kernel/drivers/gpu/drm/nouveau/nvkm/subdev/gsp/r535.c

3403 lines
91 KiB
C

/*
* Copyright 2023 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include "priv.h"
#include <core/pci.h>
#include <subdev/timer.h>
#include <subdev/vfn.h>
#include <engine/fifo/chan.h>
#include <engine/sec2.h>
#include <nvif/log.h>
#include <nvfw/fw.h>
#include <nvrm/nvtypes.h>
#include <nvrm/535.113.01/common/sdk/nvidia/inc/class/cl0000.h>
#include <nvrm/535.113.01/common/sdk/nvidia/inc/class/cl0005.h>
#include <nvrm/535.113.01/common/sdk/nvidia/inc/class/cl0080.h>
#include <nvrm/535.113.01/common/sdk/nvidia/inc/class/cl2080.h>
#include <nvrm/535.113.01/common/sdk/nvidia/inc/ctrl/ctrl2080/ctrl2080event.h>
#include <nvrm/535.113.01/common/sdk/nvidia/inc/ctrl/ctrl2080/ctrl2080gpu.h>
#include <nvrm/535.113.01/common/sdk/nvidia/inc/ctrl/ctrl2080/ctrl2080internal.h>
#include <nvrm/535.113.01/common/sdk/nvidia/inc/nvos.h>
#include <nvrm/535.113.01/common/shared/msgq/inc/msgq/msgq_priv.h>
#include <nvrm/535.113.01/common/uproc/os/common/include/libos_init_args.h>
#include <nvrm/535.113.01/nvidia/arch/nvalloc/common/inc/gsp/gsp_fw_sr_meta.h>
#include <nvrm/535.113.01/nvidia/arch/nvalloc/common/inc/gsp/gsp_fw_wpr_meta.h>
#include <nvrm/535.113.01/nvidia/arch/nvalloc/common/inc/rmRiscvUcode.h>
#include <nvrm/535.113.01/nvidia/arch/nvalloc/common/inc/rmgspseq.h>
#include <nvrm/535.113.01/nvidia/generated/g_allclasses.h>
#include <nvrm/535.113.01/nvidia/generated/g_os_nvoc.h>
#include <nvrm/535.113.01/nvidia/generated/g_rpc-structures.h>
#include <nvrm/535.113.01/nvidia/inc/kernel/gpu/gsp/gsp_fw_heap.h>
#include <nvrm/535.113.01/nvidia/inc/kernel/gpu/gsp/gsp_init_args.h>
#include <nvrm/535.113.01/nvidia/inc/kernel/gpu/gsp/gsp_static_config.h>
#include <nvrm/535.113.01/nvidia/inc/kernel/gpu/intr/engine_idx.h>
#include <nvrm/535.113.01/nvidia/kernel/inc/vgpu/rpc_global_enums.h>
#include <linux/acpi.h>
#include <linux/ctype.h>
#include <linux/parser.h>
extern struct dentry *nouveau_debugfs_root;
#define GSP_MSG_MIN_SIZE GSP_PAGE_SIZE
#define GSP_MSG_MAX_SIZE (GSP_MSG_MIN_SIZE * 16)
/**
* DOC: GSP message queue element
*
* https://github.com/NVIDIA/open-gpu-kernel-modules/blob/535/src/nvidia/inc/kernel/gpu/gsp/message_queue_priv.h
*
* The GSP command queue and status queue are message queues for the
* communication between software and GSP. The software submits the GSP
* RPC via the GSP command queue, GSP writes the status of the submitted
* RPC in the status queue.
*
* A GSP message queue element consists of three parts:
*
* - message element header (struct r535_gsp_msg), which mostly maintains
* the metadata for queuing the element.
*
* - RPC message header (struct nvfw_gsp_rpc), which maintains the info
* of the RPC. E.g., the RPC function number.
*
* - The payload, where the RPC message stays. E.g. the params of a
* specific RPC function. Some RPC functions also have their headers
* in the payload. E.g. rm_alloc, rm_control.
*
* The memory layout of a GSP message element can be illustrated below::
*
* +------------------------+
* | Message Element Header |
* | (r535_gsp_msg) |
* | |
* | (r535_gsp_msg.data) |
* | | |
* |----------V-------------|
* | GSP RPC Header |
* | (nvfw_gsp_rpc) |
* | |
* | (nvfw_gsp_rpc.data) |
* | | |
* |----------V-------------|
* | Payload |
* | |
* | header(optional) |
* | params |
* +------------------------+
*
* The max size of a message queue element is 16 pages (including the
* headers). When a GSP message to be sent is larger than 16 pages, the
* message should be split into multiple elements and sent accordingly.
*
* In the bunch of the split elements, the first element has the expected
* function number, while the rest of the elements are sent with the
* function number NV_VGPU_MSG_FUNCTION_CONTINUATION_RECORD.
*
* GSP consumes the elements from the cmdq and always writes the result
* back to the msgq. The result is also formed as split elements.
*
* Terminology:
*
* - gsp_msg(msg): GSP message element (element header + GSP RPC header +
* payload)
* - gsp_rpc(rpc): GSP RPC (RPC header + payload)
* - gsp_rpc_buf: buffer for (GSP RPC header + payload)
* - gsp_rpc_len: size of (GSP RPC header + payload)
* - params_size: size of params in the payload
* - payload_size: size of (header if exists + params) in the payload
*/
struct r535_gsp_msg {
u8 auth_tag_buffer[16];
u8 aad_buffer[16];
u32 checksum;
u32 sequence;
u32 elem_count;
u32 pad;
u8 data[];
};
struct nvfw_gsp_rpc {
u32 header_version;
u32 signature;
u32 length;
u32 function;
u32 rpc_result;
u32 rpc_result_private;
u32 sequence;
union {
u32 spare;
u32 cpuRmGfid;
};
u8 data[];
};
#define GSP_MSG_HDR_SIZE offsetof(struct r535_gsp_msg, data)
#define to_gsp_hdr(p, header) \
container_of((void *)p, typeof(*header), data)
#define to_payload_hdr(p, header) \
container_of((void *)p, typeof(*header), params)
static int
r535_rpc_status_to_errno(uint32_t rpc_status)
{
switch (rpc_status) {
case 0x55: /* NV_ERR_NOT_READY */
case 0x66: /* NV_ERR_TIMEOUT_RETRY */
return -EBUSY;
case 0x51: /* NV_ERR_NO_MEMORY */
return -ENOMEM;
default:
return -EINVAL;
}
}
static int
r535_gsp_msgq_wait(struct nvkm_gsp *gsp, u32 gsp_rpc_len, int *ptime)
{
u32 size, rptr = *gsp->msgq.rptr;
int used;
size = DIV_ROUND_UP(GSP_MSG_HDR_SIZE + gsp_rpc_len,
GSP_PAGE_SIZE);
if (WARN_ON(!size || size >= gsp->msgq.cnt))
return -EINVAL;
do {
u32 wptr = *gsp->msgq.wptr;
used = wptr + gsp->msgq.cnt - rptr;
if (used >= gsp->msgq.cnt)
used -= gsp->msgq.cnt;
if (used >= size)
break;
usleep_range(1, 2);
} while (--(*ptime));
if (WARN_ON(!*ptime))
return -ETIMEDOUT;
return used;
}
static struct r535_gsp_msg *
r535_gsp_msgq_get_entry(struct nvkm_gsp *gsp)
{
u32 rptr = *gsp->msgq.rptr;
/* Skip the first page, which is the message queue info */
return (void *)((u8 *)gsp->shm.msgq.ptr + GSP_PAGE_SIZE +
rptr * GSP_PAGE_SIZE);
}
/**
* DOC: Receive a GSP message queue element
*
* Receiving a GSP message queue element from the message queue consists of
* the following steps:
*
* - Peek the element from the queue: r535_gsp_msgq_peek().
* Peek the first page of the element to determine the total size of the
* message before allocating the proper memory.
*
* - Allocate memory for the message.
* Once the total size of the message is determined from the GSP message
* queue element, the caller of r535_gsp_msgq_recv() allocates the
* required memory.
*
* - Receive the message: r535_gsp_msgq_recv().
* Copy the message into the allocated memory. Advance the read pointer.
* If the message is a large GSP message, r535_gsp_msgq_recv() calls
* r535_gsp_msgq_recv_one_elem() repeatedly to receive continuation parts
* until the complete message is received.
* r535_gsp_msgq_recv() assembles the payloads of cotinuation parts into
* the return of the large GSP message.
*
* - Free the allocated memory: r535_gsp_msg_done().
* The user is responsible for freeing the memory allocated for the GSP
* message pages after they have been processed.
*/
static void *
r535_gsp_msgq_peek(struct nvkm_gsp *gsp, u32 gsp_rpc_len, int *retries)
{
struct r535_gsp_msg *mqe;
int ret;
ret = r535_gsp_msgq_wait(gsp, gsp_rpc_len, retries);
if (ret < 0)
return ERR_PTR(ret);
mqe = r535_gsp_msgq_get_entry(gsp);
return mqe->data;
}
struct r535_gsp_msg_info {
int *retries;
u32 gsp_rpc_len;
void *gsp_rpc_buf;
bool continuation;
};
static void
r535_gsp_msg_dump(struct nvkm_gsp *gsp, struct nvfw_gsp_rpc *msg, int lvl);
static void *
r535_gsp_msgq_recv_one_elem(struct nvkm_gsp *gsp,
struct r535_gsp_msg_info *info)
{
u8 *buf = info->gsp_rpc_buf;
u32 rptr = *gsp->msgq.rptr;
struct r535_gsp_msg *mqe;
u32 size, expected, len;
int ret;
expected = info->gsp_rpc_len;
ret = r535_gsp_msgq_wait(gsp, expected, info->retries);
if (ret < 0)
return ERR_PTR(ret);
mqe = r535_gsp_msgq_get_entry(gsp);
if (info->continuation) {
struct nvfw_gsp_rpc *rpc = (struct nvfw_gsp_rpc *)mqe->data;
if (rpc->function != NV_VGPU_MSG_FUNCTION_CONTINUATION_RECORD) {
nvkm_error(&gsp->subdev,
"Not a continuation of a large RPC\n");
r535_gsp_msg_dump(gsp, rpc, NV_DBG_ERROR);
return ERR_PTR(-EIO);
}
}
size = ALIGN(expected + GSP_MSG_HDR_SIZE, GSP_PAGE_SIZE);
len = ((gsp->msgq.cnt - rptr) * GSP_PAGE_SIZE) - sizeof(*mqe);
len = min_t(u32, expected, len);
if (info->continuation)
memcpy(buf, mqe->data + sizeof(struct nvfw_gsp_rpc),
len - sizeof(struct nvfw_gsp_rpc));
else
memcpy(buf, mqe->data, len);
expected -= len;
if (expected) {
mqe = (void *)((u8 *)gsp->shm.msgq.ptr + 0x1000 + 0 * 0x1000);
memcpy(buf + len, mqe, expected);
}
rptr = (rptr + DIV_ROUND_UP(size, GSP_PAGE_SIZE)) % gsp->msgq.cnt;
mb();
(*gsp->msgq.rptr) = rptr;
return buf;
}
static void *
r535_gsp_msgq_recv(struct nvkm_gsp *gsp, u32 gsp_rpc_len, int *retries)
{
struct r535_gsp_msg *mqe;
const u32 max_rpc_size = GSP_MSG_MAX_SIZE - sizeof(*mqe);
struct nvfw_gsp_rpc *rpc;
struct r535_gsp_msg_info info = {0};
u32 expected = gsp_rpc_len;
void *buf;
mqe = r535_gsp_msgq_get_entry(gsp);
rpc = (struct nvfw_gsp_rpc *)mqe->data;
if (WARN_ON(rpc->length > max_rpc_size))
return NULL;
buf = kvmalloc(max_t(u32, rpc->length, expected), GFP_KERNEL);
if (!buf)
return ERR_PTR(-ENOMEM);
info.gsp_rpc_buf = buf;
info.retries = retries;
info.gsp_rpc_len = rpc->length;
buf = r535_gsp_msgq_recv_one_elem(gsp, &info);
if (IS_ERR(buf)) {
kvfree(info.gsp_rpc_buf);
info.gsp_rpc_buf = NULL;
return buf;
}
if (expected <= max_rpc_size)
return buf;
info.gsp_rpc_buf += info.gsp_rpc_len;
expected -= info.gsp_rpc_len;
while (expected) {
u32 size;
rpc = r535_gsp_msgq_peek(gsp, sizeof(*rpc), info.retries);
if (IS_ERR_OR_NULL(rpc)) {
kfree(buf);
return rpc;
}
info.gsp_rpc_len = rpc->length;
info.continuation = true;
rpc = r535_gsp_msgq_recv_one_elem(gsp, &info);
if (IS_ERR_OR_NULL(rpc)) {
kfree(buf);
return rpc;
}
size = info.gsp_rpc_len - sizeof(*rpc);
expected -= size;
info.gsp_rpc_buf += size;
}
rpc = buf;
rpc->length = gsp_rpc_len;
return buf;
}
static int
r535_gsp_cmdq_push(struct nvkm_gsp *gsp, void *rpc)
{
struct r535_gsp_msg *msg = to_gsp_hdr(rpc, msg);
struct r535_gsp_msg *cqe;
u32 gsp_rpc_len = msg->checksum;
u64 *ptr = (void *)msg;
u64 *end;
u64 csum = 0;
int free, time = 1000000;
u32 wptr, size, step, len;
u32 off = 0;
len = ALIGN(GSP_MSG_HDR_SIZE + gsp_rpc_len, GSP_PAGE_SIZE);
end = (u64 *)((char *)ptr + len);
msg->pad = 0;
msg->checksum = 0;
msg->sequence = gsp->cmdq.seq++;
msg->elem_count = DIV_ROUND_UP(len, 0x1000);
while (ptr < end)
csum ^= *ptr++;
msg->checksum = upper_32_bits(csum) ^ lower_32_bits(csum);
wptr = *gsp->cmdq.wptr;
do {
do {
free = *gsp->cmdq.rptr + gsp->cmdq.cnt - wptr - 1;
if (free >= gsp->cmdq.cnt)
free -= gsp->cmdq.cnt;
if (free >= 1)
break;
usleep_range(1, 2);
} while(--time);
if (WARN_ON(!time)) {
kvfree(msg);
return -ETIMEDOUT;
}
cqe = (void *)((u8 *)gsp->shm.cmdq.ptr + 0x1000 + wptr * 0x1000);
step = min_t(u32, free, (gsp->cmdq.cnt - wptr));
size = min_t(u32, len, step * GSP_PAGE_SIZE);
memcpy(cqe, (u8 *)msg + off, size);
wptr += DIV_ROUND_UP(size, 0x1000);
if (wptr == gsp->cmdq.cnt)
wptr = 0;
off += size;
len -= size;
} while (len);
nvkm_trace(&gsp->subdev, "cmdq: wptr %d\n", wptr);
wmb();
(*gsp->cmdq.wptr) = wptr;
mb();
nvkm_falcon_wr32(&gsp->falcon, 0xc00, 0x00000000);
kvfree(msg);
return 0;
}
static void *
r535_gsp_cmdq_get(struct nvkm_gsp *gsp, u32 gsp_rpc_len)
{
struct r535_gsp_msg *msg;
u32 size = GSP_MSG_HDR_SIZE + gsp_rpc_len;
size = ALIGN(size, GSP_MSG_MIN_SIZE);
msg = kvzalloc(size, GFP_KERNEL);
if (!msg)
return ERR_PTR(-ENOMEM);
msg->checksum = gsp_rpc_len;
return msg->data;
}
static void
r535_gsp_msg_done(struct nvkm_gsp *gsp, struct nvfw_gsp_rpc *msg)
{
kvfree(msg);
}
static void
r535_gsp_msg_dump(struct nvkm_gsp *gsp, struct nvfw_gsp_rpc *msg, int lvl)
{
if (gsp->subdev.debug >= lvl) {
nvkm_printk__(&gsp->subdev, lvl, info,
"msg fn:%d len:0x%x/0x%zx res:0x%x resp:0x%x\n",
msg->function, msg->length, msg->length - sizeof(*msg),
msg->rpc_result, msg->rpc_result_private);
print_hex_dump(KERN_INFO, "msg: ", DUMP_PREFIX_OFFSET, 16, 1,
msg->data, msg->length - sizeof(*msg), true);
}
}
static struct nvfw_gsp_rpc *
r535_gsp_msg_recv(struct nvkm_gsp *gsp, int fn, u32 gsp_rpc_len)
{
struct nvkm_subdev *subdev = &gsp->subdev;
struct nvfw_gsp_rpc *rpc;
int retries = 4000000, i;
retry:
rpc = r535_gsp_msgq_peek(gsp, sizeof(*rpc), &retries);
if (IS_ERR_OR_NULL(rpc))
return rpc;
rpc = r535_gsp_msgq_recv(gsp, gsp_rpc_len, &retries);
if (IS_ERR_OR_NULL(rpc))
return rpc;
if (rpc->rpc_result) {
r535_gsp_msg_dump(gsp, rpc, NV_DBG_ERROR);
r535_gsp_msg_done(gsp, rpc);
return ERR_PTR(-EINVAL);
}
r535_gsp_msg_dump(gsp, rpc, NV_DBG_TRACE);
if (fn && rpc->function == fn) {
if (gsp_rpc_len) {
if (rpc->length < gsp_rpc_len) {
nvkm_error(subdev, "rpc len %d < %d\n",
rpc->length, gsp_rpc_len);
r535_gsp_msg_dump(gsp, rpc, NV_DBG_ERROR);
r535_gsp_msg_done(gsp, rpc);
return ERR_PTR(-EIO);
}
return rpc;
}
r535_gsp_msg_done(gsp, rpc);
return NULL;
}
for (i = 0; i < gsp->msgq.ntfy_nr; i++) {
struct nvkm_gsp_msgq_ntfy *ntfy = &gsp->msgq.ntfy[i];
if (ntfy->fn == rpc->function) {
if (ntfy->func)
ntfy->func(ntfy->priv, ntfy->fn, rpc->data,
rpc->length - sizeof(*rpc));
break;
}
}
if (i == gsp->msgq.ntfy_nr)
r535_gsp_msg_dump(gsp, rpc, NV_DBG_WARN);
r535_gsp_msg_done(gsp, rpc);
if (fn)
goto retry;
if (*gsp->msgq.rptr != *gsp->msgq.wptr)
goto retry;
return NULL;
}
static int
r535_gsp_msg_ntfy_add(struct nvkm_gsp *gsp, u32 fn, nvkm_gsp_msg_ntfy_func func, void *priv)
{
int ret = 0;
mutex_lock(&gsp->msgq.mutex);
if (WARN_ON(gsp->msgq.ntfy_nr >= ARRAY_SIZE(gsp->msgq.ntfy))) {
ret = -ENOSPC;
} else {
gsp->msgq.ntfy[gsp->msgq.ntfy_nr].fn = fn;
gsp->msgq.ntfy[gsp->msgq.ntfy_nr].func = func;
gsp->msgq.ntfy[gsp->msgq.ntfy_nr].priv = priv;
gsp->msgq.ntfy_nr++;
}
mutex_unlock(&gsp->msgq.mutex);
return ret;
}
static int
r535_gsp_rpc_poll(struct nvkm_gsp *gsp, u32 fn)
{
void *repv;
mutex_lock(&gsp->cmdq.mutex);
repv = r535_gsp_msg_recv(gsp, fn, 0);
mutex_unlock(&gsp->cmdq.mutex);
if (IS_ERR(repv))
return PTR_ERR(repv);
return 0;
}
static void *
r535_gsp_rpc_handle_reply(struct nvkm_gsp *gsp, u32 fn,
enum nvkm_gsp_rpc_reply_policy policy,
u32 gsp_rpc_len)
{
struct nvfw_gsp_rpc *reply;
void *repv = NULL;
switch (policy) {
case NVKM_GSP_RPC_REPLY_NOWAIT:
break;
case NVKM_GSP_RPC_REPLY_RECV:
reply = r535_gsp_msg_recv(gsp, fn, gsp_rpc_len);
if (!IS_ERR_OR_NULL(reply))
repv = reply->data;
else
repv = reply;
break;
case NVKM_GSP_RPC_REPLY_POLL:
repv = r535_gsp_msg_recv(gsp, fn, 0);
break;
}
return repv;
}
static void *
r535_gsp_rpc_send(struct nvkm_gsp *gsp, void *payload,
enum nvkm_gsp_rpc_reply_policy policy, u32 gsp_rpc_len)
{
struct nvfw_gsp_rpc *rpc = to_gsp_hdr(payload, rpc);
u32 fn = rpc->function;
int ret;
if (gsp->subdev.debug >= NV_DBG_TRACE) {
nvkm_trace(&gsp->subdev, "rpc fn:%d len:0x%x/0x%zx\n", rpc->function,
rpc->length, rpc->length - sizeof(*rpc));
print_hex_dump(KERN_INFO, "rpc: ", DUMP_PREFIX_OFFSET, 16, 1,
rpc->data, rpc->length - sizeof(*rpc), true);
}
ret = r535_gsp_cmdq_push(gsp, rpc);
if (ret)
return ERR_PTR(ret);
return r535_gsp_rpc_handle_reply(gsp, fn, policy, gsp_rpc_len);
}
static void
r535_gsp_event_dtor(struct nvkm_gsp_event *event)
{
struct nvkm_gsp_device *device = event->device;
struct nvkm_gsp_client *client = device->object.client;
struct nvkm_gsp *gsp = client->gsp;
mutex_lock(&gsp->client_id.mutex);
if (event->func) {
list_del(&event->head);
event->func = NULL;
}
mutex_unlock(&gsp->client_id.mutex);
nvkm_gsp_rm_free(&event->object);
event->device = NULL;
}
static int
r535_gsp_device_event_get(struct nvkm_gsp_event *event)
{
struct nvkm_gsp_device *device = event->device;
NV2080_CTRL_EVENT_SET_NOTIFICATION_PARAMS *ctrl;
ctrl = nvkm_gsp_rm_ctrl_get(&device->subdevice,
NV2080_CTRL_CMD_EVENT_SET_NOTIFICATION, sizeof(*ctrl));
if (IS_ERR(ctrl))
return PTR_ERR(ctrl);
ctrl->event = event->id;
ctrl->action = NV2080_CTRL_EVENT_SET_NOTIFICATION_ACTION_REPEAT;
return nvkm_gsp_rm_ctrl_wr(&device->subdevice, ctrl);
}
static int
r535_gsp_device_event_ctor(struct nvkm_gsp_device *device, u32 handle, u32 id,
nvkm_gsp_event_func func, struct nvkm_gsp_event *event)
{
struct nvkm_gsp_client *client = device->object.client;
struct nvkm_gsp *gsp = client->gsp;
NV0005_ALLOC_PARAMETERS *args;
int ret;
args = nvkm_gsp_rm_alloc_get(&device->subdevice, handle,
NV01_EVENT_KERNEL_CALLBACK_EX, sizeof(*args),
&event->object);
if (IS_ERR(args))
return PTR_ERR(args);
args->hParentClient = client->object.handle;
args->hSrcResource = 0;
args->hClass = NV01_EVENT_KERNEL_CALLBACK_EX;
args->notifyIndex = NV01_EVENT_CLIENT_RM | id;
args->data = NULL;
ret = nvkm_gsp_rm_alloc_wr(&event->object, args);
if (ret)
return ret;
event->device = device;
event->id = id;
ret = r535_gsp_device_event_get(event);
if (ret) {
nvkm_gsp_event_dtor(event);
return ret;
}
mutex_lock(&gsp->client_id.mutex);
event->func = func;
list_add(&event->head, &client->events);
mutex_unlock(&gsp->client_id.mutex);
return 0;
}
static void
r535_gsp_device_dtor(struct nvkm_gsp_device *device)
{
nvkm_gsp_rm_free(&device->subdevice);
nvkm_gsp_rm_free(&device->object);
}
static int
r535_gsp_subdevice_ctor(struct nvkm_gsp_device *device)
{
NV2080_ALLOC_PARAMETERS *args;
return nvkm_gsp_rm_alloc(&device->object, 0x5d1d0000, NV20_SUBDEVICE_0, sizeof(*args),
&device->subdevice);
}
static int
r535_gsp_device_ctor(struct nvkm_gsp_client *client, struct nvkm_gsp_device *device)
{
NV0080_ALLOC_PARAMETERS *args;
int ret;
args = nvkm_gsp_rm_alloc_get(&client->object, 0xde1d0000, NV01_DEVICE_0, sizeof(*args),
&device->object);
if (IS_ERR(args))
return PTR_ERR(args);
args->hClientShare = client->object.handle;
ret = nvkm_gsp_rm_alloc_wr(&device->object, args);
if (ret)
return ret;
ret = r535_gsp_subdevice_ctor(device);
if (ret)
nvkm_gsp_rm_free(&device->object);
return ret;
}
static void
r535_gsp_client_dtor(struct nvkm_gsp_client *client)
{
struct nvkm_gsp *gsp = client->gsp;
nvkm_gsp_rm_free(&client->object);
mutex_lock(&gsp->client_id.mutex);
idr_remove(&gsp->client_id.idr, client->object.handle & 0xffff);
mutex_unlock(&gsp->client_id.mutex);
client->gsp = NULL;
}
static int
r535_gsp_client_ctor(struct nvkm_gsp *gsp, struct nvkm_gsp_client *client)
{
NV0000_ALLOC_PARAMETERS *args;
int ret;
mutex_lock(&gsp->client_id.mutex);
ret = idr_alloc(&gsp->client_id.idr, client, 0, 0xffff + 1, GFP_KERNEL);
mutex_unlock(&gsp->client_id.mutex);
if (ret < 0)
return ret;
client->gsp = gsp;
client->object.client = client;
INIT_LIST_HEAD(&client->events);
args = nvkm_gsp_rm_alloc_get(&client->object, 0xc1d00000 | ret, NV01_ROOT, sizeof(*args),
&client->object);
if (IS_ERR(args)) {
r535_gsp_client_dtor(client);
return ret;
}
args->hClient = client->object.handle;
args->processID = ~0;
ret = nvkm_gsp_rm_alloc_wr(&client->object, args);
if (ret) {
r535_gsp_client_dtor(client);
return ret;
}
return 0;
}
static int
r535_gsp_rpc_rm_free(struct nvkm_gsp_object *object)
{
struct nvkm_gsp_client *client = object->client;
struct nvkm_gsp *gsp = client->gsp;
rpc_free_v03_00 *rpc;
nvkm_debug(&gsp->subdev, "cli:0x%08x obj:0x%08x free\n",
client->object.handle, object->handle);
rpc = nvkm_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_FREE, sizeof(*rpc));
if (WARN_ON(IS_ERR_OR_NULL(rpc)))
return -EIO;
rpc->params.hRoot = client->object.handle;
rpc->params.hObjectParent = 0;
rpc->params.hObjectOld = object->handle;
return nvkm_gsp_rpc_wr(gsp, rpc, NVKM_GSP_RPC_REPLY_RECV);
}
static void
r535_gsp_rpc_rm_alloc_done(struct nvkm_gsp_object *object, void *params)
{
rpc_gsp_rm_alloc_v03_00 *rpc = to_payload_hdr(params, rpc);
nvkm_gsp_rpc_done(object->client->gsp, rpc);
}
static void *
r535_gsp_rpc_rm_alloc_push(struct nvkm_gsp_object *object, void *params)
{
rpc_gsp_rm_alloc_v03_00 *rpc = to_payload_hdr(params, rpc);
struct nvkm_gsp *gsp = object->client->gsp;
void *ret = NULL;
rpc = nvkm_gsp_rpc_push(gsp, rpc, NVKM_GSP_RPC_REPLY_RECV, sizeof(*rpc));
if (IS_ERR_OR_NULL(rpc))
return rpc;
if (rpc->status) {
ret = ERR_PTR(r535_rpc_status_to_errno(rpc->status));
if (PTR_ERR(ret) != -EAGAIN && PTR_ERR(ret) != -EBUSY)
nvkm_error(&gsp->subdev, "RM_ALLOC: 0x%x\n", rpc->status);
}
nvkm_gsp_rpc_done(gsp, rpc);
return ret;
}
static void *
r535_gsp_rpc_rm_alloc_get(struct nvkm_gsp_object *object, u32 oclass,
u32 params_size)
{
struct nvkm_gsp_client *client = object->client;
struct nvkm_gsp *gsp = client->gsp;
rpc_gsp_rm_alloc_v03_00 *rpc;
nvkm_debug(&gsp->subdev, "cli:0x%08x obj:0x%08x new obj:0x%08x\n",
client->object.handle, object->parent->handle,
object->handle);
nvkm_debug(&gsp->subdev, "cls:0x%08x params_size:%d\n", oclass,
params_size);
rpc = nvkm_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_GSP_RM_ALLOC,
sizeof(*rpc) + params_size);
if (IS_ERR(rpc))
return rpc;
rpc->hClient = client->object.handle;
rpc->hParent = object->parent->handle;
rpc->hObject = object->handle;
rpc->hClass = oclass;
rpc->status = 0;
rpc->paramsSize = params_size;
return rpc->params;
}
static void
r535_gsp_rpc_rm_ctrl_done(struct nvkm_gsp_object *object, void *params)
{
rpc_gsp_rm_control_v03_00 *rpc = to_payload_hdr(params, rpc);
if (!params)
return;
nvkm_gsp_rpc_done(object->client->gsp, rpc);
}
static int
r535_gsp_rpc_rm_ctrl_push(struct nvkm_gsp_object *object, void **params, u32 repc)
{
rpc_gsp_rm_control_v03_00 *rpc = to_payload_hdr((*params), rpc);
struct nvkm_gsp *gsp = object->client->gsp;
int ret = 0;
rpc = nvkm_gsp_rpc_push(gsp, rpc, NVKM_GSP_RPC_REPLY_RECV, repc);
if (IS_ERR_OR_NULL(rpc)) {
*params = NULL;
return PTR_ERR(rpc);
}
if (rpc->status) {
ret = r535_rpc_status_to_errno(rpc->status);
if (ret != -EAGAIN && ret != -EBUSY)
nvkm_error(&gsp->subdev, "cli:0x%08x obj:0x%08x ctrl cmd:0x%08x failed: 0x%08x\n",
object->client->object.handle, object->handle, rpc->cmd, rpc->status);
}
if (repc)
*params = rpc->params;
else
nvkm_gsp_rpc_done(gsp, rpc);
return ret;
}
static void *
r535_gsp_rpc_rm_ctrl_get(struct nvkm_gsp_object *object, u32 cmd, u32 params_size)
{
struct nvkm_gsp_client *client = object->client;
struct nvkm_gsp *gsp = client->gsp;
rpc_gsp_rm_control_v03_00 *rpc;
nvkm_debug(&gsp->subdev, "cli:0x%08x obj:0x%08x ctrl cmd:0x%08x params_size:%d\n",
client->object.handle, object->handle, cmd, params_size);
rpc = nvkm_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_GSP_RM_CONTROL,
sizeof(*rpc) + params_size);
if (IS_ERR(rpc))
return rpc;
rpc->hClient = client->object.handle;
rpc->hObject = object->handle;
rpc->cmd = cmd;
rpc->status = 0;
rpc->paramsSize = params_size;
return rpc->params;
}
static void
r535_gsp_rpc_done(struct nvkm_gsp *gsp, void *repv)
{
struct nvfw_gsp_rpc *rpc = container_of(repv, typeof(*rpc), data);
r535_gsp_msg_done(gsp, rpc);
}
static void *
r535_gsp_rpc_get(struct nvkm_gsp *gsp, u32 fn, u32 payload_size)
{
struct nvfw_gsp_rpc *rpc;
rpc = r535_gsp_cmdq_get(gsp, ALIGN(sizeof(*rpc) + payload_size,
sizeof(u64)));
if (IS_ERR(rpc))
return ERR_CAST(rpc);
rpc->header_version = 0x03000000;
rpc->signature = ('C' << 24) | ('P' << 16) | ('R' << 8) | 'V';
rpc->function = fn;
rpc->rpc_result = 0xffffffff;
rpc->rpc_result_private = 0xffffffff;
rpc->length = sizeof(*rpc) + payload_size;
return rpc->data;
}
static void *
r535_gsp_rpc_push(struct nvkm_gsp *gsp, void *payload,
enum nvkm_gsp_rpc_reply_policy policy, u32 gsp_rpc_len)
{
struct nvfw_gsp_rpc *rpc = to_gsp_hdr(payload, rpc);
struct r535_gsp_msg *msg = to_gsp_hdr(rpc, msg);
const u32 max_rpc_size = GSP_MSG_MAX_SIZE - sizeof(*msg);
const u32 max_payload_size = max_rpc_size - sizeof(*rpc);
u32 payload_size = rpc->length - sizeof(*rpc);
void *repv;
mutex_lock(&gsp->cmdq.mutex);
if (payload_size > max_payload_size) {
const u32 fn = rpc->function;
u32 remain_payload_size = payload_size;
/* Adjust length, and send initial RPC. */
rpc->length = sizeof(*rpc) + max_payload_size;
msg->checksum = rpc->length;
repv = r535_gsp_rpc_send(gsp, payload, NVKM_GSP_RPC_REPLY_NOWAIT, 0);
if (IS_ERR(repv))
goto done;
payload += max_payload_size;
remain_payload_size -= max_payload_size;
/* Remaining chunks sent as CONTINUATION_RECORD RPCs. */
while (remain_payload_size) {
u32 size = min(remain_payload_size,
max_payload_size);
void *next;
next = r535_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_CONTINUATION_RECORD, size);
if (IS_ERR(next)) {
repv = next;
goto done;
}
memcpy(next, payload, size);
repv = r535_gsp_rpc_send(gsp, next, NVKM_GSP_RPC_REPLY_NOWAIT, 0);
if (IS_ERR(repv))
goto done;
payload += size;
remain_payload_size -= size;
}
/* Wait for reply. */
repv = r535_gsp_rpc_handle_reply(gsp, fn, policy, payload_size +
sizeof(*rpc));
} else {
repv = r535_gsp_rpc_send(gsp, payload, policy, gsp_rpc_len);
}
done:
mutex_unlock(&gsp->cmdq.mutex);
return repv;
}
const struct nvkm_gsp_rm
r535_gsp_rm = {
.rpc_get = r535_gsp_rpc_get,
.rpc_push = r535_gsp_rpc_push,
.rpc_done = r535_gsp_rpc_done,
.rm_ctrl_get = r535_gsp_rpc_rm_ctrl_get,
.rm_ctrl_push = r535_gsp_rpc_rm_ctrl_push,
.rm_ctrl_done = r535_gsp_rpc_rm_ctrl_done,
.rm_alloc_get = r535_gsp_rpc_rm_alloc_get,
.rm_alloc_push = r535_gsp_rpc_rm_alloc_push,
.rm_alloc_done = r535_gsp_rpc_rm_alloc_done,
.rm_free = r535_gsp_rpc_rm_free,
.client_ctor = r535_gsp_client_ctor,
.client_dtor = r535_gsp_client_dtor,
.device_ctor = r535_gsp_device_ctor,
.device_dtor = r535_gsp_device_dtor,
.event_ctor = r535_gsp_device_event_ctor,
.event_dtor = r535_gsp_event_dtor,
};
static void
r535_gsp_msgq_work(struct work_struct *work)
{
struct nvkm_gsp *gsp = container_of(work, typeof(*gsp), msgq.work);
mutex_lock(&gsp->cmdq.mutex);
if (*gsp->msgq.rptr != *gsp->msgq.wptr)
r535_gsp_msg_recv(gsp, 0, 0);
mutex_unlock(&gsp->cmdq.mutex);
}
static irqreturn_t
r535_gsp_intr(struct nvkm_inth *inth)
{
struct nvkm_gsp *gsp = container_of(inth, typeof(*gsp), subdev.inth);
struct nvkm_subdev *subdev = &gsp->subdev;
u32 intr = nvkm_falcon_rd32(&gsp->falcon, 0x0008);
u32 inte = nvkm_falcon_rd32(&gsp->falcon, gsp->falcon.func->addr2 +
gsp->falcon.func->riscv_irqmask);
u32 stat = intr & inte;
if (!stat) {
nvkm_debug(subdev, "inte %08x %08x\n", intr, inte);
return IRQ_NONE;
}
if (stat & 0x00000040) {
nvkm_falcon_wr32(&gsp->falcon, 0x004, 0x00000040);
schedule_work(&gsp->msgq.work);
stat &= ~0x00000040;
}
if (stat) {
nvkm_error(subdev, "intr %08x\n", stat);
nvkm_falcon_wr32(&gsp->falcon, 0x014, stat);
nvkm_falcon_wr32(&gsp->falcon, 0x004, stat);
}
nvkm_falcon_intr_retrigger(&gsp->falcon);
return IRQ_HANDLED;
}
static int
r535_gsp_intr_get_table(struct nvkm_gsp *gsp)
{
NV2080_CTRL_INTERNAL_INTR_GET_KERNEL_TABLE_PARAMS *ctrl;
int ret = 0;
ctrl = nvkm_gsp_rm_ctrl_get(&gsp->internal.device.subdevice,
NV2080_CTRL_CMD_INTERNAL_INTR_GET_KERNEL_TABLE, sizeof(*ctrl));
if (IS_ERR(ctrl))
return PTR_ERR(ctrl);
ret = nvkm_gsp_rm_ctrl_push(&gsp->internal.device.subdevice, &ctrl, sizeof(*ctrl));
if (WARN_ON(ret)) {
nvkm_gsp_rm_ctrl_done(&gsp->internal.device.subdevice, ctrl);
return ret;
}
for (unsigned i = 0; i < ctrl->tableLen; i++) {
enum nvkm_subdev_type type;
int inst;
nvkm_debug(&gsp->subdev,
"%2d: engineIdx %3d pmcIntrMask %08x stall %08x nonStall %08x\n", i,
ctrl->table[i].engineIdx, ctrl->table[i].pmcIntrMask,
ctrl->table[i].vectorStall, ctrl->table[i].vectorNonStall);
switch (ctrl->table[i].engineIdx) {
case MC_ENGINE_IDX_GSP:
type = NVKM_SUBDEV_GSP;
inst = 0;
break;
case MC_ENGINE_IDX_DISP:
type = NVKM_ENGINE_DISP;
inst = 0;
break;
case MC_ENGINE_IDX_CE0 ... MC_ENGINE_IDX_CE9:
type = NVKM_ENGINE_CE;
inst = ctrl->table[i].engineIdx - MC_ENGINE_IDX_CE0;
break;
case MC_ENGINE_IDX_GR0:
type = NVKM_ENGINE_GR;
inst = 0;
break;
case MC_ENGINE_IDX_NVDEC0 ... MC_ENGINE_IDX_NVDEC7:
type = NVKM_ENGINE_NVDEC;
inst = ctrl->table[i].engineIdx - MC_ENGINE_IDX_NVDEC0;
break;
case MC_ENGINE_IDX_MSENC ... MC_ENGINE_IDX_MSENC2:
type = NVKM_ENGINE_NVENC;
inst = ctrl->table[i].engineIdx - MC_ENGINE_IDX_MSENC;
break;
case MC_ENGINE_IDX_NVJPEG0 ... MC_ENGINE_IDX_NVJPEG7:
type = NVKM_ENGINE_NVJPG;
inst = ctrl->table[i].engineIdx - MC_ENGINE_IDX_NVJPEG0;
break;
case MC_ENGINE_IDX_OFA0:
type = NVKM_ENGINE_OFA;
inst = 0;
break;
default:
continue;
}
if (WARN_ON(gsp->intr_nr == ARRAY_SIZE(gsp->intr))) {
ret = -ENOSPC;
break;
}
gsp->intr[gsp->intr_nr].type = type;
gsp->intr[gsp->intr_nr].inst = inst;
gsp->intr[gsp->intr_nr].stall = ctrl->table[i].vectorStall;
gsp->intr[gsp->intr_nr].nonstall = ctrl->table[i].vectorNonStall;
gsp->intr_nr++;
}
nvkm_gsp_rm_ctrl_done(&gsp->internal.device.subdevice, ctrl);
return ret;
}
static int
r535_gsp_rpc_get_gsp_static_info(struct nvkm_gsp *gsp)
{
GspStaticConfigInfo *rpc;
int last_usable = -1;
rpc = nvkm_gsp_rpc_rd(gsp, NV_VGPU_MSG_FUNCTION_GET_GSP_STATIC_INFO, sizeof(*rpc));
if (IS_ERR(rpc))
return PTR_ERR(rpc);
gsp->internal.client.object.client = &gsp->internal.client;
gsp->internal.client.object.parent = NULL;
gsp->internal.client.object.handle = rpc->hInternalClient;
gsp->internal.client.gsp = gsp;
gsp->internal.device.object.client = &gsp->internal.client;
gsp->internal.device.object.parent = &gsp->internal.client.object;
gsp->internal.device.object.handle = rpc->hInternalDevice;
gsp->internal.device.subdevice.client = &gsp->internal.client;
gsp->internal.device.subdevice.parent = &gsp->internal.device.object;
gsp->internal.device.subdevice.handle = rpc->hInternalSubdevice;
gsp->bar.rm_bar1_pdb = rpc->bar1PdeBase;
gsp->bar.rm_bar2_pdb = rpc->bar2PdeBase;
for (int i = 0; i < rpc->fbRegionInfoParams.numFBRegions; i++) {
NV2080_CTRL_CMD_FB_GET_FB_REGION_FB_REGION_INFO *reg =
&rpc->fbRegionInfoParams.fbRegion[i];
nvkm_debug(&gsp->subdev, "fb region %d: "
"%016llx-%016llx rsvd:%016llx perf:%08x comp:%d iso:%d prot:%d\n", i,
reg->base, reg->limit, reg->reserved, reg->performance,
reg->supportCompressed, reg->supportISO, reg->bProtected);
if (!reg->reserved && !reg->bProtected) {
if (reg->supportCompressed && reg->supportISO &&
!WARN_ON_ONCE(gsp->fb.region_nr >= ARRAY_SIZE(gsp->fb.region))) {
const u64 size = (reg->limit + 1) - reg->base;
gsp->fb.region[gsp->fb.region_nr].addr = reg->base;
gsp->fb.region[gsp->fb.region_nr].size = size;
gsp->fb.region_nr++;
}
last_usable = i;
}
}
if (last_usable >= 0) {
u32 rsvd_base = rpc->fbRegionInfoParams.fbRegion[last_usable].limit + 1;
gsp->fb.rsvd_size = gsp->fb.heap.addr - rsvd_base;
}
for (int gpc = 0; gpc < ARRAY_SIZE(rpc->tpcInfo); gpc++) {
if (rpc->gpcInfo.gpcMask & BIT(gpc)) {
gsp->gr.tpcs += hweight32(rpc->tpcInfo[gpc].tpcMask);
gsp->gr.gpcs++;
}
}
nvkm_gsp_rpc_done(gsp, rpc);
return 0;
}
static void
nvkm_gsp_mem_dtor(struct nvkm_gsp_mem *mem)
{
if (mem->data) {
/*
* Poison the buffer to catch any unexpected access from
* GSP-RM if the buffer was prematurely freed.
*/
memset(mem->data, 0xFF, mem->size);
dma_free_coherent(mem->dev, mem->size, mem->data, mem->addr);
put_device(mem->dev);
memset(mem, 0, sizeof(*mem));
}
}
/**
* nvkm_gsp_mem_ctor - constructor for nvkm_gsp_mem objects
* @gsp: gsp pointer
* @size: number of bytes to allocate
* @mem: nvkm_gsp_mem object to initialize
*
* Allocates a block of memory for use with GSP.
*
* This memory block can potentially out-live the driver's remove() callback,
* so we take a device reference to ensure its lifetime. The reference is
* dropped in the destructor.
*/
static int
nvkm_gsp_mem_ctor(struct nvkm_gsp *gsp, size_t size, struct nvkm_gsp_mem *mem)
{
mem->data = dma_alloc_coherent(gsp->subdev.device->dev, size, &mem->addr, GFP_KERNEL);
if (WARN_ON(!mem->data))
return -ENOMEM;
mem->size = size;
mem->dev = get_device(gsp->subdev.device->dev);
return 0;
}
static int
r535_gsp_postinit(struct nvkm_gsp *gsp)
{
struct nvkm_device *device = gsp->subdev.device;
int ret;
ret = r535_gsp_rpc_get_gsp_static_info(gsp);
if (WARN_ON(ret))
return ret;
INIT_WORK(&gsp->msgq.work, r535_gsp_msgq_work);
ret = r535_gsp_intr_get_table(gsp);
if (WARN_ON(ret))
return ret;
ret = nvkm_gsp_intr_stall(gsp, gsp->subdev.type, gsp->subdev.inst);
if (WARN_ON(ret < 0))
return ret;
ret = nvkm_inth_add(&device->vfn->intr, ret, NVKM_INTR_PRIO_NORMAL, &gsp->subdev,
r535_gsp_intr, &gsp->subdev.inth);
if (WARN_ON(ret))
return ret;
nvkm_inth_allow(&gsp->subdev.inth);
nvkm_wr32(device, 0x110004, 0x00000040);
/* Release the DMA buffers that were needed only for boot and init */
nvkm_gsp_mem_dtor(&gsp->boot.fw);
nvkm_gsp_mem_dtor(&gsp->libos);
return ret;
}
static int
r535_gsp_rpc_unloading_guest_driver(struct nvkm_gsp *gsp, bool suspend)
{
rpc_unloading_guest_driver_v1F_07 *rpc;
rpc = nvkm_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_UNLOADING_GUEST_DRIVER, sizeof(*rpc));
if (IS_ERR(rpc))
return PTR_ERR(rpc);
if (suspend) {
rpc->bInPMTransition = 1;
rpc->bGc6Entering = 0;
rpc->newLevel = NV2080_CTRL_GPU_SET_POWER_STATE_GPU_LEVEL_3;
} else {
rpc->bInPMTransition = 0;
rpc->bGc6Entering = 0;
rpc->newLevel = NV2080_CTRL_GPU_SET_POWER_STATE_GPU_LEVEL_0;
}
return nvkm_gsp_rpc_wr(gsp, rpc, NVKM_GSP_RPC_REPLY_RECV);
}
enum registry_type {
REGISTRY_TABLE_ENTRY_TYPE_DWORD = 1, /* 32-bit unsigned integer */
REGISTRY_TABLE_ENTRY_TYPE_BINARY = 2, /* Binary blob */
REGISTRY_TABLE_ENTRY_TYPE_STRING = 3, /* Null-terminated string */
};
/* An arbitrary limit to the length of a registry key */
#define REGISTRY_MAX_KEY_LENGTH 64
/**
* struct registry_list_entry - linked list member for a registry key/value
* @head: list_head struct
* @type: dword, binary, or string
* @klen: the length of name of the key
* @vlen: the length of the value
* @key: the key name
* @dword: the data, if REGISTRY_TABLE_ENTRY_TYPE_DWORD
* @binary: the data, if TYPE_BINARY or TYPE_STRING
*
* Every registry key/value is represented internally by this struct.
*
* Type DWORD is a simple 32-bit unsigned integer, and its value is stored in
* @dword.
*
* Types BINARY and STRING are variable-length binary blobs. The only real
* difference between BINARY and STRING is that STRING is null-terminated and
* is expected to contain only printable characters.
*
* Note: it is technically possible to have multiple keys with the same name
* but different types, but this is not useful since GSP-RM expects keys to
* have only one specific type.
*/
struct registry_list_entry {
struct list_head head;
enum registry_type type;
size_t klen;
char key[REGISTRY_MAX_KEY_LENGTH];
size_t vlen;
u32 dword; /* TYPE_DWORD */
u8 binary[] __counted_by(vlen); /* TYPE_BINARY or TYPE_STRING */
};
/**
* add_registry -- adds a registry entry
* @gsp: gsp pointer
* @key: name of the registry key
* @type: type of data
* @data: pointer to value
* @length: size of data, in bytes
*
* Adds a registry key/value pair to the registry database.
*
* This function collects the registry information in a linked list. After
* all registry keys have been added, build_registry() is used to create the
* RPC data structure.
*
* registry_rpc_size is a running total of the size of all registry keys.
* It's used to avoid an O(n) calculation of the size when the RPC is built.
*
* Returns 0 on success, or negative error code on error.
*/
static int add_registry(struct nvkm_gsp *gsp, const char *key,
enum registry_type type, const void *data, size_t length)
{
struct registry_list_entry *reg;
const size_t nlen = strnlen(key, REGISTRY_MAX_KEY_LENGTH) + 1;
size_t alloc_size; /* extra bytes to alloc for binary or string value */
if (nlen > REGISTRY_MAX_KEY_LENGTH)
return -EINVAL;
alloc_size = (type == REGISTRY_TABLE_ENTRY_TYPE_DWORD) ? 0 : length;
reg = kmalloc(sizeof(*reg) + alloc_size, GFP_KERNEL);
if (!reg)
return -ENOMEM;
switch (type) {
case REGISTRY_TABLE_ENTRY_TYPE_DWORD:
reg->dword = *(const u32 *)(data);
break;
case REGISTRY_TABLE_ENTRY_TYPE_BINARY:
case REGISTRY_TABLE_ENTRY_TYPE_STRING:
memcpy(reg->binary, data, alloc_size);
break;
default:
nvkm_error(&gsp->subdev, "unrecognized registry type %u for '%s'\n",
type, key);
kfree(reg);
return -EINVAL;
}
memcpy(reg->key, key, nlen);
reg->klen = nlen;
reg->vlen = length;
reg->type = type;
list_add_tail(&reg->head, &gsp->registry_list);
gsp->registry_rpc_size += sizeof(PACKED_REGISTRY_ENTRY) + nlen + alloc_size;
return 0;
}
static int add_registry_num(struct nvkm_gsp *gsp, const char *key, u32 value)
{
return add_registry(gsp, key, REGISTRY_TABLE_ENTRY_TYPE_DWORD,
&value, sizeof(u32));
}
static int add_registry_string(struct nvkm_gsp *gsp, const char *key, const char *value)
{
return add_registry(gsp, key, REGISTRY_TABLE_ENTRY_TYPE_STRING,
value, strlen(value) + 1);
}
/**
* build_registry -- create the registry RPC data
* @gsp: gsp pointer
* @registry: pointer to the RPC payload to fill
*
* After all registry key/value pairs have been added, call this function to
* build the RPC.
*
* The registry RPC looks like this:
*
* +-----------------+
* |NvU32 size; |
* |NvU32 numEntries;|
* +-----------------+
* +----------------------------------------+
* |PACKED_REGISTRY_ENTRY |
* +----------------------------------------+
* |Null-terminated key (string) for entry 0|
* +----------------------------------------+
* |Binary/string data value for entry 0 | (only if necessary)
* +----------------------------------------+
*
* +----------------------------------------+
* |PACKED_REGISTRY_ENTRY |
* +----------------------------------------+
* |Null-terminated key (string) for entry 1|
* +----------------------------------------+
* |Binary/string data value for entry 1 | (only if necessary)
* +----------------------------------------+
* ... (and so on, one copy for each entry)
*
*
* The 'data' field of an entry is either a 32-bit integer (for type DWORD)
* or an offset into the PACKED_REGISTRY_TABLE (for types BINARY and STRING).
*
* All memory allocated by add_registry() is released.
*/
static void build_registry(struct nvkm_gsp *gsp, PACKED_REGISTRY_TABLE *registry)
{
struct registry_list_entry *reg, *n;
size_t str_offset;
unsigned int i = 0;
registry->numEntries = list_count_nodes(&gsp->registry_list);
str_offset = struct_size(registry, entries, registry->numEntries);
list_for_each_entry_safe(reg, n, &gsp->registry_list, head) {
registry->entries[i].type = reg->type;
registry->entries[i].length = reg->vlen;
/* Append the key name to the table */
registry->entries[i].nameOffset = str_offset;
memcpy((void *)registry + str_offset, reg->key, reg->klen);
str_offset += reg->klen;
switch (reg->type) {
case REGISTRY_TABLE_ENTRY_TYPE_DWORD:
registry->entries[i].data = reg->dword;
break;
case REGISTRY_TABLE_ENTRY_TYPE_BINARY:
case REGISTRY_TABLE_ENTRY_TYPE_STRING:
/* If the type is binary or string, also append the value */
memcpy((void *)registry + str_offset, reg->binary, reg->vlen);
registry->entries[i].data = str_offset;
str_offset += reg->vlen;
break;
default:
break;
}
i++;
list_del(&reg->head);
kfree(reg);
}
/* Double-check that we calculated the sizes correctly */
WARN_ON(gsp->registry_rpc_size != str_offset);
registry->size = gsp->registry_rpc_size;
}
/**
* clean_registry -- clean up registry memory in case of error
* @gsp: gsp pointer
*
* Call this function to clean up all memory allocated by add_registry()
* in case of error and build_registry() is not called.
*/
static void clean_registry(struct nvkm_gsp *gsp)
{
struct registry_list_entry *reg, *n;
list_for_each_entry_safe(reg, n, &gsp->registry_list, head) {
list_del(&reg->head);
kfree(reg);
}
gsp->registry_rpc_size = sizeof(PACKED_REGISTRY_TABLE);
}
MODULE_PARM_DESC(NVreg_RegistryDwords,
"A semicolon-separated list of key=integer pairs of GSP-RM registry keys");
static char *NVreg_RegistryDwords;
module_param(NVreg_RegistryDwords, charp, 0400);
/* dword only */
struct nv_gsp_registry_entries {
const char *name;
u32 value;
};
/*
* r535_registry_entries - required registry entries for GSP-RM
*
* This array lists registry entries that are required for GSP-RM to
* function correctly.
*
* RMSecBusResetEnable - enables PCI secondary bus reset
* RMForcePcieConfigSave - forces GSP-RM to preserve PCI configuration
* registers on any PCI reset.
*/
static const struct nv_gsp_registry_entries r535_registry_entries[] = {
{ "RMSecBusResetEnable", 1 },
{ "RMForcePcieConfigSave", 1 },
};
#define NV_GSP_REG_NUM_ENTRIES ARRAY_SIZE(r535_registry_entries)
/**
* strip - strips all characters in 'reject' from 's'
* @s: string to strip
* @reject: string of characters to remove
*
* 's' is modified.
*
* Returns the length of the new string.
*/
static size_t strip(char *s, const char *reject)
{
char *p = s, *p2 = s;
size_t length = 0;
char c;
do {
while ((c = *p2) && strchr(reject, c))
p2++;
*p++ = c = *p2++;
length++;
} while (c);
return length;
}
/**
* r535_gsp_rpc_set_registry - build registry RPC and call GSP-RM
* @gsp: gsp pointer
*
* The GSP-RM registry is a set of key/value pairs that configure some aspects
* of GSP-RM. The keys are strings, and the values are 32-bit integers.
*
* The registry is built from a combination of a static hard-coded list (see
* above) and entries passed on the driver's command line.
*/
static int
r535_gsp_rpc_set_registry(struct nvkm_gsp *gsp)
{
PACKED_REGISTRY_TABLE *rpc;
unsigned int i;
int ret;
INIT_LIST_HEAD(&gsp->registry_list);
gsp->registry_rpc_size = sizeof(PACKED_REGISTRY_TABLE);
for (i = 0; i < NV_GSP_REG_NUM_ENTRIES; i++) {
ret = add_registry_num(gsp, r535_registry_entries[i].name,
r535_registry_entries[i].value);
if (ret)
goto fail;
}
/*
* The NVreg_RegistryDwords parameter is a string of key=value
* pairs separated by semicolons. We need to extract and trim each
* substring, and then parse the substring to extract the key and
* value.
*/
if (NVreg_RegistryDwords) {
char *p = kstrdup(NVreg_RegistryDwords, GFP_KERNEL);
char *start, *next = p, *equal;
if (!p) {
ret = -ENOMEM;
goto fail;
}
/* Remove any whitespace from the parameter string */
strip(p, " \t\n");
while ((start = strsep(&next, ";"))) {
long value;
equal = strchr(start, '=');
if (!equal || equal == start || equal[1] == 0) {
nvkm_error(&gsp->subdev,
"ignoring invalid registry string '%s'\n",
start);
continue;
}
/* Truncate the key=value string to just key */
*equal = 0;
ret = kstrtol(equal + 1, 0, &value);
if (!ret) {
ret = add_registry_num(gsp, start, value);
} else {
/* Not a number, so treat it as a string */
ret = add_registry_string(gsp, start, equal + 1);
}
if (ret) {
nvkm_error(&gsp->subdev,
"ignoring invalid registry key/value '%s=%s'\n",
start, equal + 1);
continue;
}
}
kfree(p);
}
rpc = nvkm_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_SET_REGISTRY, gsp->registry_rpc_size);
if (IS_ERR(rpc)) {
ret = PTR_ERR(rpc);
goto fail;
}
build_registry(gsp, rpc);
return nvkm_gsp_rpc_wr(gsp, rpc, NVKM_GSP_RPC_REPLY_NOWAIT);
fail:
clean_registry(gsp);
return ret;
}
#if defined(CONFIG_ACPI) && defined(CONFIG_X86)
static void
r535_gsp_acpi_caps(acpi_handle handle, CAPS_METHOD_DATA *caps)
{
const guid_t NVOP_DSM_GUID =
GUID_INIT(0xA486D8F8, 0x0BDA, 0x471B,
0xA7, 0x2B, 0x60, 0x42, 0xA6, 0xB5, 0xBE, 0xE0);
u64 NVOP_DSM_REV = 0x00000100;
union acpi_object argv4 = {
.buffer.type = ACPI_TYPE_BUFFER,
.buffer.length = 4,
.buffer.pointer = kmalloc(argv4.buffer.length, GFP_KERNEL),
}, *obj;
caps->status = 0xffff;
if (!acpi_check_dsm(handle, &NVOP_DSM_GUID, NVOP_DSM_REV, BIT_ULL(0x1a)))
return;
obj = acpi_evaluate_dsm(handle, &NVOP_DSM_GUID, NVOP_DSM_REV, 0x1a, &argv4);
if (!obj)
return;
if (WARN_ON(obj->type != ACPI_TYPE_BUFFER) ||
WARN_ON(obj->buffer.length != 4))
return;
caps->status = 0;
caps->optimusCaps = *(u32 *)obj->buffer.pointer;
ACPI_FREE(obj);
kfree(argv4.buffer.pointer);
}
static void
r535_gsp_acpi_jt(acpi_handle handle, JT_METHOD_DATA *jt)
{
const guid_t JT_DSM_GUID =
GUID_INIT(0xCBECA351L, 0x067B, 0x4924,
0x9C, 0xBD, 0xB4, 0x6B, 0x00, 0xB8, 0x6F, 0x34);
u64 JT_DSM_REV = 0x00000103;
u32 caps;
union acpi_object argv4 = {
.buffer.type = ACPI_TYPE_BUFFER,
.buffer.length = sizeof(caps),
.buffer.pointer = kmalloc(argv4.buffer.length, GFP_KERNEL),
}, *obj;
jt->status = 0xffff;
obj = acpi_evaluate_dsm(handle, &JT_DSM_GUID, JT_DSM_REV, 0x1, &argv4);
if (!obj)
return;
if (WARN_ON(obj->type != ACPI_TYPE_BUFFER) ||
WARN_ON(obj->buffer.length != 4))
return;
jt->status = 0;
jt->jtCaps = *(u32 *)obj->buffer.pointer;
jt->jtRevId = (jt->jtCaps & 0xfff00000) >> 20;
jt->bSBIOSCaps = 0;
ACPI_FREE(obj);
kfree(argv4.buffer.pointer);
}
static void
r535_gsp_acpi_mux_id(acpi_handle handle, u32 id, MUX_METHOD_DATA_ELEMENT *mode,
MUX_METHOD_DATA_ELEMENT *part)
{
union acpi_object mux_arg = { ACPI_TYPE_INTEGER };
struct acpi_object_list input = { 1, &mux_arg };
acpi_handle iter = NULL, handle_mux = NULL;
acpi_status status;
unsigned long long value;
mode->status = 0xffff;
part->status = 0xffff;
do {
status = acpi_get_next_object(ACPI_TYPE_DEVICE, handle, iter, &iter);
if (ACPI_FAILURE(status) || !iter)
return;
status = acpi_evaluate_integer(iter, "_ADR", NULL, &value);
if (ACPI_FAILURE(status) || value != id)
continue;
handle_mux = iter;
} while (!handle_mux);
if (!handle_mux)
return;
/* I -think- 0 means "acquire" according to nvidia's driver source */
input.pointer->integer.type = ACPI_TYPE_INTEGER;
input.pointer->integer.value = 0;
status = acpi_evaluate_integer(handle_mux, "MXDM", &input, &value);
if (ACPI_SUCCESS(status)) {
mode->acpiId = id;
mode->mode = value;
mode->status = 0;
}
status = acpi_evaluate_integer(handle_mux, "MXDS", &input, &value);
if (ACPI_SUCCESS(status)) {
part->acpiId = id;
part->mode = value;
part->status = 0;
}
}
static void
r535_gsp_acpi_mux(acpi_handle handle, DOD_METHOD_DATA *dod, MUX_METHOD_DATA *mux)
{
mux->tableLen = dod->acpiIdListLen / sizeof(dod->acpiIdList[0]);
for (int i = 0; i < mux->tableLen; i++) {
r535_gsp_acpi_mux_id(handle, dod->acpiIdList[i], &mux->acpiIdMuxModeTable[i],
&mux->acpiIdMuxPartTable[i]);
}
}
static void
r535_gsp_acpi_dod(acpi_handle handle, DOD_METHOD_DATA *dod)
{
acpi_status status;
struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL };
union acpi_object *_DOD;
dod->status = 0xffff;
status = acpi_evaluate_object(handle, "_DOD", NULL, &output);
if (ACPI_FAILURE(status))
return;
_DOD = output.pointer;
if (WARN_ON(_DOD->type != ACPI_TYPE_PACKAGE) ||
WARN_ON(_DOD->package.count > ARRAY_SIZE(dod->acpiIdList)))
return;
for (int i = 0; i < _DOD->package.count; i++) {
if (WARN_ON(_DOD->package.elements[i].type != ACPI_TYPE_INTEGER))
return;
dod->acpiIdList[i] = _DOD->package.elements[i].integer.value;
dod->acpiIdListLen += sizeof(dod->acpiIdList[0]);
}
dod->status = 0;
kfree(output.pointer);
}
#endif
static void
r535_gsp_acpi_info(struct nvkm_gsp *gsp, ACPI_METHOD_DATA *acpi)
{
#if defined(CONFIG_ACPI) && defined(CONFIG_X86)
acpi_handle handle = ACPI_HANDLE(gsp->subdev.device->dev);
if (!handle)
return;
acpi->bValid = 1;
r535_gsp_acpi_dod(handle, &acpi->dodMethodData);
if (acpi->dodMethodData.status == 0)
r535_gsp_acpi_mux(handle, &acpi->dodMethodData, &acpi->muxMethodData);
r535_gsp_acpi_jt(handle, &acpi->jtMethodData);
r535_gsp_acpi_caps(handle, &acpi->capsMethodData);
#endif
}
static int
r535_gsp_rpc_set_system_info(struct nvkm_gsp *gsp)
{
struct nvkm_device *device = gsp->subdev.device;
struct nvkm_device_pci *pdev = container_of(device, typeof(*pdev), device);
GspSystemInfo *info;
if (WARN_ON(device->type == NVKM_DEVICE_TEGRA))
return -ENOSYS;
info = nvkm_gsp_rpc_get(gsp, NV_VGPU_MSG_FUNCTION_GSP_SET_SYSTEM_INFO, sizeof(*info));
if (IS_ERR(info))
return PTR_ERR(info);
info->gpuPhysAddr = device->func->resource_addr(device, 0);
info->gpuPhysFbAddr = device->func->resource_addr(device, 1);
info->gpuPhysInstAddr = device->func->resource_addr(device, 3);
info->nvDomainBusDeviceFunc = pci_dev_id(pdev->pdev);
info->maxUserVa = TASK_SIZE;
info->pciConfigMirrorBase = 0x088000;
info->pciConfigMirrorSize = 0x001000;
r535_gsp_acpi_info(gsp, &info->acpiMethodData);
return nvkm_gsp_rpc_wr(gsp, info, NVKM_GSP_RPC_REPLY_NOWAIT);
}
static int
r535_gsp_msg_os_error_log(void *priv, u32 fn, void *repv, u32 repc)
{
struct nvkm_gsp *gsp = priv;
struct nvkm_subdev *subdev = &gsp->subdev;
rpc_os_error_log_v17_00 *msg = repv;
if (WARN_ON(repc < sizeof(*msg)))
return -EINVAL;
nvkm_error(subdev, "Xid:%d %s\n", msg->exceptType, msg->errString);
return 0;
}
static int
r535_gsp_msg_rc_triggered(void *priv, u32 fn, void *repv, u32 repc)
{
rpc_rc_triggered_v17_02 *msg = repv;
struct nvkm_gsp *gsp = priv;
struct nvkm_subdev *subdev = &gsp->subdev;
struct nvkm_chan *chan;
unsigned long flags;
if (WARN_ON(repc < sizeof(*msg)))
return -EINVAL;
nvkm_error(subdev, "rc engn:%08x chid:%d type:%d scope:%d part:%d\n",
msg->nv2080EngineType, msg->chid, msg->exceptType, msg->scope,
msg->partitionAttributionId);
chan = nvkm_chan_get_chid(&subdev->device->fifo->engine, msg->chid / 8, &flags);
if (!chan) {
nvkm_error(subdev, "rc chid:%d not found!\n", msg->chid);
return 0;
}
nvkm_chan_error(chan, false);
nvkm_chan_put(&chan, flags);
return 0;
}
static int
r535_gsp_msg_mmu_fault_queued(void *priv, u32 fn, void *repv, u32 repc)
{
struct nvkm_gsp *gsp = priv;
struct nvkm_subdev *subdev = &gsp->subdev;
WARN_ON(repc != 0);
nvkm_error(subdev, "mmu fault queued\n");
return 0;
}
static int
r535_gsp_msg_post_event(void *priv, u32 fn, void *repv, u32 repc)
{
struct nvkm_gsp *gsp = priv;
struct nvkm_gsp_client *client;
struct nvkm_subdev *subdev = &gsp->subdev;
rpc_post_event_v17_00 *msg = repv;
if (WARN_ON(repc < sizeof(*msg)))
return -EINVAL;
if (WARN_ON(repc != sizeof(*msg) + msg->eventDataSize))
return -EINVAL;
nvkm_debug(subdev, "event: %08x %08x %d %08x %08x %d %d\n",
msg->hClient, msg->hEvent, msg->notifyIndex, msg->data,
msg->status, msg->eventDataSize, msg->bNotifyList);
mutex_lock(&gsp->client_id.mutex);
client = idr_find(&gsp->client_id.idr, msg->hClient & 0xffff);
if (client) {
struct nvkm_gsp_event *event;
bool handled = false;
list_for_each_entry(event, &client->events, head) {
if (event->object.handle == msg->hEvent) {
event->func(event, msg->eventData, msg->eventDataSize);
handled = true;
}
}
if (!handled) {
nvkm_error(subdev, "event: cid 0x%08x event 0x%08x not found!\n",
msg->hClient, msg->hEvent);
}
} else {
nvkm_error(subdev, "event: cid 0x%08x not found!\n", msg->hClient);
}
mutex_unlock(&gsp->client_id.mutex);
return 0;
}
/**
* r535_gsp_msg_run_cpu_sequencer() -- process I/O commands from the GSP
* @priv: gsp pointer
* @fn: function number (ignored)
* @repv: pointer to libos print RPC
* @repc: message size
*
* The GSP sequencer is a list of I/O commands that the GSP can send to
* the driver to perform for various purposes. The most common usage is to
* perform a special mid-initialization reset.
*/
static int
r535_gsp_msg_run_cpu_sequencer(void *priv, u32 fn, void *repv, u32 repc)
{
struct nvkm_gsp *gsp = priv;
struct nvkm_subdev *subdev = &gsp->subdev;
struct nvkm_device *device = subdev->device;
rpc_run_cpu_sequencer_v17_00 *seq = repv;
int ptr = 0, ret;
nvkm_debug(subdev, "seq: %08x %08x\n", seq->bufferSizeDWord, seq->cmdIndex);
while (ptr < seq->cmdIndex) {
GSP_SEQUENCER_BUFFER_CMD *cmd = (void *)&seq->commandBuffer[ptr];
ptr += 1;
ptr += GSP_SEQUENCER_PAYLOAD_SIZE_DWORDS(cmd->opCode);
switch (cmd->opCode) {
case GSP_SEQ_BUF_OPCODE_REG_WRITE: {
u32 addr = cmd->payload.regWrite.addr;
u32 data = cmd->payload.regWrite.val;
nvkm_trace(subdev, "seq wr32 %06x %08x\n", addr, data);
nvkm_wr32(device, addr, data);
}
break;
case GSP_SEQ_BUF_OPCODE_REG_MODIFY: {
u32 addr = cmd->payload.regModify.addr;
u32 mask = cmd->payload.regModify.mask;
u32 data = cmd->payload.regModify.val;
nvkm_trace(subdev, "seq mask %06x %08x %08x\n", addr, mask, data);
nvkm_mask(device, addr, mask, data);
}
break;
case GSP_SEQ_BUF_OPCODE_REG_POLL: {
u32 addr = cmd->payload.regPoll.addr;
u32 mask = cmd->payload.regPoll.mask;
u32 data = cmd->payload.regPoll.val;
u32 usec = cmd->payload.regPoll.timeout ?: 4000000;
//u32 error = cmd->payload.regPoll.error;
nvkm_trace(subdev, "seq poll %06x %08x %08x %d\n", addr, mask, data, usec);
nvkm_rd32(device, addr);
nvkm_usec(device, usec,
if ((nvkm_rd32(device, addr) & mask) == data)
break;
);
}
break;
case GSP_SEQ_BUF_OPCODE_DELAY_US: {
u32 usec = cmd->payload.delayUs.val;
nvkm_trace(subdev, "seq usec %d\n", usec);
udelay(usec);
}
break;
case GSP_SEQ_BUF_OPCODE_REG_STORE: {
u32 addr = cmd->payload.regStore.addr;
u32 slot = cmd->payload.regStore.index;
seq->regSaveArea[slot] = nvkm_rd32(device, addr);
nvkm_trace(subdev, "seq save %08x -> %d: %08x\n", addr, slot,
seq->regSaveArea[slot]);
}
break;
case GSP_SEQ_BUF_OPCODE_CORE_RESET:
nvkm_trace(subdev, "seq core reset\n");
nvkm_falcon_reset(&gsp->falcon);
nvkm_falcon_mask(&gsp->falcon, 0x624, 0x00000080, 0x00000080);
nvkm_falcon_wr32(&gsp->falcon, 0x10c, 0x00000000);
break;
case GSP_SEQ_BUF_OPCODE_CORE_START:
nvkm_trace(subdev, "seq core start\n");
if (nvkm_falcon_rd32(&gsp->falcon, 0x100) & 0x00000040)
nvkm_falcon_wr32(&gsp->falcon, 0x130, 0x00000002);
else
nvkm_falcon_wr32(&gsp->falcon, 0x100, 0x00000002);
break;
case GSP_SEQ_BUF_OPCODE_CORE_WAIT_FOR_HALT:
nvkm_trace(subdev, "seq core wait halt\n");
nvkm_msec(device, 2000,
if (nvkm_falcon_rd32(&gsp->falcon, 0x100) & 0x00000010)
break;
);
break;
case GSP_SEQ_BUF_OPCODE_CORE_RESUME: {
struct nvkm_sec2 *sec2 = device->sec2;
u32 mbox0;
nvkm_trace(subdev, "seq core resume\n");
ret = gsp->func->reset(gsp);
if (WARN_ON(ret))
return ret;
nvkm_falcon_wr32(&gsp->falcon, 0x040, lower_32_bits(gsp->libos.addr));
nvkm_falcon_wr32(&gsp->falcon, 0x044, upper_32_bits(gsp->libos.addr));
nvkm_falcon_start(&sec2->falcon);
if (nvkm_msec(device, 2000,
if (nvkm_rd32(device, 0x1180f8) & 0x04000000)
break;
) < 0)
return -ETIMEDOUT;
mbox0 = nvkm_falcon_rd32(&sec2->falcon, 0x040);
if (WARN_ON(mbox0)) {
nvkm_error(&gsp->subdev, "seq core resume sec2: 0x%x\n", mbox0);
return -EIO;
}
nvkm_falcon_wr32(&gsp->falcon, 0x080, gsp->boot.app_version);
if (WARN_ON(!nvkm_falcon_riscv_active(&gsp->falcon)))
return -EIO;
}
break;
default:
nvkm_error(subdev, "unknown sequencer opcode %08x\n", cmd->opCode);
return -EINVAL;
}
}
return 0;
}
static int
r535_gsp_booter_unload(struct nvkm_gsp *gsp, u32 mbox0, u32 mbox1)
{
struct nvkm_subdev *subdev = &gsp->subdev;
struct nvkm_device *device = subdev->device;
u32 wpr2_hi;
int ret;
wpr2_hi = nvkm_rd32(device, 0x1fa828);
if (!wpr2_hi) {
nvkm_debug(subdev, "WPR2 not set - skipping booter unload\n");
return 0;
}
ret = nvkm_falcon_fw_boot(&gsp->booter.unload, &gsp->subdev, true, &mbox0, &mbox1, 0, 0);
if (WARN_ON(ret))
return ret;
wpr2_hi = nvkm_rd32(device, 0x1fa828);
if (WARN_ON(wpr2_hi))
return -EIO;
return 0;
}
static int
r535_gsp_booter_load(struct nvkm_gsp *gsp, u32 mbox0, u32 mbox1)
{
int ret;
ret = nvkm_falcon_fw_boot(&gsp->booter.load, &gsp->subdev, true, &mbox0, &mbox1, 0, 0);
if (ret)
return ret;
nvkm_falcon_wr32(&gsp->falcon, 0x080, gsp->boot.app_version);
if (WARN_ON(!nvkm_falcon_riscv_active(&gsp->falcon)))
return -EIO;
return 0;
}
static int
r535_gsp_wpr_meta_init(struct nvkm_gsp *gsp)
{
GspFwWprMeta *meta;
int ret;
ret = nvkm_gsp_mem_ctor(gsp, 0x1000, &gsp->wpr_meta);
if (ret)
return ret;
meta = gsp->wpr_meta.data;
meta->magic = GSP_FW_WPR_META_MAGIC;
meta->revision = GSP_FW_WPR_META_REVISION;
meta->sysmemAddrOfRadix3Elf = gsp->radix3.lvl0.addr;
meta->sizeOfRadix3Elf = gsp->fb.wpr2.elf.size;
meta->sysmemAddrOfBootloader = gsp->boot.fw.addr;
meta->sizeOfBootloader = gsp->boot.fw.size;
meta->bootloaderCodeOffset = gsp->boot.code_offset;
meta->bootloaderDataOffset = gsp->boot.data_offset;
meta->bootloaderManifestOffset = gsp->boot.manifest_offset;
meta->sysmemAddrOfSignature = gsp->sig.addr;
meta->sizeOfSignature = gsp->sig.size;
meta->gspFwRsvdStart = gsp->fb.heap.addr;
meta->nonWprHeapOffset = gsp->fb.heap.addr;
meta->nonWprHeapSize = gsp->fb.heap.size;
meta->gspFwWprStart = gsp->fb.wpr2.addr;
meta->gspFwHeapOffset = gsp->fb.wpr2.heap.addr;
meta->gspFwHeapSize = gsp->fb.wpr2.heap.size;
meta->gspFwOffset = gsp->fb.wpr2.elf.addr;
meta->bootBinOffset = gsp->fb.wpr2.boot.addr;
meta->frtsOffset = gsp->fb.wpr2.frts.addr;
meta->frtsSize = gsp->fb.wpr2.frts.size;
meta->gspFwWprEnd = ALIGN_DOWN(gsp->fb.bios.vga_workspace.addr, 0x20000);
meta->fbSize = gsp->fb.size;
meta->vgaWorkspaceOffset = gsp->fb.bios.vga_workspace.addr;
meta->vgaWorkspaceSize = gsp->fb.bios.vga_workspace.size;
meta->bootCount = 0;
meta->partitionRpcAddr = 0;
meta->partitionRpcRequestOffset = 0;
meta->partitionRpcReplyOffset = 0;
meta->verified = 0;
return 0;
}
static int
r535_gsp_shared_init(struct nvkm_gsp *gsp)
{
struct {
msgqTxHeader tx;
msgqRxHeader rx;
} *cmdq, *msgq;
int ret, i;
gsp->shm.cmdq.size = 0x40000;
gsp->shm.msgq.size = 0x40000;
gsp->shm.ptes.nr = (gsp->shm.cmdq.size + gsp->shm.msgq.size) >> GSP_PAGE_SHIFT;
gsp->shm.ptes.nr += DIV_ROUND_UP(gsp->shm.ptes.nr * sizeof(u64), GSP_PAGE_SIZE);
gsp->shm.ptes.size = ALIGN(gsp->shm.ptes.nr * sizeof(u64), GSP_PAGE_SIZE);
ret = nvkm_gsp_mem_ctor(gsp, gsp->shm.ptes.size +
gsp->shm.cmdq.size +
gsp->shm.msgq.size,
&gsp->shm.mem);
if (ret)
return ret;
gsp->shm.ptes.ptr = gsp->shm.mem.data;
gsp->shm.cmdq.ptr = (u8 *)gsp->shm.ptes.ptr + gsp->shm.ptes.size;
gsp->shm.msgq.ptr = (u8 *)gsp->shm.cmdq.ptr + gsp->shm.cmdq.size;
for (i = 0; i < gsp->shm.ptes.nr; i++)
gsp->shm.ptes.ptr[i] = gsp->shm.mem.addr + (i << GSP_PAGE_SHIFT);
cmdq = gsp->shm.cmdq.ptr;
cmdq->tx.version = 0;
cmdq->tx.size = gsp->shm.cmdq.size;
cmdq->tx.entryOff = GSP_PAGE_SIZE;
cmdq->tx.msgSize = GSP_PAGE_SIZE;
cmdq->tx.msgCount = (cmdq->tx.size - cmdq->tx.entryOff) / cmdq->tx.msgSize;
cmdq->tx.writePtr = 0;
cmdq->tx.flags = 1;
cmdq->tx.rxHdrOff = offsetof(typeof(*cmdq), rx.readPtr);
msgq = gsp->shm.msgq.ptr;
gsp->cmdq.cnt = cmdq->tx.msgCount;
gsp->cmdq.wptr = &cmdq->tx.writePtr;
gsp->cmdq.rptr = &msgq->rx.readPtr;
gsp->msgq.cnt = cmdq->tx.msgCount;
gsp->msgq.wptr = &msgq->tx.writePtr;
gsp->msgq.rptr = &cmdq->rx.readPtr;
return 0;
}
static int
r535_gsp_rmargs_init(struct nvkm_gsp *gsp, bool resume)
{
GSP_ARGUMENTS_CACHED *args;
int ret;
if (!resume) {
ret = r535_gsp_shared_init(gsp);
if (ret)
return ret;
ret = nvkm_gsp_mem_ctor(gsp, 0x1000, &gsp->rmargs);
if (ret)
return ret;
}
args = gsp->rmargs.data;
args->messageQueueInitArguments.sharedMemPhysAddr = gsp->shm.mem.addr;
args->messageQueueInitArguments.pageTableEntryCount = gsp->shm.ptes.nr;
args->messageQueueInitArguments.cmdQueueOffset =
(u8 *)gsp->shm.cmdq.ptr - (u8 *)gsp->shm.mem.data;
args->messageQueueInitArguments.statQueueOffset =
(u8 *)gsp->shm.msgq.ptr - (u8 *)gsp->shm.mem.data;
if (!resume) {
args->srInitArguments.oldLevel = 0;
args->srInitArguments.flags = 0;
args->srInitArguments.bInPMTransition = 0;
} else {
args->srInitArguments.oldLevel = NV2080_CTRL_GPU_SET_POWER_STATE_GPU_LEVEL_3;
args->srInitArguments.flags = 0;
args->srInitArguments.bInPMTransition = 1;
}
return 0;
}
#ifdef CONFIG_DEBUG_FS
/*
* If GSP-RM load fails, then the GSP nvkm object will be deleted, the logging
* debugfs entries will be deleted, and it will not be possible to debug the
* load failure. The keep_gsp_logging parameter tells Nouveau to copy the
* logging buffers to new debugfs entries, and these entries are retained
* until the driver unloads.
*/
static bool keep_gsp_logging;
module_param(keep_gsp_logging, bool, 0444);
MODULE_PARM_DESC(keep_gsp_logging,
"Migrate the GSP-RM logging debugfs entries upon exit");
/*
* GSP-RM uses a pseudo-class mechanism to define of a variety of per-"engine"
* data structures, and each engine has a "class ID" genererated by a
* pre-processor. This is the class ID for the PMU.
*/
#define NV_GSP_MSG_EVENT_UCODE_LIBOS_CLASS_PMU 0xf3d722
/**
* struct rpc_ucode_libos_print_v1e_08 - RPC payload for libos print buffers
* @ucode_eng_desc: the engine descriptor
* @libos_print_buf_size: the size of the libos_print_buf[]
* @libos_print_buf: the actual buffer
*
* The engine descriptor is divided into 31:8 "class ID" and 7:0 "instance
* ID". We only care about messages from PMU.
*/
struct rpc_ucode_libos_print_v1e_08 {
u32 ucode_eng_desc;
u32 libos_print_buf_size;
u8 libos_print_buf[];
};
/**
* r535_gsp_msg_libos_print - capture log message from the PMU
* @priv: gsp pointer
* @fn: function number (ignored)
* @repv: pointer to libos print RPC
* @repc: message size
*
* Called when we receive a UCODE_LIBOS_PRINT event RPC from GSP-RM. This RPC
* contains the contents of the libos print buffer from PMU. It is typically
* only written to when PMU encounters an error.
*
* Technically this RPC can be used to pass print buffers from any number of
* GSP-RM engines, but we only expect to receive them for the PMU.
*
* For the PMU, the buffer is 4K in size and the RPC always contains the full
* contents.
*/
static int
r535_gsp_msg_libos_print(void *priv, u32 fn, void *repv, u32 repc)
{
struct nvkm_gsp *gsp = priv;
struct nvkm_subdev *subdev = &gsp->subdev;
struct rpc_ucode_libos_print_v1e_08 *rpc = repv;
unsigned int class = rpc->ucode_eng_desc >> 8;
nvkm_debug(subdev, "received libos print from class 0x%x for %u bytes\n",
class, rpc->libos_print_buf_size);
if (class != NV_GSP_MSG_EVENT_UCODE_LIBOS_CLASS_PMU) {
nvkm_warn(subdev,
"received libos print from unknown class 0x%x\n",
class);
return -ENOMSG;
}
if (rpc->libos_print_buf_size > GSP_PAGE_SIZE) {
nvkm_error(subdev, "libos print is too large (%u bytes)\n",
rpc->libos_print_buf_size);
return -E2BIG;
}
memcpy(gsp->blob_pmu.data, rpc->libos_print_buf, rpc->libos_print_buf_size);
return 0;
}
/**
* create_debugfs - create a blob debugfs entry
* @gsp: gsp pointer
* @name: name of this dentry
* @blob: blob wrapper
*
* Creates a debugfs entry for a logging buffer with the name 'name'.
*/
static struct dentry *create_debugfs(struct nvkm_gsp *gsp, const char *name,
struct debugfs_blob_wrapper *blob)
{
struct dentry *dent;
dent = debugfs_create_blob(name, 0444, gsp->debugfs.parent, blob);
if (IS_ERR(dent)) {
nvkm_error(&gsp->subdev,
"failed to create %s debugfs entry\n", name);
return NULL;
}
/*
* For some reason, debugfs_create_blob doesn't set the size of the
* dentry, so do that here. See [1]
*
* [1] https://lore.kernel.org/r/linux-fsdevel/20240207200619.3354549-1-ttabi@nvidia.com/
*/
i_size_write(d_inode(dent), blob->size);
return dent;
}
/**
* r535_gsp_libos_debugfs_init - create logging debugfs entries
* @gsp: gsp pointer
*
* Create the debugfs entries. This exposes the log buffers to userspace so
* that an external tool can parse it.
*
* The 'logpmu' contains exception dumps from the PMU. It is written via an
* RPC sent from GSP-RM and must be only 4KB. We create it here because it's
* only useful if there is a debugfs entry to expose it. If we get the PMU
* logging RPC and there is no debugfs entry, the RPC is just ignored.
*
* The blob_init, blob_rm, and blob_pmu objects can't be transient
* because debugfs_create_blob doesn't copy them.
*
* NOTE: OpenRM loads the logging elf image and prints the log messages
* in real-time. We may add that capability in the future, but that
* requires loading ELF images that are not distributed with the driver and
* adding the parsing code to Nouveau.
*
* Ideally, this should be part of nouveau_debugfs_init(), but that function
* is called too late. We really want to create these debugfs entries before
* r535_gsp_booter_load() is called, so that if GSP-RM fails to initialize,
* there could still be a log to capture.
*/
static void
r535_gsp_libos_debugfs_init(struct nvkm_gsp *gsp)
{
struct device *dev = gsp->subdev.device->dev;
/* Create a new debugfs directory with a name unique to this GPU. */
gsp->debugfs.parent = debugfs_create_dir(dev_name(dev), nouveau_debugfs_root);
if (IS_ERR(gsp->debugfs.parent)) {
nvkm_error(&gsp->subdev,
"failed to create %s debugfs root\n", dev_name(dev));
return;
}
gsp->blob_init.data = gsp->loginit.data;
gsp->blob_init.size = gsp->loginit.size;
gsp->blob_intr.data = gsp->logintr.data;
gsp->blob_intr.size = gsp->logintr.size;
gsp->blob_rm.data = gsp->logrm.data;
gsp->blob_rm.size = gsp->logrm.size;
gsp->debugfs.init = create_debugfs(gsp, "loginit", &gsp->blob_init);
if (!gsp->debugfs.init)
goto error;
gsp->debugfs.intr = create_debugfs(gsp, "logintr", &gsp->blob_intr);
if (!gsp->debugfs.intr)
goto error;
gsp->debugfs.rm = create_debugfs(gsp, "logrm", &gsp->blob_rm);
if (!gsp->debugfs.rm)
goto error;
/*
* Since the PMU buffer is copied from an RPC, it doesn't need to be
* a DMA buffer.
*/
gsp->blob_pmu.size = GSP_PAGE_SIZE;
gsp->blob_pmu.data = kzalloc(gsp->blob_pmu.size, GFP_KERNEL);
if (!gsp->blob_pmu.data)
goto error;
gsp->debugfs.pmu = create_debugfs(gsp, "logpmu", &gsp->blob_pmu);
if (!gsp->debugfs.pmu) {
kfree(gsp->blob_pmu.data);
goto error;
}
i_size_write(d_inode(gsp->debugfs.init), gsp->blob_init.size);
i_size_write(d_inode(gsp->debugfs.intr), gsp->blob_intr.size);
i_size_write(d_inode(gsp->debugfs.rm), gsp->blob_rm.size);
i_size_write(d_inode(gsp->debugfs.pmu), gsp->blob_pmu.size);
r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_UCODE_LIBOS_PRINT,
r535_gsp_msg_libos_print, gsp);
nvkm_debug(&gsp->subdev, "created debugfs GSP-RM logging entries\n");
if (keep_gsp_logging) {
nvkm_info(&gsp->subdev,
"logging buffers will be retained on failure\n");
}
return;
error:
debugfs_remove(gsp->debugfs.parent);
gsp->debugfs.parent = NULL;
}
#endif
static inline u64
r535_gsp_libos_id8(const char *name)
{
u64 id = 0;
for (int i = 0; i < sizeof(id) && *name; i++, name++)
id = (id << 8) | *name;
return id;
}
/**
* create_pte_array() - creates a PTE array of a physically contiguous buffer
* @ptes: pointer to the array
* @addr: base address of physically contiguous buffer (GSP_PAGE_SIZE aligned)
* @size: size of the buffer
*
* GSP-RM sometimes expects physically-contiguous buffers to have an array of
* "PTEs" for each page in that buffer. Although in theory that allows for
* the buffer to be physically discontiguous, GSP-RM does not currently
* support that.
*
* In this case, the PTEs are DMA addresses of each page of the buffer. Since
* the buffer is physically contiguous, calculating all the PTEs is simple
* math.
*
* See memdescGetPhysAddrsForGpu()
*/
static void create_pte_array(u64 *ptes, dma_addr_t addr, size_t size)
{
unsigned int num_pages = DIV_ROUND_UP_ULL(size, GSP_PAGE_SIZE);
unsigned int i;
for (i = 0; i < num_pages; i++)
ptes[i] = (u64)addr + (i << GSP_PAGE_SHIFT);
}
/**
* r535_gsp_libos_init() -- create the libos arguments structure
* @gsp: gsp pointer
*
* The logging buffers are byte queues that contain encoded printf-like
* messages from GSP-RM. They need to be decoded by a special application
* that can parse the buffers.
*
* The 'loginit' buffer contains logs from early GSP-RM init and
* exception dumps. The 'logrm' buffer contains the subsequent logs. Both are
* written to directly by GSP-RM and can be any multiple of GSP_PAGE_SIZE.
*
* The physical address map for the log buffer is stored in the buffer
* itself, starting with offset 1. Offset 0 contains the "put" pointer (pp).
* Initially, pp is equal to 0. If the buffer has valid logging data in it,
* then pp points to index into the buffer where the next logging entry will
* be written. Therefore, the logging data is valid if:
* 1 <= pp < sizeof(buffer)/sizeof(u64)
*
* The GSP only understands 4K pages (GSP_PAGE_SIZE), so even if the kernel is
* configured for a larger page size (e.g. 64K pages), we need to give
* the GSP an array of 4K pages. Fortunately, since the buffer is
* physically contiguous, it's simple math to calculate the addresses.
*
* The buffers must be a multiple of GSP_PAGE_SIZE. GSP-RM also currently
* ignores the @kind field for LOGINIT, LOGINTR, and LOGRM, but expects the
* buffers to be physically contiguous anyway.
*
* The memory allocated for the arguments must remain until the GSP sends the
* init_done RPC.
*
* See _kgspInitLibosLoggingStructures (allocates memory for buffers)
* See kgspSetupLibosInitArgs_IMPL (creates pLibosInitArgs[] array)
*/
static int
r535_gsp_libos_init(struct nvkm_gsp *gsp)
{
LibosMemoryRegionInitArgument *args;
int ret;
ret = nvkm_gsp_mem_ctor(gsp, 0x1000, &gsp->libos);
if (ret)
return ret;
args = gsp->libos.data;
ret = nvkm_gsp_mem_ctor(gsp, 0x10000, &gsp->loginit);
if (ret)
return ret;
args[0].id8 = r535_gsp_libos_id8("LOGINIT");
args[0].pa = gsp->loginit.addr;
args[0].size = gsp->loginit.size;
args[0].kind = LIBOS_MEMORY_REGION_CONTIGUOUS;
args[0].loc = LIBOS_MEMORY_REGION_LOC_SYSMEM;
create_pte_array(gsp->loginit.data + sizeof(u64), gsp->loginit.addr, gsp->loginit.size);
ret = nvkm_gsp_mem_ctor(gsp, 0x10000, &gsp->logintr);
if (ret)
return ret;
args[1].id8 = r535_gsp_libos_id8("LOGINTR");
args[1].pa = gsp->logintr.addr;
args[1].size = gsp->logintr.size;
args[1].kind = LIBOS_MEMORY_REGION_CONTIGUOUS;
args[1].loc = LIBOS_MEMORY_REGION_LOC_SYSMEM;
create_pte_array(gsp->logintr.data + sizeof(u64), gsp->logintr.addr, gsp->logintr.size);
ret = nvkm_gsp_mem_ctor(gsp, 0x10000, &gsp->logrm);
if (ret)
return ret;
args[2].id8 = r535_gsp_libos_id8("LOGRM");
args[2].pa = gsp->logrm.addr;
args[2].size = gsp->logrm.size;
args[2].kind = LIBOS_MEMORY_REGION_CONTIGUOUS;
args[2].loc = LIBOS_MEMORY_REGION_LOC_SYSMEM;
create_pte_array(gsp->logrm.data + sizeof(u64), gsp->logrm.addr, gsp->logrm.size);
ret = r535_gsp_rmargs_init(gsp, false);
if (ret)
return ret;
args[3].id8 = r535_gsp_libos_id8("RMARGS");
args[3].pa = gsp->rmargs.addr;
args[3].size = gsp->rmargs.size;
args[3].kind = LIBOS_MEMORY_REGION_CONTIGUOUS;
args[3].loc = LIBOS_MEMORY_REGION_LOC_SYSMEM;
#ifdef CONFIG_DEBUG_FS
r535_gsp_libos_debugfs_init(gsp);
#endif
return 0;
}
void
nvkm_gsp_sg_free(struct nvkm_device *device, struct sg_table *sgt)
{
struct scatterlist *sgl;
int i;
dma_unmap_sgtable(device->dev, sgt, DMA_BIDIRECTIONAL, 0);
for_each_sgtable_sg(sgt, sgl, i) {
struct page *page = sg_page(sgl);
__free_page(page);
}
sg_free_table(sgt);
}
int
nvkm_gsp_sg(struct nvkm_device *device, u64 size, struct sg_table *sgt)
{
const u64 pages = DIV_ROUND_UP(size, PAGE_SIZE);
struct scatterlist *sgl;
int ret, i;
ret = sg_alloc_table(sgt, pages, GFP_KERNEL);
if (ret)
return ret;
for_each_sgtable_sg(sgt, sgl, i) {
struct page *page = alloc_page(GFP_KERNEL);
if (!page) {
nvkm_gsp_sg_free(device, sgt);
return -ENOMEM;
}
sg_set_page(sgl, page, PAGE_SIZE, 0);
}
ret = dma_map_sgtable(device->dev, sgt, DMA_BIDIRECTIONAL, 0);
if (ret)
nvkm_gsp_sg_free(device, sgt);
return ret;
}
static void
nvkm_gsp_radix3_dtor(struct nvkm_gsp *gsp, struct nvkm_gsp_radix3 *rx3)
{
nvkm_gsp_sg_free(gsp->subdev.device, &rx3->lvl2);
nvkm_gsp_mem_dtor(&rx3->lvl1);
nvkm_gsp_mem_dtor(&rx3->lvl0);
}
/**
* nvkm_gsp_radix3_sg - build a radix3 table from a S/G list
* @gsp: gsp pointer
* @sgt: S/G list to traverse
* @size: size of the image, in bytes
* @rx3: radix3 array to update
*
* The GSP uses a three-level page table, called radix3, to map the firmware.
* Each 64-bit "pointer" in the table is either the bus address of an entry in
* the next table (for levels 0 and 1) or the bus address of the next page in
* the GSP firmware image itself.
*
* Level 0 contains a single entry in one page that points to the first page
* of level 1.
*
* Level 1, since it's also only one page in size, contains up to 512 entries,
* one for each page in Level 2.
*
* Level 2 can be up to 512 pages in size, and each of those entries points to
* the next page of the firmware image. Since there can be up to 512*512
* pages, that limits the size of the firmware to 512*512*GSP_PAGE_SIZE = 1GB.
*
* Internally, the GSP has its window into system memory, but the base
* physical address of the aperture is not 0. In fact, it varies depending on
* the GPU architecture. Since the GPU is a PCI device, this window is
* accessed via DMA and is therefore bound by IOMMU translation. The end
* result is that GSP-RM must translate the bus addresses in the table to GSP
* physical addresses. All this should happen transparently.
*
* Returns 0 on success, or negative error code
*
* See kgspCreateRadix3_IMPL
*/
static int
nvkm_gsp_radix3_sg(struct nvkm_gsp *gsp, struct sg_table *sgt, u64 size,
struct nvkm_gsp_radix3 *rx3)
{
struct sg_dma_page_iter sg_dma_iter;
struct scatterlist *sg;
size_t bufsize;
u64 *pte;
int ret, i, page_idx = 0;
ret = nvkm_gsp_mem_ctor(gsp, GSP_PAGE_SIZE, &rx3->lvl0);
if (ret)
return ret;
ret = nvkm_gsp_mem_ctor(gsp, GSP_PAGE_SIZE, &rx3->lvl1);
if (ret)
goto lvl1_fail;
// Allocate level 2
bufsize = ALIGN((size / GSP_PAGE_SIZE) * sizeof(u64), GSP_PAGE_SIZE);
ret = nvkm_gsp_sg(gsp->subdev.device, bufsize, &rx3->lvl2);
if (ret)
goto lvl2_fail;
// Write the bus address of level 1 to level 0
pte = rx3->lvl0.data;
*pte = rx3->lvl1.addr;
// Write the bus address of each page in level 2 to level 1
pte = rx3->lvl1.data;
for_each_sgtable_dma_page(&rx3->lvl2, &sg_dma_iter, 0)
*pte++ = sg_page_iter_dma_address(&sg_dma_iter);
// Finally, write the bus address of each page in sgt to level 2
for_each_sgtable_sg(&rx3->lvl2, sg, i) {
void *sgl_end;
pte = sg_virt(sg);
sgl_end = (void *)pte + sg->length;
for_each_sgtable_dma_page(sgt, &sg_dma_iter, page_idx) {
*pte++ = sg_page_iter_dma_address(&sg_dma_iter);
page_idx++;
// Go to the next scatterlist for level 2 if we've reached the end
if ((void *)pte >= sgl_end)
break;
}
}
if (ret) {
lvl2_fail:
nvkm_gsp_mem_dtor(&rx3->lvl1);
lvl1_fail:
nvkm_gsp_mem_dtor(&rx3->lvl0);
}
return ret;
}
int
r535_gsp_fini(struct nvkm_gsp *gsp, bool suspend)
{
u32 mbox0 = 0xff, mbox1 = 0xff;
int ret;
if (!gsp->running)
return 0;
if (suspend) {
GspFwWprMeta *meta = gsp->wpr_meta.data;
u64 len = meta->gspFwWprEnd - meta->gspFwWprStart;
GspFwSRMeta *sr;
ret = nvkm_gsp_sg(gsp->subdev.device, len, &gsp->sr.sgt);
if (ret)
return ret;
ret = nvkm_gsp_radix3_sg(gsp, &gsp->sr.sgt, len, &gsp->sr.radix3);
if (ret)
return ret;
ret = nvkm_gsp_mem_ctor(gsp, sizeof(*sr), &gsp->sr.meta);
if (ret)
return ret;
sr = gsp->sr.meta.data;
sr->magic = GSP_FW_SR_META_MAGIC;
sr->revision = GSP_FW_SR_META_REVISION;
sr->sysmemAddrOfSuspendResumeData = gsp->sr.radix3.lvl0.addr;
sr->sizeOfSuspendResumeData = len;
mbox0 = lower_32_bits(gsp->sr.meta.addr);
mbox1 = upper_32_bits(gsp->sr.meta.addr);
}
ret = r535_gsp_rpc_unloading_guest_driver(gsp, suspend);
if (WARN_ON(ret))
return ret;
nvkm_msec(gsp->subdev.device, 2000,
if (nvkm_falcon_rd32(&gsp->falcon, 0x040) == 0x80000000)
break;
);
nvkm_falcon_reset(&gsp->falcon);
ret = nvkm_gsp_fwsec_sb(gsp);
WARN_ON(ret);
ret = r535_gsp_booter_unload(gsp, mbox0, mbox1);
WARN_ON(ret);
gsp->running = false;
return 0;
}
int
r535_gsp_init(struct nvkm_gsp *gsp)
{
u32 mbox0, mbox1;
int ret;
if (!gsp->sr.meta.data) {
mbox0 = lower_32_bits(gsp->wpr_meta.addr);
mbox1 = upper_32_bits(gsp->wpr_meta.addr);
} else {
r535_gsp_rmargs_init(gsp, true);
mbox0 = lower_32_bits(gsp->sr.meta.addr);
mbox1 = upper_32_bits(gsp->sr.meta.addr);
}
/* Execute booter to handle (eventually...) booting GSP-RM. */
ret = r535_gsp_booter_load(gsp, mbox0, mbox1);
if (WARN_ON(ret))
goto done;
ret = r535_gsp_rpc_poll(gsp, NV_VGPU_MSG_EVENT_GSP_INIT_DONE);
if (ret)
goto done;
gsp->running = true;
done:
if (gsp->sr.meta.data) {
nvkm_gsp_mem_dtor(&gsp->sr.meta);
nvkm_gsp_radix3_dtor(gsp, &gsp->sr.radix3);
nvkm_gsp_sg_free(gsp->subdev.device, &gsp->sr.sgt);
return ret;
}
if (ret == 0)
ret = r535_gsp_postinit(gsp);
return ret;
}
static int
r535_gsp_rm_boot_ctor(struct nvkm_gsp *gsp)
{
const struct firmware *fw = gsp->fws.bl;
const struct nvfw_bin_hdr *hdr;
RM_RISCV_UCODE_DESC *desc;
int ret;
hdr = nvfw_bin_hdr(&gsp->subdev, fw->data);
desc = (void *)fw->data + hdr->header_offset;
ret = nvkm_gsp_mem_ctor(gsp, hdr->data_size, &gsp->boot.fw);
if (ret)
return ret;
memcpy(gsp->boot.fw.data, fw->data + hdr->data_offset, hdr->data_size);
gsp->boot.code_offset = desc->monitorCodeOffset;
gsp->boot.data_offset = desc->monitorDataOffset;
gsp->boot.manifest_offset = desc->manifestOffset;
gsp->boot.app_version = desc->appVersion;
return 0;
}
static const struct nvkm_firmware_func
r535_gsp_fw = {
.type = NVKM_FIRMWARE_IMG_SGT,
};
static int
r535_gsp_elf_section(struct nvkm_gsp *gsp, const char *name, const u8 **pdata, u64 *psize)
{
const u8 *img = gsp->fws.rm->data;
const struct elf64_hdr *ehdr = (const struct elf64_hdr *)img;
const struct elf64_shdr *shdr = (const struct elf64_shdr *)&img[ehdr->e_shoff];
const char *names = &img[shdr[ehdr->e_shstrndx].sh_offset];
for (int i = 0; i < ehdr->e_shnum; i++, shdr++) {
if (!strcmp(&names[shdr->sh_name], name)) {
*pdata = &img[shdr->sh_offset];
*psize = shdr->sh_size;
return 0;
}
}
nvkm_error(&gsp->subdev, "section '%s' not found\n", name);
return -ENOENT;
}
static void
r535_gsp_dtor_fws(struct nvkm_gsp *gsp)
{
nvkm_firmware_put(gsp->fws.bl);
gsp->fws.bl = NULL;
nvkm_firmware_put(gsp->fws.booter.unload);
gsp->fws.booter.unload = NULL;
nvkm_firmware_put(gsp->fws.booter.load);
gsp->fws.booter.load = NULL;
nvkm_firmware_put(gsp->fws.rm);
gsp->fws.rm = NULL;
}
#ifdef CONFIG_DEBUG_FS
struct r535_gsp_log {
struct nvif_log log;
/*
* Logging buffers in debugfs. The wrapper objects need to remain
* in memory until the dentry is deleted.
*/
struct dentry *debugfs_logging_dir;
struct debugfs_blob_wrapper blob_init;
struct debugfs_blob_wrapper blob_intr;
struct debugfs_blob_wrapper blob_rm;
struct debugfs_blob_wrapper blob_pmu;
};
/**
* r535_debugfs_shutdown - delete GSP-RM logging buffers for one GPU
* @_log: nvif_log struct for this GPU
*
* Called when the driver is shutting down, to clean up the retained GSP-RM
* logging buffers.
*/
static void r535_debugfs_shutdown(struct nvif_log *_log)
{
struct r535_gsp_log *log = container_of(_log, struct r535_gsp_log, log);
debugfs_remove(log->debugfs_logging_dir);
kfree(log->blob_init.data);
kfree(log->blob_intr.data);
kfree(log->blob_rm.data);
kfree(log->blob_pmu.data);
/* We also need to delete the list object */
kfree(log);
}
/**
* is_empty - return true if the logging buffer was never written to
* @b: blob wrapper with ->data field pointing to logging buffer
*
* The first 64-bit field of loginit, and logintr, and logrm is the 'put'
* pointer, and it is initialized to 0. It's a dword-based index into the
* circular buffer, indicating where the next printf write will be made.
*
* If the pointer is still 0 when GSP-RM is shut down, that means that the
* buffer was never written to, so it can be ignored.
*
* This test also works for logpmu, even though it doesn't have a put pointer.
*/
static bool is_empty(const struct debugfs_blob_wrapper *b)
{
u64 *put = b->data;
return put ? (*put == 0) : true;
}
/**
* r535_gsp_copy_log - preserve the logging buffers in a blob
* @parent: the top-level dentry for this GPU
* @name: name of debugfs entry to create
* @s: original wrapper object to copy from
* @t: new wrapper object to copy to
*
* When GSP shuts down, the nvkm_gsp object and all its memory is deleted.
* To preserve the logging buffers, the buffers need to be copied, but only
* if they actually have data.
*/
static int r535_gsp_copy_log(struct dentry *parent,
const char *name,
const struct debugfs_blob_wrapper *s,
struct debugfs_blob_wrapper *t)
{
struct dentry *dent;
void *p;
if (is_empty(s))
return 0;
/* The original buffers will be deleted */
p = kmemdup(s->data, s->size, GFP_KERNEL);
if (!p)
return -ENOMEM;
t->data = p;
t->size = s->size;
dent = debugfs_create_blob(name, 0444, parent, t);
if (IS_ERR(dent)) {
kfree(p);
memset(t, 0, sizeof(*t));
return PTR_ERR(dent);
}
i_size_write(d_inode(dent), t->size);
return 0;
}
/**
* r535_gsp_retain_logging - copy logging buffers to new debugfs root
* @gsp: gsp pointer
*
* If keep_gsp_logging is enabled, then we want to preserve the GSP-RM logging
* buffers and their debugfs entries, but all those objects would normally
* deleted if GSP-RM fails to load.
*
* To preserve the logging buffers, we need to:
*
* 1) Allocate new buffers and copy the logs into them, so that the original
* DMA buffers can be released.
*
* 2) Preserve the directories. We don't need to save single dentries because
* we're going to delete the parent when the
*
* If anything fails in this process, then all the dentries need to be
* deleted. We don't need to deallocate the original logging buffers because
* the caller will do that regardless.
*/
static void r535_gsp_retain_logging(struct nvkm_gsp *gsp)
{
struct device *dev = gsp->subdev.device->dev;
struct r535_gsp_log *log = NULL;
int ret;
if (!keep_gsp_logging || !gsp->debugfs.parent) {
/* Nothing to do */
goto exit;
}
/* Check to make sure at least one buffer has data. */
if (is_empty(&gsp->blob_init) && is_empty(&gsp->blob_intr) &&
is_empty(&gsp->blob_rm) && is_empty(&gsp->blob_rm)) {
nvkm_warn(&gsp->subdev, "all logging buffers are empty\n");
goto exit;
}
log = kzalloc(sizeof(*log), GFP_KERNEL);
if (!log)
goto error;
/*
* Since the nvkm_gsp object is going away, the debugfs_blob_wrapper
* objects are also being deleted, which means the dentries will no
* longer be valid. Delete the existing entries so that we can create
* new ones with the same name.
*/
debugfs_remove(gsp->debugfs.init);
debugfs_remove(gsp->debugfs.intr);
debugfs_remove(gsp->debugfs.rm);
debugfs_remove(gsp->debugfs.pmu);
ret = r535_gsp_copy_log(gsp->debugfs.parent, "loginit", &gsp->blob_init, &log->blob_init);
if (ret)
goto error;
ret = r535_gsp_copy_log(gsp->debugfs.parent, "logintr", &gsp->blob_intr, &log->blob_intr);
if (ret)
goto error;
ret = r535_gsp_copy_log(gsp->debugfs.parent, "logrm", &gsp->blob_rm, &log->blob_rm);
if (ret)
goto error;
ret = r535_gsp_copy_log(gsp->debugfs.parent, "logpmu", &gsp->blob_pmu, &log->blob_pmu);
if (ret)
goto error;
/* The nvkm_gsp object is going away, so save the dentry */
log->debugfs_logging_dir = gsp->debugfs.parent;
log->log.shutdown = r535_debugfs_shutdown;
list_add(&log->log.entry, &gsp_logs.head);
nvkm_warn(&gsp->subdev,
"logging buffers migrated to /sys/kernel/debug/nouveau/%s\n",
dev_name(dev));
return;
error:
nvkm_warn(&gsp->subdev, "failed to migrate logging buffers\n");
exit:
debugfs_remove(gsp->debugfs.parent);
if (log) {
kfree(log->blob_init.data);
kfree(log->blob_intr.data);
kfree(log->blob_rm.data);
kfree(log->blob_pmu.data);
kfree(log);
}
}
#endif
/**
* r535_gsp_libos_debugfs_fini - cleanup/retain log buffers on shutdown
* @gsp: gsp pointer
*
* If the log buffers are exposed via debugfs, the data for those entries
* needs to be cleaned up when the GSP device shuts down.
*/
static void
r535_gsp_libos_debugfs_fini(struct nvkm_gsp __maybe_unused *gsp)
{
#ifdef CONFIG_DEBUG_FS
r535_gsp_retain_logging(gsp);
/*
* Unlike the other buffers, the PMU blob is a kmalloc'd buffer that
* exists only if the debugfs entries were created.
*/
kfree(gsp->blob_pmu.data);
gsp->blob_pmu.data = NULL;
#endif
}
void
r535_gsp_dtor(struct nvkm_gsp *gsp)
{
idr_destroy(&gsp->client_id.idr);
mutex_destroy(&gsp->client_id.mutex);
nvkm_gsp_radix3_dtor(gsp, &gsp->radix3);
nvkm_gsp_mem_dtor(&gsp->sig);
nvkm_firmware_dtor(&gsp->fw);
nvkm_falcon_fw_dtor(&gsp->booter.unload);
nvkm_falcon_fw_dtor(&gsp->booter.load);
mutex_destroy(&gsp->msgq.mutex);
mutex_destroy(&gsp->cmdq.mutex);
r535_gsp_dtor_fws(gsp);
nvkm_gsp_mem_dtor(&gsp->rmargs);
nvkm_gsp_mem_dtor(&gsp->wpr_meta);
nvkm_gsp_mem_dtor(&gsp->shm.mem);
r535_gsp_libos_debugfs_fini(gsp);
nvkm_gsp_mem_dtor(&gsp->loginit);
nvkm_gsp_mem_dtor(&gsp->logintr);
nvkm_gsp_mem_dtor(&gsp->logrm);
}
int
r535_gsp_oneinit(struct nvkm_gsp *gsp)
{
struct nvkm_device *device = gsp->subdev.device;
const u8 *data;
u64 size;
int ret;
mutex_init(&gsp->cmdq.mutex);
mutex_init(&gsp->msgq.mutex);
ret = gsp->func->booter.ctor(gsp, "booter-load", gsp->fws.booter.load,
&device->sec2->falcon, &gsp->booter.load);
if (ret)
return ret;
ret = gsp->func->booter.ctor(gsp, "booter-unload", gsp->fws.booter.unload,
&device->sec2->falcon, &gsp->booter.unload);
if (ret)
return ret;
/* Load GSP firmware from ELF image into DMA-accessible memory. */
ret = r535_gsp_elf_section(gsp, ".fwimage", &data, &size);
if (ret)
return ret;
ret = nvkm_firmware_ctor(&r535_gsp_fw, "gsp-rm", device, data, size, &gsp->fw);
if (ret)
return ret;
/* Load relevant signature from ELF image. */
ret = r535_gsp_elf_section(gsp, gsp->func->sig_section, &data, &size);
if (ret)
return ret;
ret = nvkm_gsp_mem_ctor(gsp, ALIGN(size, 256), &gsp->sig);
if (ret)
return ret;
memcpy(gsp->sig.data, data, size);
/* Build radix3 page table for ELF image. */
ret = nvkm_gsp_radix3_sg(gsp, &gsp->fw.mem.sgt, gsp->fw.len, &gsp->radix3);
if (ret)
return ret;
r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_GSP_RUN_CPU_SEQUENCER,
r535_gsp_msg_run_cpu_sequencer, gsp);
r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_POST_EVENT, r535_gsp_msg_post_event, gsp);
r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_RC_TRIGGERED,
r535_gsp_msg_rc_triggered, gsp);
r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_MMU_FAULT_QUEUED,
r535_gsp_msg_mmu_fault_queued, gsp);
r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_OS_ERROR_LOG, r535_gsp_msg_os_error_log, gsp);
r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_PERF_BRIDGELESS_INFO_UPDATE, NULL, NULL);
r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_UCODE_LIBOS_PRINT, NULL, NULL);
r535_gsp_msg_ntfy_add(gsp, NV_VGPU_MSG_EVENT_GSP_SEND_USER_SHARED_DATA, NULL, NULL);
ret = r535_gsp_rm_boot_ctor(gsp);
if (ret)
return ret;
/* Release FW images - we've copied them to DMA buffers now. */
r535_gsp_dtor_fws(gsp);
/* Calculate FB layout. */
gsp->fb.wpr2.frts.size = 0x100000;
gsp->fb.wpr2.frts.addr = ALIGN_DOWN(gsp->fb.bios.addr, 0x20000) - gsp->fb.wpr2.frts.size;
gsp->fb.wpr2.boot.size = gsp->boot.fw.size;
gsp->fb.wpr2.boot.addr = ALIGN_DOWN(gsp->fb.wpr2.frts.addr - gsp->fb.wpr2.boot.size, 0x1000);
gsp->fb.wpr2.elf.size = gsp->fw.len;
gsp->fb.wpr2.elf.addr = ALIGN_DOWN(gsp->fb.wpr2.boot.addr - gsp->fb.wpr2.elf.size, 0x10000);
{
u32 fb_size_gb = DIV_ROUND_UP_ULL(gsp->fb.size, 1 << 30);
gsp->fb.wpr2.heap.size =
gsp->func->wpr_heap.os_carveout_size +
gsp->func->wpr_heap.base_size +
ALIGN(GSP_FW_HEAP_PARAM_SIZE_PER_GB_FB * fb_size_gb, 1 << 20) +
ALIGN(GSP_FW_HEAP_PARAM_CLIENT_ALLOC_SIZE, 1 << 20);
gsp->fb.wpr2.heap.size = max(gsp->fb.wpr2.heap.size, gsp->func->wpr_heap.min_size);
}
gsp->fb.wpr2.heap.addr = ALIGN_DOWN(gsp->fb.wpr2.elf.addr - gsp->fb.wpr2.heap.size, 0x100000);
gsp->fb.wpr2.heap.size = ALIGN_DOWN(gsp->fb.wpr2.elf.addr - gsp->fb.wpr2.heap.addr, 0x100000);
gsp->fb.wpr2.addr = ALIGN_DOWN(gsp->fb.wpr2.heap.addr - sizeof(GspFwWprMeta), 0x100000);
gsp->fb.wpr2.size = gsp->fb.wpr2.frts.addr + gsp->fb.wpr2.frts.size - gsp->fb.wpr2.addr;
gsp->fb.heap.size = 0x100000;
gsp->fb.heap.addr = gsp->fb.wpr2.addr - gsp->fb.heap.size;
ret = nvkm_gsp_fwsec_frts(gsp);
if (WARN_ON(ret))
return ret;
ret = r535_gsp_libos_init(gsp);
if (WARN_ON(ret))
return ret;
ret = r535_gsp_wpr_meta_init(gsp);
if (WARN_ON(ret))
return ret;
ret = r535_gsp_rpc_set_system_info(gsp);
if (WARN_ON(ret))
return ret;
ret = r535_gsp_rpc_set_registry(gsp);
if (WARN_ON(ret))
return ret;
/* Reset GSP into RISC-V mode. */
ret = gsp->func->reset(gsp);
if (WARN_ON(ret))
return ret;
nvkm_falcon_wr32(&gsp->falcon, 0x040, lower_32_bits(gsp->libos.addr));
nvkm_falcon_wr32(&gsp->falcon, 0x044, upper_32_bits(gsp->libos.addr));
mutex_init(&gsp->client_id.mutex);
idr_init(&gsp->client_id.idr);
return 0;
}
static int
r535_gsp_load_fw(struct nvkm_gsp *gsp, const char *name, const char *ver,
const struct firmware **pfw)
{
char fwname[64];
snprintf(fwname, sizeof(fwname), "gsp/%s-%s", name, ver);
return nvkm_firmware_get(&gsp->subdev, fwname, 0, pfw);
}
int
r535_gsp_load(struct nvkm_gsp *gsp, int ver, const struct nvkm_gsp_fwif *fwif)
{
struct nvkm_subdev *subdev = &gsp->subdev;
int ret;
bool enable_gsp = fwif->enable;
#if IS_ENABLED(CONFIG_DRM_NOUVEAU_GSP_DEFAULT)
enable_gsp = true;
#endif
if (!nvkm_boolopt(subdev->device->cfgopt, "NvGspRm", enable_gsp))
return -EINVAL;
if ((ret = r535_gsp_load_fw(gsp, "gsp", fwif->ver, &gsp->fws.rm)) ||
(ret = r535_gsp_load_fw(gsp, "booter_load", fwif->ver, &gsp->fws.booter.load)) ||
(ret = r535_gsp_load_fw(gsp, "booter_unload", fwif->ver, &gsp->fws.booter.unload)) ||
(ret = r535_gsp_load_fw(gsp, "bootloader", fwif->ver, &gsp->fws.bl))) {
r535_gsp_dtor_fws(gsp);
return ret;
}
return 0;
}
#define NVKM_GSP_FIRMWARE(chip) \
MODULE_FIRMWARE("nvidia/"#chip"/gsp/booter_load-535.113.01.bin"); \
MODULE_FIRMWARE("nvidia/"#chip"/gsp/booter_unload-535.113.01.bin"); \
MODULE_FIRMWARE("nvidia/"#chip"/gsp/bootloader-535.113.01.bin"); \
MODULE_FIRMWARE("nvidia/"#chip"/gsp/gsp-535.113.01.bin")
NVKM_GSP_FIRMWARE(tu102);
NVKM_GSP_FIRMWARE(tu104);
NVKM_GSP_FIRMWARE(tu106);
NVKM_GSP_FIRMWARE(tu116);
NVKM_GSP_FIRMWARE(tu117);
NVKM_GSP_FIRMWARE(ga100);
NVKM_GSP_FIRMWARE(ga102);
NVKM_GSP_FIRMWARE(ga103);
NVKM_GSP_FIRMWARE(ga104);
NVKM_GSP_FIRMWARE(ga106);
NVKM_GSP_FIRMWARE(ga107);
NVKM_GSP_FIRMWARE(ad102);
NVKM_GSP_FIRMWARE(ad103);
NVKM_GSP_FIRMWARE(ad104);
NVKM_GSP_FIRMWARE(ad106);
NVKM_GSP_FIRMWARE(ad107);