830 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			830 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Fast Ethernet Controller (ENET) PTP driver for MX6x.
 | |
|  *
 | |
|  * Copyright (C) 2012 Freescale Semiconductor, Inc.
 | |
|  */
 | |
| 
 | |
| #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/etherdevice.h>
 | |
| #include <linux/skbuff.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/irq.h>
 | |
| #include <linux/clk.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/phy.h>
 | |
| #include <linux/fec.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/of_gpio.h>
 | |
| #include <linux/of_net.h>
 | |
| 
 | |
| #include "fec.h"
 | |
| 
 | |
| /* FEC 1588 register bits */
 | |
| #define FEC_T_CTRL_SLAVE                0x00002000
 | |
| #define FEC_T_CTRL_CAPTURE              0x00000800
 | |
| #define FEC_T_CTRL_RESTART              0x00000200
 | |
| #define FEC_T_CTRL_PERIOD_RST           0x00000030
 | |
| #define FEC_T_CTRL_PERIOD_EN		0x00000010
 | |
| #define FEC_T_CTRL_ENABLE               0x00000001
 | |
| 
 | |
| #define FEC_T_INC_MASK                  0x0000007f
 | |
| #define FEC_T_INC_OFFSET                0
 | |
| #define FEC_T_INC_CORR_MASK             0x00007f00
 | |
| #define FEC_T_INC_CORR_OFFSET           8
 | |
| 
 | |
| #define FEC_T_CTRL_PINPER		0x00000080
 | |
| #define FEC_T_TF0_MASK			0x00000001
 | |
| #define FEC_T_TF0_OFFSET		0
 | |
| #define FEC_T_TF1_MASK			0x00000002
 | |
| #define FEC_T_TF1_OFFSET		1
 | |
| #define FEC_T_TF2_MASK			0x00000004
 | |
| #define FEC_T_TF2_OFFSET		2
 | |
| #define FEC_T_TF3_MASK			0x00000008
 | |
| #define FEC_T_TF3_OFFSET		3
 | |
| #define FEC_T_TDRE_MASK			0x00000001
 | |
| #define FEC_T_TDRE_OFFSET		0
 | |
| #define FEC_T_TMODE_MASK		0x0000003C
 | |
| #define FEC_T_TMODE_OFFSET		2
 | |
| #define FEC_T_TIE_MASK			0x00000040
 | |
| #define FEC_T_TIE_OFFSET		6
 | |
| #define FEC_T_TF_MASK			0x00000080
 | |
| #define FEC_T_TF_OFFSET			7
 | |
| 
 | |
| #define FEC_ATIME_CTRL		0x400
 | |
| #define FEC_ATIME		0x404
 | |
| #define FEC_ATIME_EVT_OFFSET	0x408
 | |
| #define FEC_ATIME_EVT_PERIOD	0x40c
 | |
| #define FEC_ATIME_CORR		0x410
 | |
| #define FEC_ATIME_INC		0x414
 | |
| #define FEC_TS_TIMESTAMP	0x418
 | |
| 
 | |
| #define FEC_TGSR		0x604
 | |
| #define FEC_TCSR(n)		(0x608 + n * 0x08)
 | |
| #define FEC_TCCR(n)		(0x60C + n * 0x08)
 | |
| #define MAX_TIMER_CHANNEL	3
 | |
| #define FEC_TMODE_TOGGLE	0x05
 | |
| #define FEC_HIGH_PULSE		0x0F
 | |
| 
 | |
| #define FEC_CC_MULT	(1 << 31)
 | |
| #define FEC_COUNTER_PERIOD	(1 << 31)
 | |
| #define PPS_OUPUT_RELOAD_PERIOD	NSEC_PER_SEC
 | |
| #define FEC_CHANNLE_0		0
 | |
| #define DEFAULT_PPS_CHANNEL	FEC_CHANNLE_0
 | |
| 
 | |
| #define FEC_PTP_MAX_NSEC_PERIOD		4000000000ULL
 | |
| #define FEC_PTP_MAX_NSEC_COUNTER	0x80000000ULL
 | |
| 
 | |
| /**
 | |
|  * fec_ptp_read - read raw cycle counter (to be used by time counter)
 | |
|  * @cc: the cyclecounter structure
 | |
|  *
 | |
|  * this function reads the cyclecounter registers and is called by the
 | |
|  * cyclecounter structure used to construct a ns counter from the
 | |
|  * arbitrary fixed point registers
 | |
|  */
 | |
| static u64 fec_ptp_read(const struct cyclecounter *cc)
 | |
| {
 | |
| 	struct fec_enet_private *fep =
 | |
| 		container_of(cc, struct fec_enet_private, cc);
 | |
| 	u32 tempval;
 | |
| 
 | |
| 	tempval = readl(fep->hwp + FEC_ATIME_CTRL);
 | |
| 	tempval |= FEC_T_CTRL_CAPTURE;
 | |
| 	writel(tempval, fep->hwp + FEC_ATIME_CTRL);
 | |
| 
 | |
| 	if (fep->quirks & FEC_QUIRK_BUG_CAPTURE)
 | |
| 		udelay(1);
 | |
| 
 | |
| 	return readl(fep->hwp + FEC_ATIME);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fec_ptp_enable_pps
 | |
|  * @fep: the fec_enet_private structure handle
 | |
|  * @enable: enable the channel pps output
 | |
|  *
 | |
|  * This function enble the PPS ouput on the timer channel.
 | |
|  */
 | |
| static int fec_ptp_enable_pps(struct fec_enet_private *fep, uint enable)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	u32 val, tempval;
 | |
| 	struct timespec64 ts;
 | |
| 	u64 ns;
 | |
| 
 | |
| 	spin_lock_irqsave(&fep->tmreg_lock, flags);
 | |
| 
 | |
| 	if (fep->pps_enable == enable) {
 | |
| 		spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (enable) {
 | |
| 		/* clear capture or output compare interrupt status if have.
 | |
| 		 */
 | |
| 		writel(FEC_T_TF_MASK, fep->hwp + FEC_TCSR(fep->pps_channel));
 | |
| 
 | |
| 		/* It is recommended to double check the TMODE field in the
 | |
| 		 * TCSR register to be cleared before the first compare counter
 | |
| 		 * is written into TCCR register. Just add a double check.
 | |
| 		 */
 | |
| 		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
 | |
| 		do {
 | |
| 			val &= ~(FEC_T_TMODE_MASK);
 | |
| 			writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
 | |
| 			val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
 | |
| 		} while (val & FEC_T_TMODE_MASK);
 | |
| 
 | |
| 		/* Dummy read counter to update the counter */
 | |
| 		timecounter_read(&fep->tc);
 | |
| 		/* We want to find the first compare event in the next
 | |
| 		 * second point. So we need to know what the ptp time
 | |
| 		 * is now and how many nanoseconds is ahead to get next second.
 | |
| 		 * The remaining nanosecond ahead before the next second would be
 | |
| 		 * NSEC_PER_SEC - ts.tv_nsec. Add the remaining nanoseconds
 | |
| 		 * to current timer would be next second.
 | |
| 		 */
 | |
| 		tempval = fec_ptp_read(&fep->cc);
 | |
| 		/* Convert the ptp local counter to 1588 timestamp */
 | |
| 		ns = timecounter_cyc2time(&fep->tc, tempval);
 | |
| 		ts = ns_to_timespec64(ns);
 | |
| 
 | |
| 		/* The tempval is  less than 3 seconds, and  so val is less than
 | |
| 		 * 4 seconds. No overflow for 32bit calculation.
 | |
| 		 */
 | |
| 		val = NSEC_PER_SEC - (u32)ts.tv_nsec + tempval;
 | |
| 
 | |
| 		/* Need to consider the situation that the current time is
 | |
| 		 * very close to the second point, which means NSEC_PER_SEC
 | |
| 		 * - ts.tv_nsec is close to be zero(For example 20ns); Since the timer
 | |
| 		 * is still running when we calculate the first compare event, it is
 | |
| 		 * possible that the remaining nanoseonds run out before the compare
 | |
| 		 * counter is calculated and written into TCCR register. To avoid
 | |
| 		 * this possibility, we will set the compare event to be the next
 | |
| 		 * of next second. The current setting is 31-bit timer and wrap
 | |
| 		 * around over 2 seconds. So it is okay to set the next of next
 | |
| 		 * seond for the timer.
 | |
| 		 */
 | |
| 		val += NSEC_PER_SEC;
 | |
| 
 | |
| 		/* We add (2 * NSEC_PER_SEC - (u32)ts.tv_nsec) to current
 | |
| 		 * ptp counter, which maybe cause 32-bit wrap. Since the
 | |
| 		 * (NSEC_PER_SEC - (u32)ts.tv_nsec) is less than 2 second.
 | |
| 		 * We can ensure the wrap will not cause issue. If the offset
 | |
| 		 * is bigger than fep->cc.mask would be a error.
 | |
| 		 */
 | |
| 		val &= fep->cc.mask;
 | |
| 		writel(val, fep->hwp + FEC_TCCR(fep->pps_channel));
 | |
| 
 | |
| 		/* Calculate the second the compare event timestamp */
 | |
| 		fep->next_counter = (val + fep->reload_period) & fep->cc.mask;
 | |
| 
 | |
| 		/* * Enable compare event when overflow */
 | |
| 		val = readl(fep->hwp + FEC_ATIME_CTRL);
 | |
| 		val |= FEC_T_CTRL_PINPER;
 | |
| 		writel(val, fep->hwp + FEC_ATIME_CTRL);
 | |
| 
 | |
| 		/* Compare channel setting. */
 | |
| 		val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
 | |
| 		val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
 | |
| 		val &= ~(1 << FEC_T_TDRE_OFFSET);
 | |
| 		val &= ~(FEC_T_TMODE_MASK);
 | |
| 		val |= (FEC_HIGH_PULSE << FEC_T_TMODE_OFFSET);
 | |
| 		writel(val, fep->hwp + FEC_TCSR(fep->pps_channel));
 | |
| 
 | |
| 		/* Write the second compare event timestamp and calculate
 | |
| 		 * the third timestamp. Refer the TCCR register detail in the spec.
 | |
| 		 */
 | |
| 		writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
 | |
| 		fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
 | |
| 	} else {
 | |
| 		writel(0, fep->hwp + FEC_TCSR(fep->pps_channel));
 | |
| 	}
 | |
| 
 | |
| 	fep->pps_enable = enable;
 | |
| 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int fec_ptp_pps_perout(struct fec_enet_private *fep)
 | |
| {
 | |
| 	u32 compare_val, ptp_hc, temp_val;
 | |
| 	u64 curr_time;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&fep->tmreg_lock, flags);
 | |
| 
 | |
| 	/* Update time counter */
 | |
| 	timecounter_read(&fep->tc);
 | |
| 
 | |
| 	/* Get the current ptp hardware time counter */
 | |
| 	ptp_hc = fec_ptp_read(&fep->cc);
 | |
| 
 | |
| 	/* Convert the ptp local counter to 1588 timestamp */
 | |
| 	curr_time = timecounter_cyc2time(&fep->tc, ptp_hc);
 | |
| 
 | |
| 	/* If the pps start time less than current time add 100ms, just return.
 | |
| 	 * Because the software might not able to set the comparison time into
 | |
| 	 * the FEC_TCCR register in time and missed the start time.
 | |
| 	 */
 | |
| 	if (fep->perout_stime < curr_time + 100 * NSEC_PER_MSEC) {
 | |
| 		dev_err(&fep->pdev->dev, "Current time is too close to the start time!\n");
 | |
| 		spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	compare_val = fep->perout_stime - curr_time + ptp_hc;
 | |
| 	compare_val &= fep->cc.mask;
 | |
| 
 | |
| 	writel(compare_val, fep->hwp + FEC_TCCR(fep->pps_channel));
 | |
| 	fep->next_counter = (compare_val + fep->reload_period) & fep->cc.mask;
 | |
| 
 | |
| 	/* Enable compare event when overflow */
 | |
| 	temp_val = readl(fep->hwp + FEC_ATIME_CTRL);
 | |
| 	temp_val |= FEC_T_CTRL_PINPER;
 | |
| 	writel(temp_val, fep->hwp + FEC_ATIME_CTRL);
 | |
| 
 | |
| 	/* Compare channel setting. */
 | |
| 	temp_val = readl(fep->hwp + FEC_TCSR(fep->pps_channel));
 | |
| 	temp_val |= (1 << FEC_T_TF_OFFSET | 1 << FEC_T_TIE_OFFSET);
 | |
| 	temp_val &= ~(1 << FEC_T_TDRE_OFFSET);
 | |
| 	temp_val &= ~(FEC_T_TMODE_MASK);
 | |
| 	temp_val |= (FEC_TMODE_TOGGLE << FEC_T_TMODE_OFFSET);
 | |
| 	writel(temp_val, fep->hwp + FEC_TCSR(fep->pps_channel));
 | |
| 
 | |
| 	/* Write the second compare event timestamp and calculate
 | |
| 	 * the third timestamp. Refer the TCCR register detail in the spec.
 | |
| 	 */
 | |
| 	writel(fep->next_counter, fep->hwp + FEC_TCCR(fep->pps_channel));
 | |
| 	fep->next_counter = (fep->next_counter + fep->reload_period) & fep->cc.mask;
 | |
| 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static enum hrtimer_restart fec_ptp_pps_perout_handler(struct hrtimer *timer)
 | |
| {
 | |
| 	struct fec_enet_private *fep = container_of(timer,
 | |
| 					struct fec_enet_private, perout_timer);
 | |
| 
 | |
| 	fec_ptp_pps_perout(fep);
 | |
| 
 | |
| 	return HRTIMER_NORESTART;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fec_ptp_start_cyclecounter - create the cycle counter from hw
 | |
|  * @ndev: network device
 | |
|  *
 | |
|  * this function initializes the timecounter and cyclecounter
 | |
|  * structures for use in generated a ns counter from the arbitrary
 | |
|  * fixed point cycles registers in the hardware.
 | |
|  */
 | |
| void fec_ptp_start_cyclecounter(struct net_device *ndev)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(ndev);
 | |
| 	unsigned long flags;
 | |
| 	int inc;
 | |
| 
 | |
| 	inc = 1000000000 / fep->cycle_speed;
 | |
| 
 | |
| 	/* grab the ptp lock */
 | |
| 	spin_lock_irqsave(&fep->tmreg_lock, flags);
 | |
| 
 | |
| 	/* 1ns counter */
 | |
| 	writel(inc << FEC_T_INC_OFFSET, fep->hwp + FEC_ATIME_INC);
 | |
| 
 | |
| 	/* use 31-bit timer counter */
 | |
| 	writel(FEC_COUNTER_PERIOD, fep->hwp + FEC_ATIME_EVT_PERIOD);
 | |
| 
 | |
| 	writel(FEC_T_CTRL_ENABLE | FEC_T_CTRL_PERIOD_RST,
 | |
| 		fep->hwp + FEC_ATIME_CTRL);
 | |
| 
 | |
| 	memset(&fep->cc, 0, sizeof(fep->cc));
 | |
| 	fep->cc.read = fec_ptp_read;
 | |
| 	fep->cc.mask = CLOCKSOURCE_MASK(31);
 | |
| 	fep->cc.shift = 31;
 | |
| 	fep->cc.mult = FEC_CC_MULT;
 | |
| 
 | |
| 	/* reset the ns time counter */
 | |
| 	timecounter_init(&fep->tc, &fep->cc, 0);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fec_ptp_adjfine - adjust ptp cycle frequency
 | |
|  * @ptp: the ptp clock structure
 | |
|  * @scaled_ppm: scaled parts per million adjustment from base
 | |
|  *
 | |
|  * Adjust the frequency of the ptp cycle counter by the
 | |
|  * indicated amount from the base frequency.
 | |
|  *
 | |
|  * Scaled parts per million is ppm with a 16-bit binary fractional field.
 | |
|  *
 | |
|  * Because ENET hardware frequency adjust is complex,
 | |
|  * using software method to do that.
 | |
|  */
 | |
| static int fec_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
 | |
| {
 | |
| 	s32 ppb = scaled_ppm_to_ppb(scaled_ppm);
 | |
| 	unsigned long flags;
 | |
| 	int neg_adj = 0;
 | |
| 	u32 i, tmp;
 | |
| 	u32 corr_inc, corr_period;
 | |
| 	u32 corr_ns;
 | |
| 	u64 lhs, rhs;
 | |
| 
 | |
| 	struct fec_enet_private *fep =
 | |
| 	    container_of(ptp, struct fec_enet_private, ptp_caps);
 | |
| 
 | |
| 	if (ppb == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (ppb < 0) {
 | |
| 		ppb = -ppb;
 | |
| 		neg_adj = 1;
 | |
| 	}
 | |
| 
 | |
| 	/* In theory, corr_inc/corr_period = ppb/NSEC_PER_SEC;
 | |
| 	 * Try to find the corr_inc  between 1 to fep->ptp_inc to
 | |
| 	 * meet adjustment requirement.
 | |
| 	 */
 | |
| 	lhs = NSEC_PER_SEC;
 | |
| 	rhs = (u64)ppb * (u64)fep->ptp_inc;
 | |
| 	for (i = 1; i <= fep->ptp_inc; i++) {
 | |
| 		if (lhs >= rhs) {
 | |
| 			corr_inc = i;
 | |
| 			corr_period = div_u64(lhs, rhs);
 | |
| 			break;
 | |
| 		}
 | |
| 		lhs += NSEC_PER_SEC;
 | |
| 	}
 | |
| 	/* Not found? Set it to high value - double speed
 | |
| 	 * correct in every clock step.
 | |
| 	 */
 | |
| 	if (i > fep->ptp_inc) {
 | |
| 		corr_inc = fep->ptp_inc;
 | |
| 		corr_period = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (neg_adj)
 | |
| 		corr_ns = fep->ptp_inc - corr_inc;
 | |
| 	else
 | |
| 		corr_ns = fep->ptp_inc + corr_inc;
 | |
| 
 | |
| 	spin_lock_irqsave(&fep->tmreg_lock, flags);
 | |
| 
 | |
| 	tmp = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK;
 | |
| 	tmp |= corr_ns << FEC_T_INC_CORR_OFFSET;
 | |
| 	writel(tmp, fep->hwp + FEC_ATIME_INC);
 | |
| 	corr_period = corr_period > 1 ? corr_period - 1 : corr_period;
 | |
| 	writel(corr_period, fep->hwp + FEC_ATIME_CORR);
 | |
| 	/* dummy read to update the timer. */
 | |
| 	timecounter_read(&fep->tc);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fec_ptp_adjtime
 | |
|  * @ptp: the ptp clock structure
 | |
|  * @delta: offset to adjust the cycle counter by
 | |
|  *
 | |
|  * adjust the timer by resetting the timecounter structure.
 | |
|  */
 | |
| static int fec_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
 | |
| {
 | |
| 	struct fec_enet_private *fep =
 | |
| 	    container_of(ptp, struct fec_enet_private, ptp_caps);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&fep->tmreg_lock, flags);
 | |
| 	timecounter_adjtime(&fep->tc, delta);
 | |
| 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fec_ptp_gettime
 | |
|  * @ptp: the ptp clock structure
 | |
|  * @ts: timespec structure to hold the current time value
 | |
|  *
 | |
|  * read the timecounter and return the correct value on ns,
 | |
|  * after converting it into a struct timespec.
 | |
|  */
 | |
| static int fec_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
 | |
| {
 | |
| 	struct fec_enet_private *fep =
 | |
| 	    container_of(ptp, struct fec_enet_private, ptp_caps);
 | |
| 	u64 ns;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	mutex_lock(&fep->ptp_clk_mutex);
 | |
| 	/* Check the ptp clock */
 | |
| 	if (!fep->ptp_clk_on) {
 | |
| 		mutex_unlock(&fep->ptp_clk_mutex);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	spin_lock_irqsave(&fep->tmreg_lock, flags);
 | |
| 	ns = timecounter_read(&fep->tc);
 | |
| 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 | |
| 	mutex_unlock(&fep->ptp_clk_mutex);
 | |
| 
 | |
| 	*ts = ns_to_timespec64(ns);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fec_ptp_settime
 | |
|  * @ptp: the ptp clock structure
 | |
|  * @ts: the timespec containing the new time for the cycle counter
 | |
|  *
 | |
|  * reset the timecounter to use a new base value instead of the kernel
 | |
|  * wall timer value.
 | |
|  */
 | |
| static int fec_ptp_settime(struct ptp_clock_info *ptp,
 | |
| 			   const struct timespec64 *ts)
 | |
| {
 | |
| 	struct fec_enet_private *fep =
 | |
| 	    container_of(ptp, struct fec_enet_private, ptp_caps);
 | |
| 
 | |
| 	u64 ns;
 | |
| 	unsigned long flags;
 | |
| 	u32 counter;
 | |
| 
 | |
| 	mutex_lock(&fep->ptp_clk_mutex);
 | |
| 	/* Check the ptp clock */
 | |
| 	if (!fep->ptp_clk_on) {
 | |
| 		mutex_unlock(&fep->ptp_clk_mutex);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	ns = timespec64_to_ns(ts);
 | |
| 	/* Get the timer value based on timestamp.
 | |
| 	 * Update the counter with the masked value.
 | |
| 	 */
 | |
| 	counter = ns & fep->cc.mask;
 | |
| 
 | |
| 	spin_lock_irqsave(&fep->tmreg_lock, flags);
 | |
| 	writel(counter, fep->hwp + FEC_ATIME);
 | |
| 	timecounter_init(&fep->tc, &fep->cc, ns);
 | |
| 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 | |
| 	mutex_unlock(&fep->ptp_clk_mutex);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int fec_ptp_pps_disable(struct fec_enet_private *fep, uint channel)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&fep->tmreg_lock, flags);
 | |
| 	writel(0, fep->hwp + FEC_TCSR(channel));
 | |
| 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fec_ptp_enable
 | |
|  * @ptp: the ptp clock structure
 | |
|  * @rq: the requested feature to change
 | |
|  * @on: whether to enable or disable the feature
 | |
|  *
 | |
|  */
 | |
| static int fec_ptp_enable(struct ptp_clock_info *ptp,
 | |
| 			  struct ptp_clock_request *rq, int on)
 | |
| {
 | |
| 	struct fec_enet_private *fep =
 | |
| 	    container_of(ptp, struct fec_enet_private, ptp_caps);
 | |
| 	ktime_t timeout;
 | |
| 	struct timespec64 start_time, period;
 | |
| 	u64 curr_time, delta, period_ns;
 | |
| 	unsigned long flags;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (rq->type == PTP_CLK_REQ_PPS) {
 | |
| 		fep->pps_channel = DEFAULT_PPS_CHANNEL;
 | |
| 		fep->reload_period = PPS_OUPUT_RELOAD_PERIOD;
 | |
| 
 | |
| 		ret = fec_ptp_enable_pps(fep, on);
 | |
| 
 | |
| 		return ret;
 | |
| 	} else if (rq->type == PTP_CLK_REQ_PEROUT) {
 | |
| 		/* Reject requests with unsupported flags */
 | |
| 		if (rq->perout.flags)
 | |
| 			return -EOPNOTSUPP;
 | |
| 
 | |
| 		if (rq->perout.index != DEFAULT_PPS_CHANNEL)
 | |
| 			return -EOPNOTSUPP;
 | |
| 
 | |
| 		fep->pps_channel = DEFAULT_PPS_CHANNEL;
 | |
| 		period.tv_sec = rq->perout.period.sec;
 | |
| 		period.tv_nsec = rq->perout.period.nsec;
 | |
| 		period_ns = timespec64_to_ns(&period);
 | |
| 
 | |
| 		/* FEC PTP timer only has 31 bits, so if the period exceed
 | |
| 		 * 4s is not supported.
 | |
| 		 */
 | |
| 		if (period_ns > FEC_PTP_MAX_NSEC_PERIOD) {
 | |
| 			dev_err(&fep->pdev->dev, "The period must equal to or less than 4s!\n");
 | |
| 			return -EOPNOTSUPP;
 | |
| 		}
 | |
| 
 | |
| 		fep->reload_period = div_u64(period_ns, 2);
 | |
| 		if (on && fep->reload_period) {
 | |
| 			/* Convert 1588 timestamp to ns*/
 | |
| 			start_time.tv_sec = rq->perout.start.sec;
 | |
| 			start_time.tv_nsec = rq->perout.start.nsec;
 | |
| 			fep->perout_stime = timespec64_to_ns(&start_time);
 | |
| 
 | |
| 			mutex_lock(&fep->ptp_clk_mutex);
 | |
| 			if (!fep->ptp_clk_on) {
 | |
| 				dev_err(&fep->pdev->dev, "Error: PTP clock is closed!\n");
 | |
| 				mutex_unlock(&fep->ptp_clk_mutex);
 | |
| 				return -EOPNOTSUPP;
 | |
| 			}
 | |
| 			spin_lock_irqsave(&fep->tmreg_lock, flags);
 | |
| 			/* Read current timestamp */
 | |
| 			curr_time = timecounter_read(&fep->tc);
 | |
| 			spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 | |
| 			mutex_unlock(&fep->ptp_clk_mutex);
 | |
| 
 | |
| 			/* Calculate time difference */
 | |
| 			delta = fep->perout_stime - curr_time;
 | |
| 
 | |
| 			if (fep->perout_stime <= curr_time) {
 | |
| 				dev_err(&fep->pdev->dev, "Start time must larger than current time!\n");
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 
 | |
| 			/* Because the timer counter of FEC only has 31-bits, correspondingly,
 | |
| 			 * the time comparison register FEC_TCCR also only low 31 bits can be
 | |
| 			 * set. If the start time of pps signal exceeds current time more than
 | |
| 			 * 0x80000000 ns, a software timer is used and the timer expires about
 | |
| 			 * 1 second before the start time to be able to set FEC_TCCR.
 | |
| 			 */
 | |
| 			if (delta > FEC_PTP_MAX_NSEC_COUNTER) {
 | |
| 				timeout = ns_to_ktime(delta - NSEC_PER_SEC);
 | |
| 				hrtimer_start(&fep->perout_timer, timeout, HRTIMER_MODE_REL);
 | |
| 			} else {
 | |
| 				return fec_ptp_pps_perout(fep);
 | |
| 			}
 | |
| 		} else {
 | |
| 			fec_ptp_pps_disable(fep, fep->pps_channel);
 | |
| 		}
 | |
| 
 | |
| 		return 0;
 | |
| 	} else {
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int fec_ptp_set(struct net_device *ndev, struct kernel_hwtstamp_config *config,
 | |
| 		struct netlink_ext_ack *extack)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(ndev);
 | |
| 
 | |
| 	switch (config->tx_type) {
 | |
| 	case HWTSTAMP_TX_OFF:
 | |
| 		fep->hwts_tx_en = 0;
 | |
| 		break;
 | |
| 	case HWTSTAMP_TX_ON:
 | |
| 		fep->hwts_tx_en = 1;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -ERANGE;
 | |
| 	}
 | |
| 
 | |
| 	switch (config->rx_filter) {
 | |
| 	case HWTSTAMP_FILTER_NONE:
 | |
| 		fep->hwts_rx_en = 0;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		fep->hwts_rx_en = 1;
 | |
| 		config->rx_filter = HWTSTAMP_FILTER_ALL;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void fec_ptp_get(struct net_device *ndev, struct kernel_hwtstamp_config *config)
 | |
| {
 | |
| 	struct fec_enet_private *fep = netdev_priv(ndev);
 | |
| 
 | |
| 	config->flags = 0;
 | |
| 	config->tx_type = fep->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
 | |
| 	config->rx_filter = (fep->hwts_rx_en ?
 | |
| 			     HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * fec_time_keep - call timecounter_read every second to avoid timer overrun
 | |
|  *                 because ENET just support 32bit counter, will timeout in 4s
 | |
|  */
 | |
| static void fec_time_keep(struct work_struct *work)
 | |
| {
 | |
| 	struct delayed_work *dwork = to_delayed_work(work);
 | |
| 	struct fec_enet_private *fep = container_of(dwork, struct fec_enet_private, time_keep);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	mutex_lock(&fep->ptp_clk_mutex);
 | |
| 	if (fep->ptp_clk_on) {
 | |
| 		spin_lock_irqsave(&fep->tmreg_lock, flags);
 | |
| 		timecounter_read(&fep->tc);
 | |
| 		spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 | |
| 	}
 | |
| 	mutex_unlock(&fep->ptp_clk_mutex);
 | |
| 
 | |
| 	schedule_delayed_work(&fep->time_keep, HZ);
 | |
| }
 | |
| 
 | |
| /* This function checks the pps event and reloads the timer compare counter. */
 | |
| static irqreturn_t fec_pps_interrupt(int irq, void *dev_id)
 | |
| {
 | |
| 	struct net_device *ndev = dev_id;
 | |
| 	struct fec_enet_private *fep = netdev_priv(ndev);
 | |
| 	u32 val;
 | |
| 	u8 channel = fep->pps_channel;
 | |
| 	struct ptp_clock_event event;
 | |
| 
 | |
| 	val = readl(fep->hwp + FEC_TCSR(channel));
 | |
| 	if (val & FEC_T_TF_MASK) {
 | |
| 		/* Write the next next compare(not the next according the spec)
 | |
| 		 * value to the register
 | |
| 		 */
 | |
| 		writel(fep->next_counter, fep->hwp + FEC_TCCR(channel));
 | |
| 		do {
 | |
| 			writel(val, fep->hwp + FEC_TCSR(channel));
 | |
| 		} while (readl(fep->hwp + FEC_TCSR(channel)) & FEC_T_TF_MASK);
 | |
| 
 | |
| 		/* Update the counter; */
 | |
| 		fep->next_counter = (fep->next_counter + fep->reload_period) &
 | |
| 				fep->cc.mask;
 | |
| 
 | |
| 		event.type = PTP_CLOCK_PPS;
 | |
| 		ptp_clock_event(fep->ptp_clock, &event);
 | |
| 		return IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	return IRQ_NONE;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fec_ptp_init
 | |
|  * @pdev: The FEC network adapter
 | |
|  * @irq_idx: the interrupt index
 | |
|  *
 | |
|  * This function performs the required steps for enabling ptp
 | |
|  * support. If ptp support has already been loaded it simply calls the
 | |
|  * cyclecounter init routine and exits.
 | |
|  */
 | |
| 
 | |
| void fec_ptp_init(struct platform_device *pdev, int irq_idx)
 | |
| {
 | |
| 	struct net_device *ndev = platform_get_drvdata(pdev);
 | |
| 	struct fec_enet_private *fep = netdev_priv(ndev);
 | |
| 	int irq;
 | |
| 	int ret;
 | |
| 
 | |
| 	fep->ptp_caps.owner = THIS_MODULE;
 | |
| 	strscpy(fep->ptp_caps.name, "fec ptp", sizeof(fep->ptp_caps.name));
 | |
| 
 | |
| 	fep->ptp_caps.max_adj = 250000000;
 | |
| 	fep->ptp_caps.n_alarm = 0;
 | |
| 	fep->ptp_caps.n_ext_ts = 0;
 | |
| 	fep->ptp_caps.n_per_out = 1;
 | |
| 	fep->ptp_caps.n_pins = 0;
 | |
| 	fep->ptp_caps.pps = 1;
 | |
| 	fep->ptp_caps.adjfine = fec_ptp_adjfine;
 | |
| 	fep->ptp_caps.adjtime = fec_ptp_adjtime;
 | |
| 	fep->ptp_caps.gettime64 = fec_ptp_gettime;
 | |
| 	fep->ptp_caps.settime64 = fec_ptp_settime;
 | |
| 	fep->ptp_caps.enable = fec_ptp_enable;
 | |
| 
 | |
| 	fep->cycle_speed = clk_get_rate(fep->clk_ptp);
 | |
| 	if (!fep->cycle_speed) {
 | |
| 		fep->cycle_speed = NSEC_PER_SEC;
 | |
| 		dev_err(&fep->pdev->dev, "clk_ptp clock rate is zero\n");
 | |
| 	}
 | |
| 	fep->ptp_inc = NSEC_PER_SEC / fep->cycle_speed;
 | |
| 
 | |
| 	spin_lock_init(&fep->tmreg_lock);
 | |
| 
 | |
| 	fec_ptp_start_cyclecounter(ndev);
 | |
| 
 | |
| 	INIT_DELAYED_WORK(&fep->time_keep, fec_time_keep);
 | |
| 
 | |
| 	hrtimer_init(&fep->perout_timer, CLOCK_REALTIME, HRTIMER_MODE_REL);
 | |
| 	fep->perout_timer.function = fec_ptp_pps_perout_handler;
 | |
| 
 | |
| 	irq = platform_get_irq_byname_optional(pdev, "pps");
 | |
| 	if (irq < 0)
 | |
| 		irq = platform_get_irq_optional(pdev, irq_idx);
 | |
| 	/* Failure to get an irq is not fatal,
 | |
| 	 * only the PTP_CLOCK_PPS clock events should stop
 | |
| 	 */
 | |
| 	if (irq >= 0) {
 | |
| 		ret = devm_request_irq(&pdev->dev, irq, fec_pps_interrupt,
 | |
| 				       0, pdev->name, ndev);
 | |
| 		if (ret < 0)
 | |
| 			dev_warn(&pdev->dev, "request for pps irq failed(%d)\n",
 | |
| 				 ret);
 | |
| 	}
 | |
| 
 | |
| 	fep->ptp_clock = ptp_clock_register(&fep->ptp_caps, &pdev->dev);
 | |
| 	if (IS_ERR(fep->ptp_clock)) {
 | |
| 		fep->ptp_clock = NULL;
 | |
| 		dev_err(&pdev->dev, "ptp_clock_register failed\n");
 | |
| 	}
 | |
| 
 | |
| 	schedule_delayed_work(&fep->time_keep, HZ);
 | |
| }
 | |
| 
 | |
| void fec_ptp_save_state(struct fec_enet_private *fep)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	u32 atime_inc_corr;
 | |
| 
 | |
| 	spin_lock_irqsave(&fep->tmreg_lock, flags);
 | |
| 
 | |
| 	fep->ptp_saved_state.pps_enable = fep->pps_enable;
 | |
| 
 | |
| 	fep->ptp_saved_state.ns_phc = timecounter_read(&fep->tc);
 | |
| 	fep->ptp_saved_state.ns_sys = ktime_get_ns();
 | |
| 
 | |
| 	fep->ptp_saved_state.at_corr = readl(fep->hwp + FEC_ATIME_CORR);
 | |
| 	atime_inc_corr = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_CORR_MASK;
 | |
| 	fep->ptp_saved_state.at_inc_corr = (u8)(atime_inc_corr >> FEC_T_INC_CORR_OFFSET);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 | |
| }
 | |
| 
 | |
| /* Restore PTP functionality after a reset */
 | |
| void fec_ptp_restore_state(struct fec_enet_private *fep)
 | |
| {
 | |
| 	u32 atime_inc = readl(fep->hwp + FEC_ATIME_INC) & FEC_T_INC_MASK;
 | |
| 	unsigned long flags;
 | |
| 	u32 counter;
 | |
| 	u64 ns;
 | |
| 
 | |
| 	spin_lock_irqsave(&fep->tmreg_lock, flags);
 | |
| 
 | |
| 	/* Reset turned it off, so adjust our status flag */
 | |
| 	fep->pps_enable = 0;
 | |
| 
 | |
| 	writel(fep->ptp_saved_state.at_corr, fep->hwp + FEC_ATIME_CORR);
 | |
| 	atime_inc |= ((u32)fep->ptp_saved_state.at_inc_corr) << FEC_T_INC_CORR_OFFSET;
 | |
| 	writel(atime_inc, fep->hwp + FEC_ATIME_INC);
 | |
| 
 | |
| 	ns = ktime_get_ns() - fep->ptp_saved_state.ns_sys + fep->ptp_saved_state.ns_phc;
 | |
| 	counter = ns & fep->cc.mask;
 | |
| 	writel(counter, fep->hwp + FEC_ATIME);
 | |
| 	timecounter_init(&fep->tc, &fep->cc, ns);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&fep->tmreg_lock, flags);
 | |
| 
 | |
| 	/* Restart PPS if needed */
 | |
| 	if (fep->ptp_saved_state.pps_enable) {
 | |
| 		/* Re-enable PPS */
 | |
| 		fec_ptp_enable_pps(fep, 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void fec_ptp_stop(struct platform_device *pdev)
 | |
| {
 | |
| 	struct net_device *ndev = platform_get_drvdata(pdev);
 | |
| 	struct fec_enet_private *fep = netdev_priv(ndev);
 | |
| 
 | |
| 	if (fep->pps_enable)
 | |
| 		fec_ptp_enable_pps(fep, 0);
 | |
| 
 | |
| 	cancel_delayed_work_sync(&fep->time_keep);
 | |
| 	hrtimer_cancel(&fep->perout_timer);
 | |
| 	if (fep->ptp_clock)
 | |
| 		ptp_clock_unregister(fep->ptp_clock);
 | |
| }
 |