715 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			715 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| //
 | |
| // Register map access API - SPI AVMM support
 | |
| //
 | |
| // Copyright (C) 2018-2020 Intel Corporation. All rights reserved.
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/regmap.h>
 | |
| #include <linux/spi/spi.h>
 | |
| #include <linux/swab.h>
 | |
| 
 | |
| /*
 | |
|  * This driver implements the regmap operations for a generic SPI
 | |
|  * master to access the registers of the spi slave chip which has an
 | |
|  * Avalone bus in it.
 | |
|  *
 | |
|  * The "SPI slave to Avalon Master Bridge" (spi-avmm) IP should be integrated
 | |
|  * in the spi slave chip. The IP acts as a bridge to convert encoded streams of
 | |
|  * bytes from the host to the internal register read/write on Avalon bus. In
 | |
|  * order to issue register access requests to the slave chip, the host should
 | |
|  * send formatted bytes that conform to the transfer protocol.
 | |
|  * The transfer protocol contains 3 layers: transaction layer, packet layer
 | |
|  * and physical layer.
 | |
|  *
 | |
|  * Reference Documents could be found at:
 | |
|  * https://www.intel.com/content/www/us/en/programmable/documentation/sfo1400787952932.html
 | |
|  *
 | |
|  * Chapter "SPI Slave/JTAG to Avalon Master Bridge Cores" is a general
 | |
|  * introduction to the protocol.
 | |
|  *
 | |
|  * Chapter "Avalon Packets to Transactions Converter Core" describes
 | |
|  * the transaction layer.
 | |
|  *
 | |
|  * Chapter "Avalon-ST Bytes to Packets and Packets to Bytes Converter Cores"
 | |
|  * describes the packet layer.
 | |
|  *
 | |
|  * Chapter "Avalon-ST Serial Peripheral Interface Core" describes the
 | |
|  * physical layer.
 | |
|  *
 | |
|  *
 | |
|  * When host issues a regmap read/write, the driver will transform the request
 | |
|  * to byte stream layer by layer. It formats the register addr, value and
 | |
|  * length to the transaction layer request, then converts the request to packet
 | |
|  * layer bytes stream and then to physical layer bytes stream. Finally the
 | |
|  * driver sends the formatted byte stream over SPI bus to the slave chip.
 | |
|  *
 | |
|  * The spi-avmm IP on the slave chip decodes the byte stream and initiates
 | |
|  * register read/write on its internal Avalon bus, and then encodes the
 | |
|  * response to byte stream and sends back to host.
 | |
|  *
 | |
|  * The driver receives the byte stream, reverses the 3 layers transformation,
 | |
|  * and finally gets the response value (read out data for register read,
 | |
|  * successful written size for register write).
 | |
|  */
 | |
| 
 | |
| #define PKT_SOP			0x7a
 | |
| #define PKT_EOP			0x7b
 | |
| #define PKT_CHANNEL		0x7c
 | |
| #define PKT_ESC			0x7d
 | |
| 
 | |
| #define PHY_IDLE		0x4a
 | |
| #define PHY_ESC			0x4d
 | |
| 
 | |
| #define TRANS_CODE_WRITE	0x0
 | |
| #define TRANS_CODE_SEQ_WRITE	0x4
 | |
| #define TRANS_CODE_READ		0x10
 | |
| #define TRANS_CODE_SEQ_READ	0x14
 | |
| #define TRANS_CODE_NO_TRANS	0x7f
 | |
| 
 | |
| #define SPI_AVMM_XFER_TIMEOUT	(msecs_to_jiffies(200))
 | |
| 
 | |
| /* slave's register addr is 32 bits */
 | |
| #define SPI_AVMM_REG_SIZE		4UL
 | |
| /* slave's register value is 32 bits */
 | |
| #define SPI_AVMM_VAL_SIZE		4UL
 | |
| 
 | |
| /*
 | |
|  * max rx size could be larger. But considering the buffer consuming,
 | |
|  * it is proper that we limit 1KB xfer at max.
 | |
|  */
 | |
| #define MAX_READ_CNT		256UL
 | |
| #define MAX_WRITE_CNT		1UL
 | |
| 
 | |
| struct trans_req_header {
 | |
| 	u8 code;
 | |
| 	u8 rsvd;
 | |
| 	__be16 size;
 | |
| 	__be32 addr;
 | |
| } __packed;
 | |
| 
 | |
| struct trans_resp_header {
 | |
| 	u8 r_code;
 | |
| 	u8 rsvd;
 | |
| 	__be16 size;
 | |
| } __packed;
 | |
| 
 | |
| #define TRANS_REQ_HD_SIZE	(sizeof(struct trans_req_header))
 | |
| #define TRANS_RESP_HD_SIZE	(sizeof(struct trans_resp_header))
 | |
| 
 | |
| /*
 | |
|  * In transaction layer,
 | |
|  * the write request format is: Transaction request header + data
 | |
|  * the read request format is: Transaction request header
 | |
|  * the write response format is: Transaction response header
 | |
|  * the read response format is: pure data, no Transaction response header
 | |
|  */
 | |
| #define TRANS_WR_TX_SIZE(n)	(TRANS_REQ_HD_SIZE + SPI_AVMM_VAL_SIZE * (n))
 | |
| #define TRANS_RD_TX_SIZE	TRANS_REQ_HD_SIZE
 | |
| #define TRANS_TX_MAX		TRANS_WR_TX_SIZE(MAX_WRITE_CNT)
 | |
| 
 | |
| #define TRANS_RD_RX_SIZE(n)	(SPI_AVMM_VAL_SIZE * (n))
 | |
| #define TRANS_WR_RX_SIZE	TRANS_RESP_HD_SIZE
 | |
| #define TRANS_RX_MAX		TRANS_RD_RX_SIZE(MAX_READ_CNT)
 | |
| 
 | |
| /* tx & rx share one transaction layer buffer */
 | |
| #define TRANS_BUF_SIZE		((TRANS_TX_MAX > TRANS_RX_MAX) ?	\
 | |
| 				 TRANS_TX_MAX : TRANS_RX_MAX)
 | |
| 
 | |
| /*
 | |
|  * In tx phase, the host prepares all the phy layer bytes of a request in the
 | |
|  * phy buffer and sends them in a batch.
 | |
|  *
 | |
|  * The packet layer and physical layer defines several special chars for
 | |
|  * various purpose, when a transaction layer byte hits one of these special
 | |
|  * chars, it should be escaped. The escape rule is, "Escape char first,
 | |
|  * following the byte XOR'ed with 0x20".
 | |
|  *
 | |
|  * This macro defines the max possible length of the phy data. In the worst
 | |
|  * case, all transaction layer bytes need to be escaped (so the data length
 | |
|  * doubles), plus 4 special chars (SOP, CHANNEL, CHANNEL_NUM, EOP). Finally
 | |
|  * we should make sure the length is aligned to SPI BPW.
 | |
|  */
 | |
| #define PHY_TX_MAX		ALIGN(2 * TRANS_TX_MAX + 4, 4)
 | |
| 
 | |
| /*
 | |
|  * Unlike tx, phy rx is affected by possible PHY_IDLE bytes from slave, the max
 | |
|  * length of the rx bit stream is unpredictable. So the driver reads the words
 | |
|  * one by one, and parses each word immediately into transaction layer buffer.
 | |
|  * Only one word length of phy buffer is used for rx.
 | |
|  */
 | |
| #define PHY_BUF_SIZE		PHY_TX_MAX
 | |
| 
 | |
| /**
 | |
|  * struct spi_avmm_bridge - SPI slave to AVMM bus master bridge
 | |
|  *
 | |
|  * @spi: spi slave associated with this bridge.
 | |
|  * @word_len: bytes of word for spi transfer.
 | |
|  * @trans_len: length of valid data in trans_buf.
 | |
|  * @phy_len: length of valid data in phy_buf.
 | |
|  * @trans_buf: the bridge buffer for transaction layer data.
 | |
|  * @phy_buf: the bridge buffer for physical layer data.
 | |
|  * @swap_words: the word swapping cb for phy data. NULL if not needed.
 | |
|  *
 | |
|  * As a device's registers are implemented on the AVMM bus address space, it
 | |
|  * requires the driver to issue formatted requests to spi slave to AVMM bus
 | |
|  * master bridge to perform register access.
 | |
|  */
 | |
| struct spi_avmm_bridge {
 | |
| 	struct spi_device *spi;
 | |
| 	unsigned char word_len;
 | |
| 	unsigned int trans_len;
 | |
| 	unsigned int phy_len;
 | |
| 	/* bridge buffer used in translation between protocol layers */
 | |
| 	char trans_buf[TRANS_BUF_SIZE];
 | |
| 	char phy_buf[PHY_BUF_SIZE];
 | |
| 	void (*swap_words)(void *buf, unsigned int len);
 | |
| };
 | |
| 
 | |
| static void br_swap_words_32(void *buf, unsigned int len)
 | |
| {
 | |
| 	swab32_array(buf, len / 4);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Format transaction layer data in br->trans_buf according to the register
 | |
|  * access request, Store valid transaction layer data length in br->trans_len.
 | |
|  */
 | |
| static int br_trans_tx_prepare(struct spi_avmm_bridge *br, bool is_read, u32 reg,
 | |
| 			       u32 *wr_val, u32 count)
 | |
| {
 | |
| 	struct trans_req_header *header;
 | |
| 	unsigned int trans_len;
 | |
| 	u8 code;
 | |
| 	__le32 *data;
 | |
| 	int i;
 | |
| 
 | |
| 	if (is_read) {
 | |
| 		if (count == 1)
 | |
| 			code = TRANS_CODE_READ;
 | |
| 		else
 | |
| 			code = TRANS_CODE_SEQ_READ;
 | |
| 	} else {
 | |
| 		if (count == 1)
 | |
| 			code = TRANS_CODE_WRITE;
 | |
| 		else
 | |
| 			code = TRANS_CODE_SEQ_WRITE;
 | |
| 	}
 | |
| 
 | |
| 	header = (struct trans_req_header *)br->trans_buf;
 | |
| 	header->code = code;
 | |
| 	header->rsvd = 0;
 | |
| 	header->size = cpu_to_be16((u16)count * SPI_AVMM_VAL_SIZE);
 | |
| 	header->addr = cpu_to_be32(reg);
 | |
| 
 | |
| 	trans_len = TRANS_REQ_HD_SIZE;
 | |
| 
 | |
| 	if (!is_read) {
 | |
| 		trans_len += SPI_AVMM_VAL_SIZE * count;
 | |
| 		if (trans_len > sizeof(br->trans_buf))
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		data = (__le32 *)(br->trans_buf + TRANS_REQ_HD_SIZE);
 | |
| 
 | |
| 		for (i = 0; i < count; i++)
 | |
| 			*data++ = cpu_to_le32(*wr_val++);
 | |
| 	}
 | |
| 
 | |
| 	/* Store valid trans data length for next layer */
 | |
| 	br->trans_len = trans_len;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convert transaction layer data (in br->trans_buf) to phy layer data, store
 | |
|  * them in br->phy_buf. Pad the phy_buf aligned with SPI's BPW. Store valid phy
 | |
|  * layer data length in br->phy_len.
 | |
|  *
 | |
|  * phy_buf len should be aligned with SPI's BPW. Spare bytes should be padded
 | |
|  * with PHY_IDLE, then the slave will just drop them.
 | |
|  *
 | |
|  * The driver will not simply pad 4a at the tail. The concern is that driver
 | |
|  * will not store MISO data during tx phase, if the driver pads 4a at the tail,
 | |
|  * it is possible that if the slave is fast enough to response at the padding
 | |
|  * time. As a result these rx bytes are lost. In the following case, 7a,7c,00
 | |
|  * will lost.
 | |
|  * MOSI ...|7a|7c|00|10| |00|00|04|02| |4b|7d|5a|7b| |40|4a|4a|4a| |XX|XX|...
 | |
|  * MISO ...|4a|4a|4a|4a| |4a|4a|4a|4a| |4a|4a|4a|4a| |4a|7a|7c|00| |78|56|...
 | |
|  *
 | |
|  * So the driver moves EOP and bytes after EOP to the end of the aligned size,
 | |
|  * then fill the hole with PHY_IDLE. As following:
 | |
|  * before pad ...|7a|7c|00|10| |00|00|04|02| |4b|7d|5a|7b| |40|
 | |
|  * after pad  ...|7a|7c|00|10| |00|00|04|02| |4b|7d|5a|4a| |4a|4a|7b|40|
 | |
|  * Then if the slave will not get the entire packet before the tx phase is
 | |
|  * over, it can't responsed to anything either.
 | |
|  */
 | |
| static int br_pkt_phy_tx_prepare(struct spi_avmm_bridge *br)
 | |
| {
 | |
| 	char *tb, *tb_end, *pb, *pb_limit, *pb_eop = NULL;
 | |
| 	unsigned int aligned_phy_len, move_size;
 | |
| 	bool need_esc = false;
 | |
| 
 | |
| 	tb = br->trans_buf;
 | |
| 	tb_end = tb + br->trans_len;
 | |
| 	pb = br->phy_buf;
 | |
| 	pb_limit = pb + ARRAY_SIZE(br->phy_buf);
 | |
| 
 | |
| 	*pb++ = PKT_SOP;
 | |
| 
 | |
| 	/*
 | |
| 	 * The driver doesn't support multiple channels so the channel number
 | |
| 	 * is always 0.
 | |
| 	 */
 | |
| 	*pb++ = PKT_CHANNEL;
 | |
| 	*pb++ = 0x0;
 | |
| 
 | |
| 	for (; pb < pb_limit && tb < tb_end; pb++) {
 | |
| 		if (need_esc) {
 | |
| 			*pb = *tb++ ^ 0x20;
 | |
| 			need_esc = false;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* EOP should be inserted before the last valid char */
 | |
| 		if (tb == tb_end - 1 && !pb_eop) {
 | |
| 			*pb = PKT_EOP;
 | |
| 			pb_eop = pb;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * insert an ESCAPE char if the data value equals any special
 | |
| 		 * char.
 | |
| 		 */
 | |
| 		switch (*tb) {
 | |
| 		case PKT_SOP:
 | |
| 		case PKT_EOP:
 | |
| 		case PKT_CHANNEL:
 | |
| 		case PKT_ESC:
 | |
| 			*pb = PKT_ESC;
 | |
| 			need_esc = true;
 | |
| 			break;
 | |
| 		case PHY_IDLE:
 | |
| 		case PHY_ESC:
 | |
| 			*pb = PHY_ESC;
 | |
| 			need_esc = true;
 | |
| 			break;
 | |
| 		default:
 | |
| 			*pb = *tb++;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* The phy buffer is used out but transaction layer data remains */
 | |
| 	if (tb < tb_end)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* Store valid phy data length for spi transfer */
 | |
| 	br->phy_len = pb - br->phy_buf;
 | |
| 
 | |
| 	if (br->word_len == 1)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Do phy buf padding if word_len > 1 byte. */
 | |
| 	aligned_phy_len = ALIGN(br->phy_len, br->word_len);
 | |
| 	if (aligned_phy_len > sizeof(br->phy_buf))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	if (aligned_phy_len == br->phy_len)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* move EOP and bytes after EOP to the end of aligned size */
 | |
| 	move_size = pb - pb_eop;
 | |
| 	memmove(&br->phy_buf[aligned_phy_len - move_size], pb_eop, move_size);
 | |
| 
 | |
| 	/* fill the hole with PHY_IDLEs */
 | |
| 	memset(pb_eop, PHY_IDLE, aligned_phy_len - br->phy_len);
 | |
| 
 | |
| 	/* update the phy data length */
 | |
| 	br->phy_len = aligned_phy_len;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In tx phase, the slave only returns PHY_IDLE (0x4a). So the driver will
 | |
|  * ignore rx in tx phase.
 | |
|  */
 | |
| static int br_do_tx(struct spi_avmm_bridge *br)
 | |
| {
 | |
| 	/* reorder words for spi transfer */
 | |
| 	if (br->swap_words)
 | |
| 		br->swap_words(br->phy_buf, br->phy_len);
 | |
| 
 | |
| 	/* send all data in phy_buf  */
 | |
| 	return spi_write(br->spi, br->phy_buf, br->phy_len);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function read the rx byte stream from SPI word by word and convert
 | |
|  * them to transaction layer data in br->trans_buf. It also stores the length
 | |
|  * of rx transaction layer data in br->trans_len
 | |
|  *
 | |
|  * The slave may send an unknown number of PHY_IDLEs in rx phase, so we cannot
 | |
|  * prepare a fixed length buffer to receive all of the rx data in a batch. We
 | |
|  * have to read word by word and convert them to transaction layer data at
 | |
|  * once.
 | |
|  */
 | |
| static int br_do_rx_and_pkt_phy_parse(struct spi_avmm_bridge *br)
 | |
| {
 | |
| 	bool eop_found = false, channel_found = false, esc_found = false;
 | |
| 	bool valid_word = false, last_try = false;
 | |
| 	struct device *dev = &br->spi->dev;
 | |
| 	char *pb, *tb_limit, *tb = NULL;
 | |
| 	unsigned long poll_timeout;
 | |
| 	int ret, i;
 | |
| 
 | |
| 	tb_limit = br->trans_buf + ARRAY_SIZE(br->trans_buf);
 | |
| 	pb = br->phy_buf;
 | |
| 	poll_timeout = jiffies + SPI_AVMM_XFER_TIMEOUT;
 | |
| 	while (tb < tb_limit) {
 | |
| 		ret = spi_read(br->spi, pb, br->word_len);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		/* reorder the word back */
 | |
| 		if (br->swap_words)
 | |
| 			br->swap_words(pb, br->word_len);
 | |
| 
 | |
| 		valid_word = false;
 | |
| 		for (i = 0; i < br->word_len; i++) {
 | |
| 			/* drop everything before first SOP */
 | |
| 			if (!tb && pb[i] != PKT_SOP)
 | |
| 				continue;
 | |
| 
 | |
| 			/* drop PHY_IDLE */
 | |
| 			if (pb[i] == PHY_IDLE)
 | |
| 				continue;
 | |
| 
 | |
| 			valid_word = true;
 | |
| 
 | |
| 			/*
 | |
| 			 * We don't support multiple channels, so error out if
 | |
| 			 * a non-zero channel number is found.
 | |
| 			 */
 | |
| 			if (channel_found) {
 | |
| 				if (pb[i] != 0) {
 | |
| 					dev_err(dev, "%s channel num != 0\n",
 | |
| 						__func__);
 | |
| 					return -EFAULT;
 | |
| 				}
 | |
| 
 | |
| 				channel_found = false;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			switch (pb[i]) {
 | |
| 			case PKT_SOP:
 | |
| 				/*
 | |
| 				 * reset the parsing if a second SOP appears.
 | |
| 				 */
 | |
| 				tb = br->trans_buf;
 | |
| 				eop_found = false;
 | |
| 				channel_found = false;
 | |
| 				esc_found = false;
 | |
| 				break;
 | |
| 			case PKT_EOP:
 | |
| 				/*
 | |
| 				 * No special char is expected after ESC char.
 | |
| 				 * No special char (except ESC & PHY_IDLE) is
 | |
| 				 * expected after EOP char.
 | |
| 				 *
 | |
| 				 * The special chars are all dropped.
 | |
| 				 */
 | |
| 				if (esc_found || eop_found)
 | |
| 					return -EFAULT;
 | |
| 
 | |
| 				eop_found = true;
 | |
| 				break;
 | |
| 			case PKT_CHANNEL:
 | |
| 				if (esc_found || eop_found)
 | |
| 					return -EFAULT;
 | |
| 
 | |
| 				channel_found = true;
 | |
| 				break;
 | |
| 			case PKT_ESC:
 | |
| 			case PHY_ESC:
 | |
| 				if (esc_found)
 | |
| 					return -EFAULT;
 | |
| 
 | |
| 				esc_found = true;
 | |
| 				break;
 | |
| 			default:
 | |
| 				/* Record the normal byte in trans_buf. */
 | |
| 				if (esc_found) {
 | |
| 					*tb++ = pb[i] ^ 0x20;
 | |
| 					esc_found = false;
 | |
| 				} else {
 | |
| 					*tb++ = pb[i];
 | |
| 				}
 | |
| 
 | |
| 				/*
 | |
| 				 * We get the last normal byte after EOP, it is
 | |
| 				 * time we finish. Normally the function should
 | |
| 				 * return here.
 | |
| 				 */
 | |
| 				if (eop_found) {
 | |
| 					br->trans_len = tb - br->trans_buf;
 | |
| 					return 0;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (valid_word) {
 | |
| 			/* update poll timeout when we get valid word */
 | |
| 			poll_timeout = jiffies + SPI_AVMM_XFER_TIMEOUT;
 | |
| 			last_try = false;
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * We timeout when rx keeps invalid for some time. But
 | |
| 			 * it is possible we are scheduled out for long time
 | |
| 			 * after a spi_read. So when we are scheduled in, a SW
 | |
| 			 * timeout happens. But actually HW may have worked fine and
 | |
| 			 * has been ready long time ago. So we need to do an extra
 | |
| 			 * read, if we get a valid word then we could continue rx,
 | |
| 			 * otherwise real a HW issue happens.
 | |
| 			 */
 | |
| 			if (last_try)
 | |
| 				return -ETIMEDOUT;
 | |
| 
 | |
| 			if (time_after(jiffies, poll_timeout))
 | |
| 				last_try = true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We have used out all transfer layer buffer but cannot find the end
 | |
| 	 * of the byte stream.
 | |
| 	 */
 | |
| 	dev_err(dev, "%s transfer buffer is full but rx doesn't end\n",
 | |
| 		__func__);
 | |
| 
 | |
| 	return -EFAULT;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For read transactions, the avmm bus will directly return register values
 | |
|  * without transaction response header.
 | |
|  */
 | |
| static int br_rd_trans_rx_parse(struct spi_avmm_bridge *br,
 | |
| 				u32 *val, unsigned int expected_count)
 | |
| {
 | |
| 	unsigned int i, trans_len = br->trans_len;
 | |
| 	__le32 *data;
 | |
| 
 | |
| 	if (expected_count * SPI_AVMM_VAL_SIZE != trans_len)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	data = (__le32 *)br->trans_buf;
 | |
| 	for (i = 0; i < expected_count; i++)
 | |
| 		*val++ = le32_to_cpu(*data++);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For write transactions, the slave will return a transaction response
 | |
|  * header.
 | |
|  */
 | |
| static int br_wr_trans_rx_parse(struct spi_avmm_bridge *br,
 | |
| 				unsigned int expected_count)
 | |
| {
 | |
| 	unsigned int trans_len = br->trans_len;
 | |
| 	struct trans_resp_header *resp;
 | |
| 	u8 code;
 | |
| 	u16 val_len;
 | |
| 
 | |
| 	if (trans_len != TRANS_RESP_HD_SIZE)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	resp = (struct trans_resp_header *)br->trans_buf;
 | |
| 
 | |
| 	code = resp->r_code ^ 0x80;
 | |
| 	val_len = be16_to_cpu(resp->size);
 | |
| 	if (!val_len || val_len != expected_count * SPI_AVMM_VAL_SIZE)
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	/* error out if the trans code doesn't align with the val size */
 | |
| 	if ((val_len == SPI_AVMM_VAL_SIZE && code != TRANS_CODE_WRITE) ||
 | |
| 	    (val_len > SPI_AVMM_VAL_SIZE && code != TRANS_CODE_SEQ_WRITE))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int do_reg_access(void *context, bool is_read, unsigned int reg,
 | |
| 			 unsigned int *value, unsigned int count)
 | |
| {
 | |
| 	struct spi_avmm_bridge *br = context;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* invalidate bridge buffers first */
 | |
| 	br->trans_len = 0;
 | |
| 	br->phy_len = 0;
 | |
| 
 | |
| 	ret = br_trans_tx_prepare(br, is_read, reg, value, count);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = br_pkt_phy_tx_prepare(br);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = br_do_tx(br);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = br_do_rx_and_pkt_phy_parse(br);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (is_read)
 | |
| 		return br_rd_trans_rx_parse(br, value, count);
 | |
| 	else
 | |
| 		return br_wr_trans_rx_parse(br, count);
 | |
| }
 | |
| 
 | |
| static int regmap_spi_avmm_gather_write(void *context,
 | |
| 					const void *reg_buf, size_t reg_len,
 | |
| 					const void *val_buf, size_t val_len)
 | |
| {
 | |
| 	if (reg_len != SPI_AVMM_REG_SIZE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!IS_ALIGNED(val_len, SPI_AVMM_VAL_SIZE))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return do_reg_access(context, false, *(u32 *)reg_buf, (u32 *)val_buf,
 | |
| 			     val_len / SPI_AVMM_VAL_SIZE);
 | |
| }
 | |
| 
 | |
| static int regmap_spi_avmm_write(void *context, const void *data, size_t bytes)
 | |
| {
 | |
| 	if (bytes < SPI_AVMM_REG_SIZE + SPI_AVMM_VAL_SIZE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return regmap_spi_avmm_gather_write(context, data, SPI_AVMM_REG_SIZE,
 | |
| 					    data + SPI_AVMM_REG_SIZE,
 | |
| 					    bytes - SPI_AVMM_REG_SIZE);
 | |
| }
 | |
| 
 | |
| static int regmap_spi_avmm_read(void *context,
 | |
| 				const void *reg_buf, size_t reg_len,
 | |
| 				void *val_buf, size_t val_len)
 | |
| {
 | |
| 	if (reg_len != SPI_AVMM_REG_SIZE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!IS_ALIGNED(val_len, SPI_AVMM_VAL_SIZE))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return do_reg_access(context, true, *(u32 *)reg_buf, val_buf,
 | |
| 			     (val_len / SPI_AVMM_VAL_SIZE));
 | |
| }
 | |
| 
 | |
| static struct spi_avmm_bridge *
 | |
| spi_avmm_bridge_ctx_gen(struct spi_device *spi)
 | |
| {
 | |
| 	struct spi_avmm_bridge *br;
 | |
| 
 | |
| 	if (!spi)
 | |
| 		return ERR_PTR(-ENODEV);
 | |
| 
 | |
| 	/* Only support BPW == 8 or 32 now. Try 32 BPW first. */
 | |
| 	spi->mode = SPI_MODE_1;
 | |
| 	spi->bits_per_word = 32;
 | |
| 	if (spi_setup(spi)) {
 | |
| 		spi->bits_per_word = 8;
 | |
| 		if (spi_setup(spi))
 | |
| 			return ERR_PTR(-EINVAL);
 | |
| 	}
 | |
| 
 | |
| 	br = kzalloc(sizeof(*br), GFP_KERNEL);
 | |
| 	if (!br)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	br->spi = spi;
 | |
| 	br->word_len = spi->bits_per_word / 8;
 | |
| 	if (br->word_len == 4) {
 | |
| 		/*
 | |
| 		 * The protocol requires little endian byte order but MSB
 | |
| 		 * first. So driver needs to swap the byte order word by word
 | |
| 		 * if word length > 1.
 | |
| 		 */
 | |
| 		br->swap_words = br_swap_words_32;
 | |
| 	}
 | |
| 
 | |
| 	return br;
 | |
| }
 | |
| 
 | |
| static void spi_avmm_bridge_ctx_free(void *context)
 | |
| {
 | |
| 	kfree(context);
 | |
| }
 | |
| 
 | |
| static const struct regmap_bus regmap_spi_avmm_bus = {
 | |
| 	.write = regmap_spi_avmm_write,
 | |
| 	.gather_write = regmap_spi_avmm_gather_write,
 | |
| 	.read = regmap_spi_avmm_read,
 | |
| 	.reg_format_endian_default = REGMAP_ENDIAN_NATIVE,
 | |
| 	.val_format_endian_default = REGMAP_ENDIAN_NATIVE,
 | |
| 	.max_raw_read = SPI_AVMM_VAL_SIZE * MAX_READ_CNT,
 | |
| 	.max_raw_write = SPI_AVMM_VAL_SIZE * MAX_WRITE_CNT,
 | |
| 	.free_context = spi_avmm_bridge_ctx_free,
 | |
| };
 | |
| 
 | |
| struct regmap *__regmap_init_spi_avmm(struct spi_device *spi,
 | |
| 				      const struct regmap_config *config,
 | |
| 				      struct lock_class_key *lock_key,
 | |
| 				      const char *lock_name)
 | |
| {
 | |
| 	struct spi_avmm_bridge *bridge;
 | |
| 	struct regmap *map;
 | |
| 
 | |
| 	bridge = spi_avmm_bridge_ctx_gen(spi);
 | |
| 	if (IS_ERR(bridge))
 | |
| 		return ERR_CAST(bridge);
 | |
| 
 | |
| 	map = __regmap_init(&spi->dev, ®map_spi_avmm_bus,
 | |
| 			    bridge, config, lock_key, lock_name);
 | |
| 	if (IS_ERR(map)) {
 | |
| 		spi_avmm_bridge_ctx_free(bridge);
 | |
| 		return ERR_CAST(map);
 | |
| 	}
 | |
| 
 | |
| 	return map;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__regmap_init_spi_avmm);
 | |
| 
 | |
| struct regmap *__devm_regmap_init_spi_avmm(struct spi_device *spi,
 | |
| 					   const struct regmap_config *config,
 | |
| 					   struct lock_class_key *lock_key,
 | |
| 					   const char *lock_name)
 | |
| {
 | |
| 	struct spi_avmm_bridge *bridge;
 | |
| 	struct regmap *map;
 | |
| 
 | |
| 	bridge = spi_avmm_bridge_ctx_gen(spi);
 | |
| 	if (IS_ERR(bridge))
 | |
| 		return ERR_CAST(bridge);
 | |
| 
 | |
| 	map = __devm_regmap_init(&spi->dev, ®map_spi_avmm_bus,
 | |
| 				 bridge, config, lock_key, lock_name);
 | |
| 	if (IS_ERR(map)) {
 | |
| 		spi_avmm_bridge_ctx_free(bridge);
 | |
| 		return ERR_CAST(map);
 | |
| 	}
 | |
| 
 | |
| 	return map;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__devm_regmap_init_spi_avmm);
 | |
| 
 | |
| MODULE_DESCRIPTION("Register map access API - SPI AVMM support");
 | |
| MODULE_LICENSE("GPL v2");
 |