307 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			307 lines
		
	
	
		
			7.4 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0-or-later */
 | |
| /*
 | |
|  * Generic barrier definitions.
 | |
|  *
 | |
|  * It should be possible to use these on really simple architectures,
 | |
|  * but it serves more as a starting point for new ports.
 | |
|  *
 | |
|  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
 | |
|  * Written by David Howells (dhowells@redhat.com)
 | |
|  */
 | |
| #ifndef __ASM_GENERIC_BARRIER_H
 | |
| #define __ASM_GENERIC_BARRIER_H
 | |
| 
 | |
| #ifndef __ASSEMBLY__
 | |
| 
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/kcsan-checks.h>
 | |
| #include <asm/rwonce.h>
 | |
| 
 | |
| #ifndef nop
 | |
| #define nop()	asm volatile ("nop")
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Architectures that want generic instrumentation can define __ prefixed
 | |
|  * variants of all barriers.
 | |
|  */
 | |
| 
 | |
| #ifdef __mb
 | |
| #define mb()	do { kcsan_mb(); __mb(); } while (0)
 | |
| #endif
 | |
| 
 | |
| #ifdef __rmb
 | |
| #define rmb()	do { kcsan_rmb(); __rmb(); } while (0)
 | |
| #endif
 | |
| 
 | |
| #ifdef __wmb
 | |
| #define wmb()	do { kcsan_wmb(); __wmb(); } while (0)
 | |
| #endif
 | |
| 
 | |
| #ifdef __dma_mb
 | |
| #define dma_mb()	do { kcsan_mb(); __dma_mb(); } while (0)
 | |
| #endif
 | |
| 
 | |
| #ifdef __dma_rmb
 | |
| #define dma_rmb()	do { kcsan_rmb(); __dma_rmb(); } while (0)
 | |
| #endif
 | |
| 
 | |
| #ifdef __dma_wmb
 | |
| #define dma_wmb()	do { kcsan_wmb(); __dma_wmb(); } while (0)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Force strict CPU ordering. And yes, this is required on UP too when we're
 | |
|  * talking to devices.
 | |
|  *
 | |
|  * Fall back to compiler barriers if nothing better is provided.
 | |
|  */
 | |
| 
 | |
| #ifndef mb
 | |
| #define mb()	barrier()
 | |
| #endif
 | |
| 
 | |
| #ifndef rmb
 | |
| #define rmb()	mb()
 | |
| #endif
 | |
| 
 | |
| #ifndef wmb
 | |
| #define wmb()	mb()
 | |
| #endif
 | |
| 
 | |
| #ifndef dma_mb
 | |
| #define dma_mb()	mb()
 | |
| #endif
 | |
| 
 | |
| #ifndef dma_rmb
 | |
| #define dma_rmb()	rmb()
 | |
| #endif
 | |
| 
 | |
| #ifndef dma_wmb
 | |
| #define dma_wmb()	wmb()
 | |
| #endif
 | |
| 
 | |
| #ifndef __smp_mb
 | |
| #define __smp_mb()	mb()
 | |
| #endif
 | |
| 
 | |
| #ifndef __smp_rmb
 | |
| #define __smp_rmb()	rmb()
 | |
| #endif
 | |
| 
 | |
| #ifndef __smp_wmb
 | |
| #define __smp_wmb()	wmb()
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| #ifndef smp_mb
 | |
| #define smp_mb()	do { kcsan_mb(); __smp_mb(); } while (0)
 | |
| #endif
 | |
| 
 | |
| #ifndef smp_rmb
 | |
| #define smp_rmb()	do { kcsan_rmb(); __smp_rmb(); } while (0)
 | |
| #endif
 | |
| 
 | |
| #ifndef smp_wmb
 | |
| #define smp_wmb()	do { kcsan_wmb(); __smp_wmb(); } while (0)
 | |
| #endif
 | |
| 
 | |
| #else	/* !CONFIG_SMP */
 | |
| 
 | |
| #ifndef smp_mb
 | |
| #define smp_mb()	barrier()
 | |
| #endif
 | |
| 
 | |
| #ifndef smp_rmb
 | |
| #define smp_rmb()	barrier()
 | |
| #endif
 | |
| 
 | |
| #ifndef smp_wmb
 | |
| #define smp_wmb()	barrier()
 | |
| #endif
 | |
| 
 | |
| #endif	/* CONFIG_SMP */
 | |
| 
 | |
| #ifndef __smp_store_mb
 | |
| #define __smp_store_mb(var, value)  do { WRITE_ONCE(var, value); __smp_mb(); } while (0)
 | |
| #endif
 | |
| 
 | |
| #ifndef __smp_mb__before_atomic
 | |
| #define __smp_mb__before_atomic()	__smp_mb()
 | |
| #endif
 | |
| 
 | |
| #ifndef __smp_mb__after_atomic
 | |
| #define __smp_mb__after_atomic()	__smp_mb()
 | |
| #endif
 | |
| 
 | |
| #ifndef __smp_store_release
 | |
| #define __smp_store_release(p, v)					\
 | |
| do {									\
 | |
| 	compiletime_assert_atomic_type(*p);				\
 | |
| 	__smp_mb();							\
 | |
| 	WRITE_ONCE(*p, v);						\
 | |
| } while (0)
 | |
| #endif
 | |
| 
 | |
| #ifndef __smp_load_acquire
 | |
| #define __smp_load_acquire(p)						\
 | |
| ({									\
 | |
| 	__unqual_scalar_typeof(*p) ___p1 = READ_ONCE(*p);		\
 | |
| 	compiletime_assert_atomic_type(*p);				\
 | |
| 	__smp_mb();							\
 | |
| 	(typeof(*p))___p1;						\
 | |
| })
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 
 | |
| #ifndef smp_store_mb
 | |
| #define smp_store_mb(var, value)  do { kcsan_mb(); __smp_store_mb(var, value); } while (0)
 | |
| #endif
 | |
| 
 | |
| #ifndef smp_mb__before_atomic
 | |
| #define smp_mb__before_atomic()	do { kcsan_mb(); __smp_mb__before_atomic(); } while (0)
 | |
| #endif
 | |
| 
 | |
| #ifndef smp_mb__after_atomic
 | |
| #define smp_mb__after_atomic()	do { kcsan_mb(); __smp_mb__after_atomic(); } while (0)
 | |
| #endif
 | |
| 
 | |
| #ifndef smp_store_release
 | |
| #define smp_store_release(p, v) do { kcsan_release(); __smp_store_release(p, v); } while (0)
 | |
| #endif
 | |
| 
 | |
| #ifndef smp_load_acquire
 | |
| #define smp_load_acquire(p) __smp_load_acquire(p)
 | |
| #endif
 | |
| 
 | |
| #else	/* !CONFIG_SMP */
 | |
| 
 | |
| #ifndef smp_store_mb
 | |
| #define smp_store_mb(var, value)  do { WRITE_ONCE(var, value); barrier(); } while (0)
 | |
| #endif
 | |
| 
 | |
| #ifndef smp_mb__before_atomic
 | |
| #define smp_mb__before_atomic()	barrier()
 | |
| #endif
 | |
| 
 | |
| #ifndef smp_mb__after_atomic
 | |
| #define smp_mb__after_atomic()	barrier()
 | |
| #endif
 | |
| 
 | |
| #ifndef smp_store_release
 | |
| #define smp_store_release(p, v)						\
 | |
| do {									\
 | |
| 	barrier();							\
 | |
| 	WRITE_ONCE(*p, v);						\
 | |
| } while (0)
 | |
| #endif
 | |
| 
 | |
| #ifndef smp_load_acquire
 | |
| #define smp_load_acquire(p)						\
 | |
| ({									\
 | |
| 	__unqual_scalar_typeof(*p) ___p1 = READ_ONCE(*p);		\
 | |
| 	barrier();							\
 | |
| 	(typeof(*p))___p1;						\
 | |
| })
 | |
| #endif
 | |
| 
 | |
| #endif	/* CONFIG_SMP */
 | |
| 
 | |
| /* Barriers for virtual machine guests when talking to an SMP host */
 | |
| #define virt_mb() do { kcsan_mb(); __smp_mb(); } while (0)
 | |
| #define virt_rmb() do { kcsan_rmb(); __smp_rmb(); } while (0)
 | |
| #define virt_wmb() do { kcsan_wmb(); __smp_wmb(); } while (0)
 | |
| #define virt_store_mb(var, value) do { kcsan_mb(); __smp_store_mb(var, value); } while (0)
 | |
| #define virt_mb__before_atomic() do { kcsan_mb(); __smp_mb__before_atomic(); } while (0)
 | |
| #define virt_mb__after_atomic()	do { kcsan_mb(); __smp_mb__after_atomic(); } while (0)
 | |
| #define virt_store_release(p, v) do { kcsan_release(); __smp_store_release(p, v); } while (0)
 | |
| #define virt_load_acquire(p) __smp_load_acquire(p)
 | |
| 
 | |
| /**
 | |
|  * smp_acquire__after_ctrl_dep() - Provide ACQUIRE ordering after a control dependency
 | |
|  *
 | |
|  * A control dependency provides a LOAD->STORE order, the additional RMB
 | |
|  * provides LOAD->LOAD order, together they provide LOAD->{LOAD,STORE} order,
 | |
|  * aka. (load)-ACQUIRE.
 | |
|  *
 | |
|  * Architectures that do not do load speculation can have this be barrier().
 | |
|  */
 | |
| #ifndef smp_acquire__after_ctrl_dep
 | |
| #define smp_acquire__after_ctrl_dep()		smp_rmb()
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * smp_cond_load_relaxed() - (Spin) wait for cond with no ordering guarantees
 | |
|  * @ptr: pointer to the variable to wait on
 | |
|  * @cond: boolean expression to wait for
 | |
|  *
 | |
|  * Equivalent to using READ_ONCE() on the condition variable.
 | |
|  *
 | |
|  * Due to C lacking lambda expressions we load the value of *ptr into a
 | |
|  * pre-named variable @VAL to be used in @cond.
 | |
|  */
 | |
| #ifndef smp_cond_load_relaxed
 | |
| #define smp_cond_load_relaxed(ptr, cond_expr) ({		\
 | |
| 	typeof(ptr) __PTR = (ptr);				\
 | |
| 	__unqual_scalar_typeof(*ptr) VAL;			\
 | |
| 	for (;;) {						\
 | |
| 		VAL = READ_ONCE(*__PTR);			\
 | |
| 		if (cond_expr)					\
 | |
| 			break;					\
 | |
| 		cpu_relax();					\
 | |
| 	}							\
 | |
| 	(typeof(*ptr))VAL;					\
 | |
| })
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * smp_cond_load_acquire() - (Spin) wait for cond with ACQUIRE ordering
 | |
|  * @ptr: pointer to the variable to wait on
 | |
|  * @cond: boolean expression to wait for
 | |
|  *
 | |
|  * Equivalent to using smp_load_acquire() on the condition variable but employs
 | |
|  * the control dependency of the wait to reduce the barrier on many platforms.
 | |
|  */
 | |
| #ifndef smp_cond_load_acquire
 | |
| #define smp_cond_load_acquire(ptr, cond_expr) ({		\
 | |
| 	__unqual_scalar_typeof(*ptr) _val;			\
 | |
| 	_val = smp_cond_load_relaxed(ptr, cond_expr);		\
 | |
| 	smp_acquire__after_ctrl_dep();				\
 | |
| 	(typeof(*ptr))_val;					\
 | |
| })
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * pmem_wmb() ensures that all stores for which the modification
 | |
|  * are written to persistent storage by preceding instructions have
 | |
|  * updated persistent storage before any data  access or data transfer
 | |
|  * caused by subsequent instructions is initiated.
 | |
|  */
 | |
| #ifndef pmem_wmb
 | |
| #define pmem_wmb()	wmb()
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * ioremap_wc() maps I/O memory as memory with write-combining attributes. For
 | |
|  * this kind of memory accesses, the CPU may wait for prior accesses to be
 | |
|  * merged with subsequent ones. In some situation, such wait is bad for the
 | |
|  * performance. io_stop_wc() can be used to prevent the merging of
 | |
|  * write-combining memory accesses before this macro with those after it.
 | |
|  */
 | |
| #ifndef io_stop_wc
 | |
| #define io_stop_wc() do { } while (0)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Architectures that guarantee an implicit smp_mb() in switch_mm()
 | |
|  * can override smp_mb__after_switch_mm.
 | |
|  */
 | |
| #ifndef smp_mb__after_switch_mm
 | |
| # define smp_mb__after_switch_mm()	smp_mb()
 | |
| #endif
 | |
| 
 | |
| #endif /* !__ASSEMBLY__ */
 | |
| #endif /* __ASM_GENERIC_BARRIER_H */
 |