911 lines
26 KiB
C
911 lines
26 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* KVM dirty page logging test
|
|
*
|
|
* Copyright (C) 2018, Red Hat, Inc.
|
|
*/
|
|
|
|
#define _GNU_SOURCE /* for program_invocation_name */
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <pthread.h>
|
|
#include <semaphore.h>
|
|
#include <sys/types.h>
|
|
#include <signal.h>
|
|
#include <errno.h>
|
|
#include <linux/bitmap.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/atomic.h>
|
|
#include <asm/barrier.h>
|
|
|
|
#include "kvm_util.h"
|
|
#include "test_util.h"
|
|
#include "guest_modes.h"
|
|
#include "processor.h"
|
|
|
|
#define DIRTY_MEM_BITS 30 /* 1G */
|
|
#define PAGE_SHIFT_4K 12
|
|
|
|
/* The memory slot index to track dirty pages */
|
|
#define TEST_MEM_SLOT_INDEX 1
|
|
|
|
/* Default guest test virtual memory offset */
|
|
#define DEFAULT_GUEST_TEST_MEM 0xc0000000
|
|
|
|
/* How many host loops to run (one KVM_GET_DIRTY_LOG for each loop) */
|
|
#define TEST_HOST_LOOP_N 32UL
|
|
|
|
/* Interval for each host loop (ms) */
|
|
#define TEST_HOST_LOOP_INTERVAL 10UL
|
|
|
|
/*
|
|
* Ensure the vCPU is able to perform a reasonable number of writes in each
|
|
* iteration to provide a lower bound on coverage.
|
|
*/
|
|
#define TEST_MIN_WRITES_PER_ITERATION 0x100
|
|
|
|
/* Dirty bitmaps are always little endian, so we need to swap on big endian */
|
|
#if defined(__s390x__)
|
|
# define BITOP_LE_SWIZZLE ((BITS_PER_LONG-1) & ~0x7)
|
|
# define test_bit_le(nr, addr) \
|
|
test_bit((nr) ^ BITOP_LE_SWIZZLE, addr)
|
|
# define __set_bit_le(nr, addr) \
|
|
__set_bit((nr) ^ BITOP_LE_SWIZZLE, addr)
|
|
# define __clear_bit_le(nr, addr) \
|
|
__clear_bit((nr) ^ BITOP_LE_SWIZZLE, addr)
|
|
# define __test_and_set_bit_le(nr, addr) \
|
|
__test_and_set_bit((nr) ^ BITOP_LE_SWIZZLE, addr)
|
|
# define __test_and_clear_bit_le(nr, addr) \
|
|
__test_and_clear_bit((nr) ^ BITOP_LE_SWIZZLE, addr)
|
|
#else
|
|
# define test_bit_le test_bit
|
|
# define __set_bit_le __set_bit
|
|
# define __clear_bit_le __clear_bit
|
|
# define __test_and_set_bit_le __test_and_set_bit
|
|
# define __test_and_clear_bit_le __test_and_clear_bit
|
|
#endif
|
|
|
|
#define TEST_DIRTY_RING_COUNT 65536
|
|
|
|
#define SIG_IPI SIGUSR1
|
|
|
|
/*
|
|
* Guest/Host shared variables. Ensure addr_gva2hva() and/or
|
|
* sync_global_to/from_guest() are used when accessing from
|
|
* the host. READ/WRITE_ONCE() should also be used with anything
|
|
* that may change.
|
|
*/
|
|
static uint64_t host_page_size;
|
|
static uint64_t guest_page_size;
|
|
static uint64_t guest_num_pages;
|
|
static uint64_t iteration;
|
|
static uint64_t nr_writes;
|
|
static bool vcpu_stop;
|
|
|
|
/*
|
|
* Guest physical memory offset of the testing memory slot.
|
|
* This will be set to the topmost valid physical address minus
|
|
* the test memory size.
|
|
*/
|
|
static uint64_t guest_test_phys_mem;
|
|
|
|
/*
|
|
* Guest virtual memory offset of the testing memory slot.
|
|
* Must not conflict with identity mapped test code.
|
|
*/
|
|
static uint64_t guest_test_virt_mem = DEFAULT_GUEST_TEST_MEM;
|
|
|
|
/*
|
|
* Continuously write to the first 8 bytes of a random pages within
|
|
* the testing memory region.
|
|
*/
|
|
static void guest_code(void)
|
|
{
|
|
uint64_t addr;
|
|
|
|
#ifdef __s390x__
|
|
uint64_t i;
|
|
|
|
/*
|
|
* On s390x, all pages of a 1M segment are initially marked as dirty
|
|
* when a page of the segment is written to for the very first time.
|
|
* To compensate this specialty in this test, we need to touch all
|
|
* pages during the first iteration.
|
|
*/
|
|
for (i = 0; i < guest_num_pages; i++) {
|
|
addr = guest_test_virt_mem + i * guest_page_size;
|
|
vcpu_arch_put_guest(*(uint64_t *)addr, READ_ONCE(iteration));
|
|
nr_writes++;
|
|
}
|
|
#endif
|
|
|
|
while (true) {
|
|
while (!READ_ONCE(vcpu_stop)) {
|
|
addr = guest_test_virt_mem;
|
|
addr += (guest_random_u64(&guest_rng) % guest_num_pages)
|
|
* guest_page_size;
|
|
addr = align_down(addr, host_page_size);
|
|
|
|
vcpu_arch_put_guest(*(uint64_t *)addr, READ_ONCE(iteration));
|
|
nr_writes++;
|
|
}
|
|
|
|
GUEST_SYNC(1);
|
|
}
|
|
}
|
|
|
|
/* Host variables */
|
|
static bool host_quit;
|
|
|
|
/* Points to the test VM memory region on which we track dirty logs */
|
|
static void *host_test_mem;
|
|
static uint64_t host_num_pages;
|
|
|
|
/* For statistics only */
|
|
static uint64_t host_dirty_count;
|
|
static uint64_t host_clear_count;
|
|
|
|
/* Whether dirty ring reset is requested, or finished */
|
|
static sem_t sem_vcpu_stop;
|
|
static sem_t sem_vcpu_cont;
|
|
|
|
/*
|
|
* This is updated by the vcpu thread to tell the host whether it's a
|
|
* ring-full event. It should only be read until a sem_wait() of
|
|
* sem_vcpu_stop and before vcpu continues to run.
|
|
*/
|
|
static bool dirty_ring_vcpu_ring_full;
|
|
|
|
/*
|
|
* This is only used for verifying the dirty pages. Dirty ring has a very
|
|
* tricky case when the ring just got full, kvm will do userspace exit due to
|
|
* ring full. When that happens, the very last PFN is set but actually the
|
|
* data is not changed (the guest WRITE is not really applied yet), because
|
|
* we found that the dirty ring is full, refused to continue the vcpu, and
|
|
* recorded the dirty gfn with the old contents.
|
|
*
|
|
* For this specific case, it's safe to skip checking this pfn for this
|
|
* bit, because it's a redundant bit, and when the write happens later the bit
|
|
* will be set again. We use this variable to always keep track of the latest
|
|
* dirty gfn we've collected, so that if a mismatch of data found later in the
|
|
* verifying process, we let it pass.
|
|
*/
|
|
static uint64_t dirty_ring_last_page = -1ULL;
|
|
|
|
/*
|
|
* In addition to the above, it is possible (especially if this
|
|
* test is run nested) for the above scenario to repeat multiple times:
|
|
*
|
|
* The following can happen:
|
|
*
|
|
* - L1 vCPU: Memory write is logged to PML but not committed.
|
|
*
|
|
* - L1 test thread: Ignores the write because its last dirty ring entry
|
|
* Resets the dirty ring which:
|
|
* - Resets the A/D bits in EPT
|
|
* - Issues tlb flush (invept), which is intercepted by L0
|
|
*
|
|
* - L0: frees the whole nested ept mmu root as the response to invept,
|
|
* and thus ensures that when memory write is retried, it will fault again
|
|
*
|
|
* - L1 vCPU: Same memory write is logged to the PML but not committed again.
|
|
*
|
|
* - L1 test thread: Ignores the write because its last dirty ring entry (again)
|
|
* Resets the dirty ring which:
|
|
* - Resets the A/D bits in EPT (again)
|
|
* - Issues tlb flush (again) which is intercepted by L0
|
|
*
|
|
* ...
|
|
*
|
|
* N times
|
|
*
|
|
* - L1 vCPU: Memory write is logged in the PML and then committed.
|
|
* Lots of other memory writes are logged and committed.
|
|
* ...
|
|
*
|
|
* - L1 test thread: Sees the memory write along with other memory writes
|
|
* in the dirty ring, and since the write is usually not
|
|
* the last entry in the dirty-ring and has a very outdated
|
|
* iteration, the test fails.
|
|
*
|
|
*
|
|
* Note that this is only possible when the write was the last log entry
|
|
* write during iteration N-1, thus remember last iteration last log entry
|
|
* and also don't fail when it is reported in the next iteration, together with
|
|
* an outdated iteration count.
|
|
*/
|
|
static uint64_t dirty_ring_prev_iteration_last_page;
|
|
|
|
enum log_mode_t {
|
|
/* Only use KVM_GET_DIRTY_LOG for logging */
|
|
LOG_MODE_DIRTY_LOG = 0,
|
|
|
|
/* Use both KVM_[GET|CLEAR]_DIRTY_LOG for logging */
|
|
LOG_MODE_CLEAR_LOG = 1,
|
|
|
|
/* Use dirty ring for logging */
|
|
LOG_MODE_DIRTY_RING = 2,
|
|
|
|
LOG_MODE_NUM,
|
|
|
|
/* Run all supported modes */
|
|
LOG_MODE_ALL = LOG_MODE_NUM,
|
|
};
|
|
|
|
/* Mode of logging to test. Default is to run all supported modes */
|
|
static enum log_mode_t host_log_mode_option = LOG_MODE_ALL;
|
|
/* Logging mode for current run */
|
|
static enum log_mode_t host_log_mode;
|
|
static pthread_t vcpu_thread;
|
|
static uint32_t test_dirty_ring_count = TEST_DIRTY_RING_COUNT;
|
|
|
|
static bool clear_log_supported(void)
|
|
{
|
|
return kvm_has_cap(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
|
|
}
|
|
|
|
static void clear_log_create_vm_done(struct kvm_vm *vm)
|
|
{
|
|
u64 manual_caps;
|
|
|
|
manual_caps = kvm_check_cap(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
|
|
TEST_ASSERT(manual_caps, "MANUAL_CAPS is zero!");
|
|
manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
|
|
KVM_DIRTY_LOG_INITIALLY_SET);
|
|
vm_enable_cap(vm, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, manual_caps);
|
|
}
|
|
|
|
static void dirty_log_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot,
|
|
void *bitmap, uint32_t num_pages,
|
|
uint32_t *unused)
|
|
{
|
|
kvm_vm_get_dirty_log(vcpu->vm, slot, bitmap);
|
|
}
|
|
|
|
static void clear_log_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot,
|
|
void *bitmap, uint32_t num_pages,
|
|
uint32_t *unused)
|
|
{
|
|
kvm_vm_get_dirty_log(vcpu->vm, slot, bitmap);
|
|
kvm_vm_clear_dirty_log(vcpu->vm, slot, bitmap, 0, num_pages);
|
|
}
|
|
|
|
/* Should only be called after a GUEST_SYNC */
|
|
static void vcpu_handle_sync_stop(void)
|
|
{
|
|
if (READ_ONCE(vcpu_stop)) {
|
|
sem_post(&sem_vcpu_stop);
|
|
sem_wait(&sem_vcpu_cont);
|
|
}
|
|
}
|
|
|
|
static void default_after_vcpu_run(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_run *run = vcpu->run;
|
|
|
|
TEST_ASSERT(get_ucall(vcpu, NULL) == UCALL_SYNC,
|
|
"Invalid guest sync status: exit_reason=%s",
|
|
exit_reason_str(run->exit_reason));
|
|
|
|
vcpu_handle_sync_stop();
|
|
}
|
|
|
|
static bool dirty_ring_supported(void)
|
|
{
|
|
return (kvm_has_cap(KVM_CAP_DIRTY_LOG_RING) ||
|
|
kvm_has_cap(KVM_CAP_DIRTY_LOG_RING_ACQ_REL));
|
|
}
|
|
|
|
static void dirty_ring_create_vm_done(struct kvm_vm *vm)
|
|
{
|
|
uint64_t pages;
|
|
uint32_t limit;
|
|
|
|
/*
|
|
* We rely on vcpu exit due to full dirty ring state. Adjust
|
|
* the ring buffer size to ensure we're able to reach the
|
|
* full dirty ring state.
|
|
*/
|
|
pages = (1ul << (DIRTY_MEM_BITS - vm->page_shift)) + 3;
|
|
pages = vm_adjust_num_guest_pages(vm->mode, pages);
|
|
if (vm->page_size < getpagesize())
|
|
pages = vm_num_host_pages(vm->mode, pages);
|
|
|
|
limit = 1 << (31 - __builtin_clz(pages));
|
|
test_dirty_ring_count = 1 << (31 - __builtin_clz(test_dirty_ring_count));
|
|
test_dirty_ring_count = min(limit, test_dirty_ring_count);
|
|
pr_info("dirty ring count: 0x%x\n", test_dirty_ring_count);
|
|
|
|
/*
|
|
* Switch to dirty ring mode after VM creation but before any
|
|
* of the vcpu creation.
|
|
*/
|
|
vm_enable_dirty_ring(vm, test_dirty_ring_count *
|
|
sizeof(struct kvm_dirty_gfn));
|
|
}
|
|
|
|
static inline bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn)
|
|
{
|
|
return smp_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY;
|
|
}
|
|
|
|
static inline void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn)
|
|
{
|
|
smp_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET);
|
|
}
|
|
|
|
static uint32_t dirty_ring_collect_one(struct kvm_dirty_gfn *dirty_gfns,
|
|
int slot, void *bitmap,
|
|
uint32_t num_pages, uint32_t *fetch_index)
|
|
{
|
|
struct kvm_dirty_gfn *cur;
|
|
uint32_t count = 0;
|
|
|
|
while (true) {
|
|
cur = &dirty_gfns[*fetch_index % test_dirty_ring_count];
|
|
if (!dirty_gfn_is_dirtied(cur))
|
|
break;
|
|
TEST_ASSERT(cur->slot == slot, "Slot number didn't match: "
|
|
"%u != %u", cur->slot, slot);
|
|
TEST_ASSERT(cur->offset < num_pages, "Offset overflow: "
|
|
"0x%llx >= 0x%x", cur->offset, num_pages);
|
|
__set_bit_le(cur->offset, bitmap);
|
|
dirty_ring_last_page = cur->offset;
|
|
dirty_gfn_set_collected(cur);
|
|
(*fetch_index)++;
|
|
count++;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static void dirty_ring_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot,
|
|
void *bitmap, uint32_t num_pages,
|
|
uint32_t *ring_buf_idx)
|
|
{
|
|
uint32_t count, cleared;
|
|
|
|
/* Only have one vcpu */
|
|
count = dirty_ring_collect_one(vcpu_map_dirty_ring(vcpu),
|
|
slot, bitmap, num_pages,
|
|
ring_buf_idx);
|
|
|
|
cleared = kvm_vm_reset_dirty_ring(vcpu->vm);
|
|
|
|
/*
|
|
* Cleared pages should be the same as collected, as KVM is supposed to
|
|
* clear only the entries that have been harvested.
|
|
*/
|
|
TEST_ASSERT(cleared == count, "Reset dirty pages (%u) mismatch "
|
|
"with collected (%u)", cleared, count);
|
|
}
|
|
|
|
static void dirty_ring_after_vcpu_run(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct kvm_run *run = vcpu->run;
|
|
|
|
/* A ucall-sync or ring-full event is allowed */
|
|
if (get_ucall(vcpu, NULL) == UCALL_SYNC) {
|
|
vcpu_handle_sync_stop();
|
|
} else if (run->exit_reason == KVM_EXIT_DIRTY_RING_FULL) {
|
|
WRITE_ONCE(dirty_ring_vcpu_ring_full, true);
|
|
vcpu_handle_sync_stop();
|
|
} else {
|
|
TEST_ASSERT(false, "Invalid guest sync status: "
|
|
"exit_reason=%s",
|
|
exit_reason_str(run->exit_reason));
|
|
}
|
|
}
|
|
|
|
struct log_mode {
|
|
const char *name;
|
|
/* Return true if this mode is supported, otherwise false */
|
|
bool (*supported)(void);
|
|
/* Hook when the vm creation is done (before vcpu creation) */
|
|
void (*create_vm_done)(struct kvm_vm *vm);
|
|
/* Hook to collect the dirty pages into the bitmap provided */
|
|
void (*collect_dirty_pages) (struct kvm_vcpu *vcpu, int slot,
|
|
void *bitmap, uint32_t num_pages,
|
|
uint32_t *ring_buf_idx);
|
|
/* Hook to call when after each vcpu run */
|
|
void (*after_vcpu_run)(struct kvm_vcpu *vcpu);
|
|
} log_modes[LOG_MODE_NUM] = {
|
|
{
|
|
.name = "dirty-log",
|
|
.collect_dirty_pages = dirty_log_collect_dirty_pages,
|
|
.after_vcpu_run = default_after_vcpu_run,
|
|
},
|
|
{
|
|
.name = "clear-log",
|
|
.supported = clear_log_supported,
|
|
.create_vm_done = clear_log_create_vm_done,
|
|
.collect_dirty_pages = clear_log_collect_dirty_pages,
|
|
.after_vcpu_run = default_after_vcpu_run,
|
|
},
|
|
{
|
|
.name = "dirty-ring",
|
|
.supported = dirty_ring_supported,
|
|
.create_vm_done = dirty_ring_create_vm_done,
|
|
.collect_dirty_pages = dirty_ring_collect_dirty_pages,
|
|
.after_vcpu_run = dirty_ring_after_vcpu_run,
|
|
},
|
|
};
|
|
|
|
static void log_modes_dump(void)
|
|
{
|
|
int i;
|
|
|
|
printf("all");
|
|
for (i = 0; i < LOG_MODE_NUM; i++)
|
|
printf(", %s", log_modes[i].name);
|
|
printf("\n");
|
|
}
|
|
|
|
static bool log_mode_supported(void)
|
|
{
|
|
struct log_mode *mode = &log_modes[host_log_mode];
|
|
|
|
if (mode->supported)
|
|
return mode->supported();
|
|
|
|
return true;
|
|
}
|
|
|
|
static void log_mode_create_vm_done(struct kvm_vm *vm)
|
|
{
|
|
struct log_mode *mode = &log_modes[host_log_mode];
|
|
|
|
if (mode->create_vm_done)
|
|
mode->create_vm_done(vm);
|
|
}
|
|
|
|
static void log_mode_collect_dirty_pages(struct kvm_vcpu *vcpu, int slot,
|
|
void *bitmap, uint32_t num_pages,
|
|
uint32_t *ring_buf_idx)
|
|
{
|
|
struct log_mode *mode = &log_modes[host_log_mode];
|
|
|
|
TEST_ASSERT(mode->collect_dirty_pages != NULL,
|
|
"collect_dirty_pages() is required for any log mode!");
|
|
mode->collect_dirty_pages(vcpu, slot, bitmap, num_pages, ring_buf_idx);
|
|
}
|
|
|
|
static void log_mode_after_vcpu_run(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct log_mode *mode = &log_modes[host_log_mode];
|
|
|
|
if (mode->after_vcpu_run)
|
|
mode->after_vcpu_run(vcpu);
|
|
}
|
|
|
|
static void *vcpu_worker(void *data)
|
|
{
|
|
struct kvm_vcpu *vcpu = data;
|
|
|
|
sem_wait(&sem_vcpu_cont);
|
|
|
|
while (!READ_ONCE(host_quit)) {
|
|
/* Let the guest dirty the random pages */
|
|
vcpu_run(vcpu);
|
|
log_mode_after_vcpu_run(vcpu);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void vm_dirty_log_verify(enum vm_guest_mode mode, unsigned long **bmap)
|
|
{
|
|
uint64_t page, nr_dirty_pages = 0, nr_clean_pages = 0;
|
|
uint64_t step = vm_num_host_pages(mode, 1);
|
|
|
|
for (page = 0; page < host_num_pages; page += step) {
|
|
uint64_t val = *(uint64_t *)(host_test_mem + page * host_page_size);
|
|
bool bmap0_dirty = __test_and_clear_bit_le(page, bmap[0]);
|
|
|
|
/*
|
|
* Ensure both bitmaps are cleared, as a page can be written
|
|
* multiple times per iteration, i.e. can show up in both
|
|
* bitmaps, and the dirty ring is additive, i.e. doesn't purge
|
|
* bitmap entries from previous collections.
|
|
*/
|
|
if (__test_and_clear_bit_le(page, bmap[1]) || bmap0_dirty) {
|
|
nr_dirty_pages++;
|
|
|
|
/*
|
|
* If the page is dirty, the value written to memory
|
|
* should be the current iteration number.
|
|
*/
|
|
if (val == iteration)
|
|
continue;
|
|
|
|
if (host_log_mode == LOG_MODE_DIRTY_RING) {
|
|
/*
|
|
* The last page in the ring from previous
|
|
* iteration can be written with the value
|
|
* from the previous iteration, as the value to
|
|
* be written may be cached in a CPU register.
|
|
*/
|
|
if (page == dirty_ring_prev_iteration_last_page &&
|
|
val == iteration - 1)
|
|
continue;
|
|
|
|
/*
|
|
* Any value from a previous iteration is legal
|
|
* for the last entry, as the write may not yet
|
|
* have retired, i.e. the page may hold whatever
|
|
* it had before this iteration started.
|
|
*/
|
|
if (page == dirty_ring_last_page &&
|
|
val < iteration)
|
|
continue;
|
|
} else if (!val && iteration == 1 && bmap0_dirty) {
|
|
/*
|
|
* When testing get+clear, the dirty bitmap
|
|
* starts with all bits set, and so the first
|
|
* iteration can observe a "dirty" page that
|
|
* was never written, but only in the first
|
|
* bitmap (collecting the bitmap also clears
|
|
* all dirty pages).
|
|
*/
|
|
continue;
|
|
}
|
|
|
|
TEST_FAIL("Dirty page %lu value (%lu) != iteration (%lu) "
|
|
"(last = %lu, prev_last = %lu)",
|
|
page, val, iteration, dirty_ring_last_page,
|
|
dirty_ring_prev_iteration_last_page);
|
|
} else {
|
|
nr_clean_pages++;
|
|
/*
|
|
* If cleared, the value written can be any
|
|
* value smaller than the iteration number.
|
|
*/
|
|
TEST_ASSERT(val < iteration,
|
|
"Clear page %lu value (%lu) >= iteration (%lu) "
|
|
"(last = %lu, prev_last = %lu)",
|
|
page, val, iteration, dirty_ring_last_page,
|
|
dirty_ring_prev_iteration_last_page);
|
|
}
|
|
}
|
|
|
|
pr_info("Iteration %2ld: dirty: %-6lu clean: %-6lu writes: %-6lu\n",
|
|
iteration, nr_dirty_pages, nr_clean_pages, nr_writes);
|
|
|
|
host_dirty_count += nr_dirty_pages;
|
|
host_clear_count += nr_clean_pages;
|
|
}
|
|
|
|
static struct kvm_vm *create_vm(enum vm_guest_mode mode, struct kvm_vcpu **vcpu,
|
|
uint64_t extra_mem_pages, void *guest_code)
|
|
{
|
|
struct kvm_vm *vm;
|
|
|
|
pr_info("Testing guest mode: %s\n", vm_guest_mode_string(mode));
|
|
|
|
vm = __vm_create(VM_SHAPE(mode), 1, extra_mem_pages);
|
|
|
|
log_mode_create_vm_done(vm);
|
|
*vcpu = vm_vcpu_add(vm, 0, guest_code);
|
|
return vm;
|
|
}
|
|
|
|
struct test_params {
|
|
unsigned long iterations;
|
|
unsigned long interval;
|
|
uint64_t phys_offset;
|
|
};
|
|
|
|
static void run_test(enum vm_guest_mode mode, void *arg)
|
|
{
|
|
struct test_params *p = arg;
|
|
struct kvm_vcpu *vcpu;
|
|
struct kvm_vm *vm;
|
|
unsigned long *bmap[2];
|
|
uint32_t ring_buf_idx = 0;
|
|
int sem_val;
|
|
|
|
if (!log_mode_supported()) {
|
|
print_skip("Log mode '%s' not supported",
|
|
log_modes[host_log_mode].name);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We reserve page table for 2 times of extra dirty mem which
|
|
* will definitely cover the original (1G+) test range. Here
|
|
* we do the calculation with 4K page size which is the
|
|
* smallest so the page number will be enough for all archs
|
|
* (e.g., 64K page size guest will need even less memory for
|
|
* page tables).
|
|
*/
|
|
vm = create_vm(mode, &vcpu,
|
|
2ul << (DIRTY_MEM_BITS - PAGE_SHIFT_4K), guest_code);
|
|
|
|
guest_page_size = vm->page_size;
|
|
/*
|
|
* A little more than 1G of guest page sized pages. Cover the
|
|
* case where the size is not aligned to 64 pages.
|
|
*/
|
|
guest_num_pages = (1ul << (DIRTY_MEM_BITS - vm->page_shift)) + 3;
|
|
guest_num_pages = vm_adjust_num_guest_pages(mode, guest_num_pages);
|
|
|
|
host_page_size = getpagesize();
|
|
host_num_pages = vm_num_host_pages(mode, guest_num_pages);
|
|
|
|
if (!p->phys_offset) {
|
|
guest_test_phys_mem = (vm->max_gfn - guest_num_pages) *
|
|
guest_page_size;
|
|
guest_test_phys_mem = align_down(guest_test_phys_mem, host_page_size);
|
|
} else {
|
|
guest_test_phys_mem = p->phys_offset;
|
|
}
|
|
|
|
#ifdef __s390x__
|
|
/* Align to 1M (segment size) */
|
|
guest_test_phys_mem = align_down(guest_test_phys_mem, 1 << 20);
|
|
|
|
/*
|
|
* The workaround in guest_code() to write all pages prior to the first
|
|
* iteration isn't compatible with the dirty ring, as the dirty ring
|
|
* support relies on the vCPU to actually stop when vcpu_stop is set so
|
|
* that the vCPU doesn't hang waiting for the dirty ring to be emptied.
|
|
*/
|
|
TEST_ASSERT(host_log_mode != LOG_MODE_DIRTY_RING,
|
|
"Test needs to be updated to support s390 dirty ring");
|
|
#endif
|
|
|
|
pr_info("guest physical test memory offset: 0x%lx\n", guest_test_phys_mem);
|
|
|
|
bmap[0] = bitmap_zalloc(host_num_pages);
|
|
bmap[1] = bitmap_zalloc(host_num_pages);
|
|
|
|
/* Add an extra memory slot for testing dirty logging */
|
|
vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
|
|
guest_test_phys_mem,
|
|
TEST_MEM_SLOT_INDEX,
|
|
guest_num_pages,
|
|
KVM_MEM_LOG_DIRTY_PAGES);
|
|
|
|
/* Do mapping for the dirty track memory slot */
|
|
virt_map(vm, guest_test_virt_mem, guest_test_phys_mem, guest_num_pages);
|
|
|
|
/* Cache the HVA pointer of the region */
|
|
host_test_mem = addr_gpa2hva(vm, (vm_paddr_t)guest_test_phys_mem);
|
|
|
|
/* Export the shared variables to the guest */
|
|
sync_global_to_guest(vm, host_page_size);
|
|
sync_global_to_guest(vm, guest_page_size);
|
|
sync_global_to_guest(vm, guest_test_virt_mem);
|
|
sync_global_to_guest(vm, guest_num_pages);
|
|
|
|
host_dirty_count = 0;
|
|
host_clear_count = 0;
|
|
WRITE_ONCE(host_quit, false);
|
|
|
|
/*
|
|
* Ensure the previous iteration didn't leave a dangling semaphore, i.e.
|
|
* that the main task and vCPU worker were synchronized and completed
|
|
* verification of all iterations.
|
|
*/
|
|
sem_getvalue(&sem_vcpu_stop, &sem_val);
|
|
TEST_ASSERT_EQ(sem_val, 0);
|
|
sem_getvalue(&sem_vcpu_cont, &sem_val);
|
|
TEST_ASSERT_EQ(sem_val, 0);
|
|
|
|
TEST_ASSERT_EQ(vcpu_stop, false);
|
|
|
|
pthread_create(&vcpu_thread, NULL, vcpu_worker, vcpu);
|
|
|
|
for (iteration = 1; iteration <= p->iterations; iteration++) {
|
|
unsigned long i;
|
|
|
|
sync_global_to_guest(vm, iteration);
|
|
|
|
WRITE_ONCE(nr_writes, 0);
|
|
sync_global_to_guest(vm, nr_writes);
|
|
|
|
dirty_ring_prev_iteration_last_page = dirty_ring_last_page;
|
|
WRITE_ONCE(dirty_ring_vcpu_ring_full, false);
|
|
|
|
sem_post(&sem_vcpu_cont);
|
|
|
|
/*
|
|
* Let the vCPU run beyond the configured interval until it has
|
|
* performed the minimum number of writes. This verifies the
|
|
* guest is making forward progress, e.g. isn't stuck because
|
|
* of a KVM bug, and puts a firm floor on test coverage.
|
|
*/
|
|
for (i = 0; i < p->interval || nr_writes < TEST_MIN_WRITES_PER_ITERATION; i++) {
|
|
/*
|
|
* Sleep in 1ms chunks to keep the interval math simple
|
|
* and so that the test doesn't run too far beyond the
|
|
* specified interval.
|
|
*/
|
|
usleep(1000);
|
|
|
|
sync_global_from_guest(vm, nr_writes);
|
|
|
|
/*
|
|
* Reap dirty pages while the guest is running so that
|
|
* dirty ring full events are resolved, i.e. so that a
|
|
* larger interval doesn't always end up with a vCPU
|
|
* that's effectively blocked. Collecting while the
|
|
* guest is running also verifies KVM doesn't lose any
|
|
* state.
|
|
*
|
|
* For bitmap modes, KVM overwrites the entire bitmap,
|
|
* i.e. collecting the bitmaps is destructive. Collect
|
|
* the bitmap only on the first pass, otherwise this
|
|
* test would lose track of dirty pages.
|
|
*/
|
|
if (i && host_log_mode != LOG_MODE_DIRTY_RING)
|
|
continue;
|
|
|
|
/*
|
|
* For the dirty ring, empty the ring on subsequent
|
|
* passes only if the ring was filled at least once,
|
|
* to verify KVM's handling of a full ring (emptying
|
|
* the ring on every pass would make it unlikely the
|
|
* vCPU would ever fill the fing).
|
|
*/
|
|
if (i && !READ_ONCE(dirty_ring_vcpu_ring_full))
|
|
continue;
|
|
|
|
log_mode_collect_dirty_pages(vcpu, TEST_MEM_SLOT_INDEX,
|
|
bmap[0], host_num_pages,
|
|
&ring_buf_idx);
|
|
}
|
|
|
|
/*
|
|
* Stop the vCPU prior to collecting and verifying the dirty
|
|
* log. If the vCPU is allowed to run during collection, then
|
|
* pages that are written during this iteration may be missed,
|
|
* i.e. collected in the next iteration. And if the vCPU is
|
|
* writing memory during verification, pages that this thread
|
|
* sees as clean may be written with this iteration's value.
|
|
*/
|
|
WRITE_ONCE(vcpu_stop, true);
|
|
sync_global_to_guest(vm, vcpu_stop);
|
|
sem_wait(&sem_vcpu_stop);
|
|
|
|
/*
|
|
* Clear vcpu_stop after the vCPU thread has acknowledge the
|
|
* stop request and is waiting, i.e. is definitely not running!
|
|
*/
|
|
WRITE_ONCE(vcpu_stop, false);
|
|
sync_global_to_guest(vm, vcpu_stop);
|
|
|
|
/*
|
|
* Sync the number of writes performed before verification, the
|
|
* info will be printed along with the dirty/clean page counts.
|
|
*/
|
|
sync_global_from_guest(vm, nr_writes);
|
|
|
|
/*
|
|
* NOTE: for dirty ring, it's possible that we didn't stop at
|
|
* GUEST_SYNC but instead we stopped because ring is full;
|
|
* that's okay too because ring full means we're only missing
|
|
* the flush of the last page, and since we handle the last
|
|
* page specially verification will succeed anyway.
|
|
*/
|
|
log_mode_collect_dirty_pages(vcpu, TEST_MEM_SLOT_INDEX,
|
|
bmap[1], host_num_pages,
|
|
&ring_buf_idx);
|
|
vm_dirty_log_verify(mode, bmap);
|
|
}
|
|
|
|
WRITE_ONCE(host_quit, true);
|
|
sem_post(&sem_vcpu_cont);
|
|
|
|
pthread_join(vcpu_thread, NULL);
|
|
|
|
pr_info("Total bits checked: dirty (%lu), clear (%lu)\n",
|
|
host_dirty_count, host_clear_count);
|
|
|
|
free(bmap[0]);
|
|
free(bmap[1]);
|
|
kvm_vm_free(vm);
|
|
}
|
|
|
|
static void help(char *name)
|
|
{
|
|
puts("");
|
|
printf("usage: %s [-h] [-i iterations] [-I interval] "
|
|
"[-p offset] [-m mode]\n", name);
|
|
puts("");
|
|
printf(" -c: hint to dirty ring size, in number of entries\n");
|
|
printf(" (only useful for dirty-ring test; default: %"PRIu32")\n",
|
|
TEST_DIRTY_RING_COUNT);
|
|
printf(" -i: specify iteration counts (default: %"PRIu64")\n",
|
|
TEST_HOST_LOOP_N);
|
|
printf(" -I: specify interval in ms (default: %"PRIu64" ms)\n",
|
|
TEST_HOST_LOOP_INTERVAL);
|
|
printf(" -p: specify guest physical test memory offset\n"
|
|
" Warning: a low offset can conflict with the loaded test code.\n");
|
|
printf(" -M: specify the host logging mode "
|
|
"(default: run all log modes). Supported modes: \n\t");
|
|
log_modes_dump();
|
|
guest_modes_help();
|
|
puts("");
|
|
exit(0);
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
struct test_params p = {
|
|
.iterations = TEST_HOST_LOOP_N,
|
|
.interval = TEST_HOST_LOOP_INTERVAL,
|
|
};
|
|
int opt, i;
|
|
|
|
sem_init(&sem_vcpu_stop, 0, 0);
|
|
sem_init(&sem_vcpu_cont, 0, 0);
|
|
|
|
guest_modes_append_default();
|
|
|
|
while ((opt = getopt(argc, argv, "c:hi:I:p:m:M:")) != -1) {
|
|
switch (opt) {
|
|
case 'c':
|
|
test_dirty_ring_count = strtol(optarg, NULL, 10);
|
|
break;
|
|
case 'i':
|
|
p.iterations = strtol(optarg, NULL, 10);
|
|
break;
|
|
case 'I':
|
|
p.interval = strtol(optarg, NULL, 10);
|
|
break;
|
|
case 'p':
|
|
p.phys_offset = strtoull(optarg, NULL, 0);
|
|
break;
|
|
case 'm':
|
|
guest_modes_cmdline(optarg);
|
|
break;
|
|
case 'M':
|
|
if (!strcmp(optarg, "all")) {
|
|
host_log_mode_option = LOG_MODE_ALL;
|
|
break;
|
|
}
|
|
for (i = 0; i < LOG_MODE_NUM; i++) {
|
|
if (!strcmp(optarg, log_modes[i].name)) {
|
|
pr_info("Setting log mode to: '%s'\n",
|
|
optarg);
|
|
host_log_mode_option = i;
|
|
break;
|
|
}
|
|
}
|
|
if (i == LOG_MODE_NUM) {
|
|
printf("Log mode '%s' invalid. Please choose "
|
|
"from: ", optarg);
|
|
log_modes_dump();
|
|
exit(1);
|
|
}
|
|
break;
|
|
case 'h':
|
|
default:
|
|
help(argv[0]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
TEST_ASSERT(p.iterations > 0, "Iterations must be greater than zero");
|
|
TEST_ASSERT(p.interval > 0, "Interval must be greater than zero");
|
|
|
|
pr_info("Test iterations: %"PRIu64", interval: %"PRIu64" (ms)\n",
|
|
p.iterations, p.interval);
|
|
|
|
if (host_log_mode_option == LOG_MODE_ALL) {
|
|
/* Run each log mode */
|
|
for (i = 0; i < LOG_MODE_NUM; i++) {
|
|
pr_info("Testing Log Mode '%s'\n", log_modes[i].name);
|
|
host_log_mode = i;
|
|
for_each_guest_mode(run_test, &p);
|
|
}
|
|
} else {
|
|
host_log_mode = host_log_mode_option;
|
|
for_each_guest_mode(run_test, &p);
|
|
}
|
|
|
|
return 0;
|
|
}
|