567 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			567 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Xen time implementation.
 | |
|  *
 | |
|  * This is implemented in terms of a clocksource driver which uses
 | |
|  * the hypervisor clock as a nanosecond timebase, and a clockevent
 | |
|  * driver which uses the hypervisor's timer mechanism.
 | |
|  *
 | |
|  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
 | |
|  */
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/clocksource.h>
 | |
| #include <linux/clockchips.h>
 | |
| #include <linux/gfp.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/pvclock_gtod.h>
 | |
| #include <linux/timekeeper_internal.h>
 | |
| 
 | |
| #include <asm/pvclock.h>
 | |
| #include <asm/xen/hypervisor.h>
 | |
| #include <asm/xen/hypercall.h>
 | |
| 
 | |
| #include <xen/events.h>
 | |
| #include <xen/features.h>
 | |
| #include <xen/interface/xen.h>
 | |
| #include <xen/interface/vcpu.h>
 | |
| 
 | |
| #include "xen-ops.h"
 | |
| 
 | |
| /* Xen may fire a timer up to this many ns early */
 | |
| #define TIMER_SLOP	100000
 | |
| 
 | |
| /* Get the TSC speed from Xen */
 | |
| static unsigned long xen_tsc_khz(void)
 | |
| {
 | |
| 	struct pvclock_vcpu_time_info *info =
 | |
| 		&HYPERVISOR_shared_info->vcpu_info[0].time;
 | |
| 
 | |
| 	return pvclock_tsc_khz(info);
 | |
| }
 | |
| 
 | |
| u64 xen_clocksource_read(void)
 | |
| {
 | |
|         struct pvclock_vcpu_time_info *src;
 | |
| 	u64 ret;
 | |
| 
 | |
| 	preempt_disable_notrace();
 | |
| 	src = &__this_cpu_read(xen_vcpu)->time;
 | |
| 	ret = pvclock_clocksource_read(src);
 | |
| 	preempt_enable_notrace();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static u64 xen_clocksource_get_cycles(struct clocksource *cs)
 | |
| {
 | |
| 	return xen_clocksource_read();
 | |
| }
 | |
| 
 | |
| static void xen_read_wallclock(struct timespec64 *ts)
 | |
| {
 | |
| 	struct shared_info *s = HYPERVISOR_shared_info;
 | |
| 	struct pvclock_wall_clock *wall_clock = &(s->wc);
 | |
|         struct pvclock_vcpu_time_info *vcpu_time;
 | |
| 
 | |
| 	vcpu_time = &get_cpu_var(xen_vcpu)->time;
 | |
| 	pvclock_read_wallclock(wall_clock, vcpu_time, ts);
 | |
| 	put_cpu_var(xen_vcpu);
 | |
| }
 | |
| 
 | |
| static void xen_get_wallclock(struct timespec64 *now)
 | |
| {
 | |
| 	xen_read_wallclock(now);
 | |
| }
 | |
| 
 | |
| static int xen_set_wallclock(const struct timespec64 *now)
 | |
| {
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| static int xen_pvclock_gtod_notify(struct notifier_block *nb,
 | |
| 				   unsigned long was_set, void *priv)
 | |
| {
 | |
| 	/* Protected by the calling core code serialization */
 | |
| 	static struct timespec64 next_sync;
 | |
| 
 | |
| 	struct xen_platform_op op;
 | |
| 	struct timespec64 now;
 | |
| 	struct timekeeper *tk = priv;
 | |
| 	static bool settime64_supported = true;
 | |
| 	int ret;
 | |
| 
 | |
| 	now.tv_sec = tk->xtime_sec;
 | |
| 	now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 | |
| 
 | |
| 	/*
 | |
| 	 * We only take the expensive HV call when the clock was set
 | |
| 	 * or when the 11 minutes RTC synchronization time elapsed.
 | |
| 	 */
 | |
| 	if (!was_set && timespec64_compare(&now, &next_sync) < 0)
 | |
| 		return NOTIFY_OK;
 | |
| 
 | |
| again:
 | |
| 	if (settime64_supported) {
 | |
| 		op.cmd = XENPF_settime64;
 | |
| 		op.u.settime64.mbz = 0;
 | |
| 		op.u.settime64.secs = now.tv_sec;
 | |
| 		op.u.settime64.nsecs = now.tv_nsec;
 | |
| 		op.u.settime64.system_time = xen_clocksource_read();
 | |
| 	} else {
 | |
| 		op.cmd = XENPF_settime32;
 | |
| 		op.u.settime32.secs = now.tv_sec;
 | |
| 		op.u.settime32.nsecs = now.tv_nsec;
 | |
| 		op.u.settime32.system_time = xen_clocksource_read();
 | |
| 	}
 | |
| 
 | |
| 	ret = HYPERVISOR_platform_op(&op);
 | |
| 
 | |
| 	if (ret == -ENOSYS && settime64_supported) {
 | |
| 		settime64_supported = false;
 | |
| 		goto again;
 | |
| 	}
 | |
| 	if (ret < 0)
 | |
| 		return NOTIFY_BAD;
 | |
| 
 | |
| 	/*
 | |
| 	 * Move the next drift compensation time 11 minutes
 | |
| 	 * ahead. That's emulating the sync_cmos_clock() update for
 | |
| 	 * the hardware RTC.
 | |
| 	 */
 | |
| 	next_sync = now;
 | |
| 	next_sync.tv_sec += 11 * 60;
 | |
| 
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| static struct notifier_block xen_pvclock_gtod_notifier = {
 | |
| 	.notifier_call = xen_pvclock_gtod_notify,
 | |
| };
 | |
| 
 | |
| static int xen_cs_enable(struct clocksource *cs)
 | |
| {
 | |
| 	vclocks_set_used(VDSO_CLOCKMODE_PVCLOCK);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct clocksource xen_clocksource __read_mostly = {
 | |
| 	.name	= "xen",
 | |
| 	.rating	= 400,
 | |
| 	.read	= xen_clocksource_get_cycles,
 | |
| 	.mask	= CLOCKSOURCE_MASK(64),
 | |
| 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
 | |
| 	.enable = xen_cs_enable,
 | |
| };
 | |
| 
 | |
| /*
 | |
|    Xen clockevent implementation
 | |
| 
 | |
|    Xen has two clockevent implementations:
 | |
| 
 | |
|    The old timer_op one works with all released versions of Xen prior
 | |
|    to version 3.0.4.  This version of the hypervisor provides a
 | |
|    single-shot timer with nanosecond resolution.  However, sharing the
 | |
|    same event channel is a 100Hz tick which is delivered while the
 | |
|    vcpu is running.  We don't care about or use this tick, but it will
 | |
|    cause the core time code to think the timer fired too soon, and
 | |
|    will end up resetting it each time.  It could be filtered, but
 | |
|    doing so has complications when the ktime clocksource is not yet
 | |
|    the xen clocksource (ie, at boot time).
 | |
| 
 | |
|    The new vcpu_op-based timer interface allows the tick timer period
 | |
|    to be changed or turned off.  The tick timer is not useful as a
 | |
|    periodic timer because events are only delivered to running vcpus.
 | |
|    The one-shot timer can report when a timeout is in the past, so
 | |
|    set_next_event is capable of returning -ETIME when appropriate.
 | |
|    This interface is used when available.
 | |
| */
 | |
| 
 | |
| 
 | |
| /*
 | |
|   Get a hypervisor absolute time.  In theory we could maintain an
 | |
|   offset between the kernel's time and the hypervisor's time, and
 | |
|   apply that to a kernel's absolute timeout.  Unfortunately the
 | |
|   hypervisor and kernel times can drift even if the kernel is using
 | |
|   the Xen clocksource, because ntp can warp the kernel's clocksource.
 | |
| */
 | |
| static s64 get_abs_timeout(unsigned long delta)
 | |
| {
 | |
| 	return xen_clocksource_read() + delta;
 | |
| }
 | |
| 
 | |
| static int xen_timerop_shutdown(struct clock_event_device *evt)
 | |
| {
 | |
| 	/* cancel timeout */
 | |
| 	HYPERVISOR_set_timer_op(0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int xen_timerop_set_next_event(unsigned long delta,
 | |
| 				      struct clock_event_device *evt)
 | |
| {
 | |
| 	WARN_ON(!clockevent_state_oneshot(evt));
 | |
| 
 | |
| 	if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
 | |
| 		BUG();
 | |
| 
 | |
| 	/* We may have missed the deadline, but there's no real way of
 | |
| 	   knowing for sure.  If the event was in the past, then we'll
 | |
| 	   get an immediate interrupt. */
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct clock_event_device xen_timerop_clockevent = {
 | |
| 	.name			= "xen",
 | |
| 	.features		= CLOCK_EVT_FEAT_ONESHOT,
 | |
| 
 | |
| 	.max_delta_ns		= 0xffffffff,
 | |
| 	.max_delta_ticks	= 0xffffffff,
 | |
| 	.min_delta_ns		= TIMER_SLOP,
 | |
| 	.min_delta_ticks	= TIMER_SLOP,
 | |
| 
 | |
| 	.mult			= 1,
 | |
| 	.shift			= 0,
 | |
| 	.rating			= 500,
 | |
| 
 | |
| 	.set_state_shutdown	= xen_timerop_shutdown,
 | |
| 	.set_next_event		= xen_timerop_set_next_event,
 | |
| };
 | |
| 
 | |
| static int xen_vcpuop_shutdown(struct clock_event_device *evt)
 | |
| {
 | |
| 	int cpu = smp_processor_id();
 | |
| 
 | |
| 	if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, xen_vcpu_nr(cpu),
 | |
| 			       NULL) ||
 | |
| 	    HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
 | |
| 			       NULL))
 | |
| 		BUG();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int xen_vcpuop_set_oneshot(struct clock_event_device *evt)
 | |
| {
 | |
| 	int cpu = smp_processor_id();
 | |
| 
 | |
| 	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
 | |
| 			       NULL))
 | |
| 		BUG();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int xen_vcpuop_set_next_event(unsigned long delta,
 | |
| 				     struct clock_event_device *evt)
 | |
| {
 | |
| 	int cpu = smp_processor_id();
 | |
| 	struct vcpu_set_singleshot_timer single;
 | |
| 	int ret;
 | |
| 
 | |
| 	WARN_ON(!clockevent_state_oneshot(evt));
 | |
| 
 | |
| 	single.timeout_abs_ns = get_abs_timeout(delta);
 | |
| 	/* Get an event anyway, even if the timeout is already expired */
 | |
| 	single.flags = 0;
 | |
| 
 | |
| 	ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, xen_vcpu_nr(cpu),
 | |
| 				 &single);
 | |
| 	BUG_ON(ret != 0);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static const struct clock_event_device xen_vcpuop_clockevent = {
 | |
| 	.name = "xen",
 | |
| 	.features = CLOCK_EVT_FEAT_ONESHOT,
 | |
| 
 | |
| 	.max_delta_ns = 0xffffffff,
 | |
| 	.max_delta_ticks = 0xffffffff,
 | |
| 	.min_delta_ns = TIMER_SLOP,
 | |
| 	.min_delta_ticks = TIMER_SLOP,
 | |
| 
 | |
| 	.mult = 1,
 | |
| 	.shift = 0,
 | |
| 	.rating = 500,
 | |
| 
 | |
| 	.set_state_shutdown = xen_vcpuop_shutdown,
 | |
| 	.set_state_oneshot = xen_vcpuop_set_oneshot,
 | |
| 	.set_next_event = xen_vcpuop_set_next_event,
 | |
| };
 | |
| 
 | |
| static const struct clock_event_device *xen_clockevent =
 | |
| 	&xen_timerop_clockevent;
 | |
| 
 | |
| struct xen_clock_event_device {
 | |
| 	struct clock_event_device evt;
 | |
| 	char name[16];
 | |
| };
 | |
| static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
 | |
| 
 | |
| static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
 | |
| {
 | |
| 	struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
 | |
| 	irqreturn_t ret;
 | |
| 
 | |
| 	ret = IRQ_NONE;
 | |
| 	if (evt->event_handler) {
 | |
| 		evt->event_handler(evt);
 | |
| 		ret = IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void xen_teardown_timer(int cpu)
 | |
| {
 | |
| 	struct clock_event_device *evt;
 | |
| 	evt = &per_cpu(xen_clock_events, cpu).evt;
 | |
| 
 | |
| 	if (evt->irq >= 0) {
 | |
| 		unbind_from_irqhandler(evt->irq, NULL);
 | |
| 		evt->irq = -1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void xen_setup_timer(int cpu)
 | |
| {
 | |
| 	struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
 | |
| 	struct clock_event_device *evt = &xevt->evt;
 | |
| 	int irq;
 | |
| 
 | |
| 	WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
 | |
| 	if (evt->irq >= 0)
 | |
| 		xen_teardown_timer(cpu);
 | |
| 
 | |
| 	printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
 | |
| 
 | |
| 	snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
 | |
| 
 | |
| 	irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
 | |
| 				      IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
 | |
| 				      IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
 | |
| 				      xevt->name, NULL);
 | |
| 	(void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
 | |
| 
 | |
| 	memcpy(evt, xen_clockevent, sizeof(*evt));
 | |
| 
 | |
| 	evt->cpumask = cpumask_of(cpu);
 | |
| 	evt->irq = irq;
 | |
| }
 | |
| 
 | |
| 
 | |
| void xen_setup_cpu_clockevents(void)
 | |
| {
 | |
| 	clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
 | |
| }
 | |
| 
 | |
| void xen_timer_resume(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	pvclock_resume();
 | |
| 
 | |
| 	if (xen_clockevent != &xen_vcpuop_clockevent)
 | |
| 		return;
 | |
| 
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer,
 | |
| 				       xen_vcpu_nr(cpu), NULL))
 | |
| 			BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static const struct pv_time_ops xen_time_ops __initconst = {
 | |
| 	.sched_clock = xen_clocksource_read,
 | |
| 	.steal_clock = xen_steal_clock,
 | |
| };
 | |
| 
 | |
| static struct pvclock_vsyscall_time_info *xen_clock __read_mostly;
 | |
| 
 | |
| void xen_save_time_memory_area(void)
 | |
| {
 | |
| 	struct vcpu_register_time_memory_area t;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!xen_clock)
 | |
| 		return;
 | |
| 
 | |
| 	t.addr.v = NULL;
 | |
| 
 | |
| 	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
 | |
| 	if (ret != 0)
 | |
| 		pr_notice("Cannot save secondary vcpu_time_info (err %d)",
 | |
| 			  ret);
 | |
| 	else
 | |
| 		clear_page(xen_clock);
 | |
| }
 | |
| 
 | |
| void xen_restore_time_memory_area(void)
 | |
| {
 | |
| 	struct vcpu_register_time_memory_area t;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!xen_clock)
 | |
| 		return;
 | |
| 
 | |
| 	t.addr.v = &xen_clock->pvti;
 | |
| 
 | |
| 	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't disable VDSO_CLOCKMODE_PVCLOCK entirely if it fails to
 | |
| 	 * register the secondary time info with Xen or if we migrated to a
 | |
| 	 * host without the necessary flags. On both of these cases what
 | |
| 	 * happens is either process seeing a zeroed out pvti or seeing no
 | |
| 	 * PVCLOCK_TSC_STABLE_BIT bit set. Userspace checks the latter and
 | |
| 	 * if 0, it discards the data in pvti and fallbacks to a system
 | |
| 	 * call for a reliable timestamp.
 | |
| 	 */
 | |
| 	if (ret != 0)
 | |
| 		pr_notice("Cannot restore secondary vcpu_time_info (err %d)",
 | |
| 			  ret);
 | |
| }
 | |
| 
 | |
| static void xen_setup_vsyscall_time_info(void)
 | |
| {
 | |
| 	struct vcpu_register_time_memory_area t;
 | |
| 	struct pvclock_vsyscall_time_info *ti;
 | |
| 	int ret;
 | |
| 
 | |
| 	ti = (struct pvclock_vsyscall_time_info *)get_zeroed_page(GFP_KERNEL);
 | |
| 	if (!ti)
 | |
| 		return;
 | |
| 
 | |
| 	t.addr.v = &ti->pvti;
 | |
| 
 | |
| 	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
 | |
| 	if (ret) {
 | |
| 		pr_notice("xen: VDSO_CLOCKMODE_PVCLOCK not supported (err %d)\n", ret);
 | |
| 		free_page((unsigned long)ti);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If primary time info had this bit set, secondary should too since
 | |
| 	 * it's the same data on both just different memory regions. But we
 | |
| 	 * still check it in case hypervisor is buggy.
 | |
| 	 */
 | |
| 	if (!(ti->pvti.flags & PVCLOCK_TSC_STABLE_BIT)) {
 | |
| 		t.addr.v = NULL;
 | |
| 		ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area,
 | |
| 					 0, &t);
 | |
| 		if (!ret)
 | |
| 			free_page((unsigned long)ti);
 | |
| 
 | |
| 		pr_notice("xen: VDSO_CLOCKMODE_PVCLOCK not supported (tsc unstable)\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	xen_clock = ti;
 | |
| 	pvclock_set_pvti_cpu0_va(xen_clock);
 | |
| 
 | |
| 	xen_clocksource.vdso_clock_mode = VDSO_CLOCKMODE_PVCLOCK;
 | |
| }
 | |
| 
 | |
| static void __init xen_time_init(void)
 | |
| {
 | |
| 	struct pvclock_vcpu_time_info *pvti;
 | |
| 	int cpu = smp_processor_id();
 | |
| 	struct timespec64 tp;
 | |
| 
 | |
| 	/* As Dom0 is never moved, no penalty on using TSC there */
 | |
| 	if (xen_initial_domain())
 | |
| 		xen_clocksource.rating = 275;
 | |
| 
 | |
| 	clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
 | |
| 
 | |
| 	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
 | |
| 			       NULL) == 0) {
 | |
| 		/* Successfully turned off 100Hz tick, so we have the
 | |
| 		   vcpuop-based timer interface */
 | |
| 		printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
 | |
| 		xen_clockevent = &xen_vcpuop_clockevent;
 | |
| 	}
 | |
| 
 | |
| 	/* Set initial system time with full resolution */
 | |
| 	xen_read_wallclock(&tp);
 | |
| 	do_settimeofday64(&tp);
 | |
| 
 | |
| 	setup_force_cpu_cap(X86_FEATURE_TSC);
 | |
| 
 | |
| 	/*
 | |
| 	 * We check ahead on the primary time info if this
 | |
| 	 * bit is supported hence speeding up Xen clocksource.
 | |
| 	 */
 | |
| 	pvti = &__this_cpu_read(xen_vcpu)->time;
 | |
| 	if (pvti->flags & PVCLOCK_TSC_STABLE_BIT) {
 | |
| 		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
 | |
| 		xen_setup_vsyscall_time_info();
 | |
| 	}
 | |
| 
 | |
| 	xen_setup_runstate_info(cpu);
 | |
| 	xen_setup_timer(cpu);
 | |
| 	xen_setup_cpu_clockevents();
 | |
| 
 | |
| 	xen_time_setup_guest();
 | |
| 
 | |
| 	if (xen_initial_domain())
 | |
| 		pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
 | |
| }
 | |
| 
 | |
| void __ref xen_init_time_ops(void)
 | |
| {
 | |
| 	pv_time_ops = xen_time_ops;
 | |
| 
 | |
| 	x86_init.timers.timer_init = xen_time_init;
 | |
| 	x86_init.timers.setup_percpu_clockev = x86_init_noop;
 | |
| 	x86_cpuinit.setup_percpu_clockev = x86_init_noop;
 | |
| 
 | |
| 	x86_platform.calibrate_tsc = xen_tsc_khz;
 | |
| 	x86_platform.get_wallclock = xen_get_wallclock;
 | |
| 	/* Dom0 uses the native method to set the hardware RTC. */
 | |
| 	if (!xen_initial_domain())
 | |
| 		x86_platform.set_wallclock = xen_set_wallclock;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_XEN_PVHVM
 | |
| static void xen_hvm_setup_cpu_clockevents(void)
 | |
| {
 | |
| 	int cpu = smp_processor_id();
 | |
| 	xen_setup_runstate_info(cpu);
 | |
| 	/*
 | |
| 	 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
 | |
| 	 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
 | |
| 	 * early bootup and also during CPU hotplug events).
 | |
| 	 */
 | |
| 	xen_setup_cpu_clockevents();
 | |
| }
 | |
| 
 | |
| void __init xen_hvm_init_time_ops(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * vector callback is needed otherwise we cannot receive interrupts
 | |
| 	 * on cpu > 0 and at this point we don't know how many cpus are
 | |
| 	 * available.
 | |
| 	 */
 | |
| 	if (!xen_have_vector_callback)
 | |
| 		return;
 | |
| 
 | |
| 	if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
 | |
| 		printk(KERN_INFO "Xen doesn't support pvclock on HVM,"
 | |
| 				"disable pv timer\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	pv_time_ops = xen_time_ops;
 | |
| 	x86_init.timers.setup_percpu_clockev = xen_time_init;
 | |
| 	x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
 | |
| 
 | |
| 	x86_platform.calibrate_tsc = xen_tsc_khz;
 | |
| 	x86_platform.get_wallclock = xen_get_wallclock;
 | |
| 	x86_platform.set_wallclock = xen_set_wallclock;
 | |
| }
 | |
| #endif
 |