656 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			656 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Analog Devices Generic AXI DAC IP core
 | |
|  * Link: https://wiki.analog.com/resources/fpga/docs/axi_dac_ip
 | |
|  *
 | |
|  * Copyright 2016-2024 Analog Devices Inc.
 | |
|  */
 | |
| #include <linux/bitfield.h>
 | |
| #include <linux/bits.h>
 | |
| #include <linux/cleanup.h>
 | |
| #include <linux/clk.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/limits.h>
 | |
| #include <linux/kstrtox.h>
 | |
| #include <linux/math.h>
 | |
| #include <linux/math64.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/mod_devicetable.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/property.h>
 | |
| #include <linux/regmap.h>
 | |
| #include <linux/units.h>
 | |
| 
 | |
| #include <linux/fpga/adi-axi-common.h>
 | |
| #include <linux/iio/backend.h>
 | |
| #include <linux/iio/buffer-dmaengine.h>
 | |
| #include <linux/iio/buffer.h>
 | |
| #include <linux/iio/iio.h>
 | |
| 
 | |
| /*
 | |
|  * Register definitions:
 | |
|  *   https://wiki.analog.com/resources/fpga/docs/axi_dac_ip#register_map
 | |
|  */
 | |
| 
 | |
| /* Base controls */
 | |
| #define AXI_DAC_REG_CONFIG		0x0c
 | |
| #define	   AXI_DDS_DISABLE		BIT(6)
 | |
| 
 | |
|  /* DAC controls */
 | |
| #define AXI_DAC_REG_RSTN		0x0040
 | |
| #define   AXI_DAC_RSTN_CE_N		BIT(2)
 | |
| #define   AXI_DAC_RSTN_MMCM_RSTN	BIT(1)
 | |
| #define   AXI_DAC_RSTN_RSTN		BIT(0)
 | |
| #define AXI_DAC_REG_CNTRL_1		0x0044
 | |
| #define   AXI_DAC_SYNC			BIT(0)
 | |
| #define AXI_DAC_REG_CNTRL_2		0x0048
 | |
| #define	  ADI_DAC_R1_MODE		BIT(4)
 | |
| #define AXI_DAC_DRP_STATUS		0x0074
 | |
| #define   AXI_DAC_DRP_LOCKED		BIT(17)
 | |
| /* DAC Channel controls */
 | |
| #define AXI_DAC_REG_CHAN_CNTRL_1(c)	(0x0400 + (c) * 0x40)
 | |
| #define AXI_DAC_REG_CHAN_CNTRL_3(c)	(0x0408 + (c) * 0x40)
 | |
| #define   AXI_DAC_SCALE_SIGN		BIT(15)
 | |
| #define   AXI_DAC_SCALE_INT		BIT(14)
 | |
| #define   AXI_DAC_SCALE			GENMASK(14, 0)
 | |
| #define AXI_DAC_REG_CHAN_CNTRL_2(c)	(0x0404 + (c) * 0x40)
 | |
| #define AXI_DAC_REG_CHAN_CNTRL_4(c)	(0x040c + (c) * 0x40)
 | |
| #define   AXI_DAC_PHASE			GENMASK(31, 16)
 | |
| #define   AXI_DAC_FREQUENCY		GENMASK(15, 0)
 | |
| #define AXI_DAC_REG_CHAN_CNTRL_7(c)	(0x0418 + (c) * 0x40)
 | |
| #define   AXI_DAC_DATA_SEL		GENMASK(3, 0)
 | |
| 
 | |
| /* 360 degrees in rad */
 | |
| #define AXI_DAC_2_PI_MEGA		6283190
 | |
| enum {
 | |
| 	AXI_DAC_DATA_INTERNAL_TONE,
 | |
| 	AXI_DAC_DATA_DMA = 2,
 | |
| };
 | |
| 
 | |
| struct axi_dac_state {
 | |
| 	struct regmap *regmap;
 | |
| 	struct device *dev;
 | |
| 	/*
 | |
| 	 * lock to protect multiple accesses to the device registers and global
 | |
| 	 * data/variables.
 | |
| 	 */
 | |
| 	struct mutex lock;
 | |
| 	u64 dac_clk;
 | |
| 	u32 reg_config;
 | |
| 	bool int_tone;
 | |
| };
 | |
| 
 | |
| static int axi_dac_enable(struct iio_backend *back)
 | |
| {
 | |
| 	struct axi_dac_state *st = iio_backend_get_priv(back);
 | |
| 	unsigned int __val;
 | |
| 	int ret;
 | |
| 
 | |
| 	guard(mutex)(&st->lock);
 | |
| 	ret = regmap_set_bits(st->regmap, AXI_DAC_REG_RSTN,
 | |
| 			      AXI_DAC_RSTN_MMCM_RSTN);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 	/*
 | |
| 	 * Make sure the DRP (Dynamic Reconfiguration Port) is locked. Not all
 | |
| 	 * designs really use it but if they don't we still get the lock bit
 | |
| 	 * set. So let's do it all the time so the code is generic.
 | |
| 	 */
 | |
| 	ret = regmap_read_poll_timeout(st->regmap, AXI_DAC_DRP_STATUS, __val,
 | |
| 				       __val & AXI_DAC_DRP_LOCKED, 100, 1000);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return regmap_set_bits(st->regmap, AXI_DAC_REG_RSTN,
 | |
| 			       AXI_DAC_RSTN_RSTN | AXI_DAC_RSTN_MMCM_RSTN);
 | |
| }
 | |
| 
 | |
| static void axi_dac_disable(struct iio_backend *back)
 | |
| {
 | |
| 	struct axi_dac_state *st = iio_backend_get_priv(back);
 | |
| 
 | |
| 	guard(mutex)(&st->lock);
 | |
| 	regmap_write(st->regmap, AXI_DAC_REG_RSTN, 0);
 | |
| }
 | |
| 
 | |
| static struct iio_buffer *axi_dac_request_buffer(struct iio_backend *back,
 | |
| 						 struct iio_dev *indio_dev)
 | |
| {
 | |
| 	struct axi_dac_state *st = iio_backend_get_priv(back);
 | |
| 	const char *dma_name;
 | |
| 
 | |
| 	if (device_property_read_string(st->dev, "dma-names", &dma_name))
 | |
| 		dma_name = "tx";
 | |
| 
 | |
| 	return iio_dmaengine_buffer_setup_ext(st->dev, indio_dev, dma_name,
 | |
| 					      IIO_BUFFER_DIRECTION_OUT);
 | |
| }
 | |
| 
 | |
| static void axi_dac_free_buffer(struct iio_backend *back,
 | |
| 				struct iio_buffer *buffer)
 | |
| {
 | |
| 	iio_dmaengine_buffer_free(buffer);
 | |
| }
 | |
| 
 | |
| enum {
 | |
| 	AXI_DAC_FREQ_TONE_1,
 | |
| 	AXI_DAC_FREQ_TONE_2,
 | |
| 	AXI_DAC_SCALE_TONE_1,
 | |
| 	AXI_DAC_SCALE_TONE_2,
 | |
| 	AXI_DAC_PHASE_TONE_1,
 | |
| 	AXI_DAC_PHASE_TONE_2,
 | |
| };
 | |
| 
 | |
| static int __axi_dac_frequency_get(struct axi_dac_state *st, unsigned int chan,
 | |
| 				   unsigned int tone_2, unsigned int *freq)
 | |
| {
 | |
| 	u32 reg, raw;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!st->dac_clk) {
 | |
| 		dev_err(st->dev, "Sampling rate is 0...\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (tone_2)
 | |
| 		reg = AXI_DAC_REG_CHAN_CNTRL_4(chan);
 | |
| 	else
 | |
| 		reg = AXI_DAC_REG_CHAN_CNTRL_2(chan);
 | |
| 
 | |
| 	ret = regmap_read(st->regmap, reg, &raw);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	raw = FIELD_GET(AXI_DAC_FREQUENCY, raw);
 | |
| 	*freq = DIV_ROUND_CLOSEST_ULL(raw * st->dac_clk, BIT(16));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int axi_dac_frequency_get(struct axi_dac_state *st,
 | |
| 				 const struct iio_chan_spec *chan, char *buf,
 | |
| 				 unsigned int tone_2)
 | |
| {
 | |
| 	unsigned int freq;
 | |
| 	int ret;
 | |
| 
 | |
| 	scoped_guard(mutex, &st->lock) {
 | |
| 		ret = __axi_dac_frequency_get(st, chan->channel, tone_2, &freq);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return sysfs_emit(buf, "%u\n", freq);
 | |
| }
 | |
| 
 | |
| static int axi_dac_scale_get(struct axi_dac_state *st,
 | |
| 			     const struct iio_chan_spec *chan, char *buf,
 | |
| 			     unsigned int tone_2)
 | |
| {
 | |
| 	unsigned int scale, sign;
 | |
| 	int ret, vals[2];
 | |
| 	u32 reg, raw;
 | |
| 
 | |
| 	if (tone_2)
 | |
| 		reg = AXI_DAC_REG_CHAN_CNTRL_3(chan->channel);
 | |
| 	else
 | |
| 		reg = AXI_DAC_REG_CHAN_CNTRL_1(chan->channel);
 | |
| 
 | |
| 	ret = regmap_read(st->regmap, reg, &raw);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	sign = FIELD_GET(AXI_DAC_SCALE_SIGN, raw);
 | |
| 	raw = FIELD_GET(AXI_DAC_SCALE, raw);
 | |
| 	scale = DIV_ROUND_CLOSEST_ULL((u64)raw * MEGA, AXI_DAC_SCALE_INT);
 | |
| 
 | |
| 	vals[0] = scale / MEGA;
 | |
| 	vals[1] = scale % MEGA;
 | |
| 
 | |
| 	if (sign) {
 | |
| 		vals[0] *= -1;
 | |
| 		if (!vals[0])
 | |
| 			vals[1] *= -1;
 | |
| 	}
 | |
| 
 | |
| 	return iio_format_value(buf, IIO_VAL_INT_PLUS_MICRO, ARRAY_SIZE(vals),
 | |
| 				vals);
 | |
| }
 | |
| 
 | |
| static int axi_dac_phase_get(struct axi_dac_state *st,
 | |
| 			     const struct iio_chan_spec *chan, char *buf,
 | |
| 			     unsigned int tone_2)
 | |
| {
 | |
| 	u32 reg, raw, phase;
 | |
| 	int ret, vals[2];
 | |
| 
 | |
| 	if (tone_2)
 | |
| 		reg = AXI_DAC_REG_CHAN_CNTRL_4(chan->channel);
 | |
| 	else
 | |
| 		reg = AXI_DAC_REG_CHAN_CNTRL_2(chan->channel);
 | |
| 
 | |
| 	ret = regmap_read(st->regmap, reg, &raw);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	raw = FIELD_GET(AXI_DAC_PHASE, raw);
 | |
| 	phase = DIV_ROUND_CLOSEST_ULL((u64)raw * AXI_DAC_2_PI_MEGA, U16_MAX);
 | |
| 
 | |
| 	vals[0] = phase / MEGA;
 | |
| 	vals[1] = phase % MEGA;
 | |
| 
 | |
| 	return iio_format_value(buf, IIO_VAL_INT_PLUS_MICRO, ARRAY_SIZE(vals),
 | |
| 				vals);
 | |
| }
 | |
| 
 | |
| static int __axi_dac_frequency_set(struct axi_dac_state *st, unsigned int chan,
 | |
| 				   u64 sample_rate, unsigned int freq,
 | |
| 				   unsigned int tone_2)
 | |
| {
 | |
| 	u32 reg;
 | |
| 	u16 raw;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!sample_rate || freq > sample_rate / 2) {
 | |
| 		dev_err(st->dev, "Invalid frequency(%u) dac_clk(%llu)\n",
 | |
| 			freq, sample_rate);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (tone_2)
 | |
| 		reg = AXI_DAC_REG_CHAN_CNTRL_4(chan);
 | |
| 	else
 | |
| 		reg = AXI_DAC_REG_CHAN_CNTRL_2(chan);
 | |
| 
 | |
| 	raw = DIV64_U64_ROUND_CLOSEST((u64)freq * BIT(16), sample_rate);
 | |
| 
 | |
| 	ret = regmap_update_bits(st->regmap,  reg, AXI_DAC_FREQUENCY, raw);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* synchronize channels */
 | |
| 	return regmap_set_bits(st->regmap, AXI_DAC_REG_CNTRL_1, AXI_DAC_SYNC);
 | |
| }
 | |
| 
 | |
| static int axi_dac_frequency_set(struct axi_dac_state *st,
 | |
| 				 const struct iio_chan_spec *chan,
 | |
| 				 const char *buf, size_t len, unsigned int tone_2)
 | |
| {
 | |
| 	unsigned int freq;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = kstrtou32(buf, 10, &freq);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	guard(mutex)(&st->lock);
 | |
| 	ret = __axi_dac_frequency_set(st, chan->channel, st->dac_clk, freq,
 | |
| 				      tone_2);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| static int axi_dac_scale_set(struct axi_dac_state *st,
 | |
| 			     const struct iio_chan_spec *chan,
 | |
| 			     const char *buf, size_t len, unsigned int tone_2)
 | |
| {
 | |
| 	int integer, frac, scale;
 | |
| 	u32 raw = 0, reg;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = iio_str_to_fixpoint(buf, 100000, &integer, &frac);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	scale = integer * MEGA + frac;
 | |
| 	if (scale <= -2 * (int)MEGA || scale >= 2 * (int)MEGA)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*  format is 1.1.14 (sign, integer and fractional bits) */
 | |
| 	if (scale < 0) {
 | |
| 		raw = FIELD_PREP(AXI_DAC_SCALE_SIGN, 1);
 | |
| 		scale *= -1;
 | |
| 	}
 | |
| 
 | |
| 	raw |= div_u64((u64)scale * AXI_DAC_SCALE_INT, MEGA);
 | |
| 
 | |
| 	if (tone_2)
 | |
| 		reg = AXI_DAC_REG_CHAN_CNTRL_3(chan->channel);
 | |
| 	else
 | |
| 		reg = AXI_DAC_REG_CHAN_CNTRL_1(chan->channel);
 | |
| 
 | |
| 	guard(mutex)(&st->lock);
 | |
| 	ret = regmap_write(st->regmap, reg, raw);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* synchronize channels */
 | |
| 	ret = regmap_set_bits(st->regmap, AXI_DAC_REG_CNTRL_1, AXI_DAC_SYNC);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| static int axi_dac_phase_set(struct axi_dac_state *st,
 | |
| 			     const struct iio_chan_spec *chan,
 | |
| 			     const char *buf, size_t len, unsigned int tone_2)
 | |
| {
 | |
| 	int integer, frac, phase;
 | |
| 	u32 raw, reg;
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = iio_str_to_fixpoint(buf, 100000, &integer, &frac);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	phase = integer * MEGA + frac;
 | |
| 	if (phase < 0 || phase > AXI_DAC_2_PI_MEGA)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	raw = DIV_ROUND_CLOSEST_ULL((u64)phase * U16_MAX, AXI_DAC_2_PI_MEGA);
 | |
| 
 | |
| 	if (tone_2)
 | |
| 		reg = AXI_DAC_REG_CHAN_CNTRL_4(chan->channel);
 | |
| 	else
 | |
| 		reg = AXI_DAC_REG_CHAN_CNTRL_2(chan->channel);
 | |
| 
 | |
| 	guard(mutex)(&st->lock);
 | |
| 	ret = regmap_update_bits(st->regmap, reg, AXI_DAC_PHASE,
 | |
| 				 FIELD_PREP(AXI_DAC_PHASE, raw));
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* synchronize channels */
 | |
| 	ret = regmap_set_bits(st->regmap, AXI_DAC_REG_CNTRL_1, AXI_DAC_SYNC);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return len;
 | |
| }
 | |
| 
 | |
| static int axi_dac_ext_info_set(struct iio_backend *back, uintptr_t private,
 | |
| 				const struct iio_chan_spec *chan,
 | |
| 				const char *buf, size_t len)
 | |
| {
 | |
| 	struct axi_dac_state *st = iio_backend_get_priv(back);
 | |
| 
 | |
| 	switch (private) {
 | |
| 	case AXI_DAC_FREQ_TONE_1:
 | |
| 	case AXI_DAC_FREQ_TONE_2:
 | |
| 		return axi_dac_frequency_set(st, chan, buf, len,
 | |
| 					     private == AXI_DAC_FREQ_TONE_2);
 | |
| 	case AXI_DAC_SCALE_TONE_1:
 | |
| 	case AXI_DAC_SCALE_TONE_2:
 | |
| 		return axi_dac_scale_set(st, chan, buf, len,
 | |
| 					 private == AXI_DAC_SCALE_TONE_2);
 | |
| 	case AXI_DAC_PHASE_TONE_1:
 | |
| 	case AXI_DAC_PHASE_TONE_2:
 | |
| 		return axi_dac_phase_set(st, chan, buf, len,
 | |
| 					 private == AXI_DAC_PHASE_TONE_2);
 | |
| 	default:
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int axi_dac_ext_info_get(struct iio_backend *back, uintptr_t private,
 | |
| 				const struct iio_chan_spec *chan, char *buf)
 | |
| {
 | |
| 	struct axi_dac_state *st = iio_backend_get_priv(back);
 | |
| 
 | |
| 	switch (private) {
 | |
| 	case AXI_DAC_FREQ_TONE_1:
 | |
| 	case AXI_DAC_FREQ_TONE_2:
 | |
| 		return axi_dac_frequency_get(st, chan, buf,
 | |
| 					     private - AXI_DAC_FREQ_TONE_1);
 | |
| 	case AXI_DAC_SCALE_TONE_1:
 | |
| 	case AXI_DAC_SCALE_TONE_2:
 | |
| 		return axi_dac_scale_get(st, chan, buf,
 | |
| 					 private - AXI_DAC_SCALE_TONE_1);
 | |
| 	case AXI_DAC_PHASE_TONE_1:
 | |
| 	case AXI_DAC_PHASE_TONE_2:
 | |
| 		return axi_dac_phase_get(st, chan, buf,
 | |
| 					 private - AXI_DAC_PHASE_TONE_1);
 | |
| 	default:
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static const struct iio_chan_spec_ext_info axi_dac_ext_info[] = {
 | |
| 	IIO_BACKEND_EX_INFO("frequency0", IIO_SEPARATE, AXI_DAC_FREQ_TONE_1),
 | |
| 	IIO_BACKEND_EX_INFO("frequency1", IIO_SEPARATE, AXI_DAC_FREQ_TONE_2),
 | |
| 	IIO_BACKEND_EX_INFO("scale0", IIO_SEPARATE, AXI_DAC_SCALE_TONE_1),
 | |
| 	IIO_BACKEND_EX_INFO("scale1", IIO_SEPARATE, AXI_DAC_SCALE_TONE_2),
 | |
| 	IIO_BACKEND_EX_INFO("phase0", IIO_SEPARATE, AXI_DAC_PHASE_TONE_1),
 | |
| 	IIO_BACKEND_EX_INFO("phase1", IIO_SEPARATE, AXI_DAC_PHASE_TONE_2),
 | |
| 	{}
 | |
| };
 | |
| 
 | |
| static int axi_dac_extend_chan(struct iio_backend *back,
 | |
| 			       struct iio_chan_spec *chan)
 | |
| {
 | |
| 	struct axi_dac_state *st = iio_backend_get_priv(back);
 | |
| 
 | |
| 	if (chan->type != IIO_ALTVOLTAGE)
 | |
| 		return -EINVAL;
 | |
| 	if (st->reg_config & AXI_DDS_DISABLE)
 | |
| 		/* nothing to extend */
 | |
| 		return 0;
 | |
| 
 | |
| 	chan->ext_info = axi_dac_ext_info;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int axi_dac_data_source_set(struct iio_backend *back, unsigned int chan,
 | |
| 				   enum iio_backend_data_source data)
 | |
| {
 | |
| 	struct axi_dac_state *st = iio_backend_get_priv(back);
 | |
| 
 | |
| 	switch (data) {
 | |
| 	case IIO_BACKEND_INTERNAL_CONTINUOUS_WAVE:
 | |
| 		return regmap_update_bits(st->regmap,
 | |
| 					  AXI_DAC_REG_CHAN_CNTRL_7(chan),
 | |
| 					  AXI_DAC_DATA_SEL,
 | |
| 					  AXI_DAC_DATA_INTERNAL_TONE);
 | |
| 	case IIO_BACKEND_EXTERNAL:
 | |
| 		return regmap_update_bits(st->regmap,
 | |
| 					  AXI_DAC_REG_CHAN_CNTRL_7(chan),
 | |
| 					  AXI_DAC_DATA_SEL, AXI_DAC_DATA_DMA);
 | |
| 	default:
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int axi_dac_set_sample_rate(struct iio_backend *back, unsigned int chan,
 | |
| 				   u64 sample_rate)
 | |
| {
 | |
| 	struct axi_dac_state *st = iio_backend_get_priv(back);
 | |
| 	unsigned int freq;
 | |
| 	int ret, tone;
 | |
| 
 | |
| 	if (!sample_rate)
 | |
| 		return -EINVAL;
 | |
| 	if (st->reg_config & AXI_DDS_DISABLE)
 | |
| 		/* sample_rate has no meaning if DDS is disabled */
 | |
| 		return 0;
 | |
| 
 | |
| 	guard(mutex)(&st->lock);
 | |
| 	/*
 | |
| 	 * If dac_clk is 0 then this must be the first time we're being notified
 | |
| 	 * about the interface sample rate. Hence, just update our internal
 | |
| 	 * variable and bail... If it's not 0, then we get the current DDS
 | |
| 	 * frequency (for the old rate) and update the registers for the new
 | |
| 	 * sample rate.
 | |
| 	 */
 | |
| 	if (!st->dac_clk) {
 | |
| 		st->dac_clk = sample_rate;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	for (tone = 0; tone <= AXI_DAC_FREQ_TONE_2; tone++) {
 | |
| 		ret = __axi_dac_frequency_get(st, chan, tone, &freq);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		ret = __axi_dac_frequency_set(st, chan, sample_rate, tone, freq);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	st->dac_clk = sample_rate;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int axi_dac_reg_access(struct iio_backend *back, unsigned int reg,
 | |
| 			      unsigned int writeval, unsigned int *readval)
 | |
| {
 | |
| 	struct axi_dac_state *st = iio_backend_get_priv(back);
 | |
| 
 | |
| 	if (readval)
 | |
| 		return regmap_read(st->regmap, reg, readval);
 | |
| 
 | |
| 	return regmap_write(st->regmap, reg, writeval);
 | |
| }
 | |
| 
 | |
| static const struct iio_backend_ops axi_dac_generic_ops = {
 | |
| 	.enable = axi_dac_enable,
 | |
| 	.disable = axi_dac_disable,
 | |
| 	.request_buffer = axi_dac_request_buffer,
 | |
| 	.free_buffer = axi_dac_free_buffer,
 | |
| 	.extend_chan_spec = axi_dac_extend_chan,
 | |
| 	.ext_info_set = axi_dac_ext_info_set,
 | |
| 	.ext_info_get = axi_dac_ext_info_get,
 | |
| 	.data_source_set = axi_dac_data_source_set,
 | |
| 	.set_sample_rate = axi_dac_set_sample_rate,
 | |
| 	.debugfs_reg_access = iio_backend_debugfs_ptr(axi_dac_reg_access),
 | |
| };
 | |
| 
 | |
| static const struct iio_backend_info axi_dac_generic = {
 | |
| 	.name = "axi-dac",
 | |
| 	.ops = &axi_dac_generic_ops,
 | |
| };
 | |
| 
 | |
| static const struct regmap_config axi_dac_regmap_config = {
 | |
| 	.val_bits = 32,
 | |
| 	.reg_bits = 32,
 | |
| 	.reg_stride = 4,
 | |
| 	.max_register = 0x0800,
 | |
| };
 | |
| 
 | |
| static int axi_dac_probe(struct platform_device *pdev)
 | |
| {
 | |
| 	const unsigned int *expected_ver;
 | |
| 	struct axi_dac_state *st;
 | |
| 	void __iomem *base;
 | |
| 	unsigned int ver;
 | |
| 	struct clk *clk;
 | |
| 	int ret;
 | |
| 
 | |
| 	st = devm_kzalloc(&pdev->dev, sizeof(*st), GFP_KERNEL);
 | |
| 	if (!st)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	expected_ver = device_get_match_data(&pdev->dev);
 | |
| 	if (!expected_ver)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	clk = devm_clk_get_enabled(&pdev->dev, NULL);
 | |
| 	if (IS_ERR(clk))
 | |
| 		return dev_err_probe(&pdev->dev, PTR_ERR(clk),
 | |
| 				     "failed to get clock\n");
 | |
| 
 | |
| 	base = devm_platform_ioremap_resource(pdev, 0);
 | |
| 	if (IS_ERR(base))
 | |
| 		return PTR_ERR(base);
 | |
| 
 | |
| 	st->dev = &pdev->dev;
 | |
| 	st->regmap = devm_regmap_init_mmio(&pdev->dev, base,
 | |
| 					   &axi_dac_regmap_config);
 | |
| 	if (IS_ERR(st->regmap))
 | |
| 		return dev_err_probe(&pdev->dev, PTR_ERR(st->regmap),
 | |
| 				     "failed to init register map\n");
 | |
| 
 | |
| 	/*
 | |
| 	 * Force disable the core. Up to the frontend to enable us. And we can
 | |
| 	 * still read/write registers...
 | |
| 	 */
 | |
| 	ret = regmap_write(st->regmap, AXI_DAC_REG_RSTN, 0);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = regmap_read(st->regmap, ADI_AXI_REG_VERSION, &ver);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (ADI_AXI_PCORE_VER_MAJOR(ver) != ADI_AXI_PCORE_VER_MAJOR(*expected_ver)) {
 | |
| 		dev_err(&pdev->dev,
 | |
| 			"Major version mismatch. Expected %d.%.2d.%c, Reported %d.%.2d.%c\n",
 | |
| 			ADI_AXI_PCORE_VER_MAJOR(*expected_ver),
 | |
| 			ADI_AXI_PCORE_VER_MINOR(*expected_ver),
 | |
| 			ADI_AXI_PCORE_VER_PATCH(*expected_ver),
 | |
| 			ADI_AXI_PCORE_VER_MAJOR(ver),
 | |
| 			ADI_AXI_PCORE_VER_MINOR(ver),
 | |
| 			ADI_AXI_PCORE_VER_PATCH(ver));
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	/* Let's get the core read only configuration */
 | |
| 	ret = regmap_read(st->regmap, AXI_DAC_REG_CONFIG, &st->reg_config);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * In some designs, setting the R1_MODE bit to 0 (which is the default
 | |
| 	 * value) causes all channels of the frontend to be routed to the same
 | |
| 	 * DMA (so they are sampled together). This is for things like
 | |
| 	 * Multiple-Input and Multiple-Output (MIMO). As most of the times we
 | |
| 	 * want independent channels let's override the core's default value and
 | |
| 	 * set the R1_MODE bit.
 | |
| 	 */
 | |
| 	ret = regmap_set_bits(st->regmap, AXI_DAC_REG_CNTRL_2, ADI_DAC_R1_MODE);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	mutex_init(&st->lock);
 | |
| 	ret = devm_iio_backend_register(&pdev->dev, &axi_dac_generic, st);
 | |
| 	if (ret)
 | |
| 		return dev_err_probe(&pdev->dev, ret,
 | |
| 				     "failed to register iio backend\n");
 | |
| 
 | |
| 	dev_info(&pdev->dev, "AXI DAC IP core (%d.%.2d.%c) probed\n",
 | |
| 		 ADI_AXI_PCORE_VER_MAJOR(ver),
 | |
| 		 ADI_AXI_PCORE_VER_MINOR(ver),
 | |
| 		 ADI_AXI_PCORE_VER_PATCH(ver));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned int axi_dac_9_1_b_info = ADI_AXI_PCORE_VER(9, 1, 'b');
 | |
| 
 | |
| static const struct of_device_id axi_dac_of_match[] = {
 | |
| 	{ .compatible = "adi,axi-dac-9.1.b", .data = &axi_dac_9_1_b_info },
 | |
| 	{}
 | |
| };
 | |
| MODULE_DEVICE_TABLE(of, axi_dac_of_match);
 | |
| 
 | |
| static struct platform_driver axi_dac_driver = {
 | |
| 	.driver = {
 | |
| 		.name = "adi-axi-dac",
 | |
| 		.of_match_table = axi_dac_of_match,
 | |
| 	},
 | |
| 	.probe = axi_dac_probe,
 | |
| };
 | |
| module_platform_driver(axi_dac_driver);
 | |
| 
 | |
| MODULE_AUTHOR("Nuno Sa <nuno.sa@analog.com>");
 | |
| MODULE_DESCRIPTION("Analog Devices Generic AXI DAC IP core driver");
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_IMPORT_NS(IIO_DMAENGINE_BUFFER);
 | |
| MODULE_IMPORT_NS(IIO_BACKEND);
 |