546 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			546 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-or-later
 | |
| /*
 | |
|  * sun4i-ss-hash.c - hardware cryptographic accelerator for Allwinner A20 SoC
 | |
|  *
 | |
|  * Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com>
 | |
|  *
 | |
|  * This file add support for MD5 and SHA1.
 | |
|  *
 | |
|  * You could find the datasheet in Documentation/arm/sunxi.rst
 | |
|  */
 | |
| #include "sun4i-ss.h"
 | |
| #include <asm/unaligned.h>
 | |
| #include <linux/scatterlist.h>
 | |
| 
 | |
| /* This is a totally arbitrary value */
 | |
| #define SS_TIMEOUT 100
 | |
| 
 | |
| int sun4i_hash_crainit(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
 | |
| 	struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg);
 | |
| 	struct sun4i_ss_alg_template *algt;
 | |
| 	int err;
 | |
| 
 | |
| 	memset(op, 0, sizeof(struct sun4i_tfm_ctx));
 | |
| 
 | |
| 	algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
 | |
| 	op->ss = algt->ss;
 | |
| 
 | |
| 	err = pm_runtime_resume_and_get(op->ss->dev);
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 
 | |
| 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
 | |
| 				 sizeof(struct sun4i_req_ctx));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void sun4i_hash_craexit(struct crypto_tfm *tfm)
 | |
| {
 | |
| 	struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
 | |
| 
 | |
| 	pm_runtime_put(op->ss->dev);
 | |
| }
 | |
| 
 | |
| /* sun4i_hash_init: initialize request context */
 | |
| int sun4i_hash_init(struct ahash_request *areq)
 | |
| {
 | |
| 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
 | |
| 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
 | |
| 	struct ahash_alg *alg = __crypto_ahash_alg(tfm->base.__crt_alg);
 | |
| 	struct sun4i_ss_alg_template *algt;
 | |
| 
 | |
| 	memset(op, 0, sizeof(struct sun4i_req_ctx));
 | |
| 
 | |
| 	algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
 | |
| 	op->mode = algt->mode;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int sun4i_hash_export_md5(struct ahash_request *areq, void *out)
 | |
| {
 | |
| 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
 | |
| 	struct md5_state *octx = out;
 | |
| 	int i;
 | |
| 
 | |
| 	octx->byte_count = op->byte_count + op->len;
 | |
| 
 | |
| 	memcpy(octx->block, op->buf, op->len);
 | |
| 
 | |
| 	if (op->byte_count) {
 | |
| 		for (i = 0; i < 4; i++)
 | |
| 			octx->hash[i] = op->hash[i];
 | |
| 	} else {
 | |
| 		octx->hash[0] = SHA1_H0;
 | |
| 		octx->hash[1] = SHA1_H1;
 | |
| 		octx->hash[2] = SHA1_H2;
 | |
| 		octx->hash[3] = SHA1_H3;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int sun4i_hash_import_md5(struct ahash_request *areq, const void *in)
 | |
| {
 | |
| 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
 | |
| 	const struct md5_state *ictx = in;
 | |
| 	int i;
 | |
| 
 | |
| 	sun4i_hash_init(areq);
 | |
| 
 | |
| 	op->byte_count = ictx->byte_count & ~0x3F;
 | |
| 	op->len = ictx->byte_count & 0x3F;
 | |
| 
 | |
| 	memcpy(op->buf, ictx->block, op->len);
 | |
| 
 | |
| 	for (i = 0; i < 4; i++)
 | |
| 		op->hash[i] = ictx->hash[i];
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int sun4i_hash_export_sha1(struct ahash_request *areq, void *out)
 | |
| {
 | |
| 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
 | |
| 	struct sha1_state *octx = out;
 | |
| 	int i;
 | |
| 
 | |
| 	octx->count = op->byte_count + op->len;
 | |
| 
 | |
| 	memcpy(octx->buffer, op->buf, op->len);
 | |
| 
 | |
| 	if (op->byte_count) {
 | |
| 		for (i = 0; i < 5; i++)
 | |
| 			octx->state[i] = op->hash[i];
 | |
| 	} else {
 | |
| 		octx->state[0] = SHA1_H0;
 | |
| 		octx->state[1] = SHA1_H1;
 | |
| 		octx->state[2] = SHA1_H2;
 | |
| 		octx->state[3] = SHA1_H3;
 | |
| 		octx->state[4] = SHA1_H4;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int sun4i_hash_import_sha1(struct ahash_request *areq, const void *in)
 | |
| {
 | |
| 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
 | |
| 	const struct sha1_state *ictx = in;
 | |
| 	int i;
 | |
| 
 | |
| 	sun4i_hash_init(areq);
 | |
| 
 | |
| 	op->byte_count = ictx->count & ~0x3F;
 | |
| 	op->len = ictx->count & 0x3F;
 | |
| 
 | |
| 	memcpy(op->buf, ictx->buffer, op->len);
 | |
| 
 | |
| 	for (i = 0; i < 5; i++)
 | |
| 		op->hash[i] = ictx->state[i];
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #define SS_HASH_UPDATE 1
 | |
| #define SS_HASH_FINAL 2
 | |
| 
 | |
| /*
 | |
|  * sun4i_hash_update: update hash engine
 | |
|  *
 | |
|  * Could be used for both SHA1 and MD5
 | |
|  * Write data by step of 32bits and put then in the SS.
 | |
|  *
 | |
|  * Since we cannot leave partial data and hash state in the engine,
 | |
|  * we need to get the hash state at the end of this function.
 | |
|  * We can get the hash state every 64 bytes
 | |
|  *
 | |
|  * So the first work is to get the number of bytes to write to SS modulo 64
 | |
|  * The extra bytes will go to a temporary buffer op->buf storing op->len bytes
 | |
|  *
 | |
|  * So at the begin of update()
 | |
|  * if op->len + areq->nbytes < 64
 | |
|  * => all data will be written to wait buffer (op->buf) and end=0
 | |
|  * if not, write all data from op->buf to the device and position end to
 | |
|  * complete to 64bytes
 | |
|  *
 | |
|  * example 1:
 | |
|  * update1 60o => op->len=60
 | |
|  * update2 60o => need one more word to have 64 bytes
 | |
|  * end=4
 | |
|  * so write all data from op->buf and one word of SGs
 | |
|  * write remaining data in op->buf
 | |
|  * final state op->len=56
 | |
|  */
 | |
| static int sun4i_hash(struct ahash_request *areq)
 | |
| {
 | |
| 	/*
 | |
| 	 * i is the total bytes read from SGs, to be compared to areq->nbytes
 | |
| 	 * i is important because we cannot rely on SG length since the sum of
 | |
| 	 * SG->length could be greater than areq->nbytes
 | |
| 	 *
 | |
| 	 * end is the position when we need to stop writing to the device,
 | |
| 	 * to be compared to i
 | |
| 	 *
 | |
| 	 * in_i: advancement in the current SG
 | |
| 	 */
 | |
| 	unsigned int i = 0, end, fill, min_fill, nwait, nbw = 0, j = 0, todo;
 | |
| 	unsigned int in_i = 0;
 | |
| 	u32 spaces, rx_cnt = SS_RX_DEFAULT, bf[32] = {0}, v, ivmode = 0;
 | |
| 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
 | |
| 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
 | |
| 	struct ahash_alg *alg = __crypto_ahash_alg(tfm->base.__crt_alg);
 | |
| 	struct sun4i_tfm_ctx *tfmctx = crypto_ahash_ctx(tfm);
 | |
| 	struct sun4i_ss_ctx *ss = tfmctx->ss;
 | |
| 	struct sun4i_ss_alg_template *algt;
 | |
| 	struct scatterlist *in_sg = areq->src;
 | |
| 	struct sg_mapping_iter mi;
 | |
| 	int in_r, err = 0;
 | |
| 	size_t copied = 0;
 | |
| 	u32 wb = 0;
 | |
| 
 | |
| 	dev_dbg(ss->dev, "%s %s bc=%llu len=%u mode=%x wl=%u h0=%0x",
 | |
| 		__func__, crypto_tfm_alg_name(areq->base.tfm),
 | |
| 		op->byte_count, areq->nbytes, op->mode,
 | |
| 		op->len, op->hash[0]);
 | |
| 
 | |
| 	if (unlikely(!areq->nbytes) && !(op->flags & SS_HASH_FINAL))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* protect against overflow */
 | |
| 	if (unlikely(areq->nbytes > UINT_MAX - op->len)) {
 | |
| 		dev_err(ss->dev, "Cannot process too large request\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (op->len + areq->nbytes < 64 && !(op->flags & SS_HASH_FINAL)) {
 | |
| 		/* linearize data to op->buf */
 | |
| 		copied = sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
 | |
| 					    op->buf + op->len, areq->nbytes, 0);
 | |
| 		op->len += copied;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_bh(&ss->slock);
 | |
| 
 | |
| 	/*
 | |
| 	 * if some data have been processed before,
 | |
| 	 * we need to restore the partial hash state
 | |
| 	 */
 | |
| 	if (op->byte_count) {
 | |
| 		ivmode = SS_IV_ARBITRARY;
 | |
| 		for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
 | |
| 			writel(op->hash[i], ss->base + SS_IV0 + i * 4);
 | |
| 	}
 | |
| 	/* Enable the device */
 | |
| 	writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL);
 | |
| 
 | |
| 	if (!(op->flags & SS_HASH_UPDATE))
 | |
| 		goto hash_final;
 | |
| 
 | |
| 	/* start of handling data */
 | |
| 	if (!(op->flags & SS_HASH_FINAL)) {
 | |
| 		end = ((areq->nbytes + op->len) / 64) * 64 - op->len;
 | |
| 
 | |
| 		if (end > areq->nbytes || areq->nbytes - end > 63) {
 | |
| 			dev_err(ss->dev, "ERROR: Bound error %u %u\n",
 | |
| 				end, areq->nbytes);
 | |
| 			err = -EINVAL;
 | |
| 			goto release_ss;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* Since we have the flag final, we can go up to modulo 4 */
 | |
| 		if (areq->nbytes < 4)
 | |
| 			end = 0;
 | |
| 		else
 | |
| 			end = ((areq->nbytes + op->len) / 4) * 4 - op->len;
 | |
| 	}
 | |
| 
 | |
| 	/* TODO if SGlen % 4 and !op->len then DMA */
 | |
| 	i = 1;
 | |
| 	while (in_sg && i == 1) {
 | |
| 		if (in_sg->length % 4)
 | |
| 			i = 0;
 | |
| 		in_sg = sg_next(in_sg);
 | |
| 	}
 | |
| 	if (i == 1 && !op->len && areq->nbytes)
 | |
| 		dev_dbg(ss->dev, "We can DMA\n");
 | |
| 
 | |
| 	i = 0;
 | |
| 	sg_miter_start(&mi, areq->src, sg_nents(areq->src),
 | |
| 		       SG_MITER_FROM_SG | SG_MITER_ATOMIC);
 | |
| 	sg_miter_next(&mi);
 | |
| 	in_i = 0;
 | |
| 
 | |
| 	do {
 | |
| 		/*
 | |
| 		 * we need to linearize in two case:
 | |
| 		 * - the buffer is already used
 | |
| 		 * - the SG does not have enough byte remaining ( < 4)
 | |
| 		 */
 | |
| 		if (op->len || (mi.length - in_i) < 4) {
 | |
| 			/*
 | |
| 			 * if we have entered here we have two reason to stop
 | |
| 			 * - the buffer is full
 | |
| 			 * - reach the end
 | |
| 			 */
 | |
| 			while (op->len < 64 && i < end) {
 | |
| 				/* how many bytes we can read from current SG */
 | |
| 				in_r = min(end - i, 64 - op->len);
 | |
| 				in_r = min_t(size_t, mi.length - in_i, in_r);
 | |
| 				memcpy(op->buf + op->len, mi.addr + in_i, in_r);
 | |
| 				op->len += in_r;
 | |
| 				i += in_r;
 | |
| 				in_i += in_r;
 | |
| 				if (in_i == mi.length) {
 | |
| 					sg_miter_next(&mi);
 | |
| 					in_i = 0;
 | |
| 				}
 | |
| 			}
 | |
| 			if (op->len > 3 && !(op->len % 4)) {
 | |
| 				/* write buf to the device */
 | |
| 				writesl(ss->base + SS_RXFIFO, op->buf,
 | |
| 					op->len / 4);
 | |
| 				op->byte_count += op->len;
 | |
| 				op->len = 0;
 | |
| 			}
 | |
| 		}
 | |
| 		if (mi.length - in_i > 3 && i < end) {
 | |
| 			/* how many bytes we can read from current SG */
 | |
| 			in_r = min_t(size_t, mi.length - in_i, areq->nbytes - i);
 | |
| 			in_r = min_t(size_t, ((mi.length - in_i) / 4) * 4, in_r);
 | |
| 			/* how many bytes we can write in the device*/
 | |
| 			todo = min3((u32)(end - i) / 4, rx_cnt, (u32)in_r / 4);
 | |
| 			writesl(ss->base + SS_RXFIFO, mi.addr + in_i, todo);
 | |
| 			op->byte_count += todo * 4;
 | |
| 			i += todo * 4;
 | |
| 			in_i += todo * 4;
 | |
| 			rx_cnt -= todo;
 | |
| 			if (!rx_cnt) {
 | |
| 				spaces = readl(ss->base + SS_FCSR);
 | |
| 				rx_cnt = SS_RXFIFO_SPACES(spaces);
 | |
| 			}
 | |
| 			if (in_i == mi.length) {
 | |
| 				sg_miter_next(&mi);
 | |
| 				in_i = 0;
 | |
| 			}
 | |
| 		}
 | |
| 	} while (i < end);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we have written to the device all that we can,
 | |
| 	 * store the remaining bytes in op->buf
 | |
| 	 */
 | |
| 	if ((areq->nbytes - i) < 64) {
 | |
| 		while (i < areq->nbytes && in_i < mi.length && op->len < 64) {
 | |
| 			/* how many bytes we can read from current SG */
 | |
| 			in_r = min(areq->nbytes - i, 64 - op->len);
 | |
| 			in_r = min_t(size_t, mi.length - in_i, in_r);
 | |
| 			memcpy(op->buf + op->len, mi.addr + in_i, in_r);
 | |
| 			op->len += in_r;
 | |
| 			i += in_r;
 | |
| 			in_i += in_r;
 | |
| 			if (in_i == mi.length) {
 | |
| 				sg_miter_next(&mi);
 | |
| 				in_i = 0;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	sg_miter_stop(&mi);
 | |
| 
 | |
| 	/*
 | |
| 	 * End of data process
 | |
| 	 * Now if we have the flag final go to finalize part
 | |
| 	 * If not, store the partial hash
 | |
| 	 */
 | |
| 	if (op->flags & SS_HASH_FINAL)
 | |
| 		goto hash_final;
 | |
| 
 | |
| 	writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
 | |
| 	i = 0;
 | |
| 	do {
 | |
| 		v = readl(ss->base + SS_CTL);
 | |
| 		i++;
 | |
| 	} while (i < SS_TIMEOUT && (v & SS_DATA_END));
 | |
| 	if (unlikely(i >= SS_TIMEOUT)) {
 | |
| 		dev_err_ratelimited(ss->dev,
 | |
| 				    "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
 | |
| 				    i, SS_TIMEOUT, v, areq->nbytes);
 | |
| 		err = -EIO;
 | |
| 		goto release_ss;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The datasheet isn't very clear about when to retrieve the digest. The
 | |
| 	 * bit SS_DATA_END is cleared when the engine has processed the data and
 | |
| 	 * when the digest is computed *but* it doesn't mean the digest is
 | |
| 	 * available in the digest registers. Hence the delay to be sure we can
 | |
| 	 * read it.
 | |
| 	 */
 | |
| 	ndelay(1);
 | |
| 
 | |
| 	for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
 | |
| 		op->hash[i] = readl(ss->base + SS_MD0 + i * 4);
 | |
| 
 | |
| 	goto release_ss;
 | |
| 
 | |
| /*
 | |
|  * hash_final: finalize hashing operation
 | |
|  *
 | |
|  * If we have some remaining bytes, we write them.
 | |
|  * Then ask the SS for finalizing the hashing operation
 | |
|  *
 | |
|  * I do not check RX FIFO size in this function since the size is 32
 | |
|  * after each enabling and this function neither write more than 32 words.
 | |
|  * If we come from the update part, we cannot have more than
 | |
|  * 3 remaining bytes to write and SS is fast enough to not care about it.
 | |
|  */
 | |
| 
 | |
| hash_final:
 | |
| 	if (IS_ENABLED(CONFIG_CRYPTO_DEV_SUN4I_SS_DEBUG)) {
 | |
| 		algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
 | |
| 		algt->stat_req++;
 | |
| 	}
 | |
| 
 | |
| 	/* write the remaining words of the wait buffer */
 | |
| 	if (op->len) {
 | |
| 		nwait = op->len / 4;
 | |
| 		if (nwait) {
 | |
| 			writesl(ss->base + SS_RXFIFO, op->buf, nwait);
 | |
| 			op->byte_count += 4 * nwait;
 | |
| 		}
 | |
| 
 | |
| 		nbw = op->len - 4 * nwait;
 | |
| 		if (nbw) {
 | |
| 			wb = le32_to_cpup((__le32 *)(op->buf + nwait * 4));
 | |
| 			wb &= GENMASK((nbw * 8) - 1, 0);
 | |
| 
 | |
| 			op->byte_count += nbw;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* write the remaining bytes of the nbw buffer */
 | |
| 	wb |= ((1 << 7) << (nbw * 8));
 | |
| 	((__le32 *)bf)[j++] = cpu_to_le32(wb);
 | |
| 
 | |
| 	/*
 | |
| 	 * number of space to pad to obtain 64o minus 8(size) minus 4 (final 1)
 | |
| 	 * I take the operations from other MD5/SHA1 implementations
 | |
| 	 */
 | |
| 
 | |
| 	/* last block size */
 | |
| 	fill = 64 - (op->byte_count % 64);
 | |
| 	min_fill = 2 * sizeof(u32) + (nbw ? 0 : sizeof(u32));
 | |
| 
 | |
| 	/* if we can't fill all data, jump to the next 64 block */
 | |
| 	if (fill < min_fill)
 | |
| 		fill += 64;
 | |
| 
 | |
| 	j += (fill - min_fill) / sizeof(u32);
 | |
| 
 | |
| 	/* write the length of data */
 | |
| 	if (op->mode == SS_OP_SHA1) {
 | |
| 		__be64 *bits = (__be64 *)&bf[j];
 | |
| 		*bits = cpu_to_be64(op->byte_count << 3);
 | |
| 		j += 2;
 | |
| 	} else {
 | |
| 		__le64 *bits = (__le64 *)&bf[j];
 | |
| 		*bits = cpu_to_le64(op->byte_count << 3);
 | |
| 		j += 2;
 | |
| 	}
 | |
| 	writesl(ss->base + SS_RXFIFO, bf, j);
 | |
| 
 | |
| 	/* Tell the SS to stop the hashing */
 | |
| 	writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait for SS to finish the hash.
 | |
| 	 * The timeout could happen only in case of bad overclocking
 | |
| 	 * or driver bug.
 | |
| 	 */
 | |
| 	i = 0;
 | |
| 	do {
 | |
| 		v = readl(ss->base + SS_CTL);
 | |
| 		i++;
 | |
| 	} while (i < SS_TIMEOUT && (v & SS_DATA_END));
 | |
| 	if (unlikely(i >= SS_TIMEOUT)) {
 | |
| 		dev_err_ratelimited(ss->dev,
 | |
| 				    "ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
 | |
| 				    i, SS_TIMEOUT, v, areq->nbytes);
 | |
| 		err = -EIO;
 | |
| 		goto release_ss;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The datasheet isn't very clear about when to retrieve the digest. The
 | |
| 	 * bit SS_DATA_END is cleared when the engine has processed the data and
 | |
| 	 * when the digest is computed *but* it doesn't mean the digest is
 | |
| 	 * available in the digest registers. Hence the delay to be sure we can
 | |
| 	 * read it.
 | |
| 	 */
 | |
| 	ndelay(1);
 | |
| 
 | |
| 	/* Get the hash from the device */
 | |
| 	if (op->mode == SS_OP_SHA1) {
 | |
| 		for (i = 0; i < 5; i++) {
 | |
| 			v = readl(ss->base + SS_MD0 + i * 4);
 | |
| 			if (ss->variant->sha1_in_be)
 | |
| 				put_unaligned_le32(v, areq->result + i * 4);
 | |
| 			else
 | |
| 				put_unaligned_be32(v, areq->result + i * 4);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i = 0; i < 4; i++) {
 | |
| 			v = readl(ss->base + SS_MD0 + i * 4);
 | |
| 			put_unaligned_le32(v, areq->result + i * 4);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| release_ss:
 | |
| 	writel(0, ss->base + SS_CTL);
 | |
| 	spin_unlock_bh(&ss->slock);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int sun4i_hash_final(struct ahash_request *areq)
 | |
| {
 | |
| 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
 | |
| 
 | |
| 	op->flags = SS_HASH_FINAL;
 | |
| 	return sun4i_hash(areq);
 | |
| }
 | |
| 
 | |
| int sun4i_hash_update(struct ahash_request *areq)
 | |
| {
 | |
| 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
 | |
| 
 | |
| 	op->flags = SS_HASH_UPDATE;
 | |
| 	return sun4i_hash(areq);
 | |
| }
 | |
| 
 | |
| /* sun4i_hash_finup: finalize hashing operation after an update */
 | |
| int sun4i_hash_finup(struct ahash_request *areq)
 | |
| {
 | |
| 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
 | |
| 
 | |
| 	op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
 | |
| 	return sun4i_hash(areq);
 | |
| }
 | |
| 
 | |
| /* combo of init/update/final functions */
 | |
| int sun4i_hash_digest(struct ahash_request *areq)
 | |
| {
 | |
| 	int err;
 | |
| 	struct sun4i_req_ctx *op = ahash_request_ctx(areq);
 | |
| 
 | |
| 	err = sun4i_hash_init(areq);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
 | |
| 	return sun4i_hash(areq);
 | |
| }
 |