955 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			955 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| #undef DEBUG
 | |
| 
 | |
| /*
 | |
|  * ARM performance counter support.
 | |
|  *
 | |
|  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
 | |
|  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
 | |
|  *
 | |
|  * This code is based on the sparc64 perf event code, which is in turn based
 | |
|  * on the x86 code.
 | |
|  */
 | |
| #define pr_fmt(fmt) "hw perfevents: " fmt
 | |
| 
 | |
| #include <linux/bitmap.h>
 | |
| #include <linux/cpumask.h>
 | |
| #include <linux/cpu_pm.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/perf/arm_pmu.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/sched/clock.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/irq.h>
 | |
| #include <linux/irqdesc.h>
 | |
| 
 | |
| #include <asm/irq_regs.h>
 | |
| 
 | |
| static int armpmu_count_irq_users(const int irq);
 | |
| 
 | |
| struct pmu_irq_ops {
 | |
| 	void (*enable_pmuirq)(unsigned int irq);
 | |
| 	void (*disable_pmuirq)(unsigned int irq);
 | |
| 	void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid);
 | |
| };
 | |
| 
 | |
| static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid)
 | |
| {
 | |
| 	free_irq(irq, per_cpu_ptr(devid, cpu));
 | |
| }
 | |
| 
 | |
| static const struct pmu_irq_ops pmuirq_ops = {
 | |
| 	.enable_pmuirq = enable_irq,
 | |
| 	.disable_pmuirq = disable_irq_nosync,
 | |
| 	.free_pmuirq = armpmu_free_pmuirq
 | |
| };
 | |
| 
 | |
| static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid)
 | |
| {
 | |
| 	free_nmi(irq, per_cpu_ptr(devid, cpu));
 | |
| }
 | |
| 
 | |
| static const struct pmu_irq_ops pmunmi_ops = {
 | |
| 	.enable_pmuirq = enable_nmi,
 | |
| 	.disable_pmuirq = disable_nmi_nosync,
 | |
| 	.free_pmuirq = armpmu_free_pmunmi
 | |
| };
 | |
| 
 | |
| static void armpmu_enable_percpu_pmuirq(unsigned int irq)
 | |
| {
 | |
| 	enable_percpu_irq(irq, IRQ_TYPE_NONE);
 | |
| }
 | |
| 
 | |
| static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu,
 | |
| 				   void __percpu *devid)
 | |
| {
 | |
| 	if (armpmu_count_irq_users(irq) == 1)
 | |
| 		free_percpu_irq(irq, devid);
 | |
| }
 | |
| 
 | |
| static const struct pmu_irq_ops percpu_pmuirq_ops = {
 | |
| 	.enable_pmuirq = armpmu_enable_percpu_pmuirq,
 | |
| 	.disable_pmuirq = disable_percpu_irq,
 | |
| 	.free_pmuirq = armpmu_free_percpu_pmuirq
 | |
| };
 | |
| 
 | |
| static void armpmu_enable_percpu_pmunmi(unsigned int irq)
 | |
| {
 | |
| 	if (!prepare_percpu_nmi(irq))
 | |
| 		enable_percpu_nmi(irq, IRQ_TYPE_NONE);
 | |
| }
 | |
| 
 | |
| static void armpmu_disable_percpu_pmunmi(unsigned int irq)
 | |
| {
 | |
| 	disable_percpu_nmi(irq);
 | |
| 	teardown_percpu_nmi(irq);
 | |
| }
 | |
| 
 | |
| static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu,
 | |
| 				      void __percpu *devid)
 | |
| {
 | |
| 	if (armpmu_count_irq_users(irq) == 1)
 | |
| 		free_percpu_nmi(irq, devid);
 | |
| }
 | |
| 
 | |
| static const struct pmu_irq_ops percpu_pmunmi_ops = {
 | |
| 	.enable_pmuirq = armpmu_enable_percpu_pmunmi,
 | |
| 	.disable_pmuirq = armpmu_disable_percpu_pmunmi,
 | |
| 	.free_pmuirq = armpmu_free_percpu_pmunmi
 | |
| };
 | |
| 
 | |
| static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
 | |
| static DEFINE_PER_CPU(int, cpu_irq);
 | |
| static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops);
 | |
| 
 | |
| static bool has_nmi;
 | |
| 
 | |
| static inline u64 arm_pmu_event_max_period(struct perf_event *event)
 | |
| {
 | |
| 	if (event->hw.flags & ARMPMU_EVT_64BIT)
 | |
| 		return GENMASK_ULL(63, 0);
 | |
| 	else if (event->hw.flags & ARMPMU_EVT_63BIT)
 | |
| 		return GENMASK_ULL(62, 0);
 | |
| 	else if (event->hw.flags & ARMPMU_EVT_47BIT)
 | |
| 		return GENMASK_ULL(46, 0);
 | |
| 	else
 | |
| 		return GENMASK_ULL(31, 0);
 | |
| }
 | |
| 
 | |
| static int
 | |
| armpmu_map_cache_event(const unsigned (*cache_map)
 | |
| 				      [PERF_COUNT_HW_CACHE_MAX]
 | |
| 				      [PERF_COUNT_HW_CACHE_OP_MAX]
 | |
| 				      [PERF_COUNT_HW_CACHE_RESULT_MAX],
 | |
| 		       u64 config)
 | |
| {
 | |
| 	unsigned int cache_type, cache_op, cache_result, ret;
 | |
| 
 | |
| 	cache_type = (config >>  0) & 0xff;
 | |
| 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	cache_op = (config >>  8) & 0xff;
 | |
| 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	cache_result = (config >> 16) & 0xff;
 | |
| 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!cache_map)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
 | |
| 
 | |
| 	if (ret == CACHE_OP_UNSUPPORTED)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int
 | |
| armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
 | |
| {
 | |
| 	int mapping;
 | |
| 
 | |
| 	if (config >= PERF_COUNT_HW_MAX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!event_map)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	mapping = (*event_map)[config];
 | |
| 	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
 | |
| }
 | |
| 
 | |
| static int
 | |
| armpmu_map_raw_event(u32 raw_event_mask, u64 config)
 | |
| {
 | |
| 	return (int)(config & raw_event_mask);
 | |
| }
 | |
| 
 | |
| int
 | |
| armpmu_map_event(struct perf_event *event,
 | |
| 		 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
 | |
| 		 const unsigned (*cache_map)
 | |
| 				[PERF_COUNT_HW_CACHE_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_OP_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_RESULT_MAX],
 | |
| 		 u32 raw_event_mask)
 | |
| {
 | |
| 	u64 config = event->attr.config;
 | |
| 	int type = event->attr.type;
 | |
| 
 | |
| 	if (type == event->pmu->type)
 | |
| 		return armpmu_map_raw_event(raw_event_mask, config);
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case PERF_TYPE_HARDWARE:
 | |
| 		return armpmu_map_hw_event(event_map, config);
 | |
| 	case PERF_TYPE_HW_CACHE:
 | |
| 		return armpmu_map_cache_event(cache_map, config);
 | |
| 	case PERF_TYPE_RAW:
 | |
| 		return armpmu_map_raw_event(raw_event_mask, config);
 | |
| 	}
 | |
| 
 | |
| 	return -ENOENT;
 | |
| }
 | |
| 
 | |
| int armpmu_event_set_period(struct perf_event *event)
 | |
| {
 | |
| 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	s64 left = local64_read(&hwc->period_left);
 | |
| 	s64 period = hwc->sample_period;
 | |
| 	u64 max_period;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	max_period = arm_pmu_event_max_period(event);
 | |
| 	if (unlikely(left <= -period)) {
 | |
| 		left = period;
 | |
| 		local64_set(&hwc->period_left, left);
 | |
| 		hwc->last_period = period;
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(left <= 0)) {
 | |
| 		left += period;
 | |
| 		local64_set(&hwc->period_left, left);
 | |
| 		hwc->last_period = period;
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Limit the maximum period to prevent the counter value
 | |
| 	 * from overtaking the one we are about to program. In
 | |
| 	 * effect we are reducing max_period to account for
 | |
| 	 * interrupt latency (and we are being very conservative).
 | |
| 	 */
 | |
| 	if (left > (max_period >> 1))
 | |
| 		left = (max_period >> 1);
 | |
| 
 | |
| 	local64_set(&hwc->prev_count, (u64)-left);
 | |
| 
 | |
| 	armpmu->write_counter(event, (u64)(-left) & max_period);
 | |
| 
 | |
| 	perf_event_update_userpage(event);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| u64 armpmu_event_update(struct perf_event *event)
 | |
| {
 | |
| 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	u64 delta, prev_raw_count, new_raw_count;
 | |
| 	u64 max_period = arm_pmu_event_max_period(event);
 | |
| 
 | |
| again:
 | |
| 	prev_raw_count = local64_read(&hwc->prev_count);
 | |
| 	new_raw_count = armpmu->read_counter(event);
 | |
| 
 | |
| 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 | |
| 			     new_raw_count) != prev_raw_count)
 | |
| 		goto again;
 | |
| 
 | |
| 	delta = (new_raw_count - prev_raw_count) & max_period;
 | |
| 
 | |
| 	local64_add(delta, &event->count);
 | |
| 	local64_sub(delta, &hwc->period_left);
 | |
| 
 | |
| 	return new_raw_count;
 | |
| }
 | |
| 
 | |
| static void
 | |
| armpmu_read(struct perf_event *event)
 | |
| {
 | |
| 	armpmu_event_update(event);
 | |
| }
 | |
| 
 | |
| static void
 | |
| armpmu_stop(struct perf_event *event, int flags)
 | |
| {
 | |
| 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 
 | |
| 	/*
 | |
| 	 * ARM pmu always has to update the counter, so ignore
 | |
| 	 * PERF_EF_UPDATE, see comments in armpmu_start().
 | |
| 	 */
 | |
| 	if (!(hwc->state & PERF_HES_STOPPED)) {
 | |
| 		armpmu->disable(event);
 | |
| 		armpmu_event_update(event);
 | |
| 		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void armpmu_start(struct perf_event *event, int flags)
 | |
| {
 | |
| 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 
 | |
| 	/*
 | |
| 	 * ARM pmu always has to reprogram the period, so ignore
 | |
| 	 * PERF_EF_RELOAD, see the comment below.
 | |
| 	 */
 | |
| 	if (flags & PERF_EF_RELOAD)
 | |
| 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
 | |
| 
 | |
| 	hwc->state = 0;
 | |
| 	/*
 | |
| 	 * Set the period again. Some counters can't be stopped, so when we
 | |
| 	 * were stopped we simply disabled the IRQ source and the counter
 | |
| 	 * may have been left counting. If we don't do this step then we may
 | |
| 	 * get an interrupt too soon or *way* too late if the overflow has
 | |
| 	 * happened since disabling.
 | |
| 	 */
 | |
| 	armpmu_event_set_period(event);
 | |
| 	armpmu->enable(event);
 | |
| }
 | |
| 
 | |
| static void
 | |
| armpmu_del(struct perf_event *event, int flags)
 | |
| {
 | |
| 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 | |
| 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	int idx = hwc->idx;
 | |
| 
 | |
| 	armpmu_stop(event, PERF_EF_UPDATE);
 | |
| 	hw_events->events[idx] = NULL;
 | |
| 	armpmu->clear_event_idx(hw_events, event);
 | |
| 	perf_event_update_userpage(event);
 | |
| 	/* Clear the allocated counter */
 | |
| 	hwc->idx = -1;
 | |
| }
 | |
| 
 | |
| static int
 | |
| armpmu_add(struct perf_event *event, int flags)
 | |
| {
 | |
| 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 | |
| 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	int idx;
 | |
| 
 | |
| 	/* An event following a process won't be stopped earlier */
 | |
| 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	/* If we don't have a space for the counter then finish early. */
 | |
| 	idx = armpmu->get_event_idx(hw_events, event);
 | |
| 	if (idx < 0)
 | |
| 		return idx;
 | |
| 
 | |
| 	/*
 | |
| 	 * If there is an event in the counter we are going to use then make
 | |
| 	 * sure it is disabled.
 | |
| 	 */
 | |
| 	event->hw.idx = idx;
 | |
| 	armpmu->disable(event);
 | |
| 	hw_events->events[idx] = event;
 | |
| 
 | |
| 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
 | |
| 	if (flags & PERF_EF_START)
 | |
| 		armpmu_start(event, PERF_EF_RELOAD);
 | |
| 
 | |
| 	/* Propagate our changes to the userspace mapping. */
 | |
| 	perf_event_update_userpage(event);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
 | |
| 			       struct perf_event *event)
 | |
| {
 | |
| 	struct arm_pmu *armpmu;
 | |
| 
 | |
| 	if (is_software_event(event))
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
 | |
| 	 * core perf code won't check that the pmu->ctx == leader->ctx
 | |
| 	 * until after pmu->event_init(event).
 | |
| 	 */
 | |
| 	if (event->pmu != pmu)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (event->state < PERF_EVENT_STATE_OFF)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
 | |
| 		return 1;
 | |
| 
 | |
| 	armpmu = to_arm_pmu(event->pmu);
 | |
| 	return armpmu->get_event_idx(hw_events, event) >= 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| validate_group(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event *sibling, *leader = event->group_leader;
 | |
| 	struct pmu_hw_events fake_pmu;
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialise the fake PMU. We only need to populate the
 | |
| 	 * used_mask for the purposes of validation.
 | |
| 	 */
 | |
| 	memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
 | |
| 
 | |
| 	if (!validate_event(event->pmu, &fake_pmu, leader))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (event == leader)
 | |
| 		return 0;
 | |
| 
 | |
| 	for_each_sibling_event(sibling, leader) {
 | |
| 		if (!validate_event(event->pmu, &fake_pmu, sibling))
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (!validate_event(event->pmu, &fake_pmu, event))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
 | |
| {
 | |
| 	struct arm_pmu *armpmu;
 | |
| 	int ret;
 | |
| 	u64 start_clock, finish_clock;
 | |
| 
 | |
| 	/*
 | |
| 	 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
 | |
| 	 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
 | |
| 	 * do any necessary shifting, we just need to perform the first
 | |
| 	 * dereference.
 | |
| 	 */
 | |
| 	armpmu = *(void **)dev;
 | |
| 	if (WARN_ON_ONCE(!armpmu))
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	start_clock = sched_clock();
 | |
| 	ret = armpmu->handle_irq(armpmu);
 | |
| 	finish_clock = sched_clock();
 | |
| 
 | |
| 	perf_sample_event_took(finish_clock - start_clock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int
 | |
| __hw_perf_event_init(struct perf_event *event)
 | |
| {
 | |
| 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	int mapping, ret;
 | |
| 
 | |
| 	hwc->flags = 0;
 | |
| 	mapping = armpmu->map_event(event);
 | |
| 
 | |
| 	if (mapping < 0) {
 | |
| 		pr_debug("event %x:%llx not supported\n", event->attr.type,
 | |
| 			 event->attr.config);
 | |
| 		return mapping;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't assign an index until we actually place the event onto
 | |
| 	 * hardware. Use -1 to signify that we haven't decided where to put it
 | |
| 	 * yet. For SMP systems, each core has it's own PMU so we can't do any
 | |
| 	 * clever allocation or constraints checking at this point.
 | |
| 	 */
 | |
| 	hwc->idx		= -1;
 | |
| 	hwc->config_base	= 0;
 | |
| 	hwc->config		= 0;
 | |
| 	hwc->event_base		= 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check whether we need to exclude the counter from certain modes.
 | |
| 	 */
 | |
| 	if (armpmu->set_event_filter) {
 | |
| 		ret = armpmu->set_event_filter(hwc, &event->attr);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Store the event encoding into the config_base field.
 | |
| 	 */
 | |
| 	hwc->config_base	    |= (unsigned long)mapping;
 | |
| 
 | |
| 	if (!is_sampling_event(event)) {
 | |
| 		/*
 | |
| 		 * For non-sampling runs, limit the sample_period to half
 | |
| 		 * of the counter width. That way, the new counter value
 | |
| 		 * is far less likely to overtake the previous one unless
 | |
| 		 * you have some serious IRQ latency issues.
 | |
| 		 */
 | |
| 		hwc->sample_period  = arm_pmu_event_max_period(event) >> 1;
 | |
| 		hwc->last_period    = hwc->sample_period;
 | |
| 		local64_set(&hwc->period_left, hwc->sample_period);
 | |
| 	}
 | |
| 
 | |
| 	return validate_group(event);
 | |
| }
 | |
| 
 | |
| static int armpmu_event_init(struct perf_event *event)
 | |
| {
 | |
| 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Reject CPU-affine events for CPUs that are of a different class to
 | |
| 	 * that which this PMU handles. Process-following events (where
 | |
| 	 * event->cpu == -1) can be migrated between CPUs, and thus we have to
 | |
| 	 * reject them later (in armpmu_add) if they're scheduled on a
 | |
| 	 * different class of CPU.
 | |
| 	 */
 | |
| 	if (event->cpu != -1 &&
 | |
| 		!cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	/* does not support taken branch sampling */
 | |
| 	if (has_branch_stack(event))
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	return __hw_perf_event_init(event);
 | |
| }
 | |
| 
 | |
| static void armpmu_enable(struct pmu *pmu)
 | |
| {
 | |
| 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
 | |
| 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
 | |
| 	bool enabled = !bitmap_empty(hw_events->used_mask, ARMPMU_MAX_HWEVENTS);
 | |
| 
 | |
| 	/* For task-bound events we may be called on other CPUs */
 | |
| 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
 | |
| 		return;
 | |
| 
 | |
| 	if (enabled)
 | |
| 		armpmu->start(armpmu);
 | |
| }
 | |
| 
 | |
| static void armpmu_disable(struct pmu *pmu)
 | |
| {
 | |
| 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
 | |
| 
 | |
| 	/* For task-bound events we may be called on other CPUs */
 | |
| 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
 | |
| 		return;
 | |
| 
 | |
| 	armpmu->stop(armpmu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In heterogeneous systems, events are specific to a particular
 | |
|  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
 | |
|  * the same microarchitecture.
 | |
|  */
 | |
| static bool armpmu_filter(struct pmu *pmu, int cpu)
 | |
| {
 | |
| 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
 | |
| 	return !cpumask_test_cpu(cpu, &armpmu->supported_cpus);
 | |
| }
 | |
| 
 | |
| static ssize_t cpus_show(struct device *dev,
 | |
| 			 struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
 | |
| 	return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
 | |
| }
 | |
| 
 | |
| static DEVICE_ATTR_RO(cpus);
 | |
| 
 | |
| static struct attribute *armpmu_common_attrs[] = {
 | |
| 	&dev_attr_cpus.attr,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static const struct attribute_group armpmu_common_attr_group = {
 | |
| 	.attrs = armpmu_common_attrs,
 | |
| };
 | |
| 
 | |
| static int armpmu_count_irq_users(const int irq)
 | |
| {
 | |
| 	int cpu, count = 0;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		if (per_cpu(cpu_irq, cpu) == irq)
 | |
| 			count++;
 | |
| 	}
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static const struct pmu_irq_ops *armpmu_find_irq_ops(int irq)
 | |
| {
 | |
| 	const struct pmu_irq_ops *ops = NULL;
 | |
| 	int cpu;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		if (per_cpu(cpu_irq, cpu) != irq)
 | |
| 			continue;
 | |
| 
 | |
| 		ops = per_cpu(cpu_irq_ops, cpu);
 | |
| 		if (ops)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return ops;
 | |
| }
 | |
| 
 | |
| void armpmu_free_irq(int irq, int cpu)
 | |
| {
 | |
| 	if (per_cpu(cpu_irq, cpu) == 0)
 | |
| 		return;
 | |
| 	if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
 | |
| 		return;
 | |
| 
 | |
| 	per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, &cpu_armpmu);
 | |
| 
 | |
| 	per_cpu(cpu_irq, cpu) = 0;
 | |
| 	per_cpu(cpu_irq_ops, cpu) = NULL;
 | |
| }
 | |
| 
 | |
| int armpmu_request_irq(int irq, int cpu)
 | |
| {
 | |
| 	int err = 0;
 | |
| 	const irq_handler_t handler = armpmu_dispatch_irq;
 | |
| 	const struct pmu_irq_ops *irq_ops;
 | |
| 
 | |
| 	if (!irq)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!irq_is_percpu_devid(irq)) {
 | |
| 		unsigned long irq_flags;
 | |
| 
 | |
| 		err = irq_force_affinity(irq, cpumask_of(cpu));
 | |
| 
 | |
| 		if (err && num_possible_cpus() > 1) {
 | |
| 			pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
 | |
| 				irq, cpu);
 | |
| 			goto err_out;
 | |
| 		}
 | |
| 
 | |
| 		irq_flags = IRQF_PERCPU |
 | |
| 			    IRQF_NOBALANCING | IRQF_NO_AUTOEN |
 | |
| 			    IRQF_NO_THREAD;
 | |
| 
 | |
| 		err = request_nmi(irq, handler, irq_flags, "arm-pmu",
 | |
| 				  per_cpu_ptr(&cpu_armpmu, cpu));
 | |
| 
 | |
| 		/* If cannot get an NMI, get a normal interrupt */
 | |
| 		if (err) {
 | |
| 			err = request_irq(irq, handler, irq_flags, "arm-pmu",
 | |
| 					  per_cpu_ptr(&cpu_armpmu, cpu));
 | |
| 			irq_ops = &pmuirq_ops;
 | |
| 		} else {
 | |
| 			has_nmi = true;
 | |
| 			irq_ops = &pmunmi_ops;
 | |
| 		}
 | |
| 	} else if (armpmu_count_irq_users(irq) == 0) {
 | |
| 		err = request_percpu_nmi(irq, handler, "arm-pmu", &cpu_armpmu);
 | |
| 
 | |
| 		/* If cannot get an NMI, get a normal interrupt */
 | |
| 		if (err) {
 | |
| 			err = request_percpu_irq(irq, handler, "arm-pmu",
 | |
| 						 &cpu_armpmu);
 | |
| 			irq_ops = &percpu_pmuirq_ops;
 | |
| 		} else {
 | |
| 			has_nmi = true;
 | |
| 			irq_ops = &percpu_pmunmi_ops;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* Per cpudevid irq was already requested by another CPU */
 | |
| 		irq_ops = armpmu_find_irq_ops(irq);
 | |
| 
 | |
| 		if (WARN_ON(!irq_ops))
 | |
| 			err = -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (err)
 | |
| 		goto err_out;
 | |
| 
 | |
| 	per_cpu(cpu_irq, cpu) = irq;
 | |
| 	per_cpu(cpu_irq_ops, cpu) = irq_ops;
 | |
| 	return 0;
 | |
| 
 | |
| err_out:
 | |
| 	pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
 | |
| {
 | |
| 	struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
 | |
| 	return per_cpu(hw_events->irq, cpu);
 | |
| }
 | |
| 
 | |
| bool arm_pmu_irq_is_nmi(void)
 | |
| {
 | |
| 	return has_nmi;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * PMU hardware loses all context when a CPU goes offline.
 | |
|  * When a CPU is hotplugged back in, since some hardware registers are
 | |
|  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
 | |
|  * junk values out of them.
 | |
|  */
 | |
| static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
 | |
| {
 | |
| 	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
 | |
| 	int irq;
 | |
| 
 | |
| 	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
 | |
| 		return 0;
 | |
| 	if (pmu->reset)
 | |
| 		pmu->reset(pmu);
 | |
| 
 | |
| 	per_cpu(cpu_armpmu, cpu) = pmu;
 | |
| 
 | |
| 	irq = armpmu_get_cpu_irq(pmu, cpu);
 | |
| 	if (irq)
 | |
| 		per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
 | |
| {
 | |
| 	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
 | |
| 	int irq;
 | |
| 
 | |
| 	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
 | |
| 		return 0;
 | |
| 
 | |
| 	irq = armpmu_get_cpu_irq(pmu, cpu);
 | |
| 	if (irq)
 | |
| 		per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq);
 | |
| 
 | |
| 	per_cpu(cpu_armpmu, cpu) = NULL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_CPU_PM
 | |
| static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
 | |
| {
 | |
| 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
 | |
| 	struct perf_event *event;
 | |
| 	int idx;
 | |
| 
 | |
| 	for_each_set_bit(idx, armpmu->cntr_mask, ARMPMU_MAX_HWEVENTS) {
 | |
| 		event = hw_events->events[idx];
 | |
| 		if (!event)
 | |
| 			continue;
 | |
| 
 | |
| 		switch (cmd) {
 | |
| 		case CPU_PM_ENTER:
 | |
| 			/*
 | |
| 			 * Stop and update the counter
 | |
| 			 */
 | |
| 			armpmu_stop(event, PERF_EF_UPDATE);
 | |
| 			break;
 | |
| 		case CPU_PM_EXIT:
 | |
| 		case CPU_PM_ENTER_FAILED:
 | |
| 			 /*
 | |
| 			  * Restore and enable the counter.
 | |
| 			  */
 | |
| 			armpmu_start(event, PERF_EF_RELOAD);
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
 | |
| 			     void *v)
 | |
| {
 | |
| 	struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
 | |
| 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
 | |
| 	bool enabled = !bitmap_empty(hw_events->used_mask, ARMPMU_MAX_HWEVENTS);
 | |
| 
 | |
| 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
 | |
| 		return NOTIFY_DONE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Always reset the PMU registers on power-up even if
 | |
| 	 * there are no events running.
 | |
| 	 */
 | |
| 	if (cmd == CPU_PM_EXIT && armpmu->reset)
 | |
| 		armpmu->reset(armpmu);
 | |
| 
 | |
| 	if (!enabled)
 | |
| 		return NOTIFY_OK;
 | |
| 
 | |
| 	switch (cmd) {
 | |
| 	case CPU_PM_ENTER:
 | |
| 		armpmu->stop(armpmu);
 | |
| 		cpu_pm_pmu_setup(armpmu, cmd);
 | |
| 		break;
 | |
| 	case CPU_PM_EXIT:
 | |
| 	case CPU_PM_ENTER_FAILED:
 | |
| 		cpu_pm_pmu_setup(armpmu, cmd);
 | |
| 		armpmu->start(armpmu);
 | |
| 		break;
 | |
| 	default:
 | |
| 		return NOTIFY_DONE;
 | |
| 	}
 | |
| 
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
 | |
| {
 | |
| 	cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
 | |
| 	return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
 | |
| }
 | |
| 
 | |
| static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
 | |
| {
 | |
| 	cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
 | |
| }
 | |
| #else
 | |
| static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
 | |
| static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
 | |
| #endif
 | |
| 
 | |
| static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
 | |
| 				       &cpu_pmu->node);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	err = cpu_pm_pmu_register(cpu_pmu);
 | |
| 	if (err)
 | |
| 		goto out_unregister;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_unregister:
 | |
| 	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
 | |
| 					    &cpu_pmu->node);
 | |
| out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
 | |
| {
 | |
| 	cpu_pm_pmu_unregister(cpu_pmu);
 | |
| 	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
 | |
| 					    &cpu_pmu->node);
 | |
| }
 | |
| 
 | |
| struct arm_pmu *armpmu_alloc(void)
 | |
| {
 | |
| 	struct arm_pmu *pmu;
 | |
| 	int cpu;
 | |
| 
 | |
| 	pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
 | |
| 	if (!pmu)
 | |
| 		goto out;
 | |
| 
 | |
| 	pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, GFP_KERNEL);
 | |
| 	if (!pmu->hw_events) {
 | |
| 		pr_info("failed to allocate per-cpu PMU data.\n");
 | |
| 		goto out_free_pmu;
 | |
| 	}
 | |
| 
 | |
| 	pmu->pmu = (struct pmu) {
 | |
| 		.pmu_enable	= armpmu_enable,
 | |
| 		.pmu_disable	= armpmu_disable,
 | |
| 		.event_init	= armpmu_event_init,
 | |
| 		.add		= armpmu_add,
 | |
| 		.del		= armpmu_del,
 | |
| 		.start		= armpmu_start,
 | |
| 		.stop		= armpmu_stop,
 | |
| 		.read		= armpmu_read,
 | |
| 		.filter		= armpmu_filter,
 | |
| 		.attr_groups	= pmu->attr_groups,
 | |
| 		/*
 | |
| 		 * This is a CPU PMU potentially in a heterogeneous
 | |
| 		 * configuration (e.g. big.LITTLE) so
 | |
| 		 * PERF_PMU_CAP_EXTENDED_HW_TYPE is required to open
 | |
| 		 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE events on a
 | |
| 		 * specific PMU.
 | |
| 		 */
 | |
| 		.capabilities	= PERF_PMU_CAP_EXTENDED_REGS |
 | |
| 				  PERF_PMU_CAP_EXTENDED_HW_TYPE,
 | |
| 	};
 | |
| 
 | |
| 	pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
 | |
| 		&armpmu_common_attr_group;
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		struct pmu_hw_events *events;
 | |
| 
 | |
| 		events = per_cpu_ptr(pmu->hw_events, cpu);
 | |
| 		events->percpu_pmu = pmu;
 | |
| 	}
 | |
| 
 | |
| 	return pmu;
 | |
| 
 | |
| out_free_pmu:
 | |
| 	kfree(pmu);
 | |
| out:
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| void armpmu_free(struct arm_pmu *pmu)
 | |
| {
 | |
| 	free_percpu(pmu->hw_events);
 | |
| 	kfree(pmu);
 | |
| }
 | |
| 
 | |
| int armpmu_register(struct arm_pmu *pmu)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = cpu_pmu_init(pmu);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (!pmu->set_event_filter)
 | |
| 		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
 | |
| 
 | |
| 	ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
 | |
| 	if (ret)
 | |
| 		goto out_destroy;
 | |
| 
 | |
| 	pr_info("enabled with %s PMU driver, %d (%*pb) counters available%s\n",
 | |
| 		pmu->name, bitmap_weight(pmu->cntr_mask, ARMPMU_MAX_HWEVENTS),
 | |
| 		ARMPMU_MAX_HWEVENTS, &pmu->cntr_mask,
 | |
| 		has_nmi ? ", using NMIs" : "");
 | |
| 
 | |
| 	kvm_host_pmu_init(pmu);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_destroy:
 | |
| 	cpu_pmu_destroy(pmu);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int arm_pmu_hp_init(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
 | |
| 				      "perf/arm/pmu:starting",
 | |
| 				      arm_perf_starting_cpu,
 | |
| 				      arm_perf_teardown_cpu);
 | |
| 	if (ret)
 | |
| 		pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
 | |
| 		       ret);
 | |
| 	return ret;
 | |
| }
 | |
| subsys_initcall(arm_pmu_hp_init);
 |