && pdev->irq) {
 | |
| 		int i;
 | |
| 
 | |
| 		rc = devm_request_irq(dev, pdev->irq, irq_handler,
 | |
| 				      IRQF_SHARED, drv_name, host);
 | |
| 		if (rc)
 | |
| 			goto out;
 | |
| 
 | |
| 		for (i = 0; i < 2; i++) {
 | |
| 			if (ata_port_is_dummy(host->ports[i]))
 | |
| 				continue;
 | |
| 			ata_port_desc_misc(host->ports[i], pdev->irq);
 | |
| 		}
 | |
| 	} else if (legacy_mode) {
 | |
| 		if (!ata_port_is_dummy(host->ports[0])) {
 | |
| 			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
 | |
| 					      irq_handler, IRQF_SHARED,
 | |
| 					      drv_name, host);
 | |
| 			if (rc)
 | |
| 				goto out;
 | |
| 
 | |
| 			ata_port_desc_misc(host->ports[0],
 | |
| 					   ATA_PRIMARY_IRQ(pdev));
 | |
| 		}
 | |
| 
 | |
| 		if (!ata_port_is_dummy(host->ports[1])) {
 | |
| 			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
 | |
| 					      irq_handler, IRQF_SHARED,
 | |
| 					      drv_name, host);
 | |
| 			if (rc)
 | |
| 				goto out;
 | |
| 
 | |
| 			ata_port_desc_misc(host->ports[1],
 | |
| 					   ATA_SECONDARY_IRQ(pdev));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rc = ata_host_register(host, sht);
 | |
| out:
 | |
| 	if (rc == 0)
 | |
| 		devres_remove_group(dev, NULL);
 | |
| 	else
 | |
| 		devres_release_group(dev, NULL);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
 | |
| 
 | |
| static const struct ata_port_info *ata_sff_find_valid_pi(
 | |
| 					const struct ata_port_info * const *ppi)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/* look up the first valid port_info */
 | |
| 	for (i = 0; i < 2 && ppi[i]; i++)
 | |
| 		if (ppi[i]->port_ops != &ata_dummy_port_ops)
 | |
| 			return ppi[i];
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int ata_pci_init_one(struct pci_dev *pdev,
 | |
| 		const struct ata_port_info * const *ppi,
 | |
| 		struct scsi_host_template *sht, void *host_priv,
 | |
| 		int hflags, bool bmdma)
 | |
| {
 | |
| 	struct device *dev = &pdev->dev;
 | |
| 	const struct ata_port_info *pi;
 | |
| 	struct ata_host *host = NULL;
 | |
| 	int rc;
 | |
| 
 | |
| 	pi = ata_sff_find_valid_pi(ppi);
 | |
| 	if (!pi) {
 | |
| 		dev_err(&pdev->dev, "no valid port_info specified\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!devres_open_group(dev, NULL, GFP_KERNEL))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	rc = pcim_enable_device(pdev);
 | |
| 	if (rc)
 | |
| 		goto out;
 | |
| 
 | |
| #ifdef CONFIG_ATA_BMDMA
 | |
| 	if (bmdma)
 | |
| 		/* prepare and activate BMDMA host */
 | |
| 		rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
 | |
| 	else
 | |
| #endif
 | |
| 		/* prepare and activate SFF host */
 | |
| 		rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
 | |
| 	if (rc)
 | |
| 		goto out;
 | |
| 	host->private_data = host_priv;
 | |
| 	host->flags |= hflags;
 | |
| 
 | |
| #ifdef CONFIG_ATA_BMDMA
 | |
| 	if (bmdma) {
 | |
| 		pci_set_master(pdev);
 | |
| 		rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
 | |
| 	} else
 | |
| #endif
 | |
| 		rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
 | |
| out:
 | |
| 	if (rc == 0)
 | |
| 		devres_remove_group(&pdev->dev, NULL);
 | |
| 	else
 | |
| 		devres_release_group(&pdev->dev, NULL);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
 | |
|  *	@pdev: Controller to be initialized
 | |
|  *	@ppi: array of port_info, must be enough for two ports
 | |
|  *	@sht: scsi_host_template to use when registering the host
 | |
|  *	@host_priv: host private_data
 | |
|  *	@hflag: host flags
 | |
|  *
 | |
|  *	This is a helper function which can be called from a driver's
 | |
|  *	xxx_init_one() probe function if the hardware uses traditional
 | |
|  *	IDE taskfile registers and is PIO only.
 | |
|  *
 | |
|  *	ASSUMPTION:
 | |
|  *	Nobody makes a single channel controller that appears solely as
 | |
|  *	the secondary legacy port on PCI.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from PCI layer (may sleep).
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	Zero on success, negative on errno-based value on error.
 | |
|  */
 | |
| int ata_pci_sff_init_one(struct pci_dev *pdev,
 | |
| 		 const struct ata_port_info * const *ppi,
 | |
| 		 struct scsi_host_template *sht, void *host_priv, int hflag)
 | |
| {
 | |
| 	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
 | |
| 
 | |
| #endif /* CONFIG_PCI */
 | |
| 
 | |
| /*
 | |
|  *	BMDMA support
 | |
|  */
 | |
| 
 | |
| #ifdef CONFIG_ATA_BMDMA
 | |
| 
 | |
| const struct ata_port_operations ata_bmdma_port_ops = {
 | |
| 	.inherits		= &ata_sff_port_ops,
 | |
| 
 | |
| 	.error_handler		= ata_bmdma_error_handler,
 | |
| 	.post_internal_cmd	= ata_bmdma_post_internal_cmd,
 | |
| 
 | |
| 	.qc_prep		= ata_bmdma_qc_prep,
 | |
| 	.qc_issue		= ata_bmdma_qc_issue,
 | |
| 
 | |
| 	.sff_irq_clear		= ata_bmdma_irq_clear,
 | |
| 	.bmdma_setup		= ata_bmdma_setup,
 | |
| 	.bmdma_start		= ata_bmdma_start,
 | |
| 	.bmdma_stop		= ata_bmdma_stop,
 | |
| 	.bmdma_status		= ata_bmdma_status,
 | |
| 
 | |
| 	.port_start		= ata_bmdma_port_start,
 | |
| };
 | |
| EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
 | |
| 
 | |
| const struct ata_port_operations ata_bmdma32_port_ops = {
 | |
| 	.inherits		= &ata_bmdma_port_ops,
 | |
| 
 | |
| 	.sff_data_xfer		= ata_sff_data_xfer32,
 | |
| 	.port_start		= ata_bmdma_port_start32,
 | |
| };
 | |
| EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
 | |
| 
 | |
| /**
 | |
|  *	ata_bmdma_fill_sg - Fill PCI IDE PRD table
 | |
|  *	@qc: Metadata associated with taskfile to be transferred
 | |
|  *
 | |
|  *	Fill PCI IDE PRD (scatter-gather) table with segments
 | |
|  *	associated with the current disk command.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	spin_lock_irqsave(host lock)
 | |
|  *
 | |
|  */
 | |
| static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	struct ata_port *ap = qc->ap;
 | |
| 	struct ata_bmdma_prd *prd = ap->bmdma_prd;
 | |
| 	struct scatterlist *sg;
 | |
| 	unsigned int si, pi;
 | |
| 
 | |
| 	pi = 0;
 | |
| 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
 | |
| 		u32 addr, offset;
 | |
| 		u32 sg_len, len;
 | |
| 
 | |
| 		/* determine if physical DMA addr spans 64K boundary.
 | |
| 		 * Note h/w doesn't support 64-bit, so we unconditionally
 | |
| 		 * truncate dma_addr_t to u32.
 | |
| 		 */
 | |
| 		addr = (u32) sg_dma_address(sg);
 | |
| 		sg_len = sg_dma_len(sg);
 | |
| 
 | |
| 		while (sg_len) {
 | |
| 			offset = addr & 0xffff;
 | |
| 			len = sg_len;
 | |
| 			if ((offset + sg_len) > 0x10000)
 | |
| 				len = 0x10000 - offset;
 | |
| 
 | |
| 			prd[pi].addr = cpu_to_le32(addr);
 | |
| 			prd[pi].flags_len = cpu_to_le32(len & 0xffff);
 | |
| 
 | |
| 			pi++;
 | |
| 			sg_len -= len;
 | |
| 			addr += len;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
 | |
|  *	@qc: Metadata associated with taskfile to be transferred
 | |
|  *
 | |
|  *	Fill PCI IDE PRD (scatter-gather) table with segments
 | |
|  *	associated with the current disk command. Perform the fill
 | |
|  *	so that we avoid writing any length 64K records for
 | |
|  *	controllers that don't follow the spec.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	spin_lock_irqsave(host lock)
 | |
|  *
 | |
|  */
 | |
| static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	struct ata_port *ap = qc->ap;
 | |
| 	struct ata_bmdma_prd *prd = ap->bmdma_prd;
 | |
| 	struct scatterlist *sg;
 | |
| 	unsigned int si, pi;
 | |
| 
 | |
| 	pi = 0;
 | |
| 	for_each_sg(qc->sg, sg, qc->n_elem, si) {
 | |
| 		u32 addr, offset;
 | |
| 		u32 sg_len, len, blen;
 | |
| 
 | |
| 		/* determine if physical DMA addr spans 64K boundary.
 | |
| 		 * Note h/w doesn't support 64-bit, so we unconditionally
 | |
| 		 * truncate dma_addr_t to u32.
 | |
| 		 */
 | |
| 		addr = (u32) sg_dma_address(sg);
 | |
| 		sg_len = sg_dma_len(sg);
 | |
| 
 | |
| 		while (sg_len) {
 | |
| 			offset = addr & 0xffff;
 | |
| 			len = sg_len;
 | |
| 			if ((offset + sg_len) > 0x10000)
 | |
| 				len = 0x10000 - offset;
 | |
| 
 | |
| 			blen = len & 0xffff;
 | |
| 			prd[pi].addr = cpu_to_le32(addr);
 | |
| 			if (blen == 0) {
 | |
| 				/* Some PATA chipsets like the CS5530 can't
 | |
| 				   cope with 0x0000 meaning 64K as the spec
 | |
| 				   says */
 | |
| 				prd[pi].flags_len = cpu_to_le32(0x8000);
 | |
| 				blen = 0x8000;
 | |
| 				prd[++pi].addr = cpu_to_le32(addr + 0x8000);
 | |
| 			}
 | |
| 			prd[pi].flags_len = cpu_to_le32(blen);
 | |
| 
 | |
| 			pi++;
 | |
| 			sg_len -= len;
 | |
| 			addr += len;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_bmdma_qc_prep - Prepare taskfile for submission
 | |
|  *	@qc: Metadata associated with taskfile to be prepared
 | |
|  *
 | |
|  *	Prepare ATA taskfile for submission.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	spin_lock_irqsave(host lock)
 | |
|  */
 | |
| enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
 | |
| 		return AC_ERR_OK;
 | |
| 
 | |
| 	ata_bmdma_fill_sg(qc);
 | |
| 
 | |
| 	return AC_ERR_OK;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
 | |
| 
 | |
| /**
 | |
|  *	ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
 | |
|  *	@qc: Metadata associated with taskfile to be prepared
 | |
|  *
 | |
|  *	Prepare ATA taskfile for submission.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	spin_lock_irqsave(host lock)
 | |
|  */
 | |
| enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
 | |
| 		return AC_ERR_OK;
 | |
| 
 | |
| 	ata_bmdma_fill_sg_dumb(qc);
 | |
| 
 | |
| 	return AC_ERR_OK;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
 | |
| 
 | |
| /**
 | |
|  *	ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
 | |
|  *	@qc: command to issue to device
 | |
|  *
 | |
|  *	This function issues a PIO, NODATA or DMA command to a
 | |
|  *	SFF/BMDMA controller.  PIO and NODATA are handled by
 | |
|  *	ata_sff_qc_issue().
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	spin_lock_irqsave(host lock)
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	Zero on success, AC_ERR_* mask on failure
 | |
|  */
 | |
| unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	struct ata_port *ap = qc->ap;
 | |
| 	struct ata_link *link = qc->dev->link;
 | |
| 
 | |
| 	/* defer PIO handling to sff_qc_issue */
 | |
| 	if (!ata_is_dma(qc->tf.protocol))
 | |
| 		return ata_sff_qc_issue(qc);
 | |
| 
 | |
| 	/* select the device */
 | |
| 	ata_dev_select(ap, qc->dev->devno, 1, 0);
 | |
| 
 | |
| 	/* start the command */
 | |
| 	switch (qc->tf.protocol) {
 | |
| 	case ATA_PROT_DMA:
 | |
| 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
 | |
| 
 | |
| 		trace_ata_tf_load(ap, &qc->tf);
 | |
| 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
 | |
| 		trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
 | |
| 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
 | |
| 		trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
 | |
| 		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
 | |
| 		ap->hsm_task_state = HSM_ST_LAST;
 | |
| 		break;
 | |
| 
 | |
| 	case ATAPI_PROT_DMA:
 | |
| 		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
 | |
| 
 | |
| 		trace_ata_tf_load(ap, &qc->tf);
 | |
| 		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
 | |
| 		trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
 | |
| 		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
 | |
| 		ap->hsm_task_state = HSM_ST_FIRST;
 | |
| 
 | |
| 		/* send cdb by polling if no cdb interrupt */
 | |
| 		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
 | |
| 			ata_sff_queue_pio_task(link, 0);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		WARN_ON(1);
 | |
| 		return AC_ERR_SYSTEM;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
 | |
| 
 | |
| /**
 | |
|  *	ata_bmdma_port_intr - Handle BMDMA port interrupt
 | |
|  *	@ap: Port on which interrupt arrived (possibly...)
 | |
|  *	@qc: Taskfile currently active in engine
 | |
|  *
 | |
|  *	Handle port interrupt for given queued command.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	spin_lock_irqsave(host lock)
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	One if interrupt was handled, zero if not (shared irq).
 | |
|  */
 | |
| unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	struct ata_eh_info *ehi = &ap->link.eh_info;
 | |
| 	u8 host_stat = 0;
 | |
| 	bool bmdma_stopped = false;
 | |
| 	unsigned int handled;
 | |
| 
 | |
| 	if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
 | |
| 		/* check status of DMA engine */
 | |
| 		host_stat = ap->ops->bmdma_status(ap);
 | |
| 		trace_ata_bmdma_status(ap, host_stat);
 | |
| 
 | |
| 		/* if it's not our irq... */
 | |
| 		if (!(host_stat & ATA_DMA_INTR))
 | |
| 			return ata_sff_idle_irq(ap);
 | |
| 
 | |
| 		/* before we do anything else, clear DMA-Start bit */
 | |
| 		trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
 | |
| 		ap->ops->bmdma_stop(qc);
 | |
| 		bmdma_stopped = true;
 | |
| 
 | |
| 		if (unlikely(host_stat & ATA_DMA_ERR)) {
 | |
| 			/* error when transferring data to/from memory */
 | |
| 			qc->err_mask |= AC_ERR_HOST_BUS;
 | |
| 			ap->hsm_task_state = HSM_ST_ERR;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
 | |
| 
 | |
| 	if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
 | |
| 		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
 | |
| 
 | |
| 	return handled;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
 | |
| 
 | |
| /**
 | |
|  *	ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
 | |
|  *	@irq: irq line (unused)
 | |
|  *	@dev_instance: pointer to our ata_host information structure
 | |
|  *
 | |
|  *	Default interrupt handler for PCI IDE devices.  Calls
 | |
|  *	ata_bmdma_port_intr() for each port that is not disabled.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Obtains host lock during operation.
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	IRQ_NONE or IRQ_HANDLED.
 | |
|  */
 | |
| irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
 | |
| {
 | |
| 	return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
 | |
| 
 | |
| /**
 | |
|  *	ata_bmdma_error_handler - Stock error handler for BMDMA controller
 | |
|  *	@ap: port to handle error for
 | |
|  *
 | |
|  *	Stock error handler for BMDMA controller.  It can handle both
 | |
|  *	PATA and SATA controllers.  Most BMDMA controllers should be
 | |
|  *	able to use this EH as-is or with some added handling before
 | |
|  *	and after.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Kernel thread context (may sleep)
 | |
|  */
 | |
| void ata_bmdma_error_handler(struct ata_port *ap)
 | |
| {
 | |
| 	struct ata_queued_cmd *qc;
 | |
| 	unsigned long flags;
 | |
| 	bool thaw = false;
 | |
| 
 | |
| 	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
 | |
| 	if (qc && !(qc->flags & ATA_QCFLAG_EH))
 | |
| 		qc = NULL;
 | |
| 
 | |
| 	/* reset PIO HSM and stop DMA engine */
 | |
| 	spin_lock_irqsave(ap->lock, flags);
 | |
| 
 | |
| 	if (qc && ata_is_dma(qc->tf.protocol)) {
 | |
| 		u8 host_stat;
 | |
| 
 | |
| 		host_stat = ap->ops->bmdma_status(ap);
 | |
| 		trace_ata_bmdma_status(ap, host_stat);
 | |
| 
 | |
| 		/* BMDMA controllers indicate host bus error by
 | |
| 		 * setting DMA_ERR bit and timing out.  As it wasn't
 | |
| 		 * really a timeout event, adjust error mask and
 | |
| 		 * cancel frozen state.
 | |
| 		 */
 | |
| 		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
 | |
| 			qc->err_mask = AC_ERR_HOST_BUS;
 | |
| 			thaw = true;
 | |
| 		}
 | |
| 
 | |
| 		trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
 | |
| 		ap->ops->bmdma_stop(qc);
 | |
| 
 | |
| 		/* if we're gonna thaw, make sure IRQ is clear */
 | |
| 		if (thaw) {
 | |
| 			ap->ops->sff_check_status(ap);
 | |
| 			if (ap->ops->sff_irq_clear)
 | |
| 				ap->ops->sff_irq_clear(ap);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(ap->lock, flags);
 | |
| 
 | |
| 	if (thaw)
 | |
| 		ata_eh_thaw_port(ap);
 | |
| 
 | |
| 	ata_sff_error_handler(ap);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
 | |
| 
 | |
| /**
 | |
|  *	ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
 | |
|  *	@qc: internal command to clean up
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Kernel thread context (may sleep)
 | |
|  */
 | |
| void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	struct ata_port *ap = qc->ap;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (ata_is_dma(qc->tf.protocol)) {
 | |
| 		spin_lock_irqsave(ap->lock, flags);
 | |
| 		trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
 | |
| 		ap->ops->bmdma_stop(qc);
 | |
| 		spin_unlock_irqrestore(ap->lock, flags);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
 | |
| 
 | |
| /**
 | |
|  *	ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
 | |
|  *	@ap: Port associated with this ATA transaction.
 | |
|  *
 | |
|  *	Clear interrupt and error flags in DMA status register.
 | |
|  *
 | |
|  *	May be used as the irq_clear() entry in ata_port_operations.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	spin_lock_irqsave(host lock)
 | |
|  */
 | |
| void ata_bmdma_irq_clear(struct ata_port *ap)
 | |
| {
 | |
| 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
 | |
| 
 | |
| 	if (!mmio)
 | |
| 		return;
 | |
| 
 | |
| 	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
 | |
| 
 | |
| /**
 | |
|  *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
 | |
|  *	@qc: Info associated with this ATA transaction.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	spin_lock_irqsave(host lock)
 | |
|  */
 | |
| void ata_bmdma_setup(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	struct ata_port *ap = qc->ap;
 | |
| 	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
 | |
| 	u8 dmactl;
 | |
| 
 | |
| 	/* load PRD table addr. */
 | |
| 	mb();	/* make sure PRD table writes are visible to controller */
 | |
| 	iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
 | |
| 
 | |
| 	/* specify data direction, triple-check start bit is clear */
 | |
| 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
 | |
| 	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
 | |
| 	if (!rw)
 | |
| 		dmactl |= ATA_DMA_WR;
 | |
| 	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
 | |
| 
 | |
| 	/* issue r/w command */
 | |
| 	ap->ops->sff_exec_command(ap, &qc->tf);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_bmdma_setup);
 | |
| 
 | |
| /**
 | |
|  *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
 | |
|  *	@qc: Info associated with this ATA transaction.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	spin_lock_irqsave(host lock)
 | |
|  */
 | |
| void ata_bmdma_start(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	struct ata_port *ap = qc->ap;
 | |
| 	u8 dmactl;
 | |
| 
 | |
| 	/* start host DMA transaction */
 | |
| 	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
 | |
| 	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
 | |
| 
 | |
| 	/* Strictly, one may wish to issue an ioread8() here, to
 | |
| 	 * flush the mmio write.  However, control also passes
 | |
| 	 * to the hardware at this point, and it will interrupt
 | |
| 	 * us when we are to resume control.  So, in effect,
 | |
| 	 * we don't care when the mmio write flushes.
 | |
| 	 * Further, a read of the DMA status register _immediately_
 | |
| 	 * following the write may not be what certain flaky hardware
 | |
| 	 * is expected, so I think it is best to not add a readb()
 | |
| 	 * without first all the MMIO ATA cards/mobos.
 | |
| 	 * Or maybe I'm just being paranoid.
 | |
| 	 *
 | |
| 	 * FIXME: The posting of this write means I/O starts are
 | |
| 	 * unnecessarily delayed for MMIO
 | |
| 	 */
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_bmdma_start);
 | |
| 
 | |
| /**
 | |
|  *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
 | |
|  *	@qc: Command we are ending DMA for
 | |
|  *
 | |
|  *	Clears the ATA_DMA_START flag in the dma control register
 | |
|  *
 | |
|  *	May be used as the bmdma_stop() entry in ata_port_operations.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	spin_lock_irqsave(host lock)
 | |
|  */
 | |
| void ata_bmdma_stop(struct ata_queued_cmd *qc)
 | |
| {
 | |
| 	struct ata_port *ap = qc->ap;
 | |
| 	void __iomem *mmio = ap->ioaddr.bmdma_addr;
 | |
| 
 | |
| 	/* clear start/stop bit */
 | |
| 	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
 | |
| 		 mmio + ATA_DMA_CMD);
 | |
| 
 | |
| 	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
 | |
| 	ata_sff_dma_pause(ap);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_bmdma_stop);
 | |
| 
 | |
| /**
 | |
|  *	ata_bmdma_status - Read PCI IDE BMDMA status
 | |
|  *	@ap: Port associated with this ATA transaction.
 | |
|  *
 | |
|  *	Read and return BMDMA status register.
 | |
|  *
 | |
|  *	May be used as the bmdma_status() entry in ata_port_operations.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	spin_lock_irqsave(host lock)
 | |
|  */
 | |
| u8 ata_bmdma_status(struct ata_port *ap)
 | |
| {
 | |
| 	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_bmdma_status);
 | |
| 
 | |
| 
 | |
| /**
 | |
|  *	ata_bmdma_port_start - Set port up for bmdma.
 | |
|  *	@ap: Port to initialize
 | |
|  *
 | |
|  *	Called just after data structures for each port are
 | |
|  *	initialized.  Allocates space for PRD table.
 | |
|  *
 | |
|  *	May be used as the port_start() entry in ata_port_operations.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from caller.
 | |
|  */
 | |
| int ata_bmdma_port_start(struct ata_port *ap)
 | |
| {
 | |
| 	if (ap->mwdma_mask || ap->udma_mask) {
 | |
| 		ap->bmdma_prd =
 | |
| 			dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
 | |
| 					    &ap->bmdma_prd_dma, GFP_KERNEL);
 | |
| 		if (!ap->bmdma_prd)
 | |
| 			return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
 | |
| 
 | |
| /**
 | |
|  *	ata_bmdma_port_start32 - Set port up for dma.
 | |
|  *	@ap: Port to initialize
 | |
|  *
 | |
|  *	Called just after data structures for each port are
 | |
|  *	initialized.  Enables 32bit PIO and allocates space for PRD
 | |
|  *	table.
 | |
|  *
 | |
|  *	May be used as the port_start() entry in ata_port_operations for
 | |
|  *	devices that are capable of 32bit PIO.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from caller.
 | |
|  */
 | |
| int ata_bmdma_port_start32(struct ata_port *ap)
 | |
| {
 | |
| 	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
 | |
| 	return ata_bmdma_port_start(ap);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
 | |
| 
 | |
| #ifdef CONFIG_PCI
 | |
| 
 | |
| /**
 | |
|  *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
 | |
|  *	@pdev: PCI device
 | |
|  *
 | |
|  *	Some PCI ATA devices report simplex mode but in fact can be told to
 | |
|  *	enter non simplex mode. This implements the necessary logic to
 | |
|  *	perform the task on such devices. Calling it on other devices will
 | |
|  *	have -undefined- behaviour.
 | |
|  */
 | |
| int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
 | |
| {
 | |
| 	unsigned long bmdma = pci_resource_start(pdev, 4);
 | |
| 	u8 simplex;
 | |
| 
 | |
| 	if (bmdma == 0)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	simplex = inb(bmdma + 0x02);
 | |
| 	outb(simplex & 0x60, bmdma + 0x02);
 | |
| 	simplex = inb(bmdma + 0x02);
 | |
| 	if (simplex & 0x80)
 | |
| 		return -EOPNOTSUPP;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
 | |
| 
 | |
| static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
 | |
| 
 | |
| 	for (i = 0; i < 2; i++) {
 | |
| 		host->ports[i]->mwdma_mask = 0;
 | |
| 		host->ports[i]->udma_mask = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
 | |
|  *	@host: target ATA host
 | |
|  *
 | |
|  *	Acquire PCI BMDMA resources and initialize @host accordingly.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from calling layer (may sleep).
 | |
|  */
 | |
| void ata_pci_bmdma_init(struct ata_host *host)
 | |
| {
 | |
| 	struct device *gdev = host->dev;
 | |
| 	struct pci_dev *pdev = to_pci_dev(gdev);
 | |
| 	int i, rc;
 | |
| 
 | |
| 	/* No BAR4 allocation: No DMA */
 | |
| 	if (pci_resource_start(pdev, 4) == 0) {
 | |
| 		ata_bmdma_nodma(host, "BAR4 is zero");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Some controllers require BMDMA region to be initialized
 | |
| 	 * even if DMA is not in use to clear IRQ status via
 | |
| 	 * ->sff_irq_clear method.  Try to initialize bmdma_addr
 | |
| 	 * regardless of dma masks.
 | |
| 	 */
 | |
| 	rc = dma_set_mask_and_coherent(&pdev->dev, ATA_DMA_MASK);
 | |
| 	if (rc)
 | |
| 		ata_bmdma_nodma(host, "failed to set dma mask");
 | |
| 
 | |
| 	/* request and iomap DMA region */
 | |
| 	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
 | |
| 	if (rc) {
 | |
| 		ata_bmdma_nodma(host, "failed to request/iomap BAR4");
 | |
| 		return;
 | |
| 	}
 | |
| 	host->iomap = pcim_iomap_table(pdev);
 | |
| 
 | |
| 	for (i = 0; i < 2; i++) {
 | |
| 		struct ata_port *ap = host->ports[i];
 | |
| 		void __iomem *bmdma = host->iomap[4] + 8 * i;
 | |
| 
 | |
| 		if (ata_port_is_dummy(ap))
 | |
| 			continue;
 | |
| 
 | |
| 		ap->ioaddr.bmdma_addr = bmdma;
 | |
| 		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
 | |
| 		    (ioread8(bmdma + 2) & 0x80))
 | |
| 			host->flags |= ATA_HOST_SIMPLEX;
 | |
| 
 | |
| 		ata_port_desc(ap, "bmdma 0x%llx",
 | |
| 		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
 | |
| 
 | |
| /**
 | |
|  *	ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
 | |
|  *	@pdev: target PCI device
 | |
|  *	@ppi: array of port_info, must be enough for two ports
 | |
|  *	@r_host: out argument for the initialized ATA host
 | |
|  *
 | |
|  *	Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
 | |
|  *	resources and initialize it accordingly in one go.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from calling layer (may sleep).
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	0 on success, -errno otherwise.
 | |
|  */
 | |
| int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
 | |
| 			       const struct ata_port_info * const * ppi,
 | |
| 			       struct ata_host **r_host)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
| 	rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
 | |
| 	if (rc)
 | |
| 		return rc;
 | |
| 
 | |
| 	ata_pci_bmdma_init(*r_host);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
 | |
| 
 | |
| /**
 | |
|  *	ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
 | |
|  *	@pdev: Controller to be initialized
 | |
|  *	@ppi: array of port_info, must be enough for two ports
 | |
|  *	@sht: scsi_host_template to use when registering the host
 | |
|  *	@host_priv: host private_data
 | |
|  *	@hflags: host flags
 | |
|  *
 | |
|  *	This function is similar to ata_pci_sff_init_one() but also
 | |
|  *	takes care of BMDMA initialization.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	Inherited from PCI layer (may sleep).
 | |
|  *
 | |
|  *	RETURNS:
 | |
|  *	Zero on success, negative on errno-based value on error.
 | |
|  */
 | |
| int ata_pci_bmdma_init_one(struct pci_dev *pdev,
 | |
| 			   const struct ata_port_info * const * ppi,
 | |
| 			   struct scsi_host_template *sht, void *host_priv,
 | |
| 			   int hflags)
 | |
| {
 | |
| 	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
 | |
| 
 | |
| #endif /* CONFIG_PCI */
 | |
| #endif /* CONFIG_ATA_BMDMA */
 | |
| 
 | |
| /**
 | |
|  *	ata_sff_port_init - Initialize SFF/BMDMA ATA port
 | |
|  *	@ap: Port to initialize
 | |
|  *
 | |
|  *	Called on port allocation to initialize SFF/BMDMA specific
 | |
|  *	fields.
 | |
|  *
 | |
|  *	LOCKING:
 | |
|  *	None.
 | |
|  */
 | |
| void ata_sff_port_init(struct ata_port *ap)
 | |
| {
 | |
| 	INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
 | |
| 	ap->ctl = ATA_DEVCTL_OBS;
 | |
| 	ap->last_ctl = 0xFF;
 | |
| }
 | |
| 
 | |
| int __init ata_sff_init(void)
 | |
| {
 | |
| 	ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
 | |
| 	if (!ata_sff_wq)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void ata_sff_exit(void)
 | |
| {
 | |
| 	destroy_workqueue(ata_sff_wq);
 | |
| }
 |