415 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			415 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
 | |
|  */
 | |
| 
 | |
| #include "queueing.h"
 | |
| #include "timers.h"
 | |
| #include "device.h"
 | |
| #include "peer.h"
 | |
| #include "socket.h"
 | |
| #include "messages.h"
 | |
| #include "cookie.h"
 | |
| 
 | |
| #include <linux/uio.h>
 | |
| #include <linux/inetdevice.h>
 | |
| #include <linux/socket.h>
 | |
| #include <net/ip_tunnels.h>
 | |
| #include <net/udp.h>
 | |
| #include <net/sock.h>
 | |
| 
 | |
| static void wg_packet_send_handshake_initiation(struct wg_peer *peer)
 | |
| {
 | |
| 	struct message_handshake_initiation packet;
 | |
| 
 | |
| 	if (!wg_birthdate_has_expired(atomic64_read(&peer->last_sent_handshake),
 | |
| 				      REKEY_TIMEOUT))
 | |
| 		return; /* This function is rate limited. */
 | |
| 
 | |
| 	atomic64_set(&peer->last_sent_handshake, ktime_get_coarse_boottime_ns());
 | |
| 	net_dbg_ratelimited("%s: Sending handshake initiation to peer %llu (%pISpfsc)\n",
 | |
| 			    peer->device->dev->name, peer->internal_id,
 | |
| 			    &peer->endpoint.addr);
 | |
| 
 | |
| 	if (wg_noise_handshake_create_initiation(&packet, &peer->handshake)) {
 | |
| 		wg_cookie_add_mac_to_packet(&packet, sizeof(packet), peer);
 | |
| 		wg_timers_any_authenticated_packet_traversal(peer);
 | |
| 		wg_timers_any_authenticated_packet_sent(peer);
 | |
| 		atomic64_set(&peer->last_sent_handshake,
 | |
| 			     ktime_get_coarse_boottime_ns());
 | |
| 		wg_socket_send_buffer_to_peer(peer, &packet, sizeof(packet),
 | |
| 					      HANDSHAKE_DSCP);
 | |
| 		wg_timers_handshake_initiated(peer);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void wg_packet_handshake_send_worker(struct work_struct *work)
 | |
| {
 | |
| 	struct wg_peer *peer = container_of(work, struct wg_peer,
 | |
| 					    transmit_handshake_work);
 | |
| 
 | |
| 	wg_packet_send_handshake_initiation(peer);
 | |
| 	wg_peer_put(peer);
 | |
| }
 | |
| 
 | |
| void wg_packet_send_queued_handshake_initiation(struct wg_peer *peer,
 | |
| 						bool is_retry)
 | |
| {
 | |
| 	if (!is_retry)
 | |
| 		peer->timer_handshake_attempts = 0;
 | |
| 
 | |
| 	rcu_read_lock_bh();
 | |
| 	/* We check last_sent_handshake here in addition to the actual function
 | |
| 	 * we're queueing up, so that we don't queue things if not strictly
 | |
| 	 * necessary:
 | |
| 	 */
 | |
| 	if (!wg_birthdate_has_expired(atomic64_read(&peer->last_sent_handshake),
 | |
| 				      REKEY_TIMEOUT) ||
 | |
| 			unlikely(READ_ONCE(peer->is_dead)))
 | |
| 		goto out;
 | |
| 
 | |
| 	wg_peer_get(peer);
 | |
| 	/* Queues up calling packet_send_queued_handshakes(peer), where we do a
 | |
| 	 * peer_put(peer) after:
 | |
| 	 */
 | |
| 	if (!queue_work(peer->device->handshake_send_wq,
 | |
| 			&peer->transmit_handshake_work))
 | |
| 		/* If the work was already queued, we want to drop the
 | |
| 		 * extra reference:
 | |
| 		 */
 | |
| 		wg_peer_put(peer);
 | |
| out:
 | |
| 	rcu_read_unlock_bh();
 | |
| }
 | |
| 
 | |
| void wg_packet_send_handshake_response(struct wg_peer *peer)
 | |
| {
 | |
| 	struct message_handshake_response packet;
 | |
| 
 | |
| 	atomic64_set(&peer->last_sent_handshake, ktime_get_coarse_boottime_ns());
 | |
| 	net_dbg_ratelimited("%s: Sending handshake response to peer %llu (%pISpfsc)\n",
 | |
| 			    peer->device->dev->name, peer->internal_id,
 | |
| 			    &peer->endpoint.addr);
 | |
| 
 | |
| 	if (wg_noise_handshake_create_response(&packet, &peer->handshake)) {
 | |
| 		wg_cookie_add_mac_to_packet(&packet, sizeof(packet), peer);
 | |
| 		if (wg_noise_handshake_begin_session(&peer->handshake,
 | |
| 						     &peer->keypairs)) {
 | |
| 			wg_timers_session_derived(peer);
 | |
| 			wg_timers_any_authenticated_packet_traversal(peer);
 | |
| 			wg_timers_any_authenticated_packet_sent(peer);
 | |
| 			atomic64_set(&peer->last_sent_handshake,
 | |
| 				     ktime_get_coarse_boottime_ns());
 | |
| 			wg_socket_send_buffer_to_peer(peer, &packet,
 | |
| 						      sizeof(packet),
 | |
| 						      HANDSHAKE_DSCP);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void wg_packet_send_handshake_cookie(struct wg_device *wg,
 | |
| 				     struct sk_buff *initiating_skb,
 | |
| 				     __le32 sender_index)
 | |
| {
 | |
| 	struct message_handshake_cookie packet;
 | |
| 
 | |
| 	net_dbg_skb_ratelimited("%s: Sending cookie response for denied handshake message for %pISpfsc\n",
 | |
| 				wg->dev->name, initiating_skb);
 | |
| 	wg_cookie_message_create(&packet, initiating_skb, sender_index,
 | |
| 				 &wg->cookie_checker);
 | |
| 	wg_socket_send_buffer_as_reply_to_skb(wg, initiating_skb, &packet,
 | |
| 					      sizeof(packet));
 | |
| }
 | |
| 
 | |
| static void keep_key_fresh(struct wg_peer *peer)
 | |
| {
 | |
| 	struct noise_keypair *keypair;
 | |
| 	bool send;
 | |
| 
 | |
| 	rcu_read_lock_bh();
 | |
| 	keypair = rcu_dereference_bh(peer->keypairs.current_keypair);
 | |
| 	send = keypair && READ_ONCE(keypair->sending.is_valid) &&
 | |
| 	       (atomic64_read(&keypair->sending_counter) > REKEY_AFTER_MESSAGES ||
 | |
| 		(keypair->i_am_the_initiator &&
 | |
| 		 wg_birthdate_has_expired(keypair->sending.birthdate, REKEY_AFTER_TIME)));
 | |
| 	rcu_read_unlock_bh();
 | |
| 
 | |
| 	if (unlikely(send))
 | |
| 		wg_packet_send_queued_handshake_initiation(peer, false);
 | |
| }
 | |
| 
 | |
| static unsigned int calculate_skb_padding(struct sk_buff *skb)
 | |
| {
 | |
| 	unsigned int padded_size, last_unit = skb->len;
 | |
| 
 | |
| 	if (unlikely(!PACKET_CB(skb)->mtu))
 | |
| 		return ALIGN(last_unit, MESSAGE_PADDING_MULTIPLE) - last_unit;
 | |
| 
 | |
| 	/* We do this modulo business with the MTU, just in case the networking
 | |
| 	 * layer gives us a packet that's bigger than the MTU. In that case, we
 | |
| 	 * wouldn't want the final subtraction to overflow in the case of the
 | |
| 	 * padded_size being clamped. Fortunately, that's very rarely the case,
 | |
| 	 * so we optimize for that not happening.
 | |
| 	 */
 | |
| 	if (unlikely(last_unit > PACKET_CB(skb)->mtu))
 | |
| 		last_unit %= PACKET_CB(skb)->mtu;
 | |
| 
 | |
| 	padded_size = min(PACKET_CB(skb)->mtu,
 | |
| 			  ALIGN(last_unit, MESSAGE_PADDING_MULTIPLE));
 | |
| 	return padded_size - last_unit;
 | |
| }
 | |
| 
 | |
| static bool encrypt_packet(struct sk_buff *skb, struct noise_keypair *keypair)
 | |
| {
 | |
| 	unsigned int padding_len, plaintext_len, trailer_len;
 | |
| 	struct scatterlist sg[MAX_SKB_FRAGS + 8];
 | |
| 	struct message_data *header;
 | |
| 	struct sk_buff *trailer;
 | |
| 	int num_frags;
 | |
| 
 | |
| 	/* Force hash calculation before encryption so that flow analysis is
 | |
| 	 * consistent over the inner packet.
 | |
| 	 */
 | |
| 	skb_get_hash(skb);
 | |
| 
 | |
| 	/* Calculate lengths. */
 | |
| 	padding_len = calculate_skb_padding(skb);
 | |
| 	trailer_len = padding_len + noise_encrypted_len(0);
 | |
| 	plaintext_len = skb->len + padding_len;
 | |
| 
 | |
| 	/* Expand data section to have room for padding and auth tag. */
 | |
| 	num_frags = skb_cow_data(skb, trailer_len, &trailer);
 | |
| 	if (unlikely(num_frags < 0 || num_frags > ARRAY_SIZE(sg)))
 | |
| 		return false;
 | |
| 
 | |
| 	/* Set the padding to zeros, and make sure it and the auth tag are part
 | |
| 	 * of the skb.
 | |
| 	 */
 | |
| 	memset(skb_tail_pointer(trailer), 0, padding_len);
 | |
| 
 | |
| 	/* Expand head section to have room for our header and the network
 | |
| 	 * stack's headers.
 | |
| 	 */
 | |
| 	if (unlikely(skb_cow_head(skb, DATA_PACKET_HEAD_ROOM) < 0))
 | |
| 		return false;
 | |
| 
 | |
| 	/* Finalize checksum calculation for the inner packet, if required. */
 | |
| 	if (unlikely(skb->ip_summed == CHECKSUM_PARTIAL &&
 | |
| 		     skb_checksum_help(skb)))
 | |
| 		return false;
 | |
| 
 | |
| 	/* Only after checksumming can we safely add on the padding at the end
 | |
| 	 * and the header.
 | |
| 	 */
 | |
| 	skb_set_inner_network_header(skb, 0);
 | |
| 	header = (struct message_data *)skb_push(skb, sizeof(*header));
 | |
| 	header->header.type = cpu_to_le32(MESSAGE_DATA);
 | |
| 	header->key_idx = keypair->remote_index;
 | |
| 	header->counter = cpu_to_le64(PACKET_CB(skb)->nonce);
 | |
| 	pskb_put(skb, trailer, trailer_len);
 | |
| 
 | |
| 	/* Now we can encrypt the scattergather segments */
 | |
| 	sg_init_table(sg, num_frags);
 | |
| 	if (skb_to_sgvec(skb, sg, sizeof(struct message_data),
 | |
| 			 noise_encrypted_len(plaintext_len)) <= 0)
 | |
| 		return false;
 | |
| 	return chacha20poly1305_encrypt_sg_inplace(sg, plaintext_len, NULL, 0,
 | |
| 						   PACKET_CB(skb)->nonce,
 | |
| 						   keypair->sending.key);
 | |
| }
 | |
| 
 | |
| void wg_packet_send_keepalive(struct wg_peer *peer)
 | |
| {
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	if (skb_queue_empty_lockless(&peer->staged_packet_queue)) {
 | |
| 		skb = alloc_skb(DATA_PACKET_HEAD_ROOM + MESSAGE_MINIMUM_LENGTH,
 | |
| 				GFP_ATOMIC);
 | |
| 		if (unlikely(!skb))
 | |
| 			return;
 | |
| 		skb_reserve(skb, DATA_PACKET_HEAD_ROOM);
 | |
| 		skb->dev = peer->device->dev;
 | |
| 		PACKET_CB(skb)->mtu = skb->dev->mtu;
 | |
| 		skb_queue_tail(&peer->staged_packet_queue, skb);
 | |
| 		net_dbg_ratelimited("%s: Sending keepalive packet to peer %llu (%pISpfsc)\n",
 | |
| 				    peer->device->dev->name, peer->internal_id,
 | |
| 				    &peer->endpoint.addr);
 | |
| 	}
 | |
| 
 | |
| 	wg_packet_send_staged_packets(peer);
 | |
| }
 | |
| 
 | |
| static void wg_packet_create_data_done(struct wg_peer *peer, struct sk_buff *first)
 | |
| {
 | |
| 	struct sk_buff *skb, *next;
 | |
| 	bool is_keepalive, data_sent = false;
 | |
| 
 | |
| 	wg_timers_any_authenticated_packet_traversal(peer);
 | |
| 	wg_timers_any_authenticated_packet_sent(peer);
 | |
| 	skb_list_walk_safe(first, skb, next) {
 | |
| 		is_keepalive = skb->len == message_data_len(0);
 | |
| 		if (likely(!wg_socket_send_skb_to_peer(peer, skb,
 | |
| 				PACKET_CB(skb)->ds) && !is_keepalive))
 | |
| 			data_sent = true;
 | |
| 	}
 | |
| 
 | |
| 	if (likely(data_sent))
 | |
| 		wg_timers_data_sent(peer);
 | |
| 
 | |
| 	keep_key_fresh(peer);
 | |
| }
 | |
| 
 | |
| void wg_packet_tx_worker(struct work_struct *work)
 | |
| {
 | |
| 	struct wg_peer *peer = container_of(work, struct wg_peer, transmit_packet_work);
 | |
| 	struct noise_keypair *keypair;
 | |
| 	enum packet_state state;
 | |
| 	struct sk_buff *first;
 | |
| 
 | |
| 	while ((first = wg_prev_queue_peek(&peer->tx_queue)) != NULL &&
 | |
| 	       (state = atomic_read_acquire(&PACKET_CB(first)->state)) !=
 | |
| 		       PACKET_STATE_UNCRYPTED) {
 | |
| 		wg_prev_queue_drop_peeked(&peer->tx_queue);
 | |
| 		keypair = PACKET_CB(first)->keypair;
 | |
| 
 | |
| 		if (likely(state == PACKET_STATE_CRYPTED))
 | |
| 			wg_packet_create_data_done(peer, first);
 | |
| 		else
 | |
| 			kfree_skb_list(first);
 | |
| 
 | |
| 		wg_noise_keypair_put(keypair, false);
 | |
| 		wg_peer_put(peer);
 | |
| 		if (need_resched())
 | |
| 			cond_resched();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void wg_packet_encrypt_worker(struct work_struct *work)
 | |
| {
 | |
| 	struct crypt_queue *queue = container_of(work, struct multicore_worker,
 | |
| 						 work)->ptr;
 | |
| 	struct sk_buff *first, *skb, *next;
 | |
| 
 | |
| 	while ((first = ptr_ring_consume_bh(&queue->ring)) != NULL) {
 | |
| 		enum packet_state state = PACKET_STATE_CRYPTED;
 | |
| 
 | |
| 		skb_list_walk_safe(first, skb, next) {
 | |
| 			if (likely(encrypt_packet(skb,
 | |
| 					PACKET_CB(first)->keypair))) {
 | |
| 				wg_reset_packet(skb, true);
 | |
| 			} else {
 | |
| 				state = PACKET_STATE_DEAD;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		wg_queue_enqueue_per_peer_tx(first, state);
 | |
| 		if (need_resched())
 | |
| 			cond_resched();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void wg_packet_create_data(struct wg_peer *peer, struct sk_buff *first)
 | |
| {
 | |
| 	struct wg_device *wg = peer->device;
 | |
| 	int ret = -EINVAL;
 | |
| 
 | |
| 	rcu_read_lock_bh();
 | |
| 	if (unlikely(READ_ONCE(peer->is_dead)))
 | |
| 		goto err;
 | |
| 
 | |
| 	ret = wg_queue_enqueue_per_device_and_peer(&wg->encrypt_queue, &peer->tx_queue, first,
 | |
| 						   wg->packet_crypt_wq);
 | |
| 	if (unlikely(ret == -EPIPE))
 | |
| 		wg_queue_enqueue_per_peer_tx(first, PACKET_STATE_DEAD);
 | |
| err:
 | |
| 	rcu_read_unlock_bh();
 | |
| 	if (likely(!ret || ret == -EPIPE))
 | |
| 		return;
 | |
| 	wg_noise_keypair_put(PACKET_CB(first)->keypair, false);
 | |
| 	wg_peer_put(peer);
 | |
| 	kfree_skb_list(first);
 | |
| }
 | |
| 
 | |
| void wg_packet_purge_staged_packets(struct wg_peer *peer)
 | |
| {
 | |
| 	spin_lock_bh(&peer->staged_packet_queue.lock);
 | |
| 	DEV_STATS_ADD(peer->device->dev, tx_dropped,
 | |
| 		      peer->staged_packet_queue.qlen);
 | |
| 	__skb_queue_purge(&peer->staged_packet_queue);
 | |
| 	spin_unlock_bh(&peer->staged_packet_queue.lock);
 | |
| }
 | |
| 
 | |
| void wg_packet_send_staged_packets(struct wg_peer *peer)
 | |
| {
 | |
| 	struct noise_keypair *keypair;
 | |
| 	struct sk_buff_head packets;
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	/* Steal the current queue into our local one. */
 | |
| 	__skb_queue_head_init(&packets);
 | |
| 	spin_lock_bh(&peer->staged_packet_queue.lock);
 | |
| 	skb_queue_splice_init(&peer->staged_packet_queue, &packets);
 | |
| 	spin_unlock_bh(&peer->staged_packet_queue.lock);
 | |
| 	if (unlikely(skb_queue_empty(&packets)))
 | |
| 		return;
 | |
| 
 | |
| 	/* First we make sure we have a valid reference to a valid key. */
 | |
| 	rcu_read_lock_bh();
 | |
| 	keypair = wg_noise_keypair_get(
 | |
| 		rcu_dereference_bh(peer->keypairs.current_keypair));
 | |
| 	rcu_read_unlock_bh();
 | |
| 	if (unlikely(!keypair))
 | |
| 		goto out_nokey;
 | |
| 	if (unlikely(!READ_ONCE(keypair->sending.is_valid)))
 | |
| 		goto out_nokey;
 | |
| 	if (unlikely(wg_birthdate_has_expired(keypair->sending.birthdate,
 | |
| 					      REJECT_AFTER_TIME)))
 | |
| 		goto out_invalid;
 | |
| 
 | |
| 	/* After we know we have a somewhat valid key, we now try to assign
 | |
| 	 * nonces to all of the packets in the queue. If we can't assign nonces
 | |
| 	 * for all of them, we just consider it a failure and wait for the next
 | |
| 	 * handshake.
 | |
| 	 */
 | |
| 	skb_queue_walk(&packets, skb) {
 | |
| 		/* 0 for no outer TOS: no leak. TODO: at some later point, we
 | |
| 		 * might consider using flowi->tos as outer instead.
 | |
| 		 */
 | |
| 		PACKET_CB(skb)->ds = ip_tunnel_ecn_encap(0, ip_hdr(skb), skb);
 | |
| 		PACKET_CB(skb)->nonce =
 | |
| 				atomic64_inc_return(&keypair->sending_counter) - 1;
 | |
| 		if (unlikely(PACKET_CB(skb)->nonce >= REJECT_AFTER_MESSAGES))
 | |
| 			goto out_invalid;
 | |
| 	}
 | |
| 
 | |
| 	packets.prev->next = NULL;
 | |
| 	wg_peer_get(keypair->entry.peer);
 | |
| 	PACKET_CB(packets.next)->keypair = keypair;
 | |
| 	wg_packet_create_data(peer, packets.next);
 | |
| 	return;
 | |
| 
 | |
| out_invalid:
 | |
| 	WRITE_ONCE(keypair->sending.is_valid, false);
 | |
| out_nokey:
 | |
| 	wg_noise_keypair_put(keypair, false);
 | |
| 
 | |
| 	/* We orphan the packets if we're waiting on a handshake, so that they
 | |
| 	 * don't block a socket's pool.
 | |
| 	 */
 | |
| 	skb_queue_walk(&packets, skb)
 | |
| 		skb_orphan(skb);
 | |
| 	/* Then we put them back on the top of the queue. We're not too
 | |
| 	 * concerned about accidentally getting things a little out of order if
 | |
| 	 * packets are being added really fast, because this queue is for before
 | |
| 	 * packets can even be sent and it's small anyway.
 | |
| 	 */
 | |
| 	spin_lock_bh(&peer->staged_packet_queue.lock);
 | |
| 	skb_queue_splice(&packets, &peer->staged_packet_queue);
 | |
| 	spin_unlock_bh(&peer->staged_packet_queue.lock);
 | |
| 
 | |
| 	/* If we're exiting because there's something wrong with the key, it
 | |
| 	 * means we should initiate a new handshake.
 | |
| 	 */
 | |
| 	wg_packet_send_queued_handshake_initiation(peer, false);
 | |
| }
 |