1059 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1059 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| /*
 | |
|  * Copyright © 2019 Oracle and/or its affiliates. All rights reserved.
 | |
|  * Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
 | |
|  *
 | |
|  * KVM Xen emulation
 | |
|  */
 | |
| 
 | |
| #include "x86.h"
 | |
| #include "xen.h"
 | |
| #include "hyperv.h"
 | |
| 
 | |
| #include <linux/kvm_host.h>
 | |
| #include <linux/sched/stat.h>
 | |
| 
 | |
| #include <trace/events/kvm.h>
 | |
| #include <xen/interface/xen.h>
 | |
| #include <xen/interface/vcpu.h>
 | |
| #include <xen/interface/event_channel.h>
 | |
| 
 | |
| #include "trace.h"
 | |
| 
 | |
| DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ);
 | |
| 
 | |
| static int kvm_xen_shared_info_init(struct kvm *kvm, gfn_t gfn)
 | |
| {
 | |
| 	struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
 | |
| 	struct pvclock_wall_clock *wc;
 | |
| 	gpa_t gpa = gfn_to_gpa(gfn);
 | |
| 	u32 *wc_sec_hi;
 | |
| 	u32 wc_version;
 | |
| 	u64 wall_nsec;
 | |
| 	int ret = 0;
 | |
| 	int idx = srcu_read_lock(&kvm->srcu);
 | |
| 
 | |
| 	if (gfn == GPA_INVALID) {
 | |
| 		kvm_gfn_to_pfn_cache_destroy(kvm, gpc);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	do {
 | |
| 		ret = kvm_gfn_to_pfn_cache_init(kvm, gpc, NULL, KVM_HOST_USES_PFN,
 | |
| 						gpa, PAGE_SIZE);
 | |
| 		if (ret)
 | |
| 			goto out;
 | |
| 
 | |
| 		/*
 | |
| 		 * This code mirrors kvm_write_wall_clock() except that it writes
 | |
| 		 * directly through the pfn cache and doesn't mark the page dirty.
 | |
| 		 */
 | |
| 		wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
 | |
| 
 | |
| 		/* It could be invalid again already, so we need to check */
 | |
| 		read_lock_irq(&gpc->lock);
 | |
| 
 | |
| 		if (gpc->valid)
 | |
| 			break;
 | |
| 
 | |
| 		read_unlock_irq(&gpc->lock);
 | |
| 	} while (1);
 | |
| 
 | |
| 	/* Paranoia checks on the 32-bit struct layout */
 | |
| 	BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900);
 | |
| 	BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924);
 | |
| 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	/* Paranoia checks on the 64-bit struct layout */
 | |
| 	BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00);
 | |
| 	BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c);
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
 | |
| 		struct shared_info *shinfo = gpc->khva;
 | |
| 
 | |
| 		wc_sec_hi = &shinfo->wc_sec_hi;
 | |
| 		wc = &shinfo->wc;
 | |
| 	} else
 | |
| #endif
 | |
| 	{
 | |
| 		struct compat_shared_info *shinfo = gpc->khva;
 | |
| 
 | |
| 		wc_sec_hi = &shinfo->arch.wc_sec_hi;
 | |
| 		wc = &shinfo->wc;
 | |
| 	}
 | |
| 
 | |
| 	/* Increment and ensure an odd value */
 | |
| 	wc_version = wc->version = (wc->version + 1) | 1;
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	wc->nsec = do_div(wall_nsec,  1000000000);
 | |
| 	wc->sec = (u32)wall_nsec;
 | |
| 	*wc_sec_hi = wall_nsec >> 32;
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	wc->version = wc_version + 1;
 | |
| 	read_unlock_irq(&gpc->lock);
 | |
| 
 | |
| 	kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE);
 | |
| 
 | |
| out:
 | |
| 	srcu_read_unlock(&kvm->srcu, idx);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void kvm_xen_update_runstate(struct kvm_vcpu *v, int state)
 | |
| {
 | |
| 	struct kvm_vcpu_xen *vx = &v->arch.xen;
 | |
| 	u64 now = get_kvmclock_ns(v->kvm);
 | |
| 	u64 delta_ns = now - vx->runstate_entry_time;
 | |
| 	u64 run_delay = current->sched_info.run_delay;
 | |
| 
 | |
| 	if (unlikely(!vx->runstate_entry_time))
 | |
| 		vx->current_runstate = RUNSTATE_offline;
 | |
| 
 | |
| 	/*
 | |
| 	 * Time waiting for the scheduler isn't "stolen" if the
 | |
| 	 * vCPU wasn't running anyway.
 | |
| 	 */
 | |
| 	if (vx->current_runstate == RUNSTATE_running) {
 | |
| 		u64 steal_ns = run_delay - vx->last_steal;
 | |
| 
 | |
| 		delta_ns -= steal_ns;
 | |
| 
 | |
| 		vx->runstate_times[RUNSTATE_runnable] += steal_ns;
 | |
| 	}
 | |
| 	vx->last_steal = run_delay;
 | |
| 
 | |
| 	vx->runstate_times[vx->current_runstate] += delta_ns;
 | |
| 	vx->current_runstate = state;
 | |
| 	vx->runstate_entry_time = now;
 | |
| }
 | |
| 
 | |
| void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, int state)
 | |
| {
 | |
| 	struct kvm_vcpu_xen *vx = &v->arch.xen;
 | |
| 	struct gfn_to_hva_cache *ghc = &vx->runstate_cache;
 | |
| 	struct kvm_memslots *slots = kvm_memslots(v->kvm);
 | |
| 	bool atomic = (state == RUNSTATE_runnable);
 | |
| 	uint64_t state_entry_time;
 | |
| 	int __user *user_state;
 | |
| 	uint64_t __user *user_times;
 | |
| 
 | |
| 	kvm_xen_update_runstate(v, state);
 | |
| 
 | |
| 	if (!vx->runstate_set)
 | |
| 		return;
 | |
| 
 | |
| 	if (unlikely(slots->generation != ghc->generation || kvm_is_error_hva(ghc->hva)) &&
 | |
| 	    kvm_gfn_to_hva_cache_init(v->kvm, ghc, ghc->gpa, ghc->len))
 | |
| 		return;
 | |
| 
 | |
| 	/* We made sure it fits in a single page */
 | |
| 	BUG_ON(!ghc->memslot);
 | |
| 
 | |
| 	if (atomic)
 | |
| 		pagefault_disable();
 | |
| 
 | |
| 	/*
 | |
| 	 * The only difference between 32-bit and 64-bit versions of the
 | |
| 	 * runstate struct us the alignment of uint64_t in 32-bit, which
 | |
| 	 * means that the 64-bit version has an additional 4 bytes of
 | |
| 	 * padding after the first field 'state'.
 | |
| 	 *
 | |
| 	 * So we use 'int __user *user_state' to point to the state field,
 | |
| 	 * and 'uint64_t __user *user_times' for runstate_entry_time. So
 | |
| 	 * the actual array of time[] in each state starts at user_times[1].
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 0);
 | |
| 	BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state) != 0);
 | |
| 	user_state = (int __user *)ghc->hva;
 | |
| 
 | |
| 	BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c);
 | |
| 
 | |
| 	user_times = (uint64_t __user *)(ghc->hva +
 | |
| 					 offsetof(struct compat_vcpu_runstate_info,
 | |
| 						  state_entry_time));
 | |
| #ifdef CONFIG_X86_64
 | |
| 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
 | |
| 		     offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4);
 | |
| 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) !=
 | |
| 		     offsetof(struct compat_vcpu_runstate_info, time) + 4);
 | |
| 
 | |
| 	if (v->kvm->arch.xen.long_mode)
 | |
| 		user_times = (uint64_t __user *)(ghc->hva +
 | |
| 						 offsetof(struct vcpu_runstate_info,
 | |
| 							  state_entry_time));
 | |
| #endif
 | |
| 	/*
 | |
| 	 * First write the updated state_entry_time at the appropriate
 | |
| 	 * location determined by 'offset'.
 | |
| 	 */
 | |
| 	state_entry_time = vx->runstate_entry_time;
 | |
| 	state_entry_time |= XEN_RUNSTATE_UPDATE;
 | |
| 
 | |
| 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) !=
 | |
| 		     sizeof(state_entry_time));
 | |
| 	BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) !=
 | |
| 		     sizeof(state_entry_time));
 | |
| 
 | |
| 	if (__put_user(state_entry_time, user_times))
 | |
| 		goto out;
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	/*
 | |
| 	 * Next, write the new runstate. This is in the *same* place
 | |
| 	 * for 32-bit and 64-bit guests, asserted here for paranoia.
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) !=
 | |
| 		     offsetof(struct compat_vcpu_runstate_info, state));
 | |
| 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) !=
 | |
| 		     sizeof(vx->current_runstate));
 | |
| 	BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) !=
 | |
| 		     sizeof(vx->current_runstate));
 | |
| 
 | |
| 	if (__put_user(vx->current_runstate, user_state))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Write the actual runstate times immediately after the
 | |
| 	 * runstate_entry_time.
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
 | |
| 		     offsetof(struct vcpu_runstate_info, time) - sizeof(u64));
 | |
| 	BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) !=
 | |
| 		     offsetof(struct compat_vcpu_runstate_info, time) - sizeof(u64));
 | |
| 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
 | |
| 		     sizeof_field(struct compat_vcpu_runstate_info, time));
 | |
| 	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
 | |
| 		     sizeof(vx->runstate_times));
 | |
| 
 | |
| 	if (__copy_to_user(user_times + 1, vx->runstate_times, sizeof(vx->runstate_times)))
 | |
| 		goto out;
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	/*
 | |
| 	 * Finally, clear the XEN_RUNSTATE_UPDATE bit in the guest's
 | |
| 	 * runstate_entry_time field.
 | |
| 	 */
 | |
| 	state_entry_time &= ~XEN_RUNSTATE_UPDATE;
 | |
| 	__put_user(state_entry_time, user_times);
 | |
| 	smp_wmb();
 | |
| 
 | |
|  out:
 | |
| 	mark_page_dirty_in_slot(v->kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
 | |
| 
 | |
| 	if (atomic)
 | |
| 		pagefault_enable();
 | |
| }
 | |
| 
 | |
| int __kvm_xen_has_interrupt(struct kvm_vcpu *v)
 | |
| {
 | |
| 	unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel);
 | |
| 	bool atomic = in_atomic() || !task_is_running(current);
 | |
| 	int err;
 | |
| 	u8 rc = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the global upcall vector (HVMIRQ_callback_vector) is set and
 | |
| 	 * the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending.
 | |
| 	 */
 | |
| 	struct gfn_to_hva_cache *ghc = &v->arch.xen.vcpu_info_cache;
 | |
| 	struct kvm_memslots *slots = kvm_memslots(v->kvm);
 | |
| 	bool ghc_valid = slots->generation == ghc->generation &&
 | |
| 		!kvm_is_error_hva(ghc->hva) && ghc->memslot;
 | |
| 
 | |
| 	unsigned int offset = offsetof(struct vcpu_info, evtchn_upcall_pending);
 | |
| 
 | |
| 	/* No need for compat handling here */
 | |
| 	BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) !=
 | |
| 		     offsetof(struct compat_vcpu_info, evtchn_upcall_pending));
 | |
| 	BUILD_BUG_ON(sizeof(rc) !=
 | |
| 		     sizeof_field(struct vcpu_info, evtchn_upcall_pending));
 | |
| 	BUILD_BUG_ON(sizeof(rc) !=
 | |
| 		     sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending));
 | |
| 
 | |
| 	/*
 | |
| 	 * For efficiency, this mirrors the checks for using the valid
 | |
| 	 * cache in kvm_read_guest_offset_cached(), but just uses
 | |
| 	 * __get_user() instead. And falls back to the slow path.
 | |
| 	 */
 | |
| 	if (!evtchn_pending_sel && ghc_valid) {
 | |
| 		/* Fast path */
 | |
| 		pagefault_disable();
 | |
| 		err = __get_user(rc, (u8 __user *)ghc->hva + offset);
 | |
| 		pagefault_enable();
 | |
| 		if (!err)
 | |
| 			return rc;
 | |
| 	}
 | |
| 
 | |
| 	/* Slow path */
 | |
| 
 | |
| 	/*
 | |
| 	 * This function gets called from kvm_vcpu_block() after setting the
 | |
| 	 * task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately
 | |
| 	 * from a HLT. So we really mustn't sleep. If the page ended up absent
 | |
| 	 * at that point, just return 1 in order to trigger an immediate wake,
 | |
| 	 * and we'll end up getting called again from a context where we *can*
 | |
| 	 * fault in the page and wait for it.
 | |
| 	 */
 | |
| 	if (atomic)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (!ghc_valid) {
 | |
| 		err = kvm_gfn_to_hva_cache_init(v->kvm, ghc, ghc->gpa, ghc->len);
 | |
| 		if (err || !ghc->memslot) {
 | |
| 			/*
 | |
| 			 * If this failed, userspace has screwed up the
 | |
| 			 * vcpu_info mapping. No interrupts for you.
 | |
| 			 */
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we have a valid (protected by srcu) userspace HVA in
 | |
| 	 * ghc->hva which points to the struct vcpu_info. If there
 | |
| 	 * are any bits in the in-kernel evtchn_pending_sel then
 | |
| 	 * we need to write those to the guest vcpu_info and set
 | |
| 	 * its evtchn_upcall_pending flag. If there aren't any bits
 | |
| 	 * to add, we only want to *check* evtchn_upcall_pending.
 | |
| 	 */
 | |
| 	if (evtchn_pending_sel) {
 | |
| 		bool long_mode = v->kvm->arch.xen.long_mode;
 | |
| 
 | |
| 		if (!user_access_begin((void __user *)ghc->hva, sizeof(struct vcpu_info)))
 | |
| 			return 0;
 | |
| 
 | |
| 		if (IS_ENABLED(CONFIG_64BIT) && long_mode) {
 | |
| 			struct vcpu_info __user *vi = (void __user *)ghc->hva;
 | |
| 
 | |
| 			/* Attempt to set the evtchn_pending_sel bits in the
 | |
| 			 * guest, and if that succeeds then clear the same
 | |
| 			 * bits in the in-kernel version. */
 | |
| 			asm volatile("1:\t" LOCK_PREFIX "orq %0, %1\n"
 | |
| 				     "\tnotq %0\n"
 | |
| 				     "\t" LOCK_PREFIX "andq %0, %2\n"
 | |
| 				     "2:\n"
 | |
| 				     _ASM_EXTABLE_UA(1b, 2b)
 | |
| 				     : "=r" (evtchn_pending_sel),
 | |
| 				       "+m" (vi->evtchn_pending_sel),
 | |
| 				       "+m" (v->arch.xen.evtchn_pending_sel)
 | |
| 				     : "0" (evtchn_pending_sel));
 | |
| 		} else {
 | |
| 			struct compat_vcpu_info __user *vi = (void __user *)ghc->hva;
 | |
| 			u32 evtchn_pending_sel32 = evtchn_pending_sel;
 | |
| 
 | |
| 			/* Attempt to set the evtchn_pending_sel bits in the
 | |
| 			 * guest, and if that succeeds then clear the same
 | |
| 			 * bits in the in-kernel version. */
 | |
| 			asm volatile("1:\t" LOCK_PREFIX "orl %0, %1\n"
 | |
| 				     "\tnotl %0\n"
 | |
| 				     "\t" LOCK_PREFIX "andl %0, %2\n"
 | |
| 				     "2:\n"
 | |
| 				     _ASM_EXTABLE_UA(1b, 2b)
 | |
| 				     : "=r" (evtchn_pending_sel32),
 | |
| 				       "+m" (vi->evtchn_pending_sel),
 | |
| 				       "+m" (v->arch.xen.evtchn_pending_sel)
 | |
| 				     : "0" (evtchn_pending_sel32));
 | |
| 		}
 | |
| 		rc = 1;
 | |
| 		unsafe_put_user(rc, (u8 __user *)ghc->hva + offset, err);
 | |
| 
 | |
| 	err:
 | |
| 		user_access_end();
 | |
| 
 | |
| 		mark_page_dirty_in_slot(v->kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
 | |
| 	} else {
 | |
| 		__get_user(rc, (u8 __user *)ghc->hva + offset);
 | |
| 	}
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
 | |
| {
 | |
| 	int r = -ENOENT;
 | |
| 
 | |
| 	mutex_lock(&kvm->lock);
 | |
| 
 | |
| 	switch (data->type) {
 | |
| 	case KVM_XEN_ATTR_TYPE_LONG_MODE:
 | |
| 		if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) {
 | |
| 			r = -EINVAL;
 | |
| 		} else {
 | |
| 			kvm->arch.xen.long_mode = !!data->u.long_mode;
 | |
| 			r = 0;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case KVM_XEN_ATTR_TYPE_SHARED_INFO:
 | |
| 		r = kvm_xen_shared_info_init(kvm, data->u.shared_info.gfn);
 | |
| 		break;
 | |
| 
 | |
| 	case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
 | |
| 		if (data->u.vector && data->u.vector < 0x10)
 | |
| 			r = -EINVAL;
 | |
| 		else {
 | |
| 			kvm->arch.xen.upcall_vector = data->u.vector;
 | |
| 			r = 0;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&kvm->lock);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
 | |
| {
 | |
| 	int r = -ENOENT;
 | |
| 
 | |
| 	mutex_lock(&kvm->lock);
 | |
| 
 | |
| 	switch (data->type) {
 | |
| 	case KVM_XEN_ATTR_TYPE_LONG_MODE:
 | |
| 		data->u.long_mode = kvm->arch.xen.long_mode;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 
 | |
| 	case KVM_XEN_ATTR_TYPE_SHARED_INFO:
 | |
| 		if (kvm->arch.xen.shinfo_cache.active)
 | |
| 			data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_cache.gpa);
 | |
| 		else
 | |
| 			data->u.shared_info.gfn = GPA_INVALID;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 
 | |
| 	case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
 | |
| 		data->u.vector = kvm->arch.xen.upcall_vector;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&kvm->lock);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
 | |
| {
 | |
| 	int idx, r = -ENOENT;
 | |
| 
 | |
| 	mutex_lock(&vcpu->kvm->lock);
 | |
| 	idx = srcu_read_lock(&vcpu->kvm->srcu);
 | |
| 
 | |
| 	switch (data->type) {
 | |
| 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
 | |
| 		/* No compat necessary here. */
 | |
| 		BUILD_BUG_ON(sizeof(struct vcpu_info) !=
 | |
| 			     sizeof(struct compat_vcpu_info));
 | |
| 		BUILD_BUG_ON(offsetof(struct vcpu_info, time) !=
 | |
| 			     offsetof(struct compat_vcpu_info, time));
 | |
| 
 | |
| 		if (data->u.gpa == GPA_INVALID) {
 | |
| 			vcpu->arch.xen.vcpu_info_set = false;
 | |
| 			r = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* It must fit within a single page */
 | |
| 		if ((data->u.gpa & ~PAGE_MASK) + sizeof(struct vcpu_info) > PAGE_SIZE) {
 | |
| 			r = -EINVAL;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		r = kvm_gfn_to_hva_cache_init(vcpu->kvm,
 | |
| 					      &vcpu->arch.xen.vcpu_info_cache,
 | |
| 					      data->u.gpa,
 | |
| 					      sizeof(struct vcpu_info));
 | |
| 		if (!r) {
 | |
| 			vcpu->arch.xen.vcpu_info_set = true;
 | |
| 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
 | |
| 		if (data->u.gpa == GPA_INVALID) {
 | |
| 			vcpu->arch.xen.vcpu_time_info_set = false;
 | |
| 			r = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* It must fit within a single page */
 | |
| 		if ((data->u.gpa & ~PAGE_MASK) + sizeof(struct pvclock_vcpu_time_info) > PAGE_SIZE) {
 | |
| 			r = -EINVAL;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		r = kvm_gfn_to_hva_cache_init(vcpu->kvm,
 | |
| 					      &vcpu->arch.xen.vcpu_time_info_cache,
 | |
| 					      data->u.gpa,
 | |
| 					      sizeof(struct pvclock_vcpu_time_info));
 | |
| 		if (!r) {
 | |
| 			vcpu->arch.xen.vcpu_time_info_set = true;
 | |
| 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
 | |
| 		if (!sched_info_on()) {
 | |
| 			r = -EOPNOTSUPP;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (data->u.gpa == GPA_INVALID) {
 | |
| 			vcpu->arch.xen.runstate_set = false;
 | |
| 			r = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* It must fit within a single page */
 | |
| 		if ((data->u.gpa & ~PAGE_MASK) + sizeof(struct vcpu_runstate_info) > PAGE_SIZE) {
 | |
| 			r = -EINVAL;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		r = kvm_gfn_to_hva_cache_init(vcpu->kvm,
 | |
| 					      &vcpu->arch.xen.runstate_cache,
 | |
| 					      data->u.gpa,
 | |
| 					      sizeof(struct vcpu_runstate_info));
 | |
| 		if (!r) {
 | |
| 			vcpu->arch.xen.runstate_set = true;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
 | |
| 		if (!sched_info_on()) {
 | |
| 			r = -EOPNOTSUPP;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (data->u.runstate.state > RUNSTATE_offline) {
 | |
| 			r = -EINVAL;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		kvm_xen_update_runstate(vcpu, data->u.runstate.state);
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 
 | |
| 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
 | |
| 		if (!sched_info_on()) {
 | |
| 			r = -EOPNOTSUPP;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (data->u.runstate.state > RUNSTATE_offline) {
 | |
| 			r = -EINVAL;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (data->u.runstate.state_entry_time !=
 | |
| 		    (data->u.runstate.time_running +
 | |
| 		     data->u.runstate.time_runnable +
 | |
| 		     data->u.runstate.time_blocked +
 | |
| 		     data->u.runstate.time_offline)) {
 | |
| 			r = -EINVAL;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (get_kvmclock_ns(vcpu->kvm) <
 | |
| 		    data->u.runstate.state_entry_time) {
 | |
| 			r = -EINVAL;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		vcpu->arch.xen.current_runstate = data->u.runstate.state;
 | |
| 		vcpu->arch.xen.runstate_entry_time =
 | |
| 			data->u.runstate.state_entry_time;
 | |
| 		vcpu->arch.xen.runstate_times[RUNSTATE_running] =
 | |
| 			data->u.runstate.time_running;
 | |
| 		vcpu->arch.xen.runstate_times[RUNSTATE_runnable] =
 | |
| 			data->u.runstate.time_runnable;
 | |
| 		vcpu->arch.xen.runstate_times[RUNSTATE_blocked] =
 | |
| 			data->u.runstate.time_blocked;
 | |
| 		vcpu->arch.xen.runstate_times[RUNSTATE_offline] =
 | |
| 			data->u.runstate.time_offline;
 | |
| 		vcpu->arch.xen.last_steal = current->sched_info.run_delay;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 
 | |
| 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
 | |
| 		if (!sched_info_on()) {
 | |
| 			r = -EOPNOTSUPP;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (data->u.runstate.state > RUNSTATE_offline &&
 | |
| 		    data->u.runstate.state != (u64)-1) {
 | |
| 			r = -EINVAL;
 | |
| 			break;
 | |
| 		}
 | |
| 		/* The adjustment must add up */
 | |
| 		if (data->u.runstate.state_entry_time !=
 | |
| 		    (data->u.runstate.time_running +
 | |
| 		     data->u.runstate.time_runnable +
 | |
| 		     data->u.runstate.time_blocked +
 | |
| 		     data->u.runstate.time_offline)) {
 | |
| 			r = -EINVAL;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (get_kvmclock_ns(vcpu->kvm) <
 | |
| 		    (vcpu->arch.xen.runstate_entry_time +
 | |
| 		     data->u.runstate.state_entry_time)) {
 | |
| 			r = -EINVAL;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		vcpu->arch.xen.runstate_entry_time +=
 | |
| 			data->u.runstate.state_entry_time;
 | |
| 		vcpu->arch.xen.runstate_times[RUNSTATE_running] +=
 | |
| 			data->u.runstate.time_running;
 | |
| 		vcpu->arch.xen.runstate_times[RUNSTATE_runnable] +=
 | |
| 			data->u.runstate.time_runnable;
 | |
| 		vcpu->arch.xen.runstate_times[RUNSTATE_blocked] +=
 | |
| 			data->u.runstate.time_blocked;
 | |
| 		vcpu->arch.xen.runstate_times[RUNSTATE_offline] +=
 | |
| 			data->u.runstate.time_offline;
 | |
| 
 | |
| 		if (data->u.runstate.state <= RUNSTATE_offline)
 | |
| 			kvm_xen_update_runstate(vcpu, data->u.runstate.state);
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
 | |
| 	mutex_unlock(&vcpu->kvm->lock);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
 | |
| {
 | |
| 	int r = -ENOENT;
 | |
| 
 | |
| 	mutex_lock(&vcpu->kvm->lock);
 | |
| 
 | |
| 	switch (data->type) {
 | |
| 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
 | |
| 		if (vcpu->arch.xen.vcpu_info_set)
 | |
| 			data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa;
 | |
| 		else
 | |
| 			data->u.gpa = GPA_INVALID;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 
 | |
| 	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
 | |
| 		if (vcpu->arch.xen.vcpu_time_info_set)
 | |
| 			data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa;
 | |
| 		else
 | |
| 			data->u.gpa = GPA_INVALID;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 
 | |
| 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
 | |
| 		if (!sched_info_on()) {
 | |
| 			r = -EOPNOTSUPP;
 | |
| 			break;
 | |
| 		}
 | |
| 		if (vcpu->arch.xen.runstate_set) {
 | |
| 			data->u.gpa = vcpu->arch.xen.runstate_cache.gpa;
 | |
| 			r = 0;
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
 | |
| 		if (!sched_info_on()) {
 | |
| 			r = -EOPNOTSUPP;
 | |
| 			break;
 | |
| 		}
 | |
| 		data->u.runstate.state = vcpu->arch.xen.current_runstate;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 
 | |
| 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
 | |
| 		if (!sched_info_on()) {
 | |
| 			r = -EOPNOTSUPP;
 | |
| 			break;
 | |
| 		}
 | |
| 		data->u.runstate.state = vcpu->arch.xen.current_runstate;
 | |
| 		data->u.runstate.state_entry_time =
 | |
| 			vcpu->arch.xen.runstate_entry_time;
 | |
| 		data->u.runstate.time_running =
 | |
| 			vcpu->arch.xen.runstate_times[RUNSTATE_running];
 | |
| 		data->u.runstate.time_runnable =
 | |
| 			vcpu->arch.xen.runstate_times[RUNSTATE_runnable];
 | |
| 		data->u.runstate.time_blocked =
 | |
| 			vcpu->arch.xen.runstate_times[RUNSTATE_blocked];
 | |
| 		data->u.runstate.time_offline =
 | |
| 			vcpu->arch.xen.runstate_times[RUNSTATE_offline];
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 
 | |
| 	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
 | |
| 		r = -EINVAL;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&vcpu->kvm->lock);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data)
 | |
| {
 | |
| 	struct kvm *kvm = vcpu->kvm;
 | |
| 	u32 page_num = data & ~PAGE_MASK;
 | |
| 	u64 page_addr = data & PAGE_MASK;
 | |
| 	bool lm = is_long_mode(vcpu);
 | |
| 
 | |
| 	/* Latch long_mode for shared_info pages etc. */
 | |
| 	vcpu->kvm->arch.xen.long_mode = lm;
 | |
| 
 | |
| 	/*
 | |
| 	 * If Xen hypercall intercept is enabled, fill the hypercall
 | |
| 	 * page with VMCALL/VMMCALL instructions since that's what
 | |
| 	 * we catch. Else the VMM has provided the hypercall pages
 | |
| 	 * with instructions of its own choosing, so use those.
 | |
| 	 */
 | |
| 	if (kvm_xen_hypercall_enabled(kvm)) {
 | |
| 		u8 instructions[32];
 | |
| 		int i;
 | |
| 
 | |
| 		if (page_num)
 | |
| 			return 1;
 | |
| 
 | |
| 		/* mov imm32, %eax */
 | |
| 		instructions[0] = 0xb8;
 | |
| 
 | |
| 		/* vmcall / vmmcall */
 | |
| 		static_call(kvm_x86_patch_hypercall)(vcpu, instructions + 5);
 | |
| 
 | |
| 		/* ret */
 | |
| 		instructions[8] = 0xc3;
 | |
| 
 | |
| 		/* int3 to pad */
 | |
| 		memset(instructions + 9, 0xcc, sizeof(instructions) - 9);
 | |
| 
 | |
| 		for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) {
 | |
| 			*(u32 *)&instructions[1] = i;
 | |
| 			if (kvm_vcpu_write_guest(vcpu,
 | |
| 						 page_addr + (i * sizeof(instructions)),
 | |
| 						 instructions, sizeof(instructions)))
 | |
| 				return 1;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Note, truncation is a non-issue as 'lm' is guaranteed to be
 | |
| 		 * false for a 32-bit kernel, i.e. when hva_t is only 4 bytes.
 | |
| 		 */
 | |
| 		hva_t blob_addr = lm ? kvm->arch.xen_hvm_config.blob_addr_64
 | |
| 				     : kvm->arch.xen_hvm_config.blob_addr_32;
 | |
| 		u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
 | |
| 				  : kvm->arch.xen_hvm_config.blob_size_32;
 | |
| 		u8 *page;
 | |
| 
 | |
| 		if (page_num >= blob_size)
 | |
| 			return 1;
 | |
| 
 | |
| 		blob_addr += page_num * PAGE_SIZE;
 | |
| 
 | |
| 		page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE);
 | |
| 		if (IS_ERR(page))
 | |
| 			return PTR_ERR(page);
 | |
| 
 | |
| 		if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) {
 | |
| 			kfree(page);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc)
 | |
| {
 | |
| 	if (xhc->flags & ~KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * With hypercall interception the kernel generates its own
 | |
| 	 * hypercall page so it must not be provided.
 | |
| 	 */
 | |
| 	if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) &&
 | |
| 	    (xhc->blob_addr_32 || xhc->blob_addr_64 ||
 | |
| 	     xhc->blob_size_32 || xhc->blob_size_64))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	mutex_lock(&kvm->lock);
 | |
| 
 | |
| 	if (xhc->msr && !kvm->arch.xen_hvm_config.msr)
 | |
| 		static_branch_inc(&kvm_xen_enabled.key);
 | |
| 	else if (!xhc->msr && kvm->arch.xen_hvm_config.msr)
 | |
| 		static_branch_slow_dec_deferred(&kvm_xen_enabled);
 | |
| 
 | |
| 	memcpy(&kvm->arch.xen_hvm_config, xhc, sizeof(*xhc));
 | |
| 
 | |
| 	mutex_unlock(&kvm->lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void kvm_xen_init_vm(struct kvm *kvm)
 | |
| {
 | |
| }
 | |
| 
 | |
| void kvm_xen_destroy_vm(struct kvm *kvm)
 | |
| {
 | |
| 	kvm_gfn_to_pfn_cache_destroy(kvm, &kvm->arch.xen.shinfo_cache);
 | |
| 
 | |
| 	if (kvm->arch.xen_hvm_config.msr)
 | |
| 		static_branch_slow_dec_deferred(&kvm_xen_enabled);
 | |
| }
 | |
| 
 | |
| static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
 | |
| {
 | |
| 	kvm_rax_write(vcpu, result);
 | |
| 	return kvm_skip_emulated_instruction(vcpu);
 | |
| }
 | |
| 
 | |
| static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_run *run = vcpu->run;
 | |
| 
 | |
| 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip)))
 | |
| 		return 1;
 | |
| 
 | |
| 	return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result);
 | |
| }
 | |
| 
 | |
| int kvm_xen_hypercall(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	bool longmode;
 | |
| 	u64 input, params[6];
 | |
| 
 | |
| 	input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX);
 | |
| 
 | |
| 	/* Hyper-V hypercalls get bit 31 set in EAX */
 | |
| 	if ((input & 0x80000000) &&
 | |
| 	    kvm_hv_hypercall_enabled(vcpu))
 | |
| 		return kvm_hv_hypercall(vcpu);
 | |
| 
 | |
| 	longmode = is_64_bit_hypercall(vcpu);
 | |
| 	if (!longmode) {
 | |
| 		params[0] = (u32)kvm_rbx_read(vcpu);
 | |
| 		params[1] = (u32)kvm_rcx_read(vcpu);
 | |
| 		params[2] = (u32)kvm_rdx_read(vcpu);
 | |
| 		params[3] = (u32)kvm_rsi_read(vcpu);
 | |
| 		params[4] = (u32)kvm_rdi_read(vcpu);
 | |
| 		params[5] = (u32)kvm_rbp_read(vcpu);
 | |
| 	}
 | |
| #ifdef CONFIG_X86_64
 | |
| 	else {
 | |
| 		params[0] = (u64)kvm_rdi_read(vcpu);
 | |
| 		params[1] = (u64)kvm_rsi_read(vcpu);
 | |
| 		params[2] = (u64)kvm_rdx_read(vcpu);
 | |
| 		params[3] = (u64)kvm_r10_read(vcpu);
 | |
| 		params[4] = (u64)kvm_r8_read(vcpu);
 | |
| 		params[5] = (u64)kvm_r9_read(vcpu);
 | |
| 	}
 | |
| #endif
 | |
| 	trace_kvm_xen_hypercall(input, params[0], params[1], params[2],
 | |
| 				params[3], params[4], params[5]);
 | |
| 
 | |
| 	vcpu->run->exit_reason = KVM_EXIT_XEN;
 | |
| 	vcpu->run->xen.type = KVM_EXIT_XEN_HCALL;
 | |
| 	vcpu->run->xen.u.hcall.longmode = longmode;
 | |
| 	vcpu->run->xen.u.hcall.cpl = static_call(kvm_x86_get_cpl)(vcpu);
 | |
| 	vcpu->run->xen.u.hcall.input = input;
 | |
| 	vcpu->run->xen.u.hcall.params[0] = params[0];
 | |
| 	vcpu->run->xen.u.hcall.params[1] = params[1];
 | |
| 	vcpu->run->xen.u.hcall.params[2] = params[2];
 | |
| 	vcpu->run->xen.u.hcall.params[3] = params[3];
 | |
| 	vcpu->run->xen.u.hcall.params[4] = params[4];
 | |
| 	vcpu->run->xen.u.hcall.params[5] = params[5];
 | |
| 	vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu);
 | |
| 	vcpu->arch.complete_userspace_io =
 | |
| 		kvm_xen_hypercall_complete_userspace;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int max_evtchn_port(struct kvm *kvm)
 | |
| {
 | |
| 	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode)
 | |
| 		return EVTCHN_2L_NR_CHANNELS;
 | |
| 	else
 | |
| 		return COMPAT_EVTCHN_2L_NR_CHANNELS;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This follows the kvm_set_irq() API, so it returns:
 | |
|  *  < 0   Interrupt was ignored (masked or not delivered for other reasons)
 | |
|  *  = 0   Interrupt was coalesced (previous irq is still pending)
 | |
|  *  > 0   Number of CPUs interrupt was delivered to
 | |
|  */
 | |
| int kvm_xen_set_evtchn_fast(struct kvm_kernel_irq_routing_entry *e,
 | |
| 			    struct kvm *kvm)
 | |
| {
 | |
| 	struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
 | |
| 	struct kvm_vcpu *vcpu;
 | |
| 	unsigned long *pending_bits, *mask_bits;
 | |
| 	unsigned long flags;
 | |
| 	int port_word_bit;
 | |
| 	bool kick_vcpu = false;
 | |
| 	int idx;
 | |
| 	int rc;
 | |
| 
 | |
| 	vcpu = kvm_get_vcpu_by_id(kvm, e->xen_evtchn.vcpu);
 | |
| 	if (!vcpu)
 | |
| 		return -1;
 | |
| 
 | |
| 	if (!vcpu->arch.xen.vcpu_info_set)
 | |
| 		return -1;
 | |
| 
 | |
| 	if (e->xen_evtchn.port >= max_evtchn_port(kvm))
 | |
| 		return -1;
 | |
| 
 | |
| 	rc = -EWOULDBLOCK;
 | |
| 	read_lock_irqsave(&gpc->lock, flags);
 | |
| 
 | |
| 	idx = srcu_read_lock(&kvm->srcu);
 | |
| 	if (!kvm_gfn_to_pfn_cache_check(kvm, gpc, gpc->gpa, PAGE_SIZE))
 | |
| 		goto out_rcu;
 | |
| 
 | |
| 	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
 | |
| 		struct shared_info *shinfo = gpc->khva;
 | |
| 		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
 | |
| 		mask_bits = (unsigned long *)&shinfo->evtchn_mask;
 | |
| 		port_word_bit = e->xen_evtchn.port / 64;
 | |
| 	} else {
 | |
| 		struct compat_shared_info *shinfo = gpc->khva;
 | |
| 		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
 | |
| 		mask_bits = (unsigned long *)&shinfo->evtchn_mask;
 | |
| 		port_word_bit = e->xen_evtchn.port / 32;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If this port wasn't already set, and if it isn't masked, then
 | |
| 	 * we try to set the corresponding bit in the in-kernel shadow of
 | |
| 	 * evtchn_pending_sel for the target vCPU. And if *that* wasn't
 | |
| 	 * already set, then we kick the vCPU in question to write to the
 | |
| 	 * *real* evtchn_pending_sel in its own guest vcpu_info struct.
 | |
| 	 */
 | |
| 	if (test_and_set_bit(e->xen_evtchn.port, pending_bits)) {
 | |
| 		rc = 0; /* It was already raised */
 | |
| 	} else if (test_bit(e->xen_evtchn.port, mask_bits)) {
 | |
| 		rc = -1; /* Masked */
 | |
| 	} else {
 | |
| 		rc = 1; /* Delivered. But was the vCPU waking already? */
 | |
| 		if (!test_and_set_bit(port_word_bit, &vcpu->arch.xen.evtchn_pending_sel))
 | |
| 			kick_vcpu = true;
 | |
| 	}
 | |
| 
 | |
|  out_rcu:
 | |
| 	srcu_read_unlock(&kvm->srcu, idx);
 | |
| 	read_unlock_irqrestore(&gpc->lock, flags);
 | |
| 
 | |
| 	if (kick_vcpu) {
 | |
| 		kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 		kvm_vcpu_kick(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| /* This is the version called from kvm_set_irq() as the .set function */
 | |
| static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
 | |
| 			 int irq_source_id, int level, bool line_status)
 | |
| {
 | |
| 	bool mm_borrowed = false;
 | |
| 	int rc;
 | |
| 
 | |
| 	if (!level)
 | |
| 		return -1;
 | |
| 
 | |
| 	rc = kvm_xen_set_evtchn_fast(e, kvm);
 | |
| 	if (rc != -EWOULDBLOCK)
 | |
| 		return rc;
 | |
| 
 | |
| 	if (current->mm != kvm->mm) {
 | |
| 		/*
 | |
| 		 * If not on a thread which already belongs to this KVM,
 | |
| 		 * we'd better be in the irqfd workqueue.
 | |
| 		 */
 | |
| 		if (WARN_ON_ONCE(current->mm))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		kthread_use_mm(kvm->mm);
 | |
| 		mm_borrowed = true;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For the irqfd workqueue, using the main kvm->lock mutex is
 | |
| 	 * fine since this function is invoked from kvm_set_irq() with
 | |
| 	 * no other lock held, no srcu. In future if it will be called
 | |
| 	 * directly from a vCPU thread (e.g. on hypercall for an IPI)
 | |
| 	 * then it may need to switch to using a leaf-node mutex for
 | |
| 	 * serializing the shared_info mapping.
 | |
| 	 */
 | |
| 	mutex_lock(&kvm->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * It is theoretically possible for the page to be unmapped
 | |
| 	 * and the MMU notifier to invalidate the shared_info before
 | |
| 	 * we even get to use it. In that case, this looks like an
 | |
| 	 * infinite loop. It was tempting to do it via the userspace
 | |
| 	 * HVA instead... but that just *hides* the fact that it's
 | |
| 	 * an infinite loop, because if a fault occurs and it waits
 | |
| 	 * for the page to come back, it can *still* immediately
 | |
| 	 * fault and have to wait again, repeatedly.
 | |
| 	 *
 | |
| 	 * Conversely, the page could also have been reinstated by
 | |
| 	 * another thread before we even obtain the mutex above, so
 | |
| 	 * check again *first* before remapping it.
 | |
| 	 */
 | |
| 	do {
 | |
| 		struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
 | |
| 		int idx;
 | |
| 
 | |
| 		rc = kvm_xen_set_evtchn_fast(e, kvm);
 | |
| 		if (rc != -EWOULDBLOCK)
 | |
| 			break;
 | |
| 
 | |
| 		idx = srcu_read_lock(&kvm->srcu);
 | |
| 		rc = kvm_gfn_to_pfn_cache_refresh(kvm, gpc, gpc->gpa, PAGE_SIZE);
 | |
| 		srcu_read_unlock(&kvm->srcu, idx);
 | |
| 	} while(!rc);
 | |
| 
 | |
| 	mutex_unlock(&kvm->lock);
 | |
| 
 | |
| 	if (mm_borrowed)
 | |
| 		kthread_unuse_mm(kvm->mm);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| int kvm_xen_setup_evtchn(struct kvm *kvm,
 | |
| 			 struct kvm_kernel_irq_routing_entry *e,
 | |
| 			 const struct kvm_irq_routing_entry *ue)
 | |
| 
 | |
| {
 | |
| 	if (ue->u.xen_evtchn.port >= max_evtchn_port(kvm))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* We only support 2 level event channels for now */
 | |
| 	if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	e->xen_evtchn.port = ue->u.xen_evtchn.port;
 | |
| 	e->xen_evtchn.vcpu = ue->u.xen_evtchn.vcpu;
 | |
| 	e->xen_evtchn.priority = ue->u.xen_evtchn.priority;
 | |
| 	e->set = evtchn_set_fn;
 | |
| 
 | |
| 	return 0;
 | |
| }
 |