947 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			947 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * INET		An implementation of the TCP/IP protocol suite for the LINUX
 | |
|  *		operating system.  INET is implemented using the  BSD Socket
 | |
|  *		interface as the means of communication with the user level.
 | |
|  *
 | |
|  *		Implementation of the Transmission Control Protocol(TCP).
 | |
|  *
 | |
|  * Authors:	Ross Biro
 | |
|  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 | |
|  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 | |
|  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 | |
|  *		Florian La Roche, <flla@stud.uni-sb.de>
 | |
|  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 | |
|  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 | |
|  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 | |
|  *		Matthew Dillon, <dillon@apollo.west.oic.com>
 | |
|  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 | |
|  *		Jorge Cwik, <jorge@laser.satlink.net>
 | |
|  */
 | |
| 
 | |
| #include <net/tcp.h>
 | |
| #include <net/xfrm.h>
 | |
| #include <net/busy_poll.h>
 | |
| #include <net/rstreason.h>
 | |
| 
 | |
| static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
 | |
| {
 | |
| 	if (seq == s_win)
 | |
| 		return true;
 | |
| 	if (after(end_seq, s_win) && before(seq, e_win))
 | |
| 		return true;
 | |
| 	return seq == e_win && seq == end_seq;
 | |
| }
 | |
| 
 | |
| static enum tcp_tw_status
 | |
| tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
 | |
| 				  const struct sk_buff *skb, int mib_idx)
 | |
| {
 | |
| 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 | |
| 
 | |
| 	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
 | |
| 				  &tcptw->tw_last_oow_ack_time)) {
 | |
| 		/* Send ACK. Note, we do not put the bucket,
 | |
| 		 * it will be released by caller.
 | |
| 		 */
 | |
| 		return TCP_TW_ACK;
 | |
| 	}
 | |
| 
 | |
| 	/* We are rate-limiting, so just release the tw sock and drop skb. */
 | |
| 	inet_twsk_put(tw);
 | |
| 	return TCP_TW_SUCCESS;
 | |
| }
 | |
| 
 | |
| static void twsk_rcv_nxt_update(struct tcp_timewait_sock *tcptw, u32 seq,
 | |
| 				u32 rcv_nxt)
 | |
| {
 | |
| #ifdef CONFIG_TCP_AO
 | |
| 	struct tcp_ao_info *ao;
 | |
| 
 | |
| 	ao = rcu_dereference(tcptw->ao_info);
 | |
| 	if (unlikely(ao && seq < rcv_nxt))
 | |
| 		WRITE_ONCE(ao->rcv_sne, ao->rcv_sne + 1);
 | |
| #endif
 | |
| 	WRITE_ONCE(tcptw->tw_rcv_nxt, seq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * * Main purpose of TIME-WAIT state is to close connection gracefully,
 | |
|  *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
 | |
|  *   (and, probably, tail of data) and one or more our ACKs are lost.
 | |
|  * * What is TIME-WAIT timeout? It is associated with maximal packet
 | |
|  *   lifetime in the internet, which results in wrong conclusion, that
 | |
|  *   it is set to catch "old duplicate segments" wandering out of their path.
 | |
|  *   It is not quite correct. This timeout is calculated so that it exceeds
 | |
|  *   maximal retransmission timeout enough to allow to lose one (or more)
 | |
|  *   segments sent by peer and our ACKs. This time may be calculated from RTO.
 | |
|  * * When TIME-WAIT socket receives RST, it means that another end
 | |
|  *   finally closed and we are allowed to kill TIME-WAIT too.
 | |
|  * * Second purpose of TIME-WAIT is catching old duplicate segments.
 | |
|  *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
 | |
|  *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
 | |
|  * * If we invented some more clever way to catch duplicates
 | |
|  *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
 | |
|  *
 | |
|  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
 | |
|  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
 | |
|  * from the very beginning.
 | |
|  *
 | |
|  * NOTE. With recycling (and later with fin-wait-2) TW bucket
 | |
|  * is _not_ stateless. It means, that strictly speaking we must
 | |
|  * spinlock it. I do not want! Well, probability of misbehaviour
 | |
|  * is ridiculously low and, seems, we could use some mb() tricks
 | |
|  * to avoid misread sequence numbers, states etc.  --ANK
 | |
|  *
 | |
|  * We don't need to initialize tmp_out.sack_ok as we don't use the results
 | |
|  */
 | |
| enum tcp_tw_status
 | |
| tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
 | |
| 			   const struct tcphdr *th, u32 *tw_isn)
 | |
| {
 | |
| 	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 | |
| 	u32 rcv_nxt = READ_ONCE(tcptw->tw_rcv_nxt);
 | |
| 	struct tcp_options_received tmp_opt;
 | |
| 	bool paws_reject = false;
 | |
| 	int ts_recent_stamp;
 | |
| 
 | |
| 	tmp_opt.saw_tstamp = 0;
 | |
| 	ts_recent_stamp = READ_ONCE(tcptw->tw_ts_recent_stamp);
 | |
| 	if (th->doff > (sizeof(*th) >> 2) && ts_recent_stamp) {
 | |
| 		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
 | |
| 
 | |
| 		if (tmp_opt.saw_tstamp) {
 | |
| 			if (tmp_opt.rcv_tsecr)
 | |
| 				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
 | |
| 			tmp_opt.ts_recent	= READ_ONCE(tcptw->tw_ts_recent);
 | |
| 			tmp_opt.ts_recent_stamp	= ts_recent_stamp;
 | |
| 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (READ_ONCE(tw->tw_substate) == TCP_FIN_WAIT2) {
 | |
| 		/* Just repeat all the checks of tcp_rcv_state_process() */
 | |
| 
 | |
| 		/* Out of window, send ACK */
 | |
| 		if (paws_reject ||
 | |
| 		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
 | |
| 				   rcv_nxt,
 | |
| 				   rcv_nxt + tcptw->tw_rcv_wnd))
 | |
| 			return tcp_timewait_check_oow_rate_limit(
 | |
| 				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
 | |
| 
 | |
| 		if (th->rst)
 | |
| 			goto kill;
 | |
| 
 | |
| 		if (th->syn && !before(TCP_SKB_CB(skb)->seq, rcv_nxt))
 | |
| 			return TCP_TW_RST;
 | |
| 
 | |
| 		/* Dup ACK? */
 | |
| 		if (!th->ack ||
 | |
| 		    !after(TCP_SKB_CB(skb)->end_seq, rcv_nxt) ||
 | |
| 		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
 | |
| 			inet_twsk_put(tw);
 | |
| 			return TCP_TW_SUCCESS;
 | |
| 		}
 | |
| 
 | |
| 		/* New data or FIN. If new data arrive after half-duplex close,
 | |
| 		 * reset.
 | |
| 		 */
 | |
| 		if (!th->fin ||
 | |
| 		    TCP_SKB_CB(skb)->end_seq != rcv_nxt + 1)
 | |
| 			return TCP_TW_RST;
 | |
| 
 | |
| 		/* FIN arrived, enter true time-wait state. */
 | |
| 		WRITE_ONCE(tw->tw_substate, TCP_TIME_WAIT);
 | |
| 		twsk_rcv_nxt_update(tcptw, TCP_SKB_CB(skb)->end_seq,
 | |
| 				    rcv_nxt);
 | |
| 
 | |
| 		if (tmp_opt.saw_tstamp) {
 | |
| 			WRITE_ONCE(tcptw->tw_ts_recent_stamp,
 | |
| 				  ktime_get_seconds());
 | |
| 			WRITE_ONCE(tcptw->tw_ts_recent,
 | |
| 				   tmp_opt.rcv_tsval);
 | |
| 		}
 | |
| 
 | |
| 		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
 | |
| 		return TCP_TW_ACK;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 *	Now real TIME-WAIT state.
 | |
| 	 *
 | |
| 	 *	RFC 1122:
 | |
| 	 *	"When a connection is [...] on TIME-WAIT state [...]
 | |
| 	 *	[a TCP] MAY accept a new SYN from the remote TCP to
 | |
| 	 *	reopen the connection directly, if it:
 | |
| 	 *
 | |
| 	 *	(1)  assigns its initial sequence number for the new
 | |
| 	 *	connection to be larger than the largest sequence
 | |
| 	 *	number it used on the previous connection incarnation,
 | |
| 	 *	and
 | |
| 	 *
 | |
| 	 *	(2)  returns to TIME-WAIT state if the SYN turns out
 | |
| 	 *	to be an old duplicate".
 | |
| 	 */
 | |
| 
 | |
| 	if (!paws_reject &&
 | |
| 	    (TCP_SKB_CB(skb)->seq == rcv_nxt &&
 | |
| 	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
 | |
| 		/* In window segment, it may be only reset or bare ack. */
 | |
| 
 | |
| 		if (th->rst) {
 | |
| 			/* This is TIME_WAIT assassination, in two flavors.
 | |
| 			 * Oh well... nobody has a sufficient solution to this
 | |
| 			 * protocol bug yet.
 | |
| 			 */
 | |
| 			if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) {
 | |
| kill:
 | |
| 				inet_twsk_deschedule_put(tw);
 | |
| 				return TCP_TW_SUCCESS;
 | |
| 			}
 | |
| 		} else {
 | |
| 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
 | |
| 		}
 | |
| 
 | |
| 		if (tmp_opt.saw_tstamp) {
 | |
| 			WRITE_ONCE(tcptw->tw_ts_recent,
 | |
| 				   tmp_opt.rcv_tsval);
 | |
| 			WRITE_ONCE(tcptw->tw_ts_recent_stamp,
 | |
| 				   ktime_get_seconds());
 | |
| 		}
 | |
| 
 | |
| 		inet_twsk_put(tw);
 | |
| 		return TCP_TW_SUCCESS;
 | |
| 	}
 | |
| 
 | |
| 	/* Out of window segment.
 | |
| 
 | |
| 	   All the segments are ACKed immediately.
 | |
| 
 | |
| 	   The only exception is new SYN. We accept it, if it is
 | |
| 	   not old duplicate and we are not in danger to be killed
 | |
| 	   by delayed old duplicates. RFC check is that it has
 | |
| 	   newer sequence number works at rates <40Mbit/sec.
 | |
| 	   However, if paws works, it is reliable AND even more,
 | |
| 	   we even may relax silly seq space cutoff.
 | |
| 
 | |
| 	   RED-PEN: we violate main RFC requirement, if this SYN will appear
 | |
| 	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
 | |
| 	   we must return socket to time-wait state. It is not good,
 | |
| 	   but not fatal yet.
 | |
| 	 */
 | |
| 
 | |
| 	if (th->syn && !th->rst && !th->ack && !paws_reject &&
 | |
| 	    (after(TCP_SKB_CB(skb)->seq, rcv_nxt) ||
 | |
| 	     (tmp_opt.saw_tstamp &&
 | |
| 	      (s32)(READ_ONCE(tcptw->tw_ts_recent) - tmp_opt.rcv_tsval) < 0))) {
 | |
| 		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
 | |
| 		if (isn == 0)
 | |
| 			isn++;
 | |
| 		*tw_isn = isn;
 | |
| 		return TCP_TW_SYN;
 | |
| 	}
 | |
| 
 | |
| 	if (paws_reject)
 | |
| 		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
 | |
| 
 | |
| 	if (!th->rst) {
 | |
| 		/* In this case we must reset the TIMEWAIT timer.
 | |
| 		 *
 | |
| 		 * If it is ACKless SYN it may be both old duplicate
 | |
| 		 * and new good SYN with random sequence number <rcv_nxt.
 | |
| 		 * Do not reschedule in the last case.
 | |
| 		 */
 | |
| 		if (paws_reject || th->ack)
 | |
| 			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
 | |
| 
 | |
| 		return tcp_timewait_check_oow_rate_limit(
 | |
| 			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
 | |
| 	}
 | |
| 	inet_twsk_put(tw);
 | |
| 	return TCP_TW_SUCCESS;
 | |
| }
 | |
| EXPORT_SYMBOL(tcp_timewait_state_process);
 | |
| 
 | |
| static void tcp_time_wait_init(struct sock *sk, struct tcp_timewait_sock *tcptw)
 | |
| {
 | |
| #ifdef CONFIG_TCP_MD5SIG
 | |
| 	const struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	struct tcp_md5sig_key *key;
 | |
| 
 | |
| 	/*
 | |
| 	 * The timewait bucket does not have the key DB from the
 | |
| 	 * sock structure. We just make a quick copy of the
 | |
| 	 * md5 key being used (if indeed we are using one)
 | |
| 	 * so the timewait ack generating code has the key.
 | |
| 	 */
 | |
| 	tcptw->tw_md5_key = NULL;
 | |
| 	if (!static_branch_unlikely(&tcp_md5_needed.key))
 | |
| 		return;
 | |
| 
 | |
| 	key = tp->af_specific->md5_lookup(sk, sk);
 | |
| 	if (key) {
 | |
| 		tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
 | |
| 		if (!tcptw->tw_md5_key)
 | |
| 			return;
 | |
| 		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key))
 | |
| 			goto out_free;
 | |
| 		tcp_md5_add_sigpool();
 | |
| 	}
 | |
| 	return;
 | |
| out_free:
 | |
| 	WARN_ON_ONCE(1);
 | |
| 	kfree(tcptw->tw_md5_key);
 | |
| 	tcptw->tw_md5_key = NULL;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Move a socket to time-wait or dead fin-wait-2 state.
 | |
|  */
 | |
| void tcp_time_wait(struct sock *sk, int state, int timeo)
 | |
| {
 | |
| 	const struct inet_connection_sock *icsk = inet_csk(sk);
 | |
| 	struct tcp_sock *tp = tcp_sk(sk);
 | |
| 	struct net *net = sock_net(sk);
 | |
| 	struct inet_timewait_sock *tw;
 | |
| 
 | |
| 	tw = inet_twsk_alloc(sk, &net->ipv4.tcp_death_row, state);
 | |
| 
 | |
| 	if (tw) {
 | |
| 		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 | |
| 		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
 | |
| 
 | |
| 		tw->tw_transparent	= inet_test_bit(TRANSPARENT, sk);
 | |
| 		tw->tw_mark		= sk->sk_mark;
 | |
| 		tw->tw_priority		= READ_ONCE(sk->sk_priority);
 | |
| 		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
 | |
| 		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
 | |
| 		tcptw->tw_snd_nxt	= tp->snd_nxt;
 | |
| 		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
 | |
| 		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
 | |
| 		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
 | |
| 		tcptw->tw_ts_offset	= tp->tsoffset;
 | |
| 		tw->tw_usec_ts		= tp->tcp_usec_ts;
 | |
| 		tcptw->tw_last_oow_ack_time = 0;
 | |
| 		tcptw->tw_tx_delay	= tp->tcp_tx_delay;
 | |
| 		tw->tw_txhash		= sk->sk_txhash;
 | |
| #if IS_ENABLED(CONFIG_IPV6)
 | |
| 		if (tw->tw_family == PF_INET6) {
 | |
| 			struct ipv6_pinfo *np = inet6_sk(sk);
 | |
| 
 | |
| 			tw->tw_v6_daddr = sk->sk_v6_daddr;
 | |
| 			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
 | |
| 			tw->tw_tclass = np->tclass;
 | |
| 			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
 | |
| 			tw->tw_ipv6only = sk->sk_ipv6only;
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		tcp_time_wait_init(sk, tcptw);
 | |
| 		tcp_ao_time_wait(tcptw, tp);
 | |
| 
 | |
| 		/* Get the TIME_WAIT timeout firing. */
 | |
| 		if (timeo < rto)
 | |
| 			timeo = rto;
 | |
| 
 | |
| 		if (state == TCP_TIME_WAIT)
 | |
| 			timeo = TCP_TIMEWAIT_LEN;
 | |
| 
 | |
| 		/* Linkage updates.
 | |
| 		 * Note that access to tw after this point is illegal.
 | |
| 		 */
 | |
| 		inet_twsk_hashdance_schedule(tw, sk, net->ipv4.tcp_death_row.hashinfo, timeo);
 | |
| 	} else {
 | |
| 		/* Sorry, if we're out of memory, just CLOSE this
 | |
| 		 * socket up.  We've got bigger problems than
 | |
| 		 * non-graceful socket closings.
 | |
| 		 */
 | |
| 		NET_INC_STATS(net, LINUX_MIB_TCPTIMEWAITOVERFLOW);
 | |
| 	}
 | |
| 
 | |
| 	tcp_update_metrics(sk);
 | |
| 	tcp_done(sk);
 | |
| }
 | |
| EXPORT_SYMBOL(tcp_time_wait);
 | |
| 
 | |
| #ifdef CONFIG_TCP_MD5SIG
 | |
| static void tcp_md5_twsk_free_rcu(struct rcu_head *head)
 | |
| {
 | |
| 	struct tcp_md5sig_key *key;
 | |
| 
 | |
| 	key = container_of(head, struct tcp_md5sig_key, rcu);
 | |
| 	kfree(key);
 | |
| 	static_branch_slow_dec_deferred(&tcp_md5_needed);
 | |
| 	tcp_md5_release_sigpool();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void tcp_twsk_destructor(struct sock *sk)
 | |
| {
 | |
| #ifdef CONFIG_TCP_MD5SIG
 | |
| 	if (static_branch_unlikely(&tcp_md5_needed.key)) {
 | |
| 		struct tcp_timewait_sock *twsk = tcp_twsk(sk);
 | |
| 
 | |
| 		if (twsk->tw_md5_key)
 | |
| 			call_rcu(&twsk->tw_md5_key->rcu, tcp_md5_twsk_free_rcu);
 | |
| 	}
 | |
| #endif
 | |
| 	tcp_ao_destroy_sock(sk, true);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
 | |
| 
 | |
| void tcp_twsk_purge(struct list_head *net_exit_list)
 | |
| {
 | |
| 	bool purged_once = false;
 | |
| 	struct net *net;
 | |
| 
 | |
| 	list_for_each_entry(net, net_exit_list, exit_list) {
 | |
| 		if (net->ipv4.tcp_death_row.hashinfo->pernet) {
 | |
| 			/* Even if tw_refcount == 1, we must clean up kernel reqsk */
 | |
| 			inet_twsk_purge(net->ipv4.tcp_death_row.hashinfo);
 | |
| 		} else if (!purged_once) {
 | |
| 			inet_twsk_purge(&tcp_hashinfo);
 | |
| 			purged_once = true;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Warning : This function is called without sk_listener being locked.
 | |
|  * Be sure to read socket fields once, as their value could change under us.
 | |
|  */
 | |
| void tcp_openreq_init_rwin(struct request_sock *req,
 | |
| 			   const struct sock *sk_listener,
 | |
| 			   const struct dst_entry *dst)
 | |
| {
 | |
| 	struct inet_request_sock *ireq = inet_rsk(req);
 | |
| 	const struct tcp_sock *tp = tcp_sk(sk_listener);
 | |
| 	int full_space = tcp_full_space(sk_listener);
 | |
| 	u32 window_clamp;
 | |
| 	__u8 rcv_wscale;
 | |
| 	u32 rcv_wnd;
 | |
| 	int mss;
 | |
| 
 | |
| 	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
 | |
| 	window_clamp = READ_ONCE(tp->window_clamp);
 | |
| 	/* Set this up on the first call only */
 | |
| 	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
 | |
| 
 | |
| 	/* limit the window selection if the user enforce a smaller rx buffer */
 | |
| 	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
 | |
| 	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
 | |
| 		req->rsk_window_clamp = full_space;
 | |
| 
 | |
| 	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
 | |
| 	if (rcv_wnd == 0)
 | |
| 		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
 | |
| 	else if (full_space < rcv_wnd * mss)
 | |
| 		full_space = rcv_wnd * mss;
 | |
| 
 | |
| 	/* tcp_full_space because it is guaranteed to be the first packet */
 | |
| 	tcp_select_initial_window(sk_listener, full_space,
 | |
| 		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
 | |
| 		&req->rsk_rcv_wnd,
 | |
| 		&req->rsk_window_clamp,
 | |
| 		ireq->wscale_ok,
 | |
| 		&rcv_wscale,
 | |
| 		rcv_wnd);
 | |
| 	ireq->rcv_wscale = rcv_wscale;
 | |
| }
 | |
| EXPORT_SYMBOL(tcp_openreq_init_rwin);
 | |
| 
 | |
| static void tcp_ecn_openreq_child(struct tcp_sock *tp,
 | |
| 				  const struct request_sock *req)
 | |
| {
 | |
| 	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
 | |
| }
 | |
| 
 | |
| void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
 | |
| {
 | |
| 	struct inet_connection_sock *icsk = inet_csk(sk);
 | |
| 	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
 | |
| 	bool ca_got_dst = false;
 | |
| 
 | |
| 	if (ca_key != TCP_CA_UNSPEC) {
 | |
| 		const struct tcp_congestion_ops *ca;
 | |
| 
 | |
| 		rcu_read_lock();
 | |
| 		ca = tcp_ca_find_key(ca_key);
 | |
| 		if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
 | |
| 			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
 | |
| 			icsk->icsk_ca_ops = ca;
 | |
| 			ca_got_dst = true;
 | |
| 		}
 | |
| 		rcu_read_unlock();
 | |
| 	}
 | |
| 
 | |
| 	/* If no valid choice made yet, assign current system default ca. */
 | |
| 	if (!ca_got_dst &&
 | |
| 	    (!icsk->icsk_ca_setsockopt ||
 | |
| 	     !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
 | |
| 		tcp_assign_congestion_control(sk);
 | |
| 
 | |
| 	tcp_set_ca_state(sk, TCP_CA_Open);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
 | |
| 
 | |
| static void smc_check_reset_syn_req(const struct tcp_sock *oldtp,
 | |
| 				    struct request_sock *req,
 | |
| 				    struct tcp_sock *newtp)
 | |
| {
 | |
| #if IS_ENABLED(CONFIG_SMC)
 | |
| 	struct inet_request_sock *ireq;
 | |
| 
 | |
| 	if (static_branch_unlikely(&tcp_have_smc)) {
 | |
| 		ireq = inet_rsk(req);
 | |
| 		if (oldtp->syn_smc && !ireq->smc_ok)
 | |
| 			newtp->syn_smc = 0;
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* This is not only more efficient than what we used to do, it eliminates
 | |
|  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
 | |
|  *
 | |
|  * Actually, we could lots of memory writes here. tp of listening
 | |
|  * socket contains all necessary default parameters.
 | |
|  */
 | |
| struct sock *tcp_create_openreq_child(const struct sock *sk,
 | |
| 				      struct request_sock *req,
 | |
| 				      struct sk_buff *skb)
 | |
| {
 | |
| 	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
 | |
| 	const struct inet_request_sock *ireq = inet_rsk(req);
 | |
| 	struct tcp_request_sock *treq = tcp_rsk(req);
 | |
| 	struct inet_connection_sock *newicsk;
 | |
| 	const struct tcp_sock *oldtp;
 | |
| 	struct tcp_sock *newtp;
 | |
| 	u32 seq;
 | |
| 
 | |
| 	if (!newsk)
 | |
| 		return NULL;
 | |
| 
 | |
| 	newicsk = inet_csk(newsk);
 | |
| 	newtp = tcp_sk(newsk);
 | |
| 	oldtp = tcp_sk(sk);
 | |
| 
 | |
| 	smc_check_reset_syn_req(oldtp, req, newtp);
 | |
| 
 | |
| 	/* Now setup tcp_sock */
 | |
| 	newtp->pred_flags = 0;
 | |
| 
 | |
| 	seq = treq->rcv_isn + 1;
 | |
| 	newtp->rcv_wup = seq;
 | |
| 	WRITE_ONCE(newtp->copied_seq, seq);
 | |
| 	WRITE_ONCE(newtp->rcv_nxt, seq);
 | |
| 	newtp->segs_in = 1;
 | |
| 
 | |
| 	seq = treq->snt_isn + 1;
 | |
| 	newtp->snd_sml = newtp->snd_una = seq;
 | |
| 	WRITE_ONCE(newtp->snd_nxt, seq);
 | |
| 	newtp->snd_up = seq;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&newtp->tsq_node);
 | |
| 	INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
 | |
| 
 | |
| 	tcp_init_wl(newtp, treq->rcv_isn);
 | |
| 
 | |
| 	minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
 | |
| 	newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
 | |
| 
 | |
| 	newtp->lsndtime = tcp_jiffies32;
 | |
| 	newsk->sk_txhash = READ_ONCE(treq->txhash);
 | |
| 	newtp->total_retrans = req->num_retrans;
 | |
| 
 | |
| 	tcp_init_xmit_timers(newsk);
 | |
| 	WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
 | |
| 
 | |
| 	if (sock_flag(newsk, SOCK_KEEPOPEN))
 | |
| 		inet_csk_reset_keepalive_timer(newsk,
 | |
| 					       keepalive_time_when(newtp));
 | |
| 
 | |
| 	newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
 | |
| 	newtp->rx_opt.sack_ok = ireq->sack_ok;
 | |
| 	newtp->window_clamp = req->rsk_window_clamp;
 | |
| 	newtp->rcv_ssthresh = req->rsk_rcv_wnd;
 | |
| 	newtp->rcv_wnd = req->rsk_rcv_wnd;
 | |
| 	newtp->rx_opt.wscale_ok = ireq->wscale_ok;
 | |
| 	if (newtp->rx_opt.wscale_ok) {
 | |
| 		newtp->rx_opt.snd_wscale = ireq->snd_wscale;
 | |
| 		newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
 | |
| 	} else {
 | |
| 		newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
 | |
| 		newtp->window_clamp = min(newtp->window_clamp, 65535U);
 | |
| 	}
 | |
| 	newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
 | |
| 	newtp->max_window = newtp->snd_wnd;
 | |
| 
 | |
| 	if (newtp->rx_opt.tstamp_ok) {
 | |
| 		newtp->tcp_usec_ts = treq->req_usec_ts;
 | |
| 		newtp->rx_opt.ts_recent = READ_ONCE(req->ts_recent);
 | |
| 		newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
 | |
| 		newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
 | |
| 	} else {
 | |
| 		newtp->tcp_usec_ts = 0;
 | |
| 		newtp->rx_opt.ts_recent_stamp = 0;
 | |
| 		newtp->tcp_header_len = sizeof(struct tcphdr);
 | |
| 	}
 | |
| 	if (req->num_timeout) {
 | |
| 		newtp->total_rto = req->num_timeout;
 | |
| 		newtp->undo_marker = treq->snt_isn;
 | |
| 		if (newtp->tcp_usec_ts) {
 | |
| 			newtp->retrans_stamp = treq->snt_synack;
 | |
| 			newtp->total_rto_time = (u32)(tcp_clock_us() -
 | |
| 						      newtp->retrans_stamp) / USEC_PER_MSEC;
 | |
| 		} else {
 | |
| 			newtp->retrans_stamp = div_u64(treq->snt_synack,
 | |
| 						       USEC_PER_SEC / TCP_TS_HZ);
 | |
| 			newtp->total_rto_time = tcp_clock_ms() -
 | |
| 						newtp->retrans_stamp;
 | |
| 		}
 | |
| 		newtp->total_rto_recoveries = 1;
 | |
| 	}
 | |
| 	newtp->tsoffset = treq->ts_off;
 | |
| #ifdef CONFIG_TCP_MD5SIG
 | |
| 	newtp->md5sig_info = NULL;	/*XXX*/
 | |
| #endif
 | |
| #ifdef CONFIG_TCP_AO
 | |
| 	newtp->ao_info = NULL;
 | |
| 
 | |
| 	if (tcp_rsk_used_ao(req)) {
 | |
| 		struct tcp_ao_key *ao_key;
 | |
| 
 | |
| 		ao_key = treq->af_specific->ao_lookup(sk, req, tcp_rsk(req)->ao_keyid, -1);
 | |
| 		if (ao_key)
 | |
| 			newtp->tcp_header_len += tcp_ao_len_aligned(ao_key);
 | |
| 	}
 | |
|  #endif
 | |
| 	if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
 | |
| 		newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
 | |
| 	newtp->rx_opt.mss_clamp = req->mss;
 | |
| 	tcp_ecn_openreq_child(newtp, req);
 | |
| 	newtp->fastopen_req = NULL;
 | |
| 	RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
 | |
| 
 | |
| 	newtp->bpf_chg_cc_inprogress = 0;
 | |
| 	tcp_bpf_clone(sk, newsk);
 | |
| 
 | |
| 	__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
 | |
| 
 | |
| 	xa_init_flags(&newsk->sk_user_frags, XA_FLAGS_ALLOC1);
 | |
| 
 | |
| 	return newsk;
 | |
| }
 | |
| EXPORT_SYMBOL(tcp_create_openreq_child);
 | |
| 
 | |
| /*
 | |
|  * Process an incoming packet for SYN_RECV sockets represented as a
 | |
|  * request_sock. Normally sk is the listener socket but for TFO it
 | |
|  * points to the child socket.
 | |
|  *
 | |
|  * XXX (TFO) - The current impl contains a special check for ack
 | |
|  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
 | |
|  *
 | |
|  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
 | |
|  *
 | |
|  * Note: If @fastopen is true, this can be called from process context.
 | |
|  *       Otherwise, this is from BH context.
 | |
|  */
 | |
| 
 | |
| struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
 | |
| 			   struct request_sock *req,
 | |
| 			   bool fastopen, bool *req_stolen)
 | |
| {
 | |
| 	struct tcp_options_received tmp_opt;
 | |
| 	struct sock *child;
 | |
| 	const struct tcphdr *th = tcp_hdr(skb);
 | |
| 	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
 | |
| 	bool paws_reject = false;
 | |
| 	bool own_req;
 | |
| 
 | |
| 	tmp_opt.saw_tstamp = 0;
 | |
| 	if (th->doff > (sizeof(struct tcphdr)>>2)) {
 | |
| 		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
 | |
| 
 | |
| 		if (tmp_opt.saw_tstamp) {
 | |
| 			tmp_opt.ts_recent = READ_ONCE(req->ts_recent);
 | |
| 			if (tmp_opt.rcv_tsecr)
 | |
| 				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
 | |
| 			/* We do not store true stamp, but it is not required,
 | |
| 			 * it can be estimated (approximately)
 | |
| 			 * from another data.
 | |
| 			 */
 | |
| 			tmp_opt.ts_recent_stamp = ktime_get_seconds() - reqsk_timeout(req, TCP_RTO_MAX) / HZ;
 | |
| 			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Check for pure retransmitted SYN. */
 | |
| 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
 | |
| 	    flg == TCP_FLAG_SYN &&
 | |
| 	    !paws_reject) {
 | |
| 		/*
 | |
| 		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
 | |
| 		 * this case on figure 6 and figure 8, but formal
 | |
| 		 * protocol description says NOTHING.
 | |
| 		 * To be more exact, it says that we should send ACK,
 | |
| 		 * because this segment (at least, if it has no data)
 | |
| 		 * is out of window.
 | |
| 		 *
 | |
| 		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
 | |
| 		 *  describe SYN-RECV state. All the description
 | |
| 		 *  is wrong, we cannot believe to it and should
 | |
| 		 *  rely only on common sense and implementation
 | |
| 		 *  experience.
 | |
| 		 *
 | |
| 		 * Enforce "SYN-ACK" according to figure 8, figure 6
 | |
| 		 * of RFC793, fixed by RFC1122.
 | |
| 		 *
 | |
| 		 * Note that even if there is new data in the SYN packet
 | |
| 		 * they will be thrown away too.
 | |
| 		 *
 | |
| 		 * Reset timer after retransmitting SYNACK, similar to
 | |
| 		 * the idea of fast retransmit in recovery.
 | |
| 		 */
 | |
| 		if (!tcp_oow_rate_limited(sock_net(sk), skb,
 | |
| 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
 | |
| 					  &tcp_rsk(req)->last_oow_ack_time) &&
 | |
| 
 | |
| 		    !inet_rtx_syn_ack(sk, req)) {
 | |
| 			unsigned long expires = jiffies;
 | |
| 
 | |
| 			expires += reqsk_timeout(req, TCP_RTO_MAX);
 | |
| 			if (!fastopen)
 | |
| 				mod_timer_pending(&req->rsk_timer, expires);
 | |
| 			else
 | |
| 				req->rsk_timer.expires = expires;
 | |
| 		}
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* Further reproduces section "SEGMENT ARRIVES"
 | |
| 	   for state SYN-RECEIVED of RFC793.
 | |
| 	   It is broken, however, it does not work only
 | |
| 	   when SYNs are crossed.
 | |
| 
 | |
| 	   You would think that SYN crossing is impossible here, since
 | |
| 	   we should have a SYN_SENT socket (from connect()) on our end,
 | |
| 	   but this is not true if the crossed SYNs were sent to both
 | |
| 	   ends by a malicious third party.  We must defend against this,
 | |
| 	   and to do that we first verify the ACK (as per RFC793, page
 | |
| 	   36) and reset if it is invalid.  Is this a true full defense?
 | |
| 	   To convince ourselves, let us consider a way in which the ACK
 | |
| 	   test can still pass in this 'malicious crossed SYNs' case.
 | |
| 	   Malicious sender sends identical SYNs (and thus identical sequence
 | |
| 	   numbers) to both A and B:
 | |
| 
 | |
| 		A: gets SYN, seq=7
 | |
| 		B: gets SYN, seq=7
 | |
| 
 | |
| 	   By our good fortune, both A and B select the same initial
 | |
| 	   send sequence number of seven :-)
 | |
| 
 | |
| 		A: sends SYN|ACK, seq=7, ack_seq=8
 | |
| 		B: sends SYN|ACK, seq=7, ack_seq=8
 | |
| 
 | |
| 	   So we are now A eating this SYN|ACK, ACK test passes.  So
 | |
| 	   does sequence test, SYN is truncated, and thus we consider
 | |
| 	   it a bare ACK.
 | |
| 
 | |
| 	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
 | |
| 	   bare ACK.  Otherwise, we create an established connection.  Both
 | |
| 	   ends (listening sockets) accept the new incoming connection and try
 | |
| 	   to talk to each other. 8-)
 | |
| 
 | |
| 	   Note: This case is both harmless, and rare.  Possibility is about the
 | |
| 	   same as us discovering intelligent life on another plant tomorrow.
 | |
| 
 | |
| 	   But generally, we should (RFC lies!) to accept ACK
 | |
| 	   from SYNACK both here and in tcp_rcv_state_process().
 | |
| 	   tcp_rcv_state_process() does not, hence, we do not too.
 | |
| 
 | |
| 	   Note that the case is absolutely generic:
 | |
| 	   we cannot optimize anything here without
 | |
| 	   violating protocol. All the checks must be made
 | |
| 	   before attempt to create socket.
 | |
| 	 */
 | |
| 
 | |
| 	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
 | |
| 	 *                  and the incoming segment acknowledges something not yet
 | |
| 	 *                  sent (the segment carries an unacceptable ACK) ...
 | |
| 	 *                  a reset is sent."
 | |
| 	 *
 | |
| 	 * Invalid ACK: reset will be sent by listening socket.
 | |
| 	 * Note that the ACK validity check for a Fast Open socket is done
 | |
| 	 * elsewhere and is checked directly against the child socket rather
 | |
| 	 * than req because user data may have been sent out.
 | |
| 	 */
 | |
| 	if ((flg & TCP_FLAG_ACK) && !fastopen &&
 | |
| 	    (TCP_SKB_CB(skb)->ack_seq !=
 | |
| 	     tcp_rsk(req)->snt_isn + 1))
 | |
| 		return sk;
 | |
| 
 | |
| 	/* Also, it would be not so bad idea to check rcv_tsecr, which
 | |
| 	 * is essentially ACK extension and too early or too late values
 | |
| 	 * should cause reset in unsynchronized states.
 | |
| 	 */
 | |
| 
 | |
| 	/* RFC793: "first check sequence number". */
 | |
| 
 | |
| 	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq,
 | |
| 					  TCP_SKB_CB(skb)->end_seq,
 | |
| 					  tcp_rsk(req)->rcv_nxt,
 | |
| 					  tcp_rsk(req)->rcv_nxt +
 | |
| 					  tcp_synack_window(req))) {
 | |
| 		/* Out of window: send ACK and drop. */
 | |
| 		if (!(flg & TCP_FLAG_RST) &&
 | |
| 		    !tcp_oow_rate_limited(sock_net(sk), skb,
 | |
| 					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
 | |
| 					  &tcp_rsk(req)->last_oow_ack_time))
 | |
| 			req->rsk_ops->send_ack(sk, skb, req);
 | |
| 		if (paws_reject)
 | |
| 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* In sequence, PAWS is OK. */
 | |
| 
 | |
| 	/* TODO: We probably should defer ts_recent change once
 | |
| 	 * we take ownership of @req.
 | |
| 	 */
 | |
| 	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
 | |
| 		WRITE_ONCE(req->ts_recent, tmp_opt.rcv_tsval);
 | |
| 
 | |
| 	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
 | |
| 		/* Truncate SYN, it is out of window starting
 | |
| 		   at tcp_rsk(req)->rcv_isn + 1. */
 | |
| 		flg &= ~TCP_FLAG_SYN;
 | |
| 	}
 | |
| 
 | |
| 	/* RFC793: "second check the RST bit" and
 | |
| 	 *	   "fourth, check the SYN bit"
 | |
| 	 */
 | |
| 	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
 | |
| 		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
 | |
| 		goto embryonic_reset;
 | |
| 	}
 | |
| 
 | |
| 	/* ACK sequence verified above, just make sure ACK is
 | |
| 	 * set.  If ACK not set, just silently drop the packet.
 | |
| 	 *
 | |
| 	 * XXX (TFO) - if we ever allow "data after SYN", the
 | |
| 	 * following check needs to be removed.
 | |
| 	 */
 | |
| 	if (!(flg & TCP_FLAG_ACK))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* For Fast Open no more processing is needed (sk is the
 | |
| 	 * child socket).
 | |
| 	 */
 | |
| 	if (fastopen)
 | |
| 		return sk;
 | |
| 
 | |
| 	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
 | |
| 	if (req->num_timeout < READ_ONCE(inet_csk(sk)->icsk_accept_queue.rskq_defer_accept) &&
 | |
| 	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
 | |
| 		inet_rsk(req)->acked = 1;
 | |
| 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* OK, ACK is valid, create big socket and
 | |
| 	 * feed this segment to it. It will repeat all
 | |
| 	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
 | |
| 	 * ESTABLISHED STATE. If it will be dropped after
 | |
| 	 * socket is created, wait for troubles.
 | |
| 	 */
 | |
| 	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
 | |
| 							 req, &own_req);
 | |
| 	if (!child)
 | |
| 		goto listen_overflow;
 | |
| 
 | |
| 	if (own_req && rsk_drop_req(req)) {
 | |
| 		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
 | |
| 		inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req);
 | |
| 		return child;
 | |
| 	}
 | |
| 
 | |
| 	sock_rps_save_rxhash(child, skb);
 | |
| 	tcp_synack_rtt_meas(child, req);
 | |
| 	*req_stolen = !own_req;
 | |
| 	return inet_csk_complete_hashdance(sk, child, req, own_req);
 | |
| 
 | |
| listen_overflow:
 | |
| 	if (sk != req->rsk_listener)
 | |
| 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
 | |
| 
 | |
| 	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow)) {
 | |
| 		inet_rsk(req)->acked = 1;
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| embryonic_reset:
 | |
| 	if (!(flg & TCP_FLAG_RST)) {
 | |
| 		/* Received a bad SYN pkt - for TFO We try not to reset
 | |
| 		 * the local connection unless it's really necessary to
 | |
| 		 * avoid becoming vulnerable to outside attack aiming at
 | |
| 		 * resetting legit local connections.
 | |
| 		 */
 | |
| 		req->rsk_ops->send_reset(sk, skb, SK_RST_REASON_INVALID_SYN);
 | |
| 	} else if (fastopen) { /* received a valid RST pkt */
 | |
| 		reqsk_fastopen_remove(sk, req, true);
 | |
| 		tcp_reset(sk, skb);
 | |
| 	}
 | |
| 	if (!fastopen) {
 | |
| 		bool unlinked = inet_csk_reqsk_queue_drop(sk, req);
 | |
| 
 | |
| 		if (unlinked)
 | |
| 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
 | |
| 		*req_stolen = !unlinked;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(tcp_check_req);
 | |
| 
 | |
| /*
 | |
|  * Queue segment on the new socket if the new socket is active,
 | |
|  * otherwise we just shortcircuit this and continue with
 | |
|  * the new socket.
 | |
|  *
 | |
|  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
 | |
|  * when entering. But other states are possible due to a race condition
 | |
|  * where after __inet_lookup_established() fails but before the listener
 | |
|  * locked is obtained, other packets cause the same connection to
 | |
|  * be created.
 | |
|  */
 | |
| 
 | |
| enum skb_drop_reason tcp_child_process(struct sock *parent, struct sock *child,
 | |
| 				       struct sk_buff *skb)
 | |
| 	__releases(&((child)->sk_lock.slock))
 | |
| {
 | |
| 	enum skb_drop_reason reason = SKB_NOT_DROPPED_YET;
 | |
| 	int state = child->sk_state;
 | |
| 
 | |
| 	/* record sk_napi_id and sk_rx_queue_mapping of child. */
 | |
| 	sk_mark_napi_id_set(child, skb);
 | |
| 
 | |
| 	tcp_segs_in(tcp_sk(child), skb);
 | |
| 	if (!sock_owned_by_user(child)) {
 | |
| 		reason = tcp_rcv_state_process(child, skb);
 | |
| 		/* Wakeup parent, send SIGIO */
 | |
| 		if (state == TCP_SYN_RECV && child->sk_state != state)
 | |
| 			parent->sk_data_ready(parent);
 | |
| 	} else {
 | |
| 		/* Alas, it is possible again, because we do lookup
 | |
| 		 * in main socket hash table and lock on listening
 | |
| 		 * socket does not protect us more.
 | |
| 		 */
 | |
| 		__sk_add_backlog(child, skb);
 | |
| 	}
 | |
| 
 | |
| 	bh_unlock_sock(child);
 | |
| 	sock_put(child);
 | |
| 	return reason;
 | |
| }
 | |
| EXPORT_SYMBOL(tcp_child_process);
 |