735 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			735 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * This file is part of UBIFS.
 | |
|  *
 | |
|  * Copyright (C) 2006-2008 Nokia Corporation.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms of the GNU General Public License version 2 as published by
 | |
|  * the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful, but WITHOUT
 | |
|  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | |
|  * more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License along with
 | |
|  * this program; if not, write to the Free Software Foundation, Inc., 51
 | |
|  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  *
 | |
|  * Authors: Adrian Hunter
 | |
|  *          Artem Bityutskiy (Битюцкий Артём)
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This file implements functions that manage the running of the commit process.
 | |
|  * Each affected module has its own functions to accomplish their part in the
 | |
|  * commit and those functions are called here.
 | |
|  *
 | |
|  * The commit is the process whereby all updates to the index and LEB properties
 | |
|  * are written out together and the journal becomes empty. This keeps the
 | |
|  * file system consistent - at all times the state can be recreated by reading
 | |
|  * the index and LEB properties and then replaying the journal.
 | |
|  *
 | |
|  * The commit is split into two parts named "commit start" and "commit end".
 | |
|  * During commit start, the commit process has exclusive access to the journal
 | |
|  * by holding the commit semaphore down for writing. As few I/O operations as
 | |
|  * possible are performed during commit start, instead the nodes that are to be
 | |
|  * written are merely identified. During commit end, the commit semaphore is no
 | |
|  * longer held and the journal is again in operation, allowing users to continue
 | |
|  * to use the file system while the bulk of the commit I/O is performed. The
 | |
|  * purpose of this two-step approach is to prevent the commit from causing any
 | |
|  * latency blips. Note that in any case, the commit does not prevent lookups
 | |
|  * (as permitted by the TNC mutex), or access to VFS data structures e.g. page
 | |
|  * cache.
 | |
|  */
 | |
| 
 | |
| #include <linux/freezer.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/slab.h>
 | |
| #include "ubifs.h"
 | |
| 
 | |
| /*
 | |
|  * nothing_to_commit - check if there is nothing to commit.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * This is a helper function which checks if there is anything to commit. It is
 | |
|  * used as an optimization to avoid starting the commit if it is not really
 | |
|  * necessary. Indeed, the commit operation always assumes flash I/O (e.g.,
 | |
|  * writing the commit start node to the log), and it is better to avoid doing
 | |
|  * this unnecessarily. E.g., 'ubifs_sync_fs()' runs the commit, but if there is
 | |
|  * nothing to commit, it is more optimal to avoid any flash I/O.
 | |
|  *
 | |
|  * This function has to be called with @c->commit_sem locked for writing -
 | |
|  * this function does not take LPT/TNC locks because the @c->commit_sem
 | |
|  * guarantees that we have exclusive access to the TNC and LPT data structures.
 | |
|  *
 | |
|  * This function returns %1 if there is nothing to commit and %0 otherwise.
 | |
|  */
 | |
| static int nothing_to_commit(struct ubifs_info *c)
 | |
| {
 | |
| 	/*
 | |
| 	 * During mounting or remounting from R/O mode to R/W mode we may
 | |
| 	 * commit for various recovery-related reasons.
 | |
| 	 */
 | |
| 	if (c->mounting || c->remounting_rw)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the root TNC node is dirty, we definitely have something to
 | |
| 	 * commit.
 | |
| 	 */
 | |
| 	if (c->zroot.znode && ubifs_zn_dirty(c->zroot.znode))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Even though the TNC is clean, the LPT tree may have dirty nodes. For
 | |
| 	 * example, this may happen if the budgeting subsystem invoked GC to
 | |
| 	 * make some free space, and the GC found an LEB with only dirty and
 | |
| 	 * free space. In this case GC would just change the lprops of this
 | |
| 	 * LEB (by turning all space into free space) and unmap it.
 | |
| 	 */
 | |
| 	if (c->nroot && test_bit(DIRTY_CNODE, &c->nroot->flags))
 | |
| 		return 0;
 | |
| 
 | |
| 	ubifs_assert(atomic_long_read(&c->dirty_zn_cnt) == 0);
 | |
| 	ubifs_assert(c->dirty_pn_cnt == 0);
 | |
| 	ubifs_assert(c->dirty_nn_cnt == 0);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * do_commit - commit the journal.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * This function implements UBIFS commit. It has to be called with commit lock
 | |
|  * locked. Returns zero in case of success and a negative error code in case of
 | |
|  * failure.
 | |
|  */
 | |
| static int do_commit(struct ubifs_info *c)
 | |
| {
 | |
| 	int err, new_ltail_lnum, old_ltail_lnum, i;
 | |
| 	struct ubifs_zbranch zroot;
 | |
| 	struct ubifs_lp_stats lst;
 | |
| 
 | |
| 	dbg_cmt("start");
 | |
| 	ubifs_assert(!c->ro_media && !c->ro_mount);
 | |
| 
 | |
| 	if (c->ro_error) {
 | |
| 		err = -EROFS;
 | |
| 		goto out_up;
 | |
| 	}
 | |
| 
 | |
| 	if (nothing_to_commit(c)) {
 | |
| 		up_write(&c->commit_sem);
 | |
| 		err = 0;
 | |
| 		goto out_cancel;
 | |
| 	}
 | |
| 
 | |
| 	/* Sync all write buffers (necessary for recovery) */
 | |
| 	for (i = 0; i < c->jhead_cnt; i++) {
 | |
| 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
 | |
| 		if (err)
 | |
| 			goto out_up;
 | |
| 	}
 | |
| 
 | |
| 	c->cmt_no += 1;
 | |
| 	err = ubifs_gc_start_commit(c);
 | |
| 	if (err)
 | |
| 		goto out_up;
 | |
| 	err = dbg_check_lprops(c);
 | |
| 	if (err)
 | |
| 		goto out_up;
 | |
| 	err = ubifs_log_start_commit(c, &new_ltail_lnum);
 | |
| 	if (err)
 | |
| 		goto out_up;
 | |
| 	err = ubifs_tnc_start_commit(c, &zroot);
 | |
| 	if (err)
 | |
| 		goto out_up;
 | |
| 	err = ubifs_lpt_start_commit(c);
 | |
| 	if (err)
 | |
| 		goto out_up;
 | |
| 	err = ubifs_orphan_start_commit(c);
 | |
| 	if (err)
 | |
| 		goto out_up;
 | |
| 
 | |
| 	ubifs_get_lp_stats(c, &lst);
 | |
| 
 | |
| 	up_write(&c->commit_sem);
 | |
| 
 | |
| 	err = ubifs_tnc_end_commit(c);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 	err = ubifs_lpt_end_commit(c);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 	err = ubifs_orphan_end_commit(c);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 	err = dbg_check_old_index(c, &zroot);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	c->mst_node->cmt_no      = cpu_to_le64(c->cmt_no);
 | |
| 	c->mst_node->log_lnum    = cpu_to_le32(new_ltail_lnum);
 | |
| 	c->mst_node->root_lnum   = cpu_to_le32(zroot.lnum);
 | |
| 	c->mst_node->root_offs   = cpu_to_le32(zroot.offs);
 | |
| 	c->mst_node->root_len    = cpu_to_le32(zroot.len);
 | |
| 	c->mst_node->ihead_lnum  = cpu_to_le32(c->ihead_lnum);
 | |
| 	c->mst_node->ihead_offs  = cpu_to_le32(c->ihead_offs);
 | |
| 	c->mst_node->index_size  = cpu_to_le64(c->bi.old_idx_sz);
 | |
| 	c->mst_node->lpt_lnum    = cpu_to_le32(c->lpt_lnum);
 | |
| 	c->mst_node->lpt_offs    = cpu_to_le32(c->lpt_offs);
 | |
| 	c->mst_node->nhead_lnum  = cpu_to_le32(c->nhead_lnum);
 | |
| 	c->mst_node->nhead_offs  = cpu_to_le32(c->nhead_offs);
 | |
| 	c->mst_node->ltab_lnum   = cpu_to_le32(c->ltab_lnum);
 | |
| 	c->mst_node->ltab_offs   = cpu_to_le32(c->ltab_offs);
 | |
| 	c->mst_node->lsave_lnum  = cpu_to_le32(c->lsave_lnum);
 | |
| 	c->mst_node->lsave_offs  = cpu_to_le32(c->lsave_offs);
 | |
| 	c->mst_node->lscan_lnum  = cpu_to_le32(c->lscan_lnum);
 | |
| 	c->mst_node->empty_lebs  = cpu_to_le32(lst.empty_lebs);
 | |
| 	c->mst_node->idx_lebs    = cpu_to_le32(lst.idx_lebs);
 | |
| 	c->mst_node->total_free  = cpu_to_le64(lst.total_free);
 | |
| 	c->mst_node->total_dirty = cpu_to_le64(lst.total_dirty);
 | |
| 	c->mst_node->total_used  = cpu_to_le64(lst.total_used);
 | |
| 	c->mst_node->total_dead  = cpu_to_le64(lst.total_dead);
 | |
| 	c->mst_node->total_dark  = cpu_to_le64(lst.total_dark);
 | |
| 	if (c->no_orphs)
 | |
| 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
 | |
| 	else
 | |
| 		c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_NO_ORPHS);
 | |
| 
 | |
| 	old_ltail_lnum = c->ltail_lnum;
 | |
| 	err = ubifs_log_end_commit(c, new_ltail_lnum);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	err = ubifs_log_post_commit(c, old_ltail_lnum);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 	err = ubifs_gc_end_commit(c);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 	err = ubifs_lpt_post_commit(c);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| out_cancel:
 | |
| 	spin_lock(&c->cs_lock);
 | |
| 	c->cmt_state = COMMIT_RESTING;
 | |
| 	wake_up(&c->cmt_wq);
 | |
| 	dbg_cmt("commit end");
 | |
| 	spin_unlock(&c->cs_lock);
 | |
| 	return 0;
 | |
| 
 | |
| out_up:
 | |
| 	up_write(&c->commit_sem);
 | |
| out:
 | |
| 	ubifs_err(c, "commit failed, error %d", err);
 | |
| 	spin_lock(&c->cs_lock);
 | |
| 	c->cmt_state = COMMIT_BROKEN;
 | |
| 	wake_up(&c->cmt_wq);
 | |
| 	spin_unlock(&c->cs_lock);
 | |
| 	ubifs_ro_mode(c, err);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * run_bg_commit - run background commit if it is needed.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * This function runs background commit if it is needed. Returns zero in case
 | |
|  * of success and a negative error code in case of failure.
 | |
|  */
 | |
| static int run_bg_commit(struct ubifs_info *c)
 | |
| {
 | |
| 	spin_lock(&c->cs_lock);
 | |
| 	/*
 | |
| 	 * Run background commit only if background commit was requested or if
 | |
| 	 * commit is required.
 | |
| 	 */
 | |
| 	if (c->cmt_state != COMMIT_BACKGROUND &&
 | |
| 	    c->cmt_state != COMMIT_REQUIRED)
 | |
| 		goto out;
 | |
| 	spin_unlock(&c->cs_lock);
 | |
| 
 | |
| 	down_write(&c->commit_sem);
 | |
| 	spin_lock(&c->cs_lock);
 | |
| 	if (c->cmt_state == COMMIT_REQUIRED)
 | |
| 		c->cmt_state = COMMIT_RUNNING_REQUIRED;
 | |
| 	else if (c->cmt_state == COMMIT_BACKGROUND)
 | |
| 		c->cmt_state = COMMIT_RUNNING_BACKGROUND;
 | |
| 	else
 | |
| 		goto out_cmt_unlock;
 | |
| 	spin_unlock(&c->cs_lock);
 | |
| 
 | |
| 	return do_commit(c);
 | |
| 
 | |
| out_cmt_unlock:
 | |
| 	up_write(&c->commit_sem);
 | |
| out:
 | |
| 	spin_unlock(&c->cs_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_bg_thread - UBIFS background thread function.
 | |
|  * @info: points to the file-system description object
 | |
|  *
 | |
|  * This function implements various file-system background activities:
 | |
|  * o when a write-buffer timer expires it synchronizes the appropriate
 | |
|  *   write-buffer;
 | |
|  * o when the journal is about to be full, it starts in-advance commit.
 | |
|  *
 | |
|  * Note, other stuff like background garbage collection may be added here in
 | |
|  * future.
 | |
|  */
 | |
| int ubifs_bg_thread(void *info)
 | |
| {
 | |
| 	int err;
 | |
| 	struct ubifs_info *c = info;
 | |
| 
 | |
| 	ubifs_msg(c, "background thread \"%s\" started, PID %d",
 | |
| 		  c->bgt_name, current->pid);
 | |
| 	set_freezable();
 | |
| 
 | |
| 	while (1) {
 | |
| 		if (kthread_should_stop())
 | |
| 			break;
 | |
| 
 | |
| 		if (try_to_freeze())
 | |
| 			continue;
 | |
| 
 | |
| 		set_current_state(TASK_INTERRUPTIBLE);
 | |
| 		/* Check if there is something to do */
 | |
| 		if (!c->need_bgt) {
 | |
| 			/*
 | |
| 			 * Nothing prevents us from going sleep now and
 | |
| 			 * be never woken up and block the task which
 | |
| 			 * could wait in 'kthread_stop()' forever.
 | |
| 			 */
 | |
| 			if (kthread_should_stop())
 | |
| 				break;
 | |
| 			schedule();
 | |
| 			continue;
 | |
| 		} else
 | |
| 			__set_current_state(TASK_RUNNING);
 | |
| 
 | |
| 		c->need_bgt = 0;
 | |
| 		err = ubifs_bg_wbufs_sync(c);
 | |
| 		if (err)
 | |
| 			ubifs_ro_mode(c, err);
 | |
| 
 | |
| 		run_bg_commit(c);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	ubifs_msg(c, "background thread \"%s\" stops", c->bgt_name);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_commit_required - set commit state to "required".
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * This function is called if a commit is required but cannot be done from the
 | |
|  * calling function, so it is just flagged instead.
 | |
|  */
 | |
| void ubifs_commit_required(struct ubifs_info *c)
 | |
| {
 | |
| 	spin_lock(&c->cs_lock);
 | |
| 	switch (c->cmt_state) {
 | |
| 	case COMMIT_RESTING:
 | |
| 	case COMMIT_BACKGROUND:
 | |
| 		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
 | |
| 			dbg_cstate(COMMIT_REQUIRED));
 | |
| 		c->cmt_state = COMMIT_REQUIRED;
 | |
| 		break;
 | |
| 	case COMMIT_RUNNING_BACKGROUND:
 | |
| 		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
 | |
| 			dbg_cstate(COMMIT_RUNNING_REQUIRED));
 | |
| 		c->cmt_state = COMMIT_RUNNING_REQUIRED;
 | |
| 		break;
 | |
| 	case COMMIT_REQUIRED:
 | |
| 	case COMMIT_RUNNING_REQUIRED:
 | |
| 	case COMMIT_BROKEN:
 | |
| 		break;
 | |
| 	}
 | |
| 	spin_unlock(&c->cs_lock);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_request_bg_commit - notify the background thread to do a commit.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * This function is called if the journal is full enough to make a commit
 | |
|  * worthwhile, so background thread is kicked to start it.
 | |
|  */
 | |
| void ubifs_request_bg_commit(struct ubifs_info *c)
 | |
| {
 | |
| 	spin_lock(&c->cs_lock);
 | |
| 	if (c->cmt_state == COMMIT_RESTING) {
 | |
| 		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
 | |
| 			dbg_cstate(COMMIT_BACKGROUND));
 | |
| 		c->cmt_state = COMMIT_BACKGROUND;
 | |
| 		spin_unlock(&c->cs_lock);
 | |
| 		ubifs_wake_up_bgt(c);
 | |
| 	} else
 | |
| 		spin_unlock(&c->cs_lock);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * wait_for_commit - wait for commit.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * This function sleeps until the commit operation is no longer running.
 | |
|  */
 | |
| static int wait_for_commit(struct ubifs_info *c)
 | |
| {
 | |
| 	dbg_cmt("pid %d goes sleep", current->pid);
 | |
| 
 | |
| 	/*
 | |
| 	 * The following sleeps if the condition is false, and will be woken
 | |
| 	 * when the commit ends. It is possible, although very unlikely, that we
 | |
| 	 * will wake up and see the subsequent commit running, rather than the
 | |
| 	 * one we were waiting for, and go back to sleep.  However, we will be
 | |
| 	 * woken again, so there is no danger of sleeping forever.
 | |
| 	 */
 | |
| 	wait_event(c->cmt_wq, c->cmt_state != COMMIT_RUNNING_BACKGROUND &&
 | |
| 			      c->cmt_state != COMMIT_RUNNING_REQUIRED);
 | |
| 	dbg_cmt("commit finished, pid %d woke up", current->pid);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_run_commit - run or wait for commit.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * This function runs commit and returns zero in case of success and a negative
 | |
|  * error code in case of failure.
 | |
|  */
 | |
| int ubifs_run_commit(struct ubifs_info *c)
 | |
| {
 | |
| 	int err = 0;
 | |
| 
 | |
| 	spin_lock(&c->cs_lock);
 | |
| 	if (c->cmt_state == COMMIT_BROKEN) {
 | |
| 		err = -EROFS;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
 | |
| 		/*
 | |
| 		 * We set the commit state to 'running required' to indicate
 | |
| 		 * that we want it to complete as quickly as possible.
 | |
| 		 */
 | |
| 		c->cmt_state = COMMIT_RUNNING_REQUIRED;
 | |
| 
 | |
| 	if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
 | |
| 		spin_unlock(&c->cs_lock);
 | |
| 		return wait_for_commit(c);
 | |
| 	}
 | |
| 	spin_unlock(&c->cs_lock);
 | |
| 
 | |
| 	/* Ok, the commit is indeed needed */
 | |
| 
 | |
| 	down_write(&c->commit_sem);
 | |
| 	spin_lock(&c->cs_lock);
 | |
| 	/*
 | |
| 	 * Since we unlocked 'c->cs_lock', the state may have changed, so
 | |
| 	 * re-check it.
 | |
| 	 */
 | |
| 	if (c->cmt_state == COMMIT_BROKEN) {
 | |
| 		err = -EROFS;
 | |
| 		goto out_cmt_unlock;
 | |
| 	}
 | |
| 
 | |
| 	if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
 | |
| 		c->cmt_state = COMMIT_RUNNING_REQUIRED;
 | |
| 
 | |
| 	if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
 | |
| 		up_write(&c->commit_sem);
 | |
| 		spin_unlock(&c->cs_lock);
 | |
| 		return wait_for_commit(c);
 | |
| 	}
 | |
| 	c->cmt_state = COMMIT_RUNNING_REQUIRED;
 | |
| 	spin_unlock(&c->cs_lock);
 | |
| 
 | |
| 	err = do_commit(c);
 | |
| 	return err;
 | |
| 
 | |
| out_cmt_unlock:
 | |
| 	up_write(&c->commit_sem);
 | |
| out:
 | |
| 	spin_unlock(&c->cs_lock);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_gc_should_commit - determine if it is time for GC to run commit.
 | |
|  * @c: UBIFS file-system description object
 | |
|  *
 | |
|  * This function is called by garbage collection to determine if commit should
 | |
|  * be run. If commit state is @COMMIT_BACKGROUND, which means that the journal
 | |
|  * is full enough to start commit, this function returns true. It is not
 | |
|  * absolutely necessary to commit yet, but it feels like this should be better
 | |
|  * then to keep doing GC. This function returns %1 if GC has to initiate commit
 | |
|  * and %0 if not.
 | |
|  */
 | |
| int ubifs_gc_should_commit(struct ubifs_info *c)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	spin_lock(&c->cs_lock);
 | |
| 	if (c->cmt_state == COMMIT_BACKGROUND) {
 | |
| 		dbg_cmt("commit required now");
 | |
| 		c->cmt_state = COMMIT_REQUIRED;
 | |
| 	} else
 | |
| 		dbg_cmt("commit not requested");
 | |
| 	if (c->cmt_state == COMMIT_REQUIRED)
 | |
| 		ret = 1;
 | |
| 	spin_unlock(&c->cs_lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Everything below is related to debugging.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * struct idx_node - hold index nodes during index tree traversal.
 | |
|  * @list: list
 | |
|  * @iip: index in parent (slot number of this indexing node in the parent
 | |
|  *       indexing node)
 | |
|  * @upper_key: all keys in this indexing node have to be less or equivalent to
 | |
|  *             this key
 | |
|  * @idx: index node (8-byte aligned because all node structures must be 8-byte
 | |
|  *       aligned)
 | |
|  */
 | |
| struct idx_node {
 | |
| 	struct list_head list;
 | |
| 	int iip;
 | |
| 	union ubifs_key upper_key;
 | |
| 	struct ubifs_idx_node idx __aligned(8);
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * dbg_old_index_check_init - get information for the next old index check.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @zroot: root of the index
 | |
|  *
 | |
|  * This function records information about the index that will be needed for the
 | |
|  * next old index check i.e. 'dbg_check_old_index()'.
 | |
|  *
 | |
|  * This function returns %0 on success and a negative error code on failure.
 | |
|  */
 | |
| int dbg_old_index_check_init(struct ubifs_info *c, struct ubifs_zbranch *zroot)
 | |
| {
 | |
| 	struct ubifs_idx_node *idx;
 | |
| 	int lnum, offs, len, err = 0;
 | |
| 	struct ubifs_debug_info *d = c->dbg;
 | |
| 
 | |
| 	d->old_zroot = *zroot;
 | |
| 	lnum = d->old_zroot.lnum;
 | |
| 	offs = d->old_zroot.offs;
 | |
| 	len = d->old_zroot.len;
 | |
| 
 | |
| 	idx = kmalloc(c->max_idx_node_sz, GFP_NOFS);
 | |
| 	if (!idx)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	d->old_zroot_level = le16_to_cpu(idx->level);
 | |
| 	d->old_zroot_sqnum = le64_to_cpu(idx->ch.sqnum);
 | |
| out:
 | |
| 	kfree(idx);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dbg_check_old_index - check the old copy of the index.
 | |
|  * @c: UBIFS file-system description object
 | |
|  * @zroot: root of the new index
 | |
|  *
 | |
|  * In order to be able to recover from an unclean unmount, a complete copy of
 | |
|  * the index must exist on flash. This is the "old" index. The commit process
 | |
|  * must write the "new" index to flash without overwriting or destroying any
 | |
|  * part of the old index. This function is run at commit end in order to check
 | |
|  * that the old index does indeed exist completely intact.
 | |
|  *
 | |
|  * This function returns %0 on success and a negative error code on failure.
 | |
|  */
 | |
| int dbg_check_old_index(struct ubifs_info *c, struct ubifs_zbranch *zroot)
 | |
| {
 | |
| 	int lnum, offs, len, err = 0, uninitialized_var(last_level), child_cnt;
 | |
| 	int first = 1, iip;
 | |
| 	struct ubifs_debug_info *d = c->dbg;
 | |
| 	union ubifs_key uninitialized_var(lower_key), upper_key, l_key, u_key;
 | |
| 	unsigned long long uninitialized_var(last_sqnum);
 | |
| 	struct ubifs_idx_node *idx;
 | |
| 	struct list_head list;
 | |
| 	struct idx_node *i;
 | |
| 	size_t sz;
 | |
| 
 | |
| 	if (!dbg_is_chk_index(c))
 | |
| 		return 0;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&list);
 | |
| 
 | |
| 	sz = sizeof(struct idx_node) + ubifs_idx_node_sz(c, c->fanout) -
 | |
| 	     UBIFS_IDX_NODE_SZ;
 | |
| 
 | |
| 	/* Start at the old zroot */
 | |
| 	lnum = d->old_zroot.lnum;
 | |
| 	offs = d->old_zroot.offs;
 | |
| 	len = d->old_zroot.len;
 | |
| 	iip = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Traverse the index tree preorder depth-first i.e. do a node and then
 | |
| 	 * its subtrees from left to right.
 | |
| 	 */
 | |
| 	while (1) {
 | |
| 		struct ubifs_branch *br;
 | |
| 
 | |
| 		/* Get the next index node */
 | |
| 		i = kmalloc(sz, GFP_NOFS);
 | |
| 		if (!i) {
 | |
| 			err = -ENOMEM;
 | |
| 			goto out_free;
 | |
| 		}
 | |
| 		i->iip = iip;
 | |
| 		/* Keep the index nodes on our path in a linked list */
 | |
| 		list_add_tail(&i->list, &list);
 | |
| 		/* Read the index node */
 | |
| 		idx = &i->idx;
 | |
| 		err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
 | |
| 		if (err)
 | |
| 			goto out_free;
 | |
| 		/* Validate index node */
 | |
| 		child_cnt = le16_to_cpu(idx->child_cnt);
 | |
| 		if (child_cnt < 1 || child_cnt > c->fanout) {
 | |
| 			err = 1;
 | |
| 			goto out_dump;
 | |
| 		}
 | |
| 		if (first) {
 | |
| 			first = 0;
 | |
| 			/* Check root level and sqnum */
 | |
| 			if (le16_to_cpu(idx->level) != d->old_zroot_level) {
 | |
| 				err = 2;
 | |
| 				goto out_dump;
 | |
| 			}
 | |
| 			if (le64_to_cpu(idx->ch.sqnum) != d->old_zroot_sqnum) {
 | |
| 				err = 3;
 | |
| 				goto out_dump;
 | |
| 			}
 | |
| 			/* Set last values as though root had a parent */
 | |
| 			last_level = le16_to_cpu(idx->level) + 1;
 | |
| 			last_sqnum = le64_to_cpu(idx->ch.sqnum) + 1;
 | |
| 			key_read(c, ubifs_idx_key(c, idx), &lower_key);
 | |
| 			highest_ino_key(c, &upper_key, INUM_WATERMARK);
 | |
| 		}
 | |
| 		key_copy(c, &upper_key, &i->upper_key);
 | |
| 		if (le16_to_cpu(idx->level) != last_level - 1) {
 | |
| 			err = 3;
 | |
| 			goto out_dump;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * The index is always written bottom up hence a child's sqnum
 | |
| 		 * is always less than the parents.
 | |
| 		 */
 | |
| 		if (le64_to_cpu(idx->ch.sqnum) >= last_sqnum) {
 | |
| 			err = 4;
 | |
| 			goto out_dump;
 | |
| 		}
 | |
| 		/* Check key range */
 | |
| 		key_read(c, ubifs_idx_key(c, idx), &l_key);
 | |
| 		br = ubifs_idx_branch(c, idx, child_cnt - 1);
 | |
| 		key_read(c, &br->key, &u_key);
 | |
| 		if (keys_cmp(c, &lower_key, &l_key) > 0) {
 | |
| 			err = 5;
 | |
| 			goto out_dump;
 | |
| 		}
 | |
| 		if (keys_cmp(c, &upper_key, &u_key) < 0) {
 | |
| 			err = 6;
 | |
| 			goto out_dump;
 | |
| 		}
 | |
| 		if (keys_cmp(c, &upper_key, &u_key) == 0)
 | |
| 			if (!is_hash_key(c, &u_key)) {
 | |
| 				err = 7;
 | |
| 				goto out_dump;
 | |
| 			}
 | |
| 		/* Go to next index node */
 | |
| 		if (le16_to_cpu(idx->level) == 0) {
 | |
| 			/* At the bottom, so go up until can go right */
 | |
| 			while (1) {
 | |
| 				/* Drop the bottom of the list */
 | |
| 				list_del(&i->list);
 | |
| 				kfree(i);
 | |
| 				/* No more list means we are done */
 | |
| 				if (list_empty(&list))
 | |
| 					goto out;
 | |
| 				/* Look at the new bottom */
 | |
| 				i = list_entry(list.prev, struct idx_node,
 | |
| 					       list);
 | |
| 				idx = &i->idx;
 | |
| 				/* Can we go right */
 | |
| 				if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
 | |
| 					iip = iip + 1;
 | |
| 					break;
 | |
| 				} else
 | |
| 					/* Nope, so go up again */
 | |
| 					iip = i->iip;
 | |
| 			}
 | |
| 		} else
 | |
| 			/* Go down left */
 | |
| 			iip = 0;
 | |
| 		/*
 | |
| 		 * We have the parent in 'idx' and now we set up for reading the
 | |
| 		 * child pointed to by slot 'iip'.
 | |
| 		 */
 | |
| 		last_level = le16_to_cpu(idx->level);
 | |
| 		last_sqnum = le64_to_cpu(idx->ch.sqnum);
 | |
| 		br = ubifs_idx_branch(c, idx, iip);
 | |
| 		lnum = le32_to_cpu(br->lnum);
 | |
| 		offs = le32_to_cpu(br->offs);
 | |
| 		len = le32_to_cpu(br->len);
 | |
| 		key_read(c, &br->key, &lower_key);
 | |
| 		if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
 | |
| 			br = ubifs_idx_branch(c, idx, iip + 1);
 | |
| 			key_read(c, &br->key, &upper_key);
 | |
| 		} else
 | |
| 			key_copy(c, &i->upper_key, &upper_key);
 | |
| 	}
 | |
| out:
 | |
| 	err = dbg_old_index_check_init(c, zroot);
 | |
| 	if (err)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_dump:
 | |
| 	ubifs_err(c, "dumping index node (iip=%d)", i->iip);
 | |
| 	ubifs_dump_node(c, idx);
 | |
| 	list_del(&i->list);
 | |
| 	kfree(i);
 | |
| 	if (!list_empty(&list)) {
 | |
| 		i = list_entry(list.prev, struct idx_node, list);
 | |
| 		ubifs_err(c, "dumping parent index node");
 | |
| 		ubifs_dump_node(c, &i->idx);
 | |
| 	}
 | |
| out_free:
 | |
| 	while (!list_empty(&list)) {
 | |
| 		i = list_entry(list.next, struct idx_node, list);
 | |
| 		list_del(&i->list);
 | |
| 		kfree(i);
 | |
| 	}
 | |
| 	ubifs_err(c, "failed, error %d", err);
 | |
| 	if (err > 0)
 | |
| 		err = -EINVAL;
 | |
| 	return err;
 | |
| }
 |