1551 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1551 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: LGPL-2.1
 | |
| #define _GNU_SOURCE
 | |
| #include <assert.h>
 | |
| #include <linux/membarrier.h>
 | |
| #include <pthread.h>
 | |
| #include <sched.h>
 | |
| #include <stdatomic.h>
 | |
| #include <stdint.h>
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <syscall.h>
 | |
| #include <unistd.h>
 | |
| #include <poll.h>
 | |
| #include <sys/types.h>
 | |
| #include <signal.h>
 | |
| #include <errno.h>
 | |
| #include <stddef.h>
 | |
| 
 | |
| static inline pid_t rseq_gettid(void)
 | |
| {
 | |
| 	return syscall(__NR_gettid);
 | |
| }
 | |
| 
 | |
| #define NR_INJECT	9
 | |
| static int loop_cnt[NR_INJECT + 1];
 | |
| 
 | |
| static int loop_cnt_1 asm("asm_loop_cnt_1") __attribute__((used));
 | |
| static int loop_cnt_2 asm("asm_loop_cnt_2") __attribute__((used));
 | |
| static int loop_cnt_3 asm("asm_loop_cnt_3") __attribute__((used));
 | |
| static int loop_cnt_4 asm("asm_loop_cnt_4") __attribute__((used));
 | |
| static int loop_cnt_5 asm("asm_loop_cnt_5") __attribute__((used));
 | |
| static int loop_cnt_6 asm("asm_loop_cnt_6") __attribute__((used));
 | |
| 
 | |
| static int opt_modulo, verbose;
 | |
| 
 | |
| static int opt_yield, opt_signal, opt_sleep,
 | |
| 		opt_disable_rseq, opt_threads = 200,
 | |
| 		opt_disable_mod = 0, opt_test = 's', opt_mb = 0;
 | |
| 
 | |
| #ifndef RSEQ_SKIP_FASTPATH
 | |
| static long long opt_reps = 5000;
 | |
| #else
 | |
| static long long opt_reps = 100;
 | |
| #endif
 | |
| 
 | |
| static __thread __attribute__((tls_model("initial-exec")))
 | |
| unsigned int signals_delivered;
 | |
| 
 | |
| #ifndef BENCHMARK
 | |
| 
 | |
| static __thread __attribute__((tls_model("initial-exec"), unused))
 | |
| unsigned int yield_mod_cnt, nr_abort;
 | |
| 
 | |
| #define printf_verbose(fmt, ...)			\
 | |
| 	do {						\
 | |
| 		if (verbose)				\
 | |
| 			printf(fmt, ## __VA_ARGS__);	\
 | |
| 	} while (0)
 | |
| 
 | |
| #ifdef __i386__
 | |
| 
 | |
| #define INJECT_ASM_REG	"eax"
 | |
| 
 | |
| #define RSEQ_INJECT_CLOBBER \
 | |
| 	, INJECT_ASM_REG
 | |
| 
 | |
| #define RSEQ_INJECT_ASM(n) \
 | |
| 	"mov asm_loop_cnt_" #n ", %%" INJECT_ASM_REG "\n\t" \
 | |
| 	"test %%" INJECT_ASM_REG ",%%" INJECT_ASM_REG "\n\t" \
 | |
| 	"jz 333f\n\t" \
 | |
| 	"222:\n\t" \
 | |
| 	"dec %%" INJECT_ASM_REG "\n\t" \
 | |
| 	"jnz 222b\n\t" \
 | |
| 	"333:\n\t"
 | |
| 
 | |
| #elif defined(__x86_64__)
 | |
| 
 | |
| #define INJECT_ASM_REG_P	"rax"
 | |
| #define INJECT_ASM_REG		"eax"
 | |
| 
 | |
| #define RSEQ_INJECT_CLOBBER \
 | |
| 	, INJECT_ASM_REG_P \
 | |
| 	, INJECT_ASM_REG
 | |
| 
 | |
| #define RSEQ_INJECT_ASM(n) \
 | |
| 	"lea asm_loop_cnt_" #n "(%%rip), %%" INJECT_ASM_REG_P "\n\t" \
 | |
| 	"mov (%%" INJECT_ASM_REG_P "), %%" INJECT_ASM_REG "\n\t" \
 | |
| 	"test %%" INJECT_ASM_REG ",%%" INJECT_ASM_REG "\n\t" \
 | |
| 	"jz 333f\n\t" \
 | |
| 	"222:\n\t" \
 | |
| 	"dec %%" INJECT_ASM_REG "\n\t" \
 | |
| 	"jnz 222b\n\t" \
 | |
| 	"333:\n\t"
 | |
| 
 | |
| #elif defined(__s390__)
 | |
| 
 | |
| #define RSEQ_INJECT_INPUT \
 | |
| 	, [loop_cnt_1]"m"(loop_cnt[1]) \
 | |
| 	, [loop_cnt_2]"m"(loop_cnt[2]) \
 | |
| 	, [loop_cnt_3]"m"(loop_cnt[3]) \
 | |
| 	, [loop_cnt_4]"m"(loop_cnt[4]) \
 | |
| 	, [loop_cnt_5]"m"(loop_cnt[5]) \
 | |
| 	, [loop_cnt_6]"m"(loop_cnt[6])
 | |
| 
 | |
| #define INJECT_ASM_REG	"r12"
 | |
| 
 | |
| #define RSEQ_INJECT_CLOBBER \
 | |
| 	, INJECT_ASM_REG
 | |
| 
 | |
| #define RSEQ_INJECT_ASM(n) \
 | |
| 	"l %%" INJECT_ASM_REG ", %[loop_cnt_" #n "]\n\t" \
 | |
| 	"ltr %%" INJECT_ASM_REG ", %%" INJECT_ASM_REG "\n\t" \
 | |
| 	"je 333f\n\t" \
 | |
| 	"222:\n\t" \
 | |
| 	"ahi %%" INJECT_ASM_REG ", -1\n\t" \
 | |
| 	"jnz 222b\n\t" \
 | |
| 	"333:\n\t"
 | |
| 
 | |
| #elif defined(__ARMEL__)
 | |
| 
 | |
| #define RSEQ_INJECT_INPUT \
 | |
| 	, [loop_cnt_1]"m"(loop_cnt[1]) \
 | |
| 	, [loop_cnt_2]"m"(loop_cnt[2]) \
 | |
| 	, [loop_cnt_3]"m"(loop_cnt[3]) \
 | |
| 	, [loop_cnt_4]"m"(loop_cnt[4]) \
 | |
| 	, [loop_cnt_5]"m"(loop_cnt[5]) \
 | |
| 	, [loop_cnt_6]"m"(loop_cnt[6])
 | |
| 
 | |
| #define INJECT_ASM_REG	"r4"
 | |
| 
 | |
| #define RSEQ_INJECT_CLOBBER \
 | |
| 	, INJECT_ASM_REG
 | |
| 
 | |
| #define RSEQ_INJECT_ASM(n) \
 | |
| 	"ldr " INJECT_ASM_REG ", %[loop_cnt_" #n "]\n\t" \
 | |
| 	"cmp " INJECT_ASM_REG ", #0\n\t" \
 | |
| 	"beq 333f\n\t" \
 | |
| 	"222:\n\t" \
 | |
| 	"subs " INJECT_ASM_REG ", #1\n\t" \
 | |
| 	"bne 222b\n\t" \
 | |
| 	"333:\n\t"
 | |
| 
 | |
| #elif defined(__AARCH64EL__)
 | |
| 
 | |
| #define RSEQ_INJECT_INPUT \
 | |
| 	, [loop_cnt_1] "Qo" (loop_cnt[1]) \
 | |
| 	, [loop_cnt_2] "Qo" (loop_cnt[2]) \
 | |
| 	, [loop_cnt_3] "Qo" (loop_cnt[3]) \
 | |
| 	, [loop_cnt_4] "Qo" (loop_cnt[4]) \
 | |
| 	, [loop_cnt_5] "Qo" (loop_cnt[5]) \
 | |
| 	, [loop_cnt_6] "Qo" (loop_cnt[6])
 | |
| 
 | |
| #define INJECT_ASM_REG	RSEQ_ASM_TMP_REG32
 | |
| 
 | |
| #define RSEQ_INJECT_ASM(n) \
 | |
| 	"	ldr	" INJECT_ASM_REG ", %[loop_cnt_" #n "]\n"	\
 | |
| 	"	cbz	" INJECT_ASM_REG ", 333f\n"			\
 | |
| 	"222:\n"							\
 | |
| 	"	sub	" INJECT_ASM_REG ", " INJECT_ASM_REG ", #1\n"	\
 | |
| 	"	cbnz	" INJECT_ASM_REG ", 222b\n"			\
 | |
| 	"333:\n"
 | |
| 
 | |
| #elif defined(__PPC__)
 | |
| 
 | |
| #define RSEQ_INJECT_INPUT \
 | |
| 	, [loop_cnt_1]"m"(loop_cnt[1]) \
 | |
| 	, [loop_cnt_2]"m"(loop_cnt[2]) \
 | |
| 	, [loop_cnt_3]"m"(loop_cnt[3]) \
 | |
| 	, [loop_cnt_4]"m"(loop_cnt[4]) \
 | |
| 	, [loop_cnt_5]"m"(loop_cnt[5]) \
 | |
| 	, [loop_cnt_6]"m"(loop_cnt[6])
 | |
| 
 | |
| #define INJECT_ASM_REG	"r18"
 | |
| 
 | |
| #define RSEQ_INJECT_CLOBBER \
 | |
| 	, INJECT_ASM_REG
 | |
| 
 | |
| #define RSEQ_INJECT_ASM(n) \
 | |
| 	"lwz %%" INJECT_ASM_REG ", %[loop_cnt_" #n "]\n\t" \
 | |
| 	"cmpwi %%" INJECT_ASM_REG ", 0\n\t" \
 | |
| 	"beq 333f\n\t" \
 | |
| 	"222:\n\t" \
 | |
| 	"subic. %%" INJECT_ASM_REG ", %%" INJECT_ASM_REG ", 1\n\t" \
 | |
| 	"bne 222b\n\t" \
 | |
| 	"333:\n\t"
 | |
| 
 | |
| #elif defined(__mips__)
 | |
| 
 | |
| #define RSEQ_INJECT_INPUT \
 | |
| 	, [loop_cnt_1]"m"(loop_cnt[1]) \
 | |
| 	, [loop_cnt_2]"m"(loop_cnt[2]) \
 | |
| 	, [loop_cnt_3]"m"(loop_cnt[3]) \
 | |
| 	, [loop_cnt_4]"m"(loop_cnt[4]) \
 | |
| 	, [loop_cnt_5]"m"(loop_cnt[5]) \
 | |
| 	, [loop_cnt_6]"m"(loop_cnt[6])
 | |
| 
 | |
| #define INJECT_ASM_REG	"$5"
 | |
| 
 | |
| #define RSEQ_INJECT_CLOBBER \
 | |
| 	, INJECT_ASM_REG
 | |
| 
 | |
| #define RSEQ_INJECT_ASM(n) \
 | |
| 	"lw " INJECT_ASM_REG ", %[loop_cnt_" #n "]\n\t" \
 | |
| 	"beqz " INJECT_ASM_REG ", 333f\n\t" \
 | |
| 	"222:\n\t" \
 | |
| 	"addiu " INJECT_ASM_REG ", -1\n\t" \
 | |
| 	"bnez " INJECT_ASM_REG ", 222b\n\t" \
 | |
| 	"333:\n\t"
 | |
| 
 | |
| #else
 | |
| #error unsupported target
 | |
| #endif
 | |
| 
 | |
| #define RSEQ_INJECT_FAILED \
 | |
| 	nr_abort++;
 | |
| 
 | |
| #define RSEQ_INJECT_C(n) \
 | |
| { \
 | |
| 	int loc_i, loc_nr_loops = loop_cnt[n]; \
 | |
| 	\
 | |
| 	for (loc_i = 0; loc_i < loc_nr_loops; loc_i++) { \
 | |
| 		rseq_barrier(); \
 | |
| 	} \
 | |
| 	if (loc_nr_loops == -1 && opt_modulo) { \
 | |
| 		if (yield_mod_cnt == opt_modulo - 1) { \
 | |
| 			if (opt_sleep > 0) \
 | |
| 				poll(NULL, 0, opt_sleep); \
 | |
| 			if (opt_yield) \
 | |
| 				sched_yield(); \
 | |
| 			if (opt_signal) \
 | |
| 				raise(SIGUSR1); \
 | |
| 			yield_mod_cnt = 0; \
 | |
| 		} else { \
 | |
| 			yield_mod_cnt++; \
 | |
| 		} \
 | |
| 	} \
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| #define printf_verbose(fmt, ...)
 | |
| 
 | |
| #endif /* BENCHMARK */
 | |
| 
 | |
| #include "rseq.h"
 | |
| 
 | |
| struct percpu_lock_entry {
 | |
| 	intptr_t v;
 | |
| } __attribute__((aligned(128)));
 | |
| 
 | |
| struct percpu_lock {
 | |
| 	struct percpu_lock_entry c[CPU_SETSIZE];
 | |
| };
 | |
| 
 | |
| struct test_data_entry {
 | |
| 	intptr_t count;
 | |
| } __attribute__((aligned(128)));
 | |
| 
 | |
| struct spinlock_test_data {
 | |
| 	struct percpu_lock lock;
 | |
| 	struct test_data_entry c[CPU_SETSIZE];
 | |
| };
 | |
| 
 | |
| struct spinlock_thread_test_data {
 | |
| 	struct spinlock_test_data *data;
 | |
| 	long long reps;
 | |
| 	int reg;
 | |
| };
 | |
| 
 | |
| struct inc_test_data {
 | |
| 	struct test_data_entry c[CPU_SETSIZE];
 | |
| };
 | |
| 
 | |
| struct inc_thread_test_data {
 | |
| 	struct inc_test_data *data;
 | |
| 	long long reps;
 | |
| 	int reg;
 | |
| };
 | |
| 
 | |
| struct percpu_list_node {
 | |
| 	intptr_t data;
 | |
| 	struct percpu_list_node *next;
 | |
| };
 | |
| 
 | |
| struct percpu_list_entry {
 | |
| 	struct percpu_list_node *head;
 | |
| } __attribute__((aligned(128)));
 | |
| 
 | |
| struct percpu_list {
 | |
| 	struct percpu_list_entry c[CPU_SETSIZE];
 | |
| };
 | |
| 
 | |
| #define BUFFER_ITEM_PER_CPU	100
 | |
| 
 | |
| struct percpu_buffer_node {
 | |
| 	intptr_t data;
 | |
| };
 | |
| 
 | |
| struct percpu_buffer_entry {
 | |
| 	intptr_t offset;
 | |
| 	intptr_t buflen;
 | |
| 	struct percpu_buffer_node **array;
 | |
| } __attribute__((aligned(128)));
 | |
| 
 | |
| struct percpu_buffer {
 | |
| 	struct percpu_buffer_entry c[CPU_SETSIZE];
 | |
| };
 | |
| 
 | |
| #define MEMCPY_BUFFER_ITEM_PER_CPU	100
 | |
| 
 | |
| struct percpu_memcpy_buffer_node {
 | |
| 	intptr_t data1;
 | |
| 	uint64_t data2;
 | |
| };
 | |
| 
 | |
| struct percpu_memcpy_buffer_entry {
 | |
| 	intptr_t offset;
 | |
| 	intptr_t buflen;
 | |
| 	struct percpu_memcpy_buffer_node *array;
 | |
| } __attribute__((aligned(128)));
 | |
| 
 | |
| struct percpu_memcpy_buffer {
 | |
| 	struct percpu_memcpy_buffer_entry c[CPU_SETSIZE];
 | |
| };
 | |
| 
 | |
| /* A simple percpu spinlock. Grabs lock on current cpu. */
 | |
| static int rseq_this_cpu_lock(struct percpu_lock *lock)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		int ret;
 | |
| 
 | |
| 		cpu = rseq_cpu_start();
 | |
| 		ret = rseq_cmpeqv_storev(&lock->c[cpu].v,
 | |
| 					 0, 1, cpu);
 | |
| 		if (rseq_likely(!ret))
 | |
| 			break;
 | |
| 		/* Retry if comparison fails or rseq aborts. */
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Acquire semantic when taking lock after control dependency.
 | |
| 	 * Matches rseq_smp_store_release().
 | |
| 	 */
 | |
| 	rseq_smp_acquire__after_ctrl_dep();
 | |
| 	return cpu;
 | |
| }
 | |
| 
 | |
| static void rseq_percpu_unlock(struct percpu_lock *lock, int cpu)
 | |
| {
 | |
| 	assert(lock->c[cpu].v == 1);
 | |
| 	/*
 | |
| 	 * Release lock, with release semantic. Matches
 | |
| 	 * rseq_smp_acquire__after_ctrl_dep().
 | |
| 	 */
 | |
| 	rseq_smp_store_release(&lock->c[cpu].v, 0);
 | |
| }
 | |
| 
 | |
| void *test_percpu_spinlock_thread(void *arg)
 | |
| {
 | |
| 	struct spinlock_thread_test_data *thread_data = arg;
 | |
| 	struct spinlock_test_data *data = thread_data->data;
 | |
| 	long long i, reps;
 | |
| 
 | |
| 	if (!opt_disable_rseq && thread_data->reg &&
 | |
| 	    rseq_register_current_thread())
 | |
| 		abort();
 | |
| 	reps = thread_data->reps;
 | |
| 	for (i = 0; i < reps; i++) {
 | |
| 		int cpu = rseq_this_cpu_lock(&data->lock);
 | |
| 		data->c[cpu].count++;
 | |
| 		rseq_percpu_unlock(&data->lock, cpu);
 | |
| #ifndef BENCHMARK
 | |
| 		if (i != 0 && !(i % (reps / 10)))
 | |
| 			printf_verbose("tid %d: count %lld\n",
 | |
| 				       (int) rseq_gettid(), i);
 | |
| #endif
 | |
| 	}
 | |
| 	printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
 | |
| 		       (int) rseq_gettid(), nr_abort, signals_delivered);
 | |
| 	if (!opt_disable_rseq && thread_data->reg &&
 | |
| 	    rseq_unregister_current_thread())
 | |
| 		abort();
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A simple test which implements a sharded counter using a per-cpu
 | |
|  * lock.  Obviously real applications might prefer to simply use a
 | |
|  * per-cpu increment; however, this is reasonable for a test and the
 | |
|  * lock can be extended to synchronize more complicated operations.
 | |
|  */
 | |
| void test_percpu_spinlock(void)
 | |
| {
 | |
| 	const int num_threads = opt_threads;
 | |
| 	int i, ret;
 | |
| 	uint64_t sum;
 | |
| 	pthread_t test_threads[num_threads];
 | |
| 	struct spinlock_test_data data;
 | |
| 	struct spinlock_thread_test_data thread_data[num_threads];
 | |
| 
 | |
| 	memset(&data, 0, sizeof(data));
 | |
| 	for (i = 0; i < num_threads; i++) {
 | |
| 		thread_data[i].reps = opt_reps;
 | |
| 		if (opt_disable_mod <= 0 || (i % opt_disable_mod))
 | |
| 			thread_data[i].reg = 1;
 | |
| 		else
 | |
| 			thread_data[i].reg = 0;
 | |
| 		thread_data[i].data = &data;
 | |
| 		ret = pthread_create(&test_threads[i], NULL,
 | |
| 				     test_percpu_spinlock_thread,
 | |
| 				     &thread_data[i]);
 | |
| 		if (ret) {
 | |
| 			errno = ret;
 | |
| 			perror("pthread_create");
 | |
| 			abort();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < num_threads; i++) {
 | |
| 		ret = pthread_join(test_threads[i], NULL);
 | |
| 		if (ret) {
 | |
| 			errno = ret;
 | |
| 			perror("pthread_join");
 | |
| 			abort();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	sum = 0;
 | |
| 	for (i = 0; i < CPU_SETSIZE; i++)
 | |
| 		sum += data.c[i].count;
 | |
| 
 | |
| 	assert(sum == (uint64_t)opt_reps * num_threads);
 | |
| }
 | |
| 
 | |
| void *test_percpu_inc_thread(void *arg)
 | |
| {
 | |
| 	struct inc_thread_test_data *thread_data = arg;
 | |
| 	struct inc_test_data *data = thread_data->data;
 | |
| 	long long i, reps;
 | |
| 
 | |
| 	if (!opt_disable_rseq && thread_data->reg &&
 | |
| 	    rseq_register_current_thread())
 | |
| 		abort();
 | |
| 	reps = thread_data->reps;
 | |
| 	for (i = 0; i < reps; i++) {
 | |
| 		int ret;
 | |
| 
 | |
| 		do {
 | |
| 			int cpu;
 | |
| 
 | |
| 			cpu = rseq_cpu_start();
 | |
| 			ret = rseq_addv(&data->c[cpu].count, 1, cpu);
 | |
| 		} while (rseq_unlikely(ret));
 | |
| #ifndef BENCHMARK
 | |
| 		if (i != 0 && !(i % (reps / 10)))
 | |
| 			printf_verbose("tid %d: count %lld\n",
 | |
| 				       (int) rseq_gettid(), i);
 | |
| #endif
 | |
| 	}
 | |
| 	printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
 | |
| 		       (int) rseq_gettid(), nr_abort, signals_delivered);
 | |
| 	if (!opt_disable_rseq && thread_data->reg &&
 | |
| 	    rseq_unregister_current_thread())
 | |
| 		abort();
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| void test_percpu_inc(void)
 | |
| {
 | |
| 	const int num_threads = opt_threads;
 | |
| 	int i, ret;
 | |
| 	uint64_t sum;
 | |
| 	pthread_t test_threads[num_threads];
 | |
| 	struct inc_test_data data;
 | |
| 	struct inc_thread_test_data thread_data[num_threads];
 | |
| 
 | |
| 	memset(&data, 0, sizeof(data));
 | |
| 	for (i = 0; i < num_threads; i++) {
 | |
| 		thread_data[i].reps = opt_reps;
 | |
| 		if (opt_disable_mod <= 0 || (i % opt_disable_mod))
 | |
| 			thread_data[i].reg = 1;
 | |
| 		else
 | |
| 			thread_data[i].reg = 0;
 | |
| 		thread_data[i].data = &data;
 | |
| 		ret = pthread_create(&test_threads[i], NULL,
 | |
| 				     test_percpu_inc_thread,
 | |
| 				     &thread_data[i]);
 | |
| 		if (ret) {
 | |
| 			errno = ret;
 | |
| 			perror("pthread_create");
 | |
| 			abort();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < num_threads; i++) {
 | |
| 		ret = pthread_join(test_threads[i], NULL);
 | |
| 		if (ret) {
 | |
| 			errno = ret;
 | |
| 			perror("pthread_join");
 | |
| 			abort();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	sum = 0;
 | |
| 	for (i = 0; i < CPU_SETSIZE; i++)
 | |
| 		sum += data.c[i].count;
 | |
| 
 | |
| 	assert(sum == (uint64_t)opt_reps * num_threads);
 | |
| }
 | |
| 
 | |
| void this_cpu_list_push(struct percpu_list *list,
 | |
| 			struct percpu_list_node *node,
 | |
| 			int *_cpu)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		intptr_t *targetptr, newval, expect;
 | |
| 		int ret;
 | |
| 
 | |
| 		cpu = rseq_cpu_start();
 | |
| 		/* Load list->c[cpu].head with single-copy atomicity. */
 | |
| 		expect = (intptr_t)RSEQ_READ_ONCE(list->c[cpu].head);
 | |
| 		newval = (intptr_t)node;
 | |
| 		targetptr = (intptr_t *)&list->c[cpu].head;
 | |
| 		node->next = (struct percpu_list_node *)expect;
 | |
| 		ret = rseq_cmpeqv_storev(targetptr, expect, newval, cpu);
 | |
| 		if (rseq_likely(!ret))
 | |
| 			break;
 | |
| 		/* Retry if comparison fails or rseq aborts. */
 | |
| 	}
 | |
| 	if (_cpu)
 | |
| 		*_cpu = cpu;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Unlike a traditional lock-less linked list; the availability of a
 | |
|  * rseq primitive allows us to implement pop without concerns over
 | |
|  * ABA-type races.
 | |
|  */
 | |
| struct percpu_list_node *this_cpu_list_pop(struct percpu_list *list,
 | |
| 					   int *_cpu)
 | |
| {
 | |
| 	struct percpu_list_node *node = NULL;
 | |
| 	int cpu;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		struct percpu_list_node *head;
 | |
| 		intptr_t *targetptr, expectnot, *load;
 | |
| 		long offset;
 | |
| 		int ret;
 | |
| 
 | |
| 		cpu = rseq_cpu_start();
 | |
| 		targetptr = (intptr_t *)&list->c[cpu].head;
 | |
| 		expectnot = (intptr_t)NULL;
 | |
| 		offset = offsetof(struct percpu_list_node, next);
 | |
| 		load = (intptr_t *)&head;
 | |
| 		ret = rseq_cmpnev_storeoffp_load(targetptr, expectnot,
 | |
| 						   offset, load, cpu);
 | |
| 		if (rseq_likely(!ret)) {
 | |
| 			node = head;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (ret > 0)
 | |
| 			break;
 | |
| 		/* Retry if rseq aborts. */
 | |
| 	}
 | |
| 	if (_cpu)
 | |
| 		*_cpu = cpu;
 | |
| 	return node;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * __percpu_list_pop is not safe against concurrent accesses. Should
 | |
|  * only be used on lists that are not concurrently modified.
 | |
|  */
 | |
| struct percpu_list_node *__percpu_list_pop(struct percpu_list *list, int cpu)
 | |
| {
 | |
| 	struct percpu_list_node *node;
 | |
| 
 | |
| 	node = list->c[cpu].head;
 | |
| 	if (!node)
 | |
| 		return NULL;
 | |
| 	list->c[cpu].head = node->next;
 | |
| 	return node;
 | |
| }
 | |
| 
 | |
| void *test_percpu_list_thread(void *arg)
 | |
| {
 | |
| 	long long i, reps;
 | |
| 	struct percpu_list *list = (struct percpu_list *)arg;
 | |
| 
 | |
| 	if (!opt_disable_rseq && rseq_register_current_thread())
 | |
| 		abort();
 | |
| 
 | |
| 	reps = opt_reps;
 | |
| 	for (i = 0; i < reps; i++) {
 | |
| 		struct percpu_list_node *node;
 | |
| 
 | |
| 		node = this_cpu_list_pop(list, NULL);
 | |
| 		if (opt_yield)
 | |
| 			sched_yield();  /* encourage shuffling */
 | |
| 		if (node)
 | |
| 			this_cpu_list_push(list, node, NULL);
 | |
| 	}
 | |
| 
 | |
| 	printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
 | |
| 		       (int) rseq_gettid(), nr_abort, signals_delivered);
 | |
| 	if (!opt_disable_rseq && rseq_unregister_current_thread())
 | |
| 		abort();
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Simultaneous modification to a per-cpu linked list from many threads.  */
 | |
| void test_percpu_list(void)
 | |
| {
 | |
| 	const int num_threads = opt_threads;
 | |
| 	int i, j, ret;
 | |
| 	uint64_t sum = 0, expected_sum = 0;
 | |
| 	struct percpu_list list;
 | |
| 	pthread_t test_threads[num_threads];
 | |
| 	cpu_set_t allowed_cpus;
 | |
| 
 | |
| 	memset(&list, 0, sizeof(list));
 | |
| 
 | |
| 	/* Generate list entries for every usable cpu. */
 | |
| 	sched_getaffinity(0, sizeof(allowed_cpus), &allowed_cpus);
 | |
| 	for (i = 0; i < CPU_SETSIZE; i++) {
 | |
| 		if (!CPU_ISSET(i, &allowed_cpus))
 | |
| 			continue;
 | |
| 		for (j = 1; j <= 100; j++) {
 | |
| 			struct percpu_list_node *node;
 | |
| 
 | |
| 			expected_sum += j;
 | |
| 
 | |
| 			node = malloc(sizeof(*node));
 | |
| 			assert(node);
 | |
| 			node->data = j;
 | |
| 			node->next = list.c[i].head;
 | |
| 			list.c[i].head = node;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < num_threads; i++) {
 | |
| 		ret = pthread_create(&test_threads[i], NULL,
 | |
| 				     test_percpu_list_thread, &list);
 | |
| 		if (ret) {
 | |
| 			errno = ret;
 | |
| 			perror("pthread_create");
 | |
| 			abort();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < num_threads; i++) {
 | |
| 		ret = pthread_join(test_threads[i], NULL);
 | |
| 		if (ret) {
 | |
| 			errno = ret;
 | |
| 			perror("pthread_join");
 | |
| 			abort();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < CPU_SETSIZE; i++) {
 | |
| 		struct percpu_list_node *node;
 | |
| 
 | |
| 		if (!CPU_ISSET(i, &allowed_cpus))
 | |
| 			continue;
 | |
| 
 | |
| 		while ((node = __percpu_list_pop(&list, i))) {
 | |
| 			sum += node->data;
 | |
| 			free(node);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * All entries should now be accounted for (unless some external
 | |
| 	 * actor is interfering with our allowed affinity while this
 | |
| 	 * test is running).
 | |
| 	 */
 | |
| 	assert(sum == expected_sum);
 | |
| }
 | |
| 
 | |
| bool this_cpu_buffer_push(struct percpu_buffer *buffer,
 | |
| 			  struct percpu_buffer_node *node,
 | |
| 			  int *_cpu)
 | |
| {
 | |
| 	bool result = false;
 | |
| 	int cpu;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		intptr_t *targetptr_spec, newval_spec;
 | |
| 		intptr_t *targetptr_final, newval_final;
 | |
| 		intptr_t offset;
 | |
| 		int ret;
 | |
| 
 | |
| 		cpu = rseq_cpu_start();
 | |
| 		offset = RSEQ_READ_ONCE(buffer->c[cpu].offset);
 | |
| 		if (offset == buffer->c[cpu].buflen)
 | |
| 			break;
 | |
| 		newval_spec = (intptr_t)node;
 | |
| 		targetptr_spec = (intptr_t *)&buffer->c[cpu].array[offset];
 | |
| 		newval_final = offset + 1;
 | |
| 		targetptr_final = &buffer->c[cpu].offset;
 | |
| 		if (opt_mb)
 | |
| 			ret = rseq_cmpeqv_trystorev_storev_release(
 | |
| 				targetptr_final, offset, targetptr_spec,
 | |
| 				newval_spec, newval_final, cpu);
 | |
| 		else
 | |
| 			ret = rseq_cmpeqv_trystorev_storev(targetptr_final,
 | |
| 				offset, targetptr_spec, newval_spec,
 | |
| 				newval_final, cpu);
 | |
| 		if (rseq_likely(!ret)) {
 | |
| 			result = true;
 | |
| 			break;
 | |
| 		}
 | |
| 		/* Retry if comparison fails or rseq aborts. */
 | |
| 	}
 | |
| 	if (_cpu)
 | |
| 		*_cpu = cpu;
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| struct percpu_buffer_node *this_cpu_buffer_pop(struct percpu_buffer *buffer,
 | |
| 					       int *_cpu)
 | |
| {
 | |
| 	struct percpu_buffer_node *head;
 | |
| 	int cpu;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		intptr_t *targetptr, newval;
 | |
| 		intptr_t offset;
 | |
| 		int ret;
 | |
| 
 | |
| 		cpu = rseq_cpu_start();
 | |
| 		/* Load offset with single-copy atomicity. */
 | |
| 		offset = RSEQ_READ_ONCE(buffer->c[cpu].offset);
 | |
| 		if (offset == 0) {
 | |
| 			head = NULL;
 | |
| 			break;
 | |
| 		}
 | |
| 		head = RSEQ_READ_ONCE(buffer->c[cpu].array[offset - 1]);
 | |
| 		newval = offset - 1;
 | |
| 		targetptr = (intptr_t *)&buffer->c[cpu].offset;
 | |
| 		ret = rseq_cmpeqv_cmpeqv_storev(targetptr, offset,
 | |
| 			(intptr_t *)&buffer->c[cpu].array[offset - 1],
 | |
| 			(intptr_t)head, newval, cpu);
 | |
| 		if (rseq_likely(!ret))
 | |
| 			break;
 | |
| 		/* Retry if comparison fails or rseq aborts. */
 | |
| 	}
 | |
| 	if (_cpu)
 | |
| 		*_cpu = cpu;
 | |
| 	return head;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * __percpu_buffer_pop is not safe against concurrent accesses. Should
 | |
|  * only be used on buffers that are not concurrently modified.
 | |
|  */
 | |
| struct percpu_buffer_node *__percpu_buffer_pop(struct percpu_buffer *buffer,
 | |
| 					       int cpu)
 | |
| {
 | |
| 	struct percpu_buffer_node *head;
 | |
| 	intptr_t offset;
 | |
| 
 | |
| 	offset = buffer->c[cpu].offset;
 | |
| 	if (offset == 0)
 | |
| 		return NULL;
 | |
| 	head = buffer->c[cpu].array[offset - 1];
 | |
| 	buffer->c[cpu].offset = offset - 1;
 | |
| 	return head;
 | |
| }
 | |
| 
 | |
| void *test_percpu_buffer_thread(void *arg)
 | |
| {
 | |
| 	long long i, reps;
 | |
| 	struct percpu_buffer *buffer = (struct percpu_buffer *)arg;
 | |
| 
 | |
| 	if (!opt_disable_rseq && rseq_register_current_thread())
 | |
| 		abort();
 | |
| 
 | |
| 	reps = opt_reps;
 | |
| 	for (i = 0; i < reps; i++) {
 | |
| 		struct percpu_buffer_node *node;
 | |
| 
 | |
| 		node = this_cpu_buffer_pop(buffer, NULL);
 | |
| 		if (opt_yield)
 | |
| 			sched_yield();  /* encourage shuffling */
 | |
| 		if (node) {
 | |
| 			if (!this_cpu_buffer_push(buffer, node, NULL)) {
 | |
| 				/* Should increase buffer size. */
 | |
| 				abort();
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
 | |
| 		       (int) rseq_gettid(), nr_abort, signals_delivered);
 | |
| 	if (!opt_disable_rseq && rseq_unregister_current_thread())
 | |
| 		abort();
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Simultaneous modification to a per-cpu buffer from many threads.  */
 | |
| void test_percpu_buffer(void)
 | |
| {
 | |
| 	const int num_threads = opt_threads;
 | |
| 	int i, j, ret;
 | |
| 	uint64_t sum = 0, expected_sum = 0;
 | |
| 	struct percpu_buffer buffer;
 | |
| 	pthread_t test_threads[num_threads];
 | |
| 	cpu_set_t allowed_cpus;
 | |
| 
 | |
| 	memset(&buffer, 0, sizeof(buffer));
 | |
| 
 | |
| 	/* Generate list entries for every usable cpu. */
 | |
| 	sched_getaffinity(0, sizeof(allowed_cpus), &allowed_cpus);
 | |
| 	for (i = 0; i < CPU_SETSIZE; i++) {
 | |
| 		if (!CPU_ISSET(i, &allowed_cpus))
 | |
| 			continue;
 | |
| 		/* Worse-case is every item in same CPU. */
 | |
| 		buffer.c[i].array =
 | |
| 			malloc(sizeof(*buffer.c[i].array) * CPU_SETSIZE *
 | |
| 			       BUFFER_ITEM_PER_CPU);
 | |
| 		assert(buffer.c[i].array);
 | |
| 		buffer.c[i].buflen = CPU_SETSIZE * BUFFER_ITEM_PER_CPU;
 | |
| 		for (j = 1; j <= BUFFER_ITEM_PER_CPU; j++) {
 | |
| 			struct percpu_buffer_node *node;
 | |
| 
 | |
| 			expected_sum += j;
 | |
| 
 | |
| 			/*
 | |
| 			 * We could theoretically put the word-sized
 | |
| 			 * "data" directly in the buffer. However, we
 | |
| 			 * want to model objects that would not fit
 | |
| 			 * within a single word, so allocate an object
 | |
| 			 * for each node.
 | |
| 			 */
 | |
| 			node = malloc(sizeof(*node));
 | |
| 			assert(node);
 | |
| 			node->data = j;
 | |
| 			buffer.c[i].array[j - 1] = node;
 | |
| 			buffer.c[i].offset++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < num_threads; i++) {
 | |
| 		ret = pthread_create(&test_threads[i], NULL,
 | |
| 				     test_percpu_buffer_thread, &buffer);
 | |
| 		if (ret) {
 | |
| 			errno = ret;
 | |
| 			perror("pthread_create");
 | |
| 			abort();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < num_threads; i++) {
 | |
| 		ret = pthread_join(test_threads[i], NULL);
 | |
| 		if (ret) {
 | |
| 			errno = ret;
 | |
| 			perror("pthread_join");
 | |
| 			abort();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < CPU_SETSIZE; i++) {
 | |
| 		struct percpu_buffer_node *node;
 | |
| 
 | |
| 		if (!CPU_ISSET(i, &allowed_cpus))
 | |
| 			continue;
 | |
| 
 | |
| 		while ((node = __percpu_buffer_pop(&buffer, i))) {
 | |
| 			sum += node->data;
 | |
| 			free(node);
 | |
| 		}
 | |
| 		free(buffer.c[i].array);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * All entries should now be accounted for (unless some external
 | |
| 	 * actor is interfering with our allowed affinity while this
 | |
| 	 * test is running).
 | |
| 	 */
 | |
| 	assert(sum == expected_sum);
 | |
| }
 | |
| 
 | |
| bool this_cpu_memcpy_buffer_push(struct percpu_memcpy_buffer *buffer,
 | |
| 				 struct percpu_memcpy_buffer_node item,
 | |
| 				 int *_cpu)
 | |
| {
 | |
| 	bool result = false;
 | |
| 	int cpu;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		intptr_t *targetptr_final, newval_final, offset;
 | |
| 		char *destptr, *srcptr;
 | |
| 		size_t copylen;
 | |
| 		int ret;
 | |
| 
 | |
| 		cpu = rseq_cpu_start();
 | |
| 		/* Load offset with single-copy atomicity. */
 | |
| 		offset = RSEQ_READ_ONCE(buffer->c[cpu].offset);
 | |
| 		if (offset == buffer->c[cpu].buflen)
 | |
| 			break;
 | |
| 		destptr = (char *)&buffer->c[cpu].array[offset];
 | |
| 		srcptr = (char *)&item;
 | |
| 		/* copylen must be <= 4kB. */
 | |
| 		copylen = sizeof(item);
 | |
| 		newval_final = offset + 1;
 | |
| 		targetptr_final = &buffer->c[cpu].offset;
 | |
| 		if (opt_mb)
 | |
| 			ret = rseq_cmpeqv_trymemcpy_storev_release(
 | |
| 				targetptr_final, offset,
 | |
| 				destptr, srcptr, copylen,
 | |
| 				newval_final, cpu);
 | |
| 		else
 | |
| 			ret = rseq_cmpeqv_trymemcpy_storev(targetptr_final,
 | |
| 				offset, destptr, srcptr, copylen,
 | |
| 				newval_final, cpu);
 | |
| 		if (rseq_likely(!ret)) {
 | |
| 			result = true;
 | |
| 			break;
 | |
| 		}
 | |
| 		/* Retry if comparison fails or rseq aborts. */
 | |
| 	}
 | |
| 	if (_cpu)
 | |
| 		*_cpu = cpu;
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| bool this_cpu_memcpy_buffer_pop(struct percpu_memcpy_buffer *buffer,
 | |
| 				struct percpu_memcpy_buffer_node *item,
 | |
| 				int *_cpu)
 | |
| {
 | |
| 	bool result = false;
 | |
| 	int cpu;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		intptr_t *targetptr_final, newval_final, offset;
 | |
| 		char *destptr, *srcptr;
 | |
| 		size_t copylen;
 | |
| 		int ret;
 | |
| 
 | |
| 		cpu = rseq_cpu_start();
 | |
| 		/* Load offset with single-copy atomicity. */
 | |
| 		offset = RSEQ_READ_ONCE(buffer->c[cpu].offset);
 | |
| 		if (offset == 0)
 | |
| 			break;
 | |
| 		destptr = (char *)item;
 | |
| 		srcptr = (char *)&buffer->c[cpu].array[offset - 1];
 | |
| 		/* copylen must be <= 4kB. */
 | |
| 		copylen = sizeof(*item);
 | |
| 		newval_final = offset - 1;
 | |
| 		targetptr_final = &buffer->c[cpu].offset;
 | |
| 		ret = rseq_cmpeqv_trymemcpy_storev(targetptr_final,
 | |
| 			offset, destptr, srcptr, copylen,
 | |
| 			newval_final, cpu);
 | |
| 		if (rseq_likely(!ret)) {
 | |
| 			result = true;
 | |
| 			break;
 | |
| 		}
 | |
| 		/* Retry if comparison fails or rseq aborts. */
 | |
| 	}
 | |
| 	if (_cpu)
 | |
| 		*_cpu = cpu;
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * __percpu_memcpy_buffer_pop is not safe against concurrent accesses. Should
 | |
|  * only be used on buffers that are not concurrently modified.
 | |
|  */
 | |
| bool __percpu_memcpy_buffer_pop(struct percpu_memcpy_buffer *buffer,
 | |
| 				struct percpu_memcpy_buffer_node *item,
 | |
| 				int cpu)
 | |
| {
 | |
| 	intptr_t offset;
 | |
| 
 | |
| 	offset = buffer->c[cpu].offset;
 | |
| 	if (offset == 0)
 | |
| 		return false;
 | |
| 	memcpy(item, &buffer->c[cpu].array[offset - 1], sizeof(*item));
 | |
| 	buffer->c[cpu].offset = offset - 1;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| void *test_percpu_memcpy_buffer_thread(void *arg)
 | |
| {
 | |
| 	long long i, reps;
 | |
| 	struct percpu_memcpy_buffer *buffer = (struct percpu_memcpy_buffer *)arg;
 | |
| 
 | |
| 	if (!opt_disable_rseq && rseq_register_current_thread())
 | |
| 		abort();
 | |
| 
 | |
| 	reps = opt_reps;
 | |
| 	for (i = 0; i < reps; i++) {
 | |
| 		struct percpu_memcpy_buffer_node item;
 | |
| 		bool result;
 | |
| 
 | |
| 		result = this_cpu_memcpy_buffer_pop(buffer, &item, NULL);
 | |
| 		if (opt_yield)
 | |
| 			sched_yield();  /* encourage shuffling */
 | |
| 		if (result) {
 | |
| 			if (!this_cpu_memcpy_buffer_push(buffer, item, NULL)) {
 | |
| 				/* Should increase buffer size. */
 | |
| 				abort();
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	printf_verbose("tid %d: number of rseq abort: %d, signals delivered: %u\n",
 | |
| 		       (int) rseq_gettid(), nr_abort, signals_delivered);
 | |
| 	if (!opt_disable_rseq && rseq_unregister_current_thread())
 | |
| 		abort();
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* Simultaneous modification to a per-cpu buffer from many threads.  */
 | |
| void test_percpu_memcpy_buffer(void)
 | |
| {
 | |
| 	const int num_threads = opt_threads;
 | |
| 	int i, j, ret;
 | |
| 	uint64_t sum = 0, expected_sum = 0;
 | |
| 	struct percpu_memcpy_buffer buffer;
 | |
| 	pthread_t test_threads[num_threads];
 | |
| 	cpu_set_t allowed_cpus;
 | |
| 
 | |
| 	memset(&buffer, 0, sizeof(buffer));
 | |
| 
 | |
| 	/* Generate list entries for every usable cpu. */
 | |
| 	sched_getaffinity(0, sizeof(allowed_cpus), &allowed_cpus);
 | |
| 	for (i = 0; i < CPU_SETSIZE; i++) {
 | |
| 		if (!CPU_ISSET(i, &allowed_cpus))
 | |
| 			continue;
 | |
| 		/* Worse-case is every item in same CPU. */
 | |
| 		buffer.c[i].array =
 | |
| 			malloc(sizeof(*buffer.c[i].array) * CPU_SETSIZE *
 | |
| 			       MEMCPY_BUFFER_ITEM_PER_CPU);
 | |
| 		assert(buffer.c[i].array);
 | |
| 		buffer.c[i].buflen = CPU_SETSIZE * MEMCPY_BUFFER_ITEM_PER_CPU;
 | |
| 		for (j = 1; j <= MEMCPY_BUFFER_ITEM_PER_CPU; j++) {
 | |
| 			expected_sum += 2 * j + 1;
 | |
| 
 | |
| 			/*
 | |
| 			 * We could theoretically put the word-sized
 | |
| 			 * "data" directly in the buffer. However, we
 | |
| 			 * want to model objects that would not fit
 | |
| 			 * within a single word, so allocate an object
 | |
| 			 * for each node.
 | |
| 			 */
 | |
| 			buffer.c[i].array[j - 1].data1 = j;
 | |
| 			buffer.c[i].array[j - 1].data2 = j + 1;
 | |
| 			buffer.c[i].offset++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < num_threads; i++) {
 | |
| 		ret = pthread_create(&test_threads[i], NULL,
 | |
| 				     test_percpu_memcpy_buffer_thread,
 | |
| 				     &buffer);
 | |
| 		if (ret) {
 | |
| 			errno = ret;
 | |
| 			perror("pthread_create");
 | |
| 			abort();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < num_threads; i++) {
 | |
| 		ret = pthread_join(test_threads[i], NULL);
 | |
| 		if (ret) {
 | |
| 			errno = ret;
 | |
| 			perror("pthread_join");
 | |
| 			abort();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < CPU_SETSIZE; i++) {
 | |
| 		struct percpu_memcpy_buffer_node item;
 | |
| 
 | |
| 		if (!CPU_ISSET(i, &allowed_cpus))
 | |
| 			continue;
 | |
| 
 | |
| 		while (__percpu_memcpy_buffer_pop(&buffer, &item, i)) {
 | |
| 			sum += item.data1;
 | |
| 			sum += item.data2;
 | |
| 		}
 | |
| 		free(buffer.c[i].array);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * All entries should now be accounted for (unless some external
 | |
| 	 * actor is interfering with our allowed affinity while this
 | |
| 	 * test is running).
 | |
| 	 */
 | |
| 	assert(sum == expected_sum);
 | |
| }
 | |
| 
 | |
| static void test_signal_interrupt_handler(int signo)
 | |
| {
 | |
| 	signals_delivered++;
 | |
| }
 | |
| 
 | |
| static int set_signal_handler(void)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct sigaction sa;
 | |
| 	sigset_t sigset;
 | |
| 
 | |
| 	ret = sigemptyset(&sigset);
 | |
| 	if (ret < 0) {
 | |
| 		perror("sigemptyset");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	sa.sa_handler = test_signal_interrupt_handler;
 | |
| 	sa.sa_mask = sigset;
 | |
| 	sa.sa_flags = 0;
 | |
| 	ret = sigaction(SIGUSR1, &sa, NULL);
 | |
| 	if (ret < 0) {
 | |
| 		perror("sigaction");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	printf_verbose("Signal handler set for SIGUSR1\n");
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Test MEMBARRIER_CMD_PRIVATE_RESTART_RSEQ_ON_CPU membarrier command. */
 | |
| #ifdef RSEQ_ARCH_HAS_OFFSET_DEREF_ADDV
 | |
| struct test_membarrier_thread_args {
 | |
| 	int stop;
 | |
| 	intptr_t percpu_list_ptr;
 | |
| };
 | |
| 
 | |
| /* Worker threads modify data in their "active" percpu lists. */
 | |
| void *test_membarrier_worker_thread(void *arg)
 | |
| {
 | |
| 	struct test_membarrier_thread_args *args =
 | |
| 		(struct test_membarrier_thread_args *)arg;
 | |
| 	const int iters = opt_reps;
 | |
| 	int i;
 | |
| 
 | |
| 	if (rseq_register_current_thread()) {
 | |
| 		fprintf(stderr, "Error: rseq_register_current_thread(...) failed(%d): %s\n",
 | |
| 			errno, strerror(errno));
 | |
| 		abort();
 | |
| 	}
 | |
| 
 | |
| 	/* Wait for initialization. */
 | |
| 	while (!atomic_load(&args->percpu_list_ptr)) {}
 | |
| 
 | |
| 	for (i = 0; i < iters; ++i) {
 | |
| 		int ret;
 | |
| 
 | |
| 		do {
 | |
| 			int cpu = rseq_cpu_start();
 | |
| 
 | |
| 			ret = rseq_offset_deref_addv(&args->percpu_list_ptr,
 | |
| 				sizeof(struct percpu_list_entry) * cpu, 1, cpu);
 | |
| 		} while (rseq_unlikely(ret));
 | |
| 	}
 | |
| 
 | |
| 	if (rseq_unregister_current_thread()) {
 | |
| 		fprintf(stderr, "Error: rseq_unregister_current_thread(...) failed(%d): %s\n",
 | |
| 			errno, strerror(errno));
 | |
| 		abort();
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| void test_membarrier_init_percpu_list(struct percpu_list *list)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	memset(list, 0, sizeof(*list));
 | |
| 	for (i = 0; i < CPU_SETSIZE; i++) {
 | |
| 		struct percpu_list_node *node;
 | |
| 
 | |
| 		node = malloc(sizeof(*node));
 | |
| 		assert(node);
 | |
| 		node->data = 0;
 | |
| 		node->next = NULL;
 | |
| 		list->c[i].head = node;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void test_membarrier_free_percpu_list(struct percpu_list *list)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < CPU_SETSIZE; i++)
 | |
| 		free(list->c[i].head);
 | |
| }
 | |
| 
 | |
| static int sys_membarrier(int cmd, int flags, int cpu_id)
 | |
| {
 | |
| 	return syscall(__NR_membarrier, cmd, flags, cpu_id);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The manager thread swaps per-cpu lists that worker threads see,
 | |
|  * and validates that there are no unexpected modifications.
 | |
|  */
 | |
| void *test_membarrier_manager_thread(void *arg)
 | |
| {
 | |
| 	struct test_membarrier_thread_args *args =
 | |
| 		(struct test_membarrier_thread_args *)arg;
 | |
| 	struct percpu_list list_a, list_b;
 | |
| 	intptr_t expect_a = 0, expect_b = 0;
 | |
| 	int cpu_a = 0, cpu_b = 0;
 | |
| 
 | |
| 	if (rseq_register_current_thread()) {
 | |
| 		fprintf(stderr, "Error: rseq_register_current_thread(...) failed(%d): %s\n",
 | |
| 			errno, strerror(errno));
 | |
| 		abort();
 | |
| 	}
 | |
| 
 | |
| 	/* Init lists. */
 | |
| 	test_membarrier_init_percpu_list(&list_a);
 | |
| 	test_membarrier_init_percpu_list(&list_b);
 | |
| 
 | |
| 	atomic_store(&args->percpu_list_ptr, (intptr_t)&list_a);
 | |
| 
 | |
| 	while (!atomic_load(&args->stop)) {
 | |
| 		/* list_a is "active". */
 | |
| 		cpu_a = rand() % CPU_SETSIZE;
 | |
| 		/*
 | |
| 		 * As list_b is "inactive", we should never see changes
 | |
| 		 * to list_b.
 | |
| 		 */
 | |
| 		if (expect_b != atomic_load(&list_b.c[cpu_b].head->data)) {
 | |
| 			fprintf(stderr, "Membarrier test failed\n");
 | |
| 			abort();
 | |
| 		}
 | |
| 
 | |
| 		/* Make list_b "active". */
 | |
| 		atomic_store(&args->percpu_list_ptr, (intptr_t)&list_b);
 | |
| 		if (sys_membarrier(MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ,
 | |
| 					MEMBARRIER_CMD_FLAG_CPU, cpu_a) &&
 | |
| 				errno != ENXIO /* missing CPU */) {
 | |
| 			perror("sys_membarrier");
 | |
| 			abort();
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Cpu A should now only modify list_b, so the values
 | |
| 		 * in list_a should be stable.
 | |
| 		 */
 | |
| 		expect_a = atomic_load(&list_a.c[cpu_a].head->data);
 | |
| 
 | |
| 		cpu_b = rand() % CPU_SETSIZE;
 | |
| 		/*
 | |
| 		 * As list_a is "inactive", we should never see changes
 | |
| 		 * to list_a.
 | |
| 		 */
 | |
| 		if (expect_a != atomic_load(&list_a.c[cpu_a].head->data)) {
 | |
| 			fprintf(stderr, "Membarrier test failed\n");
 | |
| 			abort();
 | |
| 		}
 | |
| 
 | |
| 		/* Make list_a "active". */
 | |
| 		atomic_store(&args->percpu_list_ptr, (intptr_t)&list_a);
 | |
| 		if (sys_membarrier(MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ,
 | |
| 					MEMBARRIER_CMD_FLAG_CPU, cpu_b) &&
 | |
| 				errno != ENXIO /* missing CPU*/) {
 | |
| 			perror("sys_membarrier");
 | |
| 			abort();
 | |
| 		}
 | |
| 		/* Remember a value from list_b. */
 | |
| 		expect_b = atomic_load(&list_b.c[cpu_b].head->data);
 | |
| 	}
 | |
| 
 | |
| 	test_membarrier_free_percpu_list(&list_a);
 | |
| 	test_membarrier_free_percpu_list(&list_b);
 | |
| 
 | |
| 	if (rseq_unregister_current_thread()) {
 | |
| 		fprintf(stderr, "Error: rseq_unregister_current_thread(...) failed(%d): %s\n",
 | |
| 			errno, strerror(errno));
 | |
| 		abort();
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| void test_membarrier(void)
 | |
| {
 | |
| 	const int num_threads = opt_threads;
 | |
| 	struct test_membarrier_thread_args thread_args;
 | |
| 	pthread_t worker_threads[num_threads];
 | |
| 	pthread_t manager_thread;
 | |
| 	int i, ret;
 | |
| 
 | |
| 	if (sys_membarrier(MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ, 0, 0)) {
 | |
| 		perror("sys_membarrier");
 | |
| 		abort();
 | |
| 	}
 | |
| 
 | |
| 	thread_args.stop = 0;
 | |
| 	thread_args.percpu_list_ptr = 0;
 | |
| 	ret = pthread_create(&manager_thread, NULL,
 | |
| 			test_membarrier_manager_thread, &thread_args);
 | |
| 	if (ret) {
 | |
| 		errno = ret;
 | |
| 		perror("pthread_create");
 | |
| 		abort();
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < num_threads; i++) {
 | |
| 		ret = pthread_create(&worker_threads[i], NULL,
 | |
| 				test_membarrier_worker_thread, &thread_args);
 | |
| 		if (ret) {
 | |
| 			errno = ret;
 | |
| 			perror("pthread_create");
 | |
| 			abort();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	for (i = 0; i < num_threads; i++) {
 | |
| 		ret = pthread_join(worker_threads[i], NULL);
 | |
| 		if (ret) {
 | |
| 			errno = ret;
 | |
| 			perror("pthread_join");
 | |
| 			abort();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	atomic_store(&thread_args.stop, 1);
 | |
| 	ret = pthread_join(manager_thread, NULL);
 | |
| 	if (ret) {
 | |
| 		errno = ret;
 | |
| 		perror("pthread_join");
 | |
| 		abort();
 | |
| 	}
 | |
| }
 | |
| #else /* RSEQ_ARCH_HAS_OFFSET_DEREF_ADDV */
 | |
| void test_membarrier(void)
 | |
| {
 | |
| 	fprintf(stderr, "rseq_offset_deref_addv is not implemented on this architecture. "
 | |
| 			"Skipping membarrier test.\n");
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void show_usage(int argc, char **argv)
 | |
| {
 | |
| 	printf("Usage : %s <OPTIONS>\n",
 | |
| 		argv[0]);
 | |
| 	printf("OPTIONS:\n");
 | |
| 	printf("	[-1 loops] Number of loops for delay injection 1\n");
 | |
| 	printf("	[-2 loops] Number of loops for delay injection 2\n");
 | |
| 	printf("	[-3 loops] Number of loops for delay injection 3\n");
 | |
| 	printf("	[-4 loops] Number of loops for delay injection 4\n");
 | |
| 	printf("	[-5 loops] Number of loops for delay injection 5\n");
 | |
| 	printf("	[-6 loops] Number of loops for delay injection 6\n");
 | |
| 	printf("	[-7 loops] Number of loops for delay injection 7 (-1 to enable -m)\n");
 | |
| 	printf("	[-8 loops] Number of loops for delay injection 8 (-1 to enable -m)\n");
 | |
| 	printf("	[-9 loops] Number of loops for delay injection 9 (-1 to enable -m)\n");
 | |
| 	printf("	[-m N] Yield/sleep/kill every modulo N (default 0: disabled) (>= 0)\n");
 | |
| 	printf("	[-y] Yield\n");
 | |
| 	printf("	[-k] Kill thread with signal\n");
 | |
| 	printf("	[-s S] S: =0: disabled (default), >0: sleep time (ms)\n");
 | |
| 	printf("	[-t N] Number of threads (default 200)\n");
 | |
| 	printf("	[-r N] Number of repetitions per thread (default 5000)\n");
 | |
| 	printf("	[-d] Disable rseq system call (no initialization)\n");
 | |
| 	printf("	[-D M] Disable rseq for each M threads\n");
 | |
| 	printf("	[-T test] Choose test: (s)pinlock, (l)ist, (b)uffer, (m)emcpy, (i)ncrement, membarrie(r)\n");
 | |
| 	printf("	[-M] Push into buffer and memcpy buffer with memory barriers.\n");
 | |
| 	printf("	[-v] Verbose output.\n");
 | |
| 	printf("	[-h] Show this help.\n");
 | |
| 	printf("\n");
 | |
| }
 | |
| 
 | |
| int main(int argc, char **argv)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 1; i < argc; i++) {
 | |
| 		if (argv[i][0] != '-')
 | |
| 			continue;
 | |
| 		switch (argv[i][1]) {
 | |
| 		case '1':
 | |
| 		case '2':
 | |
| 		case '3':
 | |
| 		case '4':
 | |
| 		case '5':
 | |
| 		case '6':
 | |
| 		case '7':
 | |
| 		case '8':
 | |
| 		case '9':
 | |
| 			if (argc < i + 2) {
 | |
| 				show_usage(argc, argv);
 | |
| 				goto error;
 | |
| 			}
 | |
| 			loop_cnt[argv[i][1] - '0'] = atol(argv[i + 1]);
 | |
| 			i++;
 | |
| 			break;
 | |
| 		case 'm':
 | |
| 			if (argc < i + 2) {
 | |
| 				show_usage(argc, argv);
 | |
| 				goto error;
 | |
| 			}
 | |
| 			opt_modulo = atol(argv[i + 1]);
 | |
| 			if (opt_modulo < 0) {
 | |
| 				show_usage(argc, argv);
 | |
| 				goto error;
 | |
| 			}
 | |
| 			i++;
 | |
| 			break;
 | |
| 		case 's':
 | |
| 			if (argc < i + 2) {
 | |
| 				show_usage(argc, argv);
 | |
| 				goto error;
 | |
| 			}
 | |
| 			opt_sleep = atol(argv[i + 1]);
 | |
| 			if (opt_sleep < 0) {
 | |
| 				show_usage(argc, argv);
 | |
| 				goto error;
 | |
| 			}
 | |
| 			i++;
 | |
| 			break;
 | |
| 		case 'y':
 | |
| 			opt_yield = 1;
 | |
| 			break;
 | |
| 		case 'k':
 | |
| 			opt_signal = 1;
 | |
| 			break;
 | |
| 		case 'd':
 | |
| 			opt_disable_rseq = 1;
 | |
| 			break;
 | |
| 		case 'D':
 | |
| 			if (argc < i + 2) {
 | |
| 				show_usage(argc, argv);
 | |
| 				goto error;
 | |
| 			}
 | |
| 			opt_disable_mod = atol(argv[i + 1]);
 | |
| 			if (opt_disable_mod < 0) {
 | |
| 				show_usage(argc, argv);
 | |
| 				goto error;
 | |
| 			}
 | |
| 			i++;
 | |
| 			break;
 | |
| 		case 't':
 | |
| 			if (argc < i + 2) {
 | |
| 				show_usage(argc, argv);
 | |
| 				goto error;
 | |
| 			}
 | |
| 			opt_threads = atol(argv[i + 1]);
 | |
| 			if (opt_threads < 0) {
 | |
| 				show_usage(argc, argv);
 | |
| 				goto error;
 | |
| 			}
 | |
| 			i++;
 | |
| 			break;
 | |
| 		case 'r':
 | |
| 			if (argc < i + 2) {
 | |
| 				show_usage(argc, argv);
 | |
| 				goto error;
 | |
| 			}
 | |
| 			opt_reps = atoll(argv[i + 1]);
 | |
| 			if (opt_reps < 0) {
 | |
| 				show_usage(argc, argv);
 | |
| 				goto error;
 | |
| 			}
 | |
| 			i++;
 | |
| 			break;
 | |
| 		case 'h':
 | |
| 			show_usage(argc, argv);
 | |
| 			goto end;
 | |
| 		case 'T':
 | |
| 			if (argc < i + 2) {
 | |
| 				show_usage(argc, argv);
 | |
| 				goto error;
 | |
| 			}
 | |
| 			opt_test = *argv[i + 1];
 | |
| 			switch (opt_test) {
 | |
| 			case 's':
 | |
| 			case 'l':
 | |
| 			case 'i':
 | |
| 			case 'b':
 | |
| 			case 'm':
 | |
| 			case 'r':
 | |
| 				break;
 | |
| 			default:
 | |
| 				show_usage(argc, argv);
 | |
| 				goto error;
 | |
| 			}
 | |
| 			i++;
 | |
| 			break;
 | |
| 		case 'v':
 | |
| 			verbose = 1;
 | |
| 			break;
 | |
| 		case 'M':
 | |
| 			opt_mb = 1;
 | |
| 			break;
 | |
| 		default:
 | |
| 			show_usage(argc, argv);
 | |
| 			goto error;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	loop_cnt_1 = loop_cnt[1];
 | |
| 	loop_cnt_2 = loop_cnt[2];
 | |
| 	loop_cnt_3 = loop_cnt[3];
 | |
| 	loop_cnt_4 = loop_cnt[4];
 | |
| 	loop_cnt_5 = loop_cnt[5];
 | |
| 	loop_cnt_6 = loop_cnt[6];
 | |
| 
 | |
| 	if (set_signal_handler())
 | |
| 		goto error;
 | |
| 
 | |
| 	if (!opt_disable_rseq && rseq_register_current_thread())
 | |
| 		goto error;
 | |
| 	switch (opt_test) {
 | |
| 	case 's':
 | |
| 		printf_verbose("spinlock\n");
 | |
| 		test_percpu_spinlock();
 | |
| 		break;
 | |
| 	case 'l':
 | |
| 		printf_verbose("linked list\n");
 | |
| 		test_percpu_list();
 | |
| 		break;
 | |
| 	case 'b':
 | |
| 		printf_verbose("buffer\n");
 | |
| 		test_percpu_buffer();
 | |
| 		break;
 | |
| 	case 'm':
 | |
| 		printf_verbose("memcpy buffer\n");
 | |
| 		test_percpu_memcpy_buffer();
 | |
| 		break;
 | |
| 	case 'i':
 | |
| 		printf_verbose("counter increment\n");
 | |
| 		test_percpu_inc();
 | |
| 		break;
 | |
| 	case 'r':
 | |
| 		printf_verbose("membarrier\n");
 | |
| 		test_membarrier();
 | |
| 		break;
 | |
| 	}
 | |
| 	if (!opt_disable_rseq && rseq_unregister_current_thread())
 | |
| 		abort();
 | |
| end:
 | |
| 	return 0;
 | |
| 
 | |
| error:
 | |
| 	return -1;
 | |
| }
 |