6906 lines
		
	
	
		
			212 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			6906 lines
		
	
	
		
			212 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0
 | |
| 
 | |
| #include <linux/objtool.h>
 | |
| #include <linux/percpu.h>
 | |
| 
 | |
| #include <asm/debugreg.h>
 | |
| #include <asm/mmu_context.h>
 | |
| 
 | |
| #include "cpuid.h"
 | |
| #include "evmcs.h"
 | |
| #include "hyperv.h"
 | |
| #include "mmu.h"
 | |
| #include "nested.h"
 | |
| #include "pmu.h"
 | |
| #include "sgx.h"
 | |
| #include "trace.h"
 | |
| #include "vmx.h"
 | |
| #include "x86.h"
 | |
| #include "smm.h"
 | |
| 
 | |
| static bool __read_mostly enable_shadow_vmcs = 1;
 | |
| module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
 | |
| 
 | |
| static bool __read_mostly nested_early_check = 0;
 | |
| module_param(nested_early_check, bool, S_IRUGO);
 | |
| 
 | |
| #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
 | |
| 
 | |
| /*
 | |
|  * Hyper-V requires all of these, so mark them as supported even though
 | |
|  * they are just treated the same as all-context.
 | |
|  */
 | |
| #define VMX_VPID_EXTENT_SUPPORTED_MASK		\
 | |
| 	(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |	\
 | |
| 	VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |	\
 | |
| 	VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |	\
 | |
| 	VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
 | |
| 
 | |
| #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
 | |
| 
 | |
| enum {
 | |
| 	VMX_VMREAD_BITMAP,
 | |
| 	VMX_VMWRITE_BITMAP,
 | |
| 	VMX_BITMAP_NR
 | |
| };
 | |
| static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
 | |
| 
 | |
| #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
 | |
| #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
 | |
| 
 | |
| struct shadow_vmcs_field {
 | |
| 	u16	encoding;
 | |
| 	u16	offset;
 | |
| };
 | |
| static struct shadow_vmcs_field shadow_read_only_fields[] = {
 | |
| #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
 | |
| #include "vmcs_shadow_fields.h"
 | |
| };
 | |
| static int max_shadow_read_only_fields =
 | |
| 	ARRAY_SIZE(shadow_read_only_fields);
 | |
| 
 | |
| static struct shadow_vmcs_field shadow_read_write_fields[] = {
 | |
| #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
 | |
| #include "vmcs_shadow_fields.h"
 | |
| };
 | |
| static int max_shadow_read_write_fields =
 | |
| 	ARRAY_SIZE(shadow_read_write_fields);
 | |
| 
 | |
| static void init_vmcs_shadow_fields(void)
 | |
| {
 | |
| 	int i, j;
 | |
| 
 | |
| 	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
 | |
| 	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
 | |
| 
 | |
| 	for (i = j = 0; i < max_shadow_read_only_fields; i++) {
 | |
| 		struct shadow_vmcs_field entry = shadow_read_only_fields[i];
 | |
| 		u16 field = entry.encoding;
 | |
| 
 | |
| 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
 | |
| 		    (i + 1 == max_shadow_read_only_fields ||
 | |
| 		     shadow_read_only_fields[i + 1].encoding != field + 1))
 | |
| 			pr_err("Missing field from shadow_read_only_field %x\n",
 | |
| 			       field + 1);
 | |
| 
 | |
| 		clear_bit(field, vmx_vmread_bitmap);
 | |
| 		if (field & 1)
 | |
| #ifdef CONFIG_X86_64
 | |
| 			continue;
 | |
| #else
 | |
| 			entry.offset += sizeof(u32);
 | |
| #endif
 | |
| 		shadow_read_only_fields[j++] = entry;
 | |
| 	}
 | |
| 	max_shadow_read_only_fields = j;
 | |
| 
 | |
| 	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
 | |
| 		struct shadow_vmcs_field entry = shadow_read_write_fields[i];
 | |
| 		u16 field = entry.encoding;
 | |
| 
 | |
| 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
 | |
| 		    (i + 1 == max_shadow_read_write_fields ||
 | |
| 		     shadow_read_write_fields[i + 1].encoding != field + 1))
 | |
| 			pr_err("Missing field from shadow_read_write_field %x\n",
 | |
| 			       field + 1);
 | |
| 
 | |
| 		WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
 | |
| 			  field <= GUEST_TR_AR_BYTES,
 | |
| 			  "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
 | |
| 
 | |
| 		/*
 | |
| 		 * PML and the preemption timer can be emulated, but the
 | |
| 		 * processor cannot vmwrite to fields that don't exist
 | |
| 		 * on bare metal.
 | |
| 		 */
 | |
| 		switch (field) {
 | |
| 		case GUEST_PML_INDEX:
 | |
| 			if (!cpu_has_vmx_pml())
 | |
| 				continue;
 | |
| 			break;
 | |
| 		case VMX_PREEMPTION_TIMER_VALUE:
 | |
| 			if (!cpu_has_vmx_preemption_timer())
 | |
| 				continue;
 | |
| 			break;
 | |
| 		case GUEST_INTR_STATUS:
 | |
| 			if (!cpu_has_vmx_apicv())
 | |
| 				continue;
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		clear_bit(field, vmx_vmwrite_bitmap);
 | |
| 		clear_bit(field, vmx_vmread_bitmap);
 | |
| 		if (field & 1)
 | |
| #ifdef CONFIG_X86_64
 | |
| 			continue;
 | |
| #else
 | |
| 			entry.offset += sizeof(u32);
 | |
| #endif
 | |
| 		shadow_read_write_fields[j++] = entry;
 | |
| 	}
 | |
| 	max_shadow_read_write_fields = j;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
 | |
|  * set the success or error code of an emulated VMX instruction (as specified
 | |
|  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
 | |
|  * instruction.
 | |
|  */
 | |
| static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
 | |
| 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
 | |
| 			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
 | |
| 	return kvm_skip_emulated_instruction(vcpu);
 | |
| }
 | |
| 
 | |
| static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
 | |
| 			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
 | |
| 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
 | |
| 			| X86_EFLAGS_CF);
 | |
| 	return kvm_skip_emulated_instruction(vcpu);
 | |
| }
 | |
| 
 | |
| static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
 | |
| 				u32 vm_instruction_error)
 | |
| {
 | |
| 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
 | |
| 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
 | |
| 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
 | |
| 			| X86_EFLAGS_ZF);
 | |
| 	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
 | |
| 	/*
 | |
| 	 * We don't need to force sync to shadow VMCS because
 | |
| 	 * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
 | |
| 	 * fields and thus must be synced.
 | |
| 	 */
 | |
| 	if (to_vmx(vcpu)->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
 | |
| 		to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
 | |
| 
 | |
| 	return kvm_skip_emulated_instruction(vcpu);
 | |
| }
 | |
| 
 | |
| static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * failValid writes the error number to the current VMCS, which
 | |
| 	 * can't be done if there isn't a current VMCS.
 | |
| 	 */
 | |
| 	if (vmx->nested.current_vmptr == INVALID_GPA &&
 | |
| 	    !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
 | |
| 		return nested_vmx_failInvalid(vcpu);
 | |
| 
 | |
| 	return nested_vmx_failValid(vcpu, vm_instruction_error);
 | |
| }
 | |
| 
 | |
| static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
 | |
| {
 | |
| 	/* TODO: not to reset guest simply here. */
 | |
| 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 | |
| 	pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
 | |
| }
 | |
| 
 | |
| static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
 | |
| {
 | |
| 	return fixed_bits_valid(control, low, high);
 | |
| }
 | |
| 
 | |
| static inline u64 vmx_control_msr(u32 low, u32 high)
 | |
| {
 | |
| 	return low | ((u64)high << 32);
 | |
| }
 | |
| 
 | |
| static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
 | |
| 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
 | |
| 	vmx->nested.need_vmcs12_to_shadow_sync = false;
 | |
| }
 | |
| 
 | |
| static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
 | |
| 		kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
 | |
| 		vmx->nested.hv_evmcs = NULL;
 | |
| 	}
 | |
| 
 | |
| 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
 | |
| }
 | |
| 
 | |
| static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
 | |
| 				     struct loaded_vmcs *prev)
 | |
| {
 | |
| 	struct vmcs_host_state *dest, *src;
 | |
| 
 | |
| 	if (unlikely(!vmx->guest_state_loaded))
 | |
| 		return;
 | |
| 
 | |
| 	src = &prev->host_state;
 | |
| 	dest = &vmx->loaded_vmcs->host_state;
 | |
| 
 | |
| 	vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
 | |
| 	dest->ldt_sel = src->ldt_sel;
 | |
| #ifdef CONFIG_X86_64
 | |
| 	dest->ds_sel = src->ds_sel;
 | |
| 	dest->es_sel = src->es_sel;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	struct loaded_vmcs *prev;
 | |
| 	int cpu;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
 | |
| 		return;
 | |
| 
 | |
| 	cpu = get_cpu();
 | |
| 	prev = vmx->loaded_vmcs;
 | |
| 	vmx->loaded_vmcs = vmcs;
 | |
| 	vmx_vcpu_load_vmcs(vcpu, cpu, prev);
 | |
| 	vmx_sync_vmcs_host_state(vmx, prev);
 | |
| 	put_cpu();
 | |
| 
 | |
| 	vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET;
 | |
| 
 | |
| 	/*
 | |
| 	 * All lazily updated registers will be reloaded from VMCS12 on both
 | |
| 	 * vmentry and vmexit.
 | |
| 	 */
 | |
| 	vcpu->arch.regs_dirty = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
 | |
|  * just stops using VMX.
 | |
|  */
 | |
| static void free_nested(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
 | |
| 		vmx_switch_vmcs(vcpu, &vmx->vmcs01);
 | |
| 
 | |
| 	if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
 | |
| 		return;
 | |
| 
 | |
| 	kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
 | |
| 
 | |
| 	vmx->nested.vmxon = false;
 | |
| 	vmx->nested.smm.vmxon = false;
 | |
| 	vmx->nested.vmxon_ptr = INVALID_GPA;
 | |
| 	free_vpid(vmx->nested.vpid02);
 | |
| 	vmx->nested.posted_intr_nv = -1;
 | |
| 	vmx->nested.current_vmptr = INVALID_GPA;
 | |
| 	if (enable_shadow_vmcs) {
 | |
| 		vmx_disable_shadow_vmcs(vmx);
 | |
| 		vmcs_clear(vmx->vmcs01.shadow_vmcs);
 | |
| 		free_vmcs(vmx->vmcs01.shadow_vmcs);
 | |
| 		vmx->vmcs01.shadow_vmcs = NULL;
 | |
| 	}
 | |
| 	kfree(vmx->nested.cached_vmcs12);
 | |
| 	vmx->nested.cached_vmcs12 = NULL;
 | |
| 	kfree(vmx->nested.cached_shadow_vmcs12);
 | |
| 	vmx->nested.cached_shadow_vmcs12 = NULL;
 | |
| 	/* Unpin physical memory we referred to in the vmcs02 */
 | |
| 	if (vmx->nested.apic_access_page) {
 | |
| 		kvm_release_page_clean(vmx->nested.apic_access_page);
 | |
| 		vmx->nested.apic_access_page = NULL;
 | |
| 	}
 | |
| 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
 | |
| 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
 | |
| 	vmx->nested.pi_desc = NULL;
 | |
| 
 | |
| 	kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
 | |
| 
 | |
| 	nested_release_evmcs(vcpu);
 | |
| 
 | |
| 	free_loaded_vmcs(&vmx->nested.vmcs02);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Ensure that the current vmcs of the logical processor is the
 | |
|  * vmcs01 of the vcpu before calling free_nested().
 | |
|  */
 | |
| void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	vcpu_load(vcpu);
 | |
| 	vmx_leave_nested(vcpu);
 | |
| 	vcpu_put(vcpu);
 | |
| }
 | |
| 
 | |
| #define EPTP_PA_MASK   GENMASK_ULL(51, 12)
 | |
| 
 | |
| static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
 | |
| {
 | |
| 	return VALID_PAGE(root_hpa) &&
 | |
| 	       ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
 | |
| }
 | |
| 
 | |
| static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
 | |
| 				       gpa_t addr)
 | |
| {
 | |
| 	uint i;
 | |
| 	struct kvm_mmu_root_info *cached_root;
 | |
| 
 | |
| 	WARN_ON_ONCE(!mmu_is_nested(vcpu));
 | |
| 
 | |
| 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
 | |
| 		cached_root = &vcpu->arch.mmu->prev_roots[i];
 | |
| 
 | |
| 		if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
 | |
| 					    eptp))
 | |
| 			vcpu->arch.mmu->invlpg(vcpu, addr, cached_root->hpa);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
 | |
| 		struct x86_exception *fault)
 | |
| {
 | |
| 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	u32 vm_exit_reason;
 | |
| 	unsigned long exit_qualification = vcpu->arch.exit_qualification;
 | |
| 
 | |
| 	if (vmx->nested.pml_full) {
 | |
| 		vm_exit_reason = EXIT_REASON_PML_FULL;
 | |
| 		vmx->nested.pml_full = false;
 | |
| 		exit_qualification &= INTR_INFO_UNBLOCK_NMI;
 | |
| 	} else {
 | |
| 		if (fault->error_code & PFERR_RSVD_MASK)
 | |
| 			vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
 | |
| 		else
 | |
| 			vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
 | |
| 
 | |
| 		/*
 | |
| 		 * Although the caller (kvm_inject_emulated_page_fault) would
 | |
| 		 * have already synced the faulting address in the shadow EPT
 | |
| 		 * tables for the current EPTP12, we also need to sync it for
 | |
| 		 * any other cached EPTP02s based on the same EP4TA, since the
 | |
| 		 * TLB associates mappings to the EP4TA rather than the full EPTP.
 | |
| 		 */
 | |
| 		nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
 | |
| 					   fault->address);
 | |
| 	}
 | |
| 
 | |
| 	nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
 | |
| 	vmcs12->guest_physical_address = fault->address;
 | |
| }
 | |
| 
 | |
| static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT;
 | |
| 	int ept_lpage_level = ept_caps_to_lpage_level(vmx->nested.msrs.ept_caps);
 | |
| 
 | |
| 	kvm_init_shadow_ept_mmu(vcpu, execonly, ept_lpage_level,
 | |
| 				nested_ept_ad_enabled(vcpu),
 | |
| 				nested_ept_get_eptp(vcpu));
 | |
| }
 | |
| 
 | |
| static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	WARN_ON(mmu_is_nested(vcpu));
 | |
| 
 | |
| 	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
 | |
| 	nested_ept_new_eptp(vcpu);
 | |
| 	vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
 | |
| 	vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
 | |
| 	vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
 | |
| 
 | |
| 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
 | |
| }
 | |
| 
 | |
| static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
 | |
| 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
 | |
| }
 | |
| 
 | |
| static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
 | |
| 					    u16 error_code)
 | |
| {
 | |
| 	bool inequality, bit;
 | |
| 
 | |
| 	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
 | |
| 	inequality =
 | |
| 		(error_code & vmcs12->page_fault_error_code_mask) !=
 | |
| 		 vmcs12->page_fault_error_code_match;
 | |
| 	return inequality ^ bit;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * KVM wants to inject page-faults which it got to the guest. This function
 | |
|  * checks whether in a nested guest, we need to inject them to L1 or L2.
 | |
|  */
 | |
| static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
 | |
| {
 | |
| 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 | |
| 	unsigned int nr = vcpu->arch.exception.nr;
 | |
| 	bool has_payload = vcpu->arch.exception.has_payload;
 | |
| 	unsigned long payload = vcpu->arch.exception.payload;
 | |
| 
 | |
| 	if (nr == PF_VECTOR) {
 | |
| 		if (vcpu->arch.exception.nested_apf) {
 | |
| 			*exit_qual = vcpu->arch.apf.nested_apf_token;
 | |
| 			return 1;
 | |
| 		}
 | |
| 		if (nested_vmx_is_page_fault_vmexit(vmcs12,
 | |
| 						    vcpu->arch.exception.error_code)) {
 | |
| 			*exit_qual = has_payload ? payload : vcpu->arch.cr2;
 | |
| 			return 1;
 | |
| 		}
 | |
| 	} else if (vmcs12->exception_bitmap & (1u << nr)) {
 | |
| 		if (nr == DB_VECTOR) {
 | |
| 			if (!has_payload) {
 | |
| 				payload = vcpu->arch.dr6;
 | |
| 				payload &= ~DR6_BT;
 | |
| 				payload ^= DR6_ACTIVE_LOW;
 | |
| 			}
 | |
| 			*exit_qual = payload;
 | |
| 		} else
 | |
| 			*exit_qual = 0;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
 | |
| 		struct x86_exception *fault)
 | |
| {
 | |
| 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 | |
| 
 | |
| 	WARN_ON(!is_guest_mode(vcpu));
 | |
| 
 | |
| 	if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
 | |
| 		!to_vmx(vcpu)->nested.nested_run_pending) {
 | |
| 		vmcs12->vm_exit_intr_error_code = fault->error_code;
 | |
| 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
 | |
| 				  PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
 | |
| 				  INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
 | |
| 				  fault->address);
 | |
| 	} else {
 | |
| 		kvm_inject_page_fault(vcpu, fault);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
 | |
| 					       struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
 | |
| 	    CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
 | |
| 						struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
 | |
| 						struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For x2APIC MSRs, ignore the vmcs01 bitmap.  L1 can enable x2APIC without L1
 | |
|  * itself utilizing x2APIC.  All MSRs were previously set to be intercepted,
 | |
|  * only the "disable intercept" case needs to be handled.
 | |
|  */
 | |
| static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1,
 | |
| 							unsigned long *msr_bitmap_l0,
 | |
| 							u32 msr, int type)
 | |
| {
 | |
| 	if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr))
 | |
| 		vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr);
 | |
| 
 | |
| 	if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr))
 | |
| 		vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr);
 | |
| }
 | |
| 
 | |
| static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
 | |
| {
 | |
| 	int msr;
 | |
| 
 | |
| 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
 | |
| 		unsigned word = msr / BITS_PER_LONG;
 | |
| 
 | |
| 		msr_bitmap[word] = ~0;
 | |
| 		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw)					\
 | |
| static inline									\
 | |
| void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx,			\
 | |
| 					 unsigned long *msr_bitmap_l1,		\
 | |
| 					 unsigned long *msr_bitmap_l0, u32 msr)	\
 | |
| {										\
 | |
| 	if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) ||		\
 | |
| 	    vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr))			\
 | |
| 		vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr);			\
 | |
| 	else									\
 | |
| 		vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr);			\
 | |
| }
 | |
| BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
 | |
| BUILD_NVMX_MSR_INTERCEPT_HELPER(write)
 | |
| 
 | |
| static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
 | |
| 						    unsigned long *msr_bitmap_l1,
 | |
| 						    unsigned long *msr_bitmap_l0,
 | |
| 						    u32 msr, int types)
 | |
| {
 | |
| 	if (types & MSR_TYPE_R)
 | |
| 		nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
 | |
| 						  msr_bitmap_l0, msr);
 | |
| 	if (types & MSR_TYPE_W)
 | |
| 		nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
 | |
| 						   msr_bitmap_l0, msr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Merge L0's and L1's MSR bitmap, return false to indicate that
 | |
|  * we do not use the hardware.
 | |
|  */
 | |
| static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
 | |
| 						 struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	int msr;
 | |
| 	unsigned long *msr_bitmap_l1;
 | |
| 	unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
 | |
| 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
 | |
| 	struct kvm_host_map *map = &vmx->nested.msr_bitmap_map;
 | |
| 
 | |
| 	/* Nothing to do if the MSR bitmap is not in use.  */
 | |
| 	if (!cpu_has_vmx_msr_bitmap() ||
 | |
| 	    !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * MSR bitmap update can be skipped when:
 | |
| 	 * - MSR bitmap for L1 hasn't changed.
 | |
| 	 * - Nested hypervisor (L1) is attempting to launch the same L2 as
 | |
| 	 *   before.
 | |
| 	 * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature
 | |
| 	 *   and tells KVM (L0) there were no changes in MSR bitmap for L2.
 | |
| 	 */
 | |
| 	if (!vmx->nested.force_msr_bitmap_recalc && evmcs &&
 | |
| 	    evmcs->hv_enlightenments_control.msr_bitmap &&
 | |
| 	    evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP)
 | |
| 		return true;
 | |
| 
 | |
| 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
 | |
| 		return false;
 | |
| 
 | |
| 	msr_bitmap_l1 = (unsigned long *)map->hva;
 | |
| 
 | |
| 	/*
 | |
| 	 * To keep the control flow simple, pay eight 8-byte writes (sixteen
 | |
| 	 * 4-byte writes on 32-bit systems) up front to enable intercepts for
 | |
| 	 * the x2APIC MSR range and selectively toggle those relevant to L2.
 | |
| 	 */
 | |
| 	enable_x2apic_msr_intercepts(msr_bitmap_l0);
 | |
| 
 | |
| 	if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
 | |
| 		if (nested_cpu_has_apic_reg_virt(vmcs12)) {
 | |
| 			/*
 | |
| 			 * L0 need not intercept reads for MSRs between 0x800
 | |
| 			 * and 0x8ff, it just lets the processor take the value
 | |
| 			 * from the virtual-APIC page; take those 256 bits
 | |
| 			 * directly from the L1 bitmap.
 | |
| 			 */
 | |
| 			for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
 | |
| 				unsigned word = msr / BITS_PER_LONG;
 | |
| 
 | |
| 				msr_bitmap_l0[word] = msr_bitmap_l1[word];
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		nested_vmx_disable_intercept_for_x2apic_msr(
 | |
| 			msr_bitmap_l1, msr_bitmap_l0,
 | |
| 			X2APIC_MSR(APIC_TASKPRI),
 | |
| 			MSR_TYPE_R | MSR_TYPE_W);
 | |
| 
 | |
| 		if (nested_cpu_has_vid(vmcs12)) {
 | |
| 			nested_vmx_disable_intercept_for_x2apic_msr(
 | |
| 				msr_bitmap_l1, msr_bitmap_l0,
 | |
| 				X2APIC_MSR(APIC_EOI),
 | |
| 				MSR_TYPE_W);
 | |
| 			nested_vmx_disable_intercept_for_x2apic_msr(
 | |
| 				msr_bitmap_l1, msr_bitmap_l0,
 | |
| 				X2APIC_MSR(APIC_SELF_IPI),
 | |
| 				MSR_TYPE_W);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Always check vmcs01's bitmap to honor userspace MSR filters and any
 | |
| 	 * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
 | |
| 	 */
 | |
| #ifdef CONFIG_X86_64
 | |
| 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
 | |
| 					 MSR_FS_BASE, MSR_TYPE_RW);
 | |
| 
 | |
| 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
 | |
| 					 MSR_GS_BASE, MSR_TYPE_RW);
 | |
| 
 | |
| 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
 | |
| 					 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
 | |
| #endif
 | |
| 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
 | |
| 					 MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
 | |
| 
 | |
| 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
 | |
| 					 MSR_IA32_PRED_CMD, MSR_TYPE_W);
 | |
| 
 | |
| 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
 | |
| 					 MSR_IA32_FLUSH_CMD, MSR_TYPE_W);
 | |
| 
 | |
| 	kvm_vcpu_unmap(vcpu, &vmx->nested.msr_bitmap_map, false);
 | |
| 
 | |
| 	vmx->nested.force_msr_bitmap_recalc = false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
 | |
| 				       struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
 | |
| 
 | |
| 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
 | |
| 	    vmcs12->vmcs_link_pointer == INVALID_GPA)
 | |
| 		return;
 | |
| 
 | |
| 	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
 | |
| 	    kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
 | |
| 				      vmcs12->vmcs_link_pointer, VMCS12_SIZE))
 | |
| 		return;
 | |
| 
 | |
| 	kvm_read_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
 | |
| 			      VMCS12_SIZE);
 | |
| }
 | |
| 
 | |
| static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
 | |
| 					      struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
 | |
| 
 | |
| 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
 | |
| 	    vmcs12->vmcs_link_pointer == INVALID_GPA)
 | |
| 		return;
 | |
| 
 | |
| 	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
 | |
| 	    kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
 | |
| 				      vmcs12->vmcs_link_pointer, VMCS12_SIZE))
 | |
| 		return;
 | |
| 
 | |
| 	kvm_write_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
 | |
| 			       VMCS12_SIZE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In nested virtualization, check if L1 has set
 | |
|  * VM_EXIT_ACK_INTR_ON_EXIT
 | |
|  */
 | |
| static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return get_vmcs12(vcpu)->vm_exit_controls &
 | |
| 		VM_EXIT_ACK_INTR_ON_EXIT;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
 | |
| 					  struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
 | |
| 	    CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
 | |
| 		return -EINVAL;
 | |
| 	else
 | |
| 		return 0;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
 | |
| 					   struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
 | |
| 	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
 | |
| 	    !nested_cpu_has_vid(vmcs12) &&
 | |
| 	    !nested_cpu_has_posted_intr(vmcs12))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If virtualize x2apic mode is enabled,
 | |
| 	 * virtualize apic access must be disabled.
 | |
| 	 */
 | |
| 	if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
 | |
| 	       nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * If virtual interrupt delivery is enabled,
 | |
| 	 * we must exit on external interrupts.
 | |
| 	 */
 | |
| 	if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * bits 15:8 should be zero in posted_intr_nv,
 | |
| 	 * the descriptor address has been already checked
 | |
| 	 * in nested_get_vmcs12_pages.
 | |
| 	 *
 | |
| 	 * bits 5:0 of posted_intr_desc_addr should be zero.
 | |
| 	 */
 | |
| 	if (nested_cpu_has_posted_intr(vmcs12) &&
 | |
| 	   (CC(!nested_cpu_has_vid(vmcs12)) ||
 | |
| 	    CC(!nested_exit_intr_ack_set(vcpu)) ||
 | |
| 	    CC((vmcs12->posted_intr_nv & 0xff00)) ||
 | |
| 	    CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* tpr shadow is needed by all apicv features. */
 | |
| 	if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
 | |
| 				       u32 count, u64 addr)
 | |
| {
 | |
| 	if (count == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
 | |
| 	    !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
 | |
| 						     struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	if (CC(nested_vmx_check_msr_switch(vcpu,
 | |
| 					   vmcs12->vm_exit_msr_load_count,
 | |
| 					   vmcs12->vm_exit_msr_load_addr)) ||
 | |
| 	    CC(nested_vmx_check_msr_switch(vcpu,
 | |
| 					   vmcs12->vm_exit_msr_store_count,
 | |
| 					   vmcs12->vm_exit_msr_store_addr)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
 | |
|                                                       struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	if (CC(nested_vmx_check_msr_switch(vcpu,
 | |
| 					   vmcs12->vm_entry_msr_load_count,
 | |
| 					   vmcs12->vm_entry_msr_load_addr)))
 | |
|                 return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
 | |
| 					 struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	if (!nested_cpu_has_pml(vmcs12))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (CC(!nested_cpu_has_ept(vmcs12)) ||
 | |
| 	    CC(!page_address_valid(vcpu, vmcs12->pml_address)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
 | |
| 							struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
 | |
| 	       !nested_cpu_has_ept(vmcs12)))
 | |
| 		return -EINVAL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
 | |
| 							 struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
 | |
| 	       !nested_cpu_has_ept(vmcs12)))
 | |
| 		return -EINVAL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
 | |
| 						 struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
 | |
| 	    CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
 | |
| 				       struct vmx_msr_entry *e)
 | |
| {
 | |
| 	/* x2APIC MSR accesses are not allowed */
 | |
| 	if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
 | |
| 		return -EINVAL;
 | |
| 	if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
 | |
| 	    CC(e->index == MSR_IA32_UCODE_REV))
 | |
| 		return -EINVAL;
 | |
| 	if (CC(e->reserved != 0))
 | |
| 		return -EINVAL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
 | |
| 				     struct vmx_msr_entry *e)
 | |
| {
 | |
| 	if (CC(e->index == MSR_FS_BASE) ||
 | |
| 	    CC(e->index == MSR_GS_BASE) ||
 | |
| 	    CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
 | |
| 	    nested_vmx_msr_check_common(vcpu, e))
 | |
| 		return -EINVAL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
 | |
| 				      struct vmx_msr_entry *e)
 | |
| {
 | |
| 	if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
 | |
| 	    nested_vmx_msr_check_common(vcpu, e))
 | |
| 		return -EINVAL;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
 | |
| 				       vmx->nested.msrs.misc_high);
 | |
| 
 | |
| 	return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Load guest's/host's msr at nested entry/exit.
 | |
|  * return 0 for success, entry index for failure.
 | |
|  *
 | |
|  * One of the failure modes for MSR load/store is when a list exceeds the
 | |
|  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
 | |
|  * as possible, process all valid entries before failing rather than precheck
 | |
|  * for a capacity violation.
 | |
|  */
 | |
| static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
 | |
| {
 | |
| 	u32 i;
 | |
| 	struct vmx_msr_entry e;
 | |
| 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
 | |
| 
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		if (unlikely(i >= max_msr_list_size))
 | |
| 			goto fail;
 | |
| 
 | |
| 		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
 | |
| 					&e, sizeof(e))) {
 | |
| 			pr_debug_ratelimited(
 | |
| 				"%s cannot read MSR entry (%u, 0x%08llx)\n",
 | |
| 				__func__, i, gpa + i * sizeof(e));
 | |
| 			goto fail;
 | |
| 		}
 | |
| 		if (nested_vmx_load_msr_check(vcpu, &e)) {
 | |
| 			pr_debug_ratelimited(
 | |
| 				"%s check failed (%u, 0x%x, 0x%x)\n",
 | |
| 				__func__, i, e.index, e.reserved);
 | |
| 			goto fail;
 | |
| 		}
 | |
| 		if (kvm_set_msr(vcpu, e.index, e.value)) {
 | |
| 			pr_debug_ratelimited(
 | |
| 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
 | |
| 				__func__, i, e.index, e.value);
 | |
| 			goto fail;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| fail:
 | |
| 	/* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
 | |
| 	return i + 1;
 | |
| }
 | |
| 
 | |
| static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
 | |
| 					    u32 msr_index,
 | |
| 					    u64 *data)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the L0 hypervisor stored a more accurate value for the TSC that
 | |
| 	 * does not include the time taken for emulation of the L2->L1
 | |
| 	 * VM-exit in L0, use the more accurate value.
 | |
| 	 */
 | |
| 	if (msr_index == MSR_IA32_TSC) {
 | |
| 		int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
 | |
| 						    MSR_IA32_TSC);
 | |
| 
 | |
| 		if (i >= 0) {
 | |
| 			u64 val = vmx->msr_autostore.guest.val[i].value;
 | |
| 
 | |
| 			*data = kvm_read_l1_tsc(vcpu, val);
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (kvm_get_msr(vcpu, msr_index, data)) {
 | |
| 		pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
 | |
| 			msr_index);
 | |
| 		return false;
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
 | |
| 				     struct vmx_msr_entry *e)
 | |
| {
 | |
| 	if (kvm_vcpu_read_guest(vcpu,
 | |
| 				gpa + i * sizeof(*e),
 | |
| 				e, 2 * sizeof(u32))) {
 | |
| 		pr_debug_ratelimited(
 | |
| 			"%s cannot read MSR entry (%u, 0x%08llx)\n",
 | |
| 			__func__, i, gpa + i * sizeof(*e));
 | |
| 		return false;
 | |
| 	}
 | |
| 	if (nested_vmx_store_msr_check(vcpu, e)) {
 | |
| 		pr_debug_ratelimited(
 | |
| 			"%s check failed (%u, 0x%x, 0x%x)\n",
 | |
| 			__func__, i, e->index, e->reserved);
 | |
| 		return false;
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
 | |
| {
 | |
| 	u64 data;
 | |
| 	u32 i;
 | |
| 	struct vmx_msr_entry e;
 | |
| 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
 | |
| 
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		if (unlikely(i >= max_msr_list_size))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (kvm_vcpu_write_guest(vcpu,
 | |
| 					 gpa + i * sizeof(e) +
 | |
| 					     offsetof(struct vmx_msr_entry, value),
 | |
| 					 &data, sizeof(data))) {
 | |
| 			pr_debug_ratelimited(
 | |
| 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
 | |
| 				__func__, i, e.index, data);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
 | |
| {
 | |
| 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 | |
| 	u32 count = vmcs12->vm_exit_msr_store_count;
 | |
| 	u64 gpa = vmcs12->vm_exit_msr_store_addr;
 | |
| 	struct vmx_msr_entry e;
 | |
| 	u32 i;
 | |
| 
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
 | |
| 			return false;
 | |
| 
 | |
| 		if (e.index == msr_index)
 | |
| 			return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
 | |
| 					   u32 msr_index)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
 | |
| 	bool in_vmcs12_store_list;
 | |
| 	int msr_autostore_slot;
 | |
| 	bool in_autostore_list;
 | |
| 	int last;
 | |
| 
 | |
| 	msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
 | |
| 	in_autostore_list = msr_autostore_slot >= 0;
 | |
| 	in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
 | |
| 
 | |
| 	if (in_vmcs12_store_list && !in_autostore_list) {
 | |
| 		if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
 | |
| 			/*
 | |
| 			 * Emulated VMEntry does not fail here.  Instead a less
 | |
| 			 * accurate value will be returned by
 | |
| 			 * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
 | |
| 			 * instead of reading the value from the vmcs02 VMExit
 | |
| 			 * MSR-store area.
 | |
| 			 */
 | |
| 			pr_warn_ratelimited(
 | |
| 				"Not enough msr entries in msr_autostore.  Can't add msr %x\n",
 | |
| 				msr_index);
 | |
| 			return;
 | |
| 		}
 | |
| 		last = autostore->nr++;
 | |
| 		autostore->val[last].index = msr_index;
 | |
| 	} else if (!in_vmcs12_store_list && in_autostore_list) {
 | |
| 		last = --autostore->nr;
 | |
| 		autostore->val[msr_autostore_slot] = autostore->val[last];
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
 | |
|  * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
 | |
|  * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
 | |
|  * @entry_failure_code.
 | |
|  */
 | |
| static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
 | |
| 			       bool nested_ept, bool reload_pdptrs,
 | |
| 			       enum vm_entry_failure_code *entry_failure_code)
 | |
| {
 | |
| 	if (CC(kvm_vcpu_is_illegal_gpa(vcpu, cr3))) {
 | |
| 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
 | |
| 	 * must not be dereferenced.
 | |
| 	 */
 | |
| 	if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
 | |
| 	    CC(!load_pdptrs(vcpu, cr3))) {
 | |
| 		*entry_failure_code = ENTRY_FAIL_PDPTE;
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	vcpu->arch.cr3 = cr3;
 | |
| 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
 | |
| 
 | |
| 	/* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
 | |
| 	kvm_init_mmu(vcpu);
 | |
| 
 | |
| 	if (!nested_ept)
 | |
| 		kvm_mmu_new_pgd(vcpu, cr3);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns if KVM is able to config CPU to tag TLB entries
 | |
|  * populated by L2 differently than TLB entries populated
 | |
|  * by L1.
 | |
|  *
 | |
|  * If L0 uses EPT, L1 and L2 run with different EPTP because
 | |
|  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
 | |
|  * are tagged with different EPTP.
 | |
|  *
 | |
|  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
 | |
|  * with different VPID (L1 entries are tagged with vmx->vpid
 | |
|  * while L2 entries are tagged with vmx->nested.vpid02).
 | |
|  */
 | |
| static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 | |
| 
 | |
| 	return enable_ept ||
 | |
| 	       (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
 | |
| }
 | |
| 
 | |
| static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
 | |
| 					    struct vmcs12 *vmcs12,
 | |
| 					    bool is_vmenter)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
 | |
| 	 * for *all* contexts to be flushed on VM-Enter/VM-Exit, i.e. it's a
 | |
| 	 * full TLB flush from the guest's perspective.  This is required even
 | |
| 	 * if VPID is disabled in the host as KVM may need to synchronize the
 | |
| 	 * MMU in response to the guest TLB flush.
 | |
| 	 *
 | |
| 	 * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
 | |
| 	 * EPT is a special snowflake, as guest-physical mappings aren't
 | |
| 	 * flushed on VPID invalidations, including VM-Enter or VM-Exit with
 | |
| 	 * VPID disabled.  As a result, KVM _never_ needs to sync nEPT
 | |
| 	 * entries on VM-Enter because L1 can't rely on VM-Enter to flush
 | |
| 	 * those mappings.
 | |
| 	 */
 | |
| 	if (!nested_cpu_has_vpid(vmcs12)) {
 | |
| 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* L2 should never have a VPID if VPID is disabled. */
 | |
| 	WARN_ON(!enable_vpid);
 | |
| 
 | |
| 	/*
 | |
| 	 * VPID is enabled and in use by vmcs12.  If vpid12 is changing, then
 | |
| 	 * emulate a guest TLB flush as KVM does not track vpid12 history nor
 | |
| 	 * is the VPID incorporated into the MMU context.  I.e. KVM must assume
 | |
| 	 * that the new vpid12 has never been used and thus represents a new
 | |
| 	 * guest ASID that cannot have entries in the TLB.
 | |
| 	 */
 | |
| 	if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
 | |
| 		vmx->nested.last_vpid = vmcs12->virtual_processor_id;
 | |
| 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If VPID is enabled, used by vmc12, and vpid12 is not changing but
 | |
| 	 * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
 | |
| 	 * KVM was unable to allocate a VPID for L2, flush the current context
 | |
| 	 * as the effective ASID is common to both L1 and L2.
 | |
| 	 */
 | |
| 	if (!nested_has_guest_tlb_tag(vcpu))
 | |
| 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
 | |
| }
 | |
| 
 | |
| static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
 | |
| {
 | |
| 	superset &= mask;
 | |
| 	subset &= mask;
 | |
| 
 | |
| 	return (superset | subset) == superset;
 | |
| }
 | |
| 
 | |
| static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
 | |
| {
 | |
| 	const u64 feature_and_reserved =
 | |
| 		/* feature (except bit 48; see below) */
 | |
| 		BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
 | |
| 		/* reserved */
 | |
| 		BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
 | |
| 	u64 vmx_basic = vmx->nested.msrs.basic;
 | |
| 
 | |
| 	if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * KVM does not emulate a version of VMX that constrains physical
 | |
| 	 * addresses of VMX structures (e.g. VMCS) to 32-bits.
 | |
| 	 */
 | |
| 	if (data & BIT_ULL(48))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (vmx_basic_vmcs_revision_id(vmx_basic) !=
 | |
| 	    vmx_basic_vmcs_revision_id(data))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	vmx->nested.msrs.basic = data;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
 | |
| {
 | |
| 	u64 supported;
 | |
| 	u32 *lowp, *highp;
 | |
| 
 | |
| 	switch (msr_index) {
 | |
| 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
 | |
| 		lowp = &vmx->nested.msrs.pinbased_ctls_low;
 | |
| 		highp = &vmx->nested.msrs.pinbased_ctls_high;
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
 | |
| 		lowp = &vmx->nested.msrs.procbased_ctls_low;
 | |
| 		highp = &vmx->nested.msrs.procbased_ctls_high;
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
 | |
| 		lowp = &vmx->nested.msrs.exit_ctls_low;
 | |
| 		highp = &vmx->nested.msrs.exit_ctls_high;
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
 | |
| 		lowp = &vmx->nested.msrs.entry_ctls_low;
 | |
| 		highp = &vmx->nested.msrs.entry_ctls_high;
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_PROCBASED_CTLS2:
 | |
| 		lowp = &vmx->nested.msrs.secondary_ctls_low;
 | |
| 		highp = &vmx->nested.msrs.secondary_ctls_high;
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	supported = vmx_control_msr(*lowp, *highp);
 | |
| 
 | |
| 	/* Check must-be-1 bits are still 1. */
 | |
| 	if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Check must-be-0 bits are still 0. */
 | |
| 	if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	*lowp = data;
 | |
| 	*highp = data >> 32;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
 | |
| {
 | |
| 	const u64 feature_and_reserved_bits =
 | |
| 		/* feature */
 | |
| 		BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
 | |
| 		BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
 | |
| 		/* reserved */
 | |
| 		GENMASK_ULL(13, 9) | BIT_ULL(31);
 | |
| 	u64 vmx_misc;
 | |
| 
 | |
| 	vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
 | |
| 				   vmx->nested.msrs.misc_high);
 | |
| 
 | |
| 	if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if ((vmx->nested.msrs.pinbased_ctls_high &
 | |
| 	     PIN_BASED_VMX_PREEMPTION_TIMER) &&
 | |
| 	    vmx_misc_preemption_timer_rate(data) !=
 | |
| 	    vmx_misc_preemption_timer_rate(vmx_misc))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	vmx->nested.msrs.misc_low = data;
 | |
| 	vmx->nested.msrs.misc_high = data >> 32;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
 | |
| {
 | |
| 	u64 vmx_ept_vpid_cap;
 | |
| 
 | |
| 	vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
 | |
| 					   vmx->nested.msrs.vpid_caps);
 | |
| 
 | |
| 	/* Every bit is either reserved or a feature bit. */
 | |
| 	if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	vmx->nested.msrs.ept_caps = data;
 | |
| 	vmx->nested.msrs.vpid_caps = data >> 32;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
 | |
| {
 | |
| 	u64 *msr;
 | |
| 
 | |
| 	switch (msr_index) {
 | |
| 	case MSR_IA32_VMX_CR0_FIXED0:
 | |
| 		msr = &vmx->nested.msrs.cr0_fixed0;
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_CR4_FIXED0:
 | |
| 		msr = &vmx->nested.msrs.cr4_fixed0;
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
 | |
| 	 * must be 1 in the restored value.
 | |
| 	 */
 | |
| 	if (!is_bitwise_subset(data, *msr, -1ULL))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	*msr = data;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called when userspace is restoring VMX MSRs.
 | |
|  *
 | |
|  * Returns 0 on success, non-0 otherwise.
 | |
|  */
 | |
| int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't allow changes to the VMX capability MSRs while the vCPU
 | |
| 	 * is in VMX operation.
 | |
| 	 */
 | |
| 	if (vmx->nested.vmxon)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	switch (msr_index) {
 | |
| 	case MSR_IA32_VMX_BASIC:
 | |
| 		return vmx_restore_vmx_basic(vmx, data);
 | |
| 	case MSR_IA32_VMX_PINBASED_CTLS:
 | |
| 	case MSR_IA32_VMX_PROCBASED_CTLS:
 | |
| 	case MSR_IA32_VMX_EXIT_CTLS:
 | |
| 	case MSR_IA32_VMX_ENTRY_CTLS:
 | |
| 		/*
 | |
| 		 * The "non-true" VMX capability MSRs are generated from the
 | |
| 		 * "true" MSRs, so we do not support restoring them directly.
 | |
| 		 *
 | |
| 		 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
 | |
| 		 * should restore the "true" MSRs with the must-be-1 bits
 | |
| 		 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
 | |
| 		 * DEFAULT SETTINGS".
 | |
| 		 */
 | |
| 		return -EINVAL;
 | |
| 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
 | |
| 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
 | |
| 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
 | |
| 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
 | |
| 	case MSR_IA32_VMX_PROCBASED_CTLS2:
 | |
| 		return vmx_restore_control_msr(vmx, msr_index, data);
 | |
| 	case MSR_IA32_VMX_MISC:
 | |
| 		return vmx_restore_vmx_misc(vmx, data);
 | |
| 	case MSR_IA32_VMX_CR0_FIXED0:
 | |
| 	case MSR_IA32_VMX_CR4_FIXED0:
 | |
| 		return vmx_restore_fixed0_msr(vmx, msr_index, data);
 | |
| 	case MSR_IA32_VMX_CR0_FIXED1:
 | |
| 	case MSR_IA32_VMX_CR4_FIXED1:
 | |
| 		/*
 | |
| 		 * These MSRs are generated based on the vCPU's CPUID, so we
 | |
| 		 * do not support restoring them directly.
 | |
| 		 */
 | |
| 		return -EINVAL;
 | |
| 	case MSR_IA32_VMX_EPT_VPID_CAP:
 | |
| 		return vmx_restore_vmx_ept_vpid_cap(vmx, data);
 | |
| 	case MSR_IA32_VMX_VMCS_ENUM:
 | |
| 		vmx->nested.msrs.vmcs_enum = data;
 | |
| 		return 0;
 | |
| 	case MSR_IA32_VMX_VMFUNC:
 | |
| 		if (data & ~vmx->nested.msrs.vmfunc_controls)
 | |
| 			return -EINVAL;
 | |
| 		vmx->nested.msrs.vmfunc_controls = data;
 | |
| 		return 0;
 | |
| 	default:
 | |
| 		/*
 | |
| 		 * The rest of the VMX capability MSRs do not support restore.
 | |
| 		 */
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Returns 0 on success, non-0 otherwise. */
 | |
| int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
 | |
| {
 | |
| 	switch (msr_index) {
 | |
| 	case MSR_IA32_VMX_BASIC:
 | |
| 		*pdata = msrs->basic;
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
 | |
| 	case MSR_IA32_VMX_PINBASED_CTLS:
 | |
| 		*pdata = vmx_control_msr(
 | |
| 			msrs->pinbased_ctls_low,
 | |
| 			msrs->pinbased_ctls_high);
 | |
| 		if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
 | |
| 			*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
 | |
| 	case MSR_IA32_VMX_PROCBASED_CTLS:
 | |
| 		*pdata = vmx_control_msr(
 | |
| 			msrs->procbased_ctls_low,
 | |
| 			msrs->procbased_ctls_high);
 | |
| 		if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
 | |
| 			*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
 | |
| 	case MSR_IA32_VMX_EXIT_CTLS:
 | |
| 		*pdata = vmx_control_msr(
 | |
| 			msrs->exit_ctls_low,
 | |
| 			msrs->exit_ctls_high);
 | |
| 		if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
 | |
| 			*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
 | |
| 	case MSR_IA32_VMX_ENTRY_CTLS:
 | |
| 		*pdata = vmx_control_msr(
 | |
| 			msrs->entry_ctls_low,
 | |
| 			msrs->entry_ctls_high);
 | |
| 		if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
 | |
| 			*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_MISC:
 | |
| 		*pdata = vmx_control_msr(
 | |
| 			msrs->misc_low,
 | |
| 			msrs->misc_high);
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_CR0_FIXED0:
 | |
| 		*pdata = msrs->cr0_fixed0;
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_CR0_FIXED1:
 | |
| 		*pdata = msrs->cr0_fixed1;
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_CR4_FIXED0:
 | |
| 		*pdata = msrs->cr4_fixed0;
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_CR4_FIXED1:
 | |
| 		*pdata = msrs->cr4_fixed1;
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_VMCS_ENUM:
 | |
| 		*pdata = msrs->vmcs_enum;
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_PROCBASED_CTLS2:
 | |
| 		*pdata = vmx_control_msr(
 | |
| 			msrs->secondary_ctls_low,
 | |
| 			msrs->secondary_ctls_high);
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_EPT_VPID_CAP:
 | |
| 		*pdata = msrs->ept_caps |
 | |
| 			((u64)msrs->vpid_caps << 32);
 | |
| 		break;
 | |
| 	case MSR_IA32_VMX_VMFUNC:
 | |
| 		*pdata = msrs->vmfunc_controls;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
 | |
|  * been modified by the L1 guest.  Note, "writable" in this context means
 | |
|  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
 | |
|  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
 | |
|  * VM-exit information fields (which are actually writable if the vCPU is
 | |
|  * configured to support "VMWRITE to any supported field in the VMCS").
 | |
|  */
 | |
| static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
 | |
| 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
 | |
| 	struct shadow_vmcs_field field;
 | |
| 	unsigned long val;
 | |
| 	int i;
 | |
| 
 | |
| 	if (WARN_ON(!shadow_vmcs))
 | |
| 		return;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	vmcs_load(shadow_vmcs);
 | |
| 
 | |
| 	for (i = 0; i < max_shadow_read_write_fields; i++) {
 | |
| 		field = shadow_read_write_fields[i];
 | |
| 		val = __vmcs_readl(field.encoding);
 | |
| 		vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
 | |
| 	}
 | |
| 
 | |
| 	vmcs_clear(shadow_vmcs);
 | |
| 	vmcs_load(vmx->loaded_vmcs->vmcs);
 | |
| 
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	const struct shadow_vmcs_field *fields[] = {
 | |
| 		shadow_read_write_fields,
 | |
| 		shadow_read_only_fields
 | |
| 	};
 | |
| 	const int max_fields[] = {
 | |
| 		max_shadow_read_write_fields,
 | |
| 		max_shadow_read_only_fields
 | |
| 	};
 | |
| 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
 | |
| 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
 | |
| 	struct shadow_vmcs_field field;
 | |
| 	unsigned long val;
 | |
| 	int i, q;
 | |
| 
 | |
| 	if (WARN_ON(!shadow_vmcs))
 | |
| 		return;
 | |
| 
 | |
| 	vmcs_load(shadow_vmcs);
 | |
| 
 | |
| 	for (q = 0; q < ARRAY_SIZE(fields); q++) {
 | |
| 		for (i = 0; i < max_fields[q]; i++) {
 | |
| 			field = fields[q][i];
 | |
| 			val = vmcs12_read_any(vmcs12, field.encoding,
 | |
| 					      field.offset);
 | |
| 			__vmcs_writel(field.encoding, val);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	vmcs_clear(shadow_vmcs);
 | |
| 	vmcs_load(vmx->loaded_vmcs->vmcs);
 | |
| }
 | |
| 
 | |
| static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
 | |
| {
 | |
| 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
 | |
| 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
 | |
| 
 | |
| 	/* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
 | |
| 	vmcs12->tpr_threshold = evmcs->tpr_threshold;
 | |
| 	vmcs12->guest_rip = evmcs->guest_rip;
 | |
| 
 | |
| 	if (unlikely(!(hv_clean_fields &
 | |
| 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
 | |
| 		vmcs12->guest_rsp = evmcs->guest_rsp;
 | |
| 		vmcs12->guest_rflags = evmcs->guest_rflags;
 | |
| 		vmcs12->guest_interruptibility_info =
 | |
| 			evmcs->guest_interruptibility_info;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!(hv_clean_fields &
 | |
| 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
 | |
| 		vmcs12->cpu_based_vm_exec_control =
 | |
| 			evmcs->cpu_based_vm_exec_control;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!(hv_clean_fields &
 | |
| 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
 | |
| 		vmcs12->exception_bitmap = evmcs->exception_bitmap;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!(hv_clean_fields &
 | |
| 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
 | |
| 		vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!(hv_clean_fields &
 | |
| 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
 | |
| 		vmcs12->vm_entry_intr_info_field =
 | |
| 			evmcs->vm_entry_intr_info_field;
 | |
| 		vmcs12->vm_entry_exception_error_code =
 | |
| 			evmcs->vm_entry_exception_error_code;
 | |
| 		vmcs12->vm_entry_instruction_len =
 | |
| 			evmcs->vm_entry_instruction_len;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!(hv_clean_fields &
 | |
| 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
 | |
| 		vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
 | |
| 		vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
 | |
| 		vmcs12->host_cr0 = evmcs->host_cr0;
 | |
| 		vmcs12->host_cr3 = evmcs->host_cr3;
 | |
| 		vmcs12->host_cr4 = evmcs->host_cr4;
 | |
| 		vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
 | |
| 		vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
 | |
| 		vmcs12->host_rip = evmcs->host_rip;
 | |
| 		vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
 | |
| 		vmcs12->host_es_selector = evmcs->host_es_selector;
 | |
| 		vmcs12->host_cs_selector = evmcs->host_cs_selector;
 | |
| 		vmcs12->host_ss_selector = evmcs->host_ss_selector;
 | |
| 		vmcs12->host_ds_selector = evmcs->host_ds_selector;
 | |
| 		vmcs12->host_fs_selector = evmcs->host_fs_selector;
 | |
| 		vmcs12->host_gs_selector = evmcs->host_gs_selector;
 | |
| 		vmcs12->host_tr_selector = evmcs->host_tr_selector;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!(hv_clean_fields &
 | |
| 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
 | |
| 		vmcs12->pin_based_vm_exec_control =
 | |
| 			evmcs->pin_based_vm_exec_control;
 | |
| 		vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
 | |
| 		vmcs12->secondary_vm_exec_control =
 | |
| 			evmcs->secondary_vm_exec_control;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!(hv_clean_fields &
 | |
| 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
 | |
| 		vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
 | |
| 		vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!(hv_clean_fields &
 | |
| 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
 | |
| 		vmcs12->msr_bitmap = evmcs->msr_bitmap;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!(hv_clean_fields &
 | |
| 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
 | |
| 		vmcs12->guest_es_base = evmcs->guest_es_base;
 | |
| 		vmcs12->guest_cs_base = evmcs->guest_cs_base;
 | |
| 		vmcs12->guest_ss_base = evmcs->guest_ss_base;
 | |
| 		vmcs12->guest_ds_base = evmcs->guest_ds_base;
 | |
| 		vmcs12->guest_fs_base = evmcs->guest_fs_base;
 | |
| 		vmcs12->guest_gs_base = evmcs->guest_gs_base;
 | |
| 		vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
 | |
| 		vmcs12->guest_tr_base = evmcs->guest_tr_base;
 | |
| 		vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
 | |
| 		vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
 | |
| 		vmcs12->guest_es_limit = evmcs->guest_es_limit;
 | |
| 		vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
 | |
| 		vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
 | |
| 		vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
 | |
| 		vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
 | |
| 		vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
 | |
| 		vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
 | |
| 		vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
 | |
| 		vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
 | |
| 		vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
 | |
| 		vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
 | |
| 		vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
 | |
| 		vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
 | |
| 		vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
 | |
| 		vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
 | |
| 		vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
 | |
| 		vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
 | |
| 		vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
 | |
| 		vmcs12->guest_es_selector = evmcs->guest_es_selector;
 | |
| 		vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
 | |
| 		vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
 | |
| 		vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
 | |
| 		vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
 | |
| 		vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
 | |
| 		vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
 | |
| 		vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!(hv_clean_fields &
 | |
| 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
 | |
| 		vmcs12->tsc_offset = evmcs->tsc_offset;
 | |
| 		vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
 | |
| 		vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!(hv_clean_fields &
 | |
| 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
 | |
| 		vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
 | |
| 		vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
 | |
| 		vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
 | |
| 		vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
 | |
| 		vmcs12->guest_cr0 = evmcs->guest_cr0;
 | |
| 		vmcs12->guest_cr3 = evmcs->guest_cr3;
 | |
| 		vmcs12->guest_cr4 = evmcs->guest_cr4;
 | |
| 		vmcs12->guest_dr7 = evmcs->guest_dr7;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!(hv_clean_fields &
 | |
| 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
 | |
| 		vmcs12->host_fs_base = evmcs->host_fs_base;
 | |
| 		vmcs12->host_gs_base = evmcs->host_gs_base;
 | |
| 		vmcs12->host_tr_base = evmcs->host_tr_base;
 | |
| 		vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
 | |
| 		vmcs12->host_idtr_base = evmcs->host_idtr_base;
 | |
| 		vmcs12->host_rsp = evmcs->host_rsp;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!(hv_clean_fields &
 | |
| 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
 | |
| 		vmcs12->ept_pointer = evmcs->ept_pointer;
 | |
| 		vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!(hv_clean_fields &
 | |
| 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
 | |
| 		vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
 | |
| 		vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
 | |
| 		vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
 | |
| 		vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
 | |
| 		vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
 | |
| 		vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
 | |
| 		vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
 | |
| 		vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
 | |
| 		vmcs12->guest_pending_dbg_exceptions =
 | |
| 			evmcs->guest_pending_dbg_exceptions;
 | |
| 		vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
 | |
| 		vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
 | |
| 		vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
 | |
| 		vmcs12->guest_activity_state = evmcs->guest_activity_state;
 | |
| 		vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Not used?
 | |
| 	 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
 | |
| 	 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
 | |
| 	 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
 | |
| 	 * vmcs12->page_fault_error_code_mask =
 | |
| 	 *		evmcs->page_fault_error_code_mask;
 | |
| 	 * vmcs12->page_fault_error_code_match =
 | |
| 	 *		evmcs->page_fault_error_code_match;
 | |
| 	 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
 | |
| 	 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
 | |
| 	 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
 | |
| 	 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * Read only fields:
 | |
| 	 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
 | |
| 	 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
 | |
| 	 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
 | |
| 	 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
 | |
| 	 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
 | |
| 	 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
 | |
| 	 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
 | |
| 	 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
 | |
| 	 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
 | |
| 	 * vmcs12->exit_qualification = evmcs->exit_qualification;
 | |
| 	 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
 | |
| 	 *
 | |
| 	 * Not present in struct vmcs12:
 | |
| 	 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
 | |
| 	 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
 | |
| 	 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
 | |
| 	 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
 | |
| 	 */
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
 | |
| 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
 | |
| 
 | |
| 	/*
 | |
| 	 * Should not be changed by KVM:
 | |
| 	 *
 | |
| 	 * evmcs->host_es_selector = vmcs12->host_es_selector;
 | |
| 	 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
 | |
| 	 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
 | |
| 	 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
 | |
| 	 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
 | |
| 	 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
 | |
| 	 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
 | |
| 	 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
 | |
| 	 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
 | |
| 	 * evmcs->host_cr0 = vmcs12->host_cr0;
 | |
| 	 * evmcs->host_cr3 = vmcs12->host_cr3;
 | |
| 	 * evmcs->host_cr4 = vmcs12->host_cr4;
 | |
| 	 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
 | |
| 	 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
 | |
| 	 * evmcs->host_rip = vmcs12->host_rip;
 | |
| 	 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
 | |
| 	 * evmcs->host_fs_base = vmcs12->host_fs_base;
 | |
| 	 * evmcs->host_gs_base = vmcs12->host_gs_base;
 | |
| 	 * evmcs->host_tr_base = vmcs12->host_tr_base;
 | |
| 	 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
 | |
| 	 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
 | |
| 	 * evmcs->host_rsp = vmcs12->host_rsp;
 | |
| 	 * sync_vmcs02_to_vmcs12() doesn't read these:
 | |
| 	 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
 | |
| 	 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
 | |
| 	 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
 | |
| 	 * evmcs->ept_pointer = vmcs12->ept_pointer;
 | |
| 	 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
 | |
| 	 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
 | |
| 	 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
 | |
| 	 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
 | |
| 	 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
 | |
| 	 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
 | |
| 	 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
 | |
| 	 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
 | |
| 	 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
 | |
| 	 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
 | |
| 	 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
 | |
| 	 * evmcs->page_fault_error_code_mask =
 | |
| 	 *		vmcs12->page_fault_error_code_mask;
 | |
| 	 * evmcs->page_fault_error_code_match =
 | |
| 	 *		vmcs12->page_fault_error_code_match;
 | |
| 	 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
 | |
| 	 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
 | |
| 	 * evmcs->tsc_offset = vmcs12->tsc_offset;
 | |
| 	 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
 | |
| 	 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
 | |
| 	 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
 | |
| 	 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
 | |
| 	 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
 | |
| 	 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
 | |
| 	 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
 | |
| 	 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
 | |
| 	 *
 | |
| 	 * Not present in struct vmcs12:
 | |
| 	 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
 | |
| 	 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
 | |
| 	 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
 | |
| 	 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
 | |
| 	 */
 | |
| 
 | |
| 	evmcs->guest_es_selector = vmcs12->guest_es_selector;
 | |
| 	evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
 | |
| 	evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
 | |
| 	evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
 | |
| 	evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
 | |
| 	evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
 | |
| 	evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
 | |
| 	evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
 | |
| 
 | |
| 	evmcs->guest_es_limit = vmcs12->guest_es_limit;
 | |
| 	evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
 | |
| 	evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
 | |
| 	evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
 | |
| 	evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
 | |
| 	evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
 | |
| 	evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
 | |
| 	evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
 | |
| 	evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
 | |
| 	evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
 | |
| 
 | |
| 	evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
 | |
| 	evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
 | |
| 	evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
 | |
| 	evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
 | |
| 	evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
 | |
| 	evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
 | |
| 	evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
 | |
| 	evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
 | |
| 
 | |
| 	evmcs->guest_es_base = vmcs12->guest_es_base;
 | |
| 	evmcs->guest_cs_base = vmcs12->guest_cs_base;
 | |
| 	evmcs->guest_ss_base = vmcs12->guest_ss_base;
 | |
| 	evmcs->guest_ds_base = vmcs12->guest_ds_base;
 | |
| 	evmcs->guest_fs_base = vmcs12->guest_fs_base;
 | |
| 	evmcs->guest_gs_base = vmcs12->guest_gs_base;
 | |
| 	evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
 | |
| 	evmcs->guest_tr_base = vmcs12->guest_tr_base;
 | |
| 	evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
 | |
| 	evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
 | |
| 
 | |
| 	evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
 | |
| 	evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
 | |
| 
 | |
| 	evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
 | |
| 	evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
 | |
| 	evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
 | |
| 	evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
 | |
| 
 | |
| 	evmcs->guest_pending_dbg_exceptions =
 | |
| 		vmcs12->guest_pending_dbg_exceptions;
 | |
| 	evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
 | |
| 	evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
 | |
| 
 | |
| 	evmcs->guest_activity_state = vmcs12->guest_activity_state;
 | |
| 	evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
 | |
| 
 | |
| 	evmcs->guest_cr0 = vmcs12->guest_cr0;
 | |
| 	evmcs->guest_cr3 = vmcs12->guest_cr3;
 | |
| 	evmcs->guest_cr4 = vmcs12->guest_cr4;
 | |
| 	evmcs->guest_dr7 = vmcs12->guest_dr7;
 | |
| 
 | |
| 	evmcs->guest_physical_address = vmcs12->guest_physical_address;
 | |
| 
 | |
| 	evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
 | |
| 	evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
 | |
| 	evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
 | |
| 	evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
 | |
| 	evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
 | |
| 	evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
 | |
| 	evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
 | |
| 	evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
 | |
| 
 | |
| 	evmcs->exit_qualification = vmcs12->exit_qualification;
 | |
| 
 | |
| 	evmcs->guest_linear_address = vmcs12->guest_linear_address;
 | |
| 	evmcs->guest_rsp = vmcs12->guest_rsp;
 | |
| 	evmcs->guest_rflags = vmcs12->guest_rflags;
 | |
| 
 | |
| 	evmcs->guest_interruptibility_info =
 | |
| 		vmcs12->guest_interruptibility_info;
 | |
| 	evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
 | |
| 	evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
 | |
| 	evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
 | |
| 	evmcs->vm_entry_exception_error_code =
 | |
| 		vmcs12->vm_entry_exception_error_code;
 | |
| 	evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
 | |
| 
 | |
| 	evmcs->guest_rip = vmcs12->guest_rip;
 | |
| 
 | |
| 	evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is an equivalent of the nested hypervisor executing the vmptrld
 | |
|  * instruction.
 | |
|  */
 | |
| static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
 | |
| 	struct kvm_vcpu *vcpu, bool from_launch)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	bool evmcs_gpa_changed = false;
 | |
| 	u64 evmcs_gpa;
 | |
| 
 | |
| 	if (likely(!vmx->nested.enlightened_vmcs_enabled))
 | |
| 		return EVMPTRLD_DISABLED;
 | |
| 
 | |
| 	if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa)) {
 | |
| 		nested_release_evmcs(vcpu);
 | |
| 		return EVMPTRLD_DISABLED;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
 | |
| 		vmx->nested.current_vmptr = INVALID_GPA;
 | |
| 
 | |
| 		nested_release_evmcs(vcpu);
 | |
| 
 | |
| 		if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
 | |
| 				 &vmx->nested.hv_evmcs_map))
 | |
| 			return EVMPTRLD_ERROR;
 | |
| 
 | |
| 		vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
 | |
| 
 | |
| 		/*
 | |
| 		 * Currently, KVM only supports eVMCS version 1
 | |
| 		 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
 | |
| 		 * value to first u32 field of eVMCS which should specify eVMCS
 | |
| 		 * VersionNumber.
 | |
| 		 *
 | |
| 		 * Guest should be aware of supported eVMCS versions by host by
 | |
| 		 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
 | |
| 		 * expected to set this CPUID leaf according to the value
 | |
| 		 * returned in vmcs_version from nested_enable_evmcs().
 | |
| 		 *
 | |
| 		 * However, it turns out that Microsoft Hyper-V fails to comply
 | |
| 		 * to their own invented interface: When Hyper-V use eVMCS, it
 | |
| 		 * just sets first u32 field of eVMCS to revision_id specified
 | |
| 		 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
 | |
| 		 * which is one of the supported versions specified in
 | |
| 		 * CPUID.0x4000000A.EAX[0:15].
 | |
| 		 *
 | |
| 		 * To overcome Hyper-V bug, we accept here either a supported
 | |
| 		 * eVMCS version or VMCS12 revision_id as valid values for first
 | |
| 		 * u32 field of eVMCS.
 | |
| 		 */
 | |
| 		if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
 | |
| 		    (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
 | |
| 			nested_release_evmcs(vcpu);
 | |
| 			return EVMPTRLD_VMFAIL;
 | |
| 		}
 | |
| 
 | |
| 		vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
 | |
| 
 | |
| 		evmcs_gpa_changed = true;
 | |
| 		/*
 | |
| 		 * Unlike normal vmcs12, enlightened vmcs12 is not fully
 | |
| 		 * reloaded from guest's memory (read only fields, fields not
 | |
| 		 * present in struct hv_enlightened_vmcs, ...). Make sure there
 | |
| 		 * are no leftovers.
 | |
| 		 */
 | |
| 		if (from_launch) {
 | |
| 			struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 | |
| 			memset(vmcs12, 0, sizeof(*vmcs12));
 | |
| 			vmcs12->hdr.revision_id = VMCS12_REVISION;
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Clean fields data can't be used on VMLAUNCH and when we switch
 | |
| 	 * between different L2 guests as KVM keeps a single VMCS12 per L1.
 | |
| 	 */
 | |
| 	if (from_launch || evmcs_gpa_changed) {
 | |
| 		vmx->nested.hv_evmcs->hv_clean_fields &=
 | |
| 			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
 | |
| 
 | |
| 		vmx->nested.force_msr_bitmap_recalc = true;
 | |
| 	}
 | |
| 
 | |
| 	return EVMPTRLD_SUCCEEDED;
 | |
| }
 | |
| 
 | |
| void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
 | |
| 		copy_vmcs12_to_enlightened(vmx);
 | |
| 	else
 | |
| 		copy_vmcs12_to_shadow(vmx);
 | |
| 
 | |
| 	vmx->nested.need_vmcs12_to_shadow_sync = false;
 | |
| }
 | |
| 
 | |
| static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx =
 | |
| 		container_of(timer, struct vcpu_vmx, nested.preemption_timer);
 | |
| 
 | |
| 	vmx->nested.preemption_timer_expired = true;
 | |
| 	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
 | |
| 	kvm_vcpu_kick(&vmx->vcpu);
 | |
| 
 | |
| 	return HRTIMER_NORESTART;
 | |
| }
 | |
| 
 | |
| static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 | |
| 
 | |
| 	u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
 | |
| 			    VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
 | |
| 
 | |
| 	if (!vmx->nested.has_preemption_timer_deadline) {
 | |
| 		vmx->nested.preemption_timer_deadline =
 | |
| 			vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
 | |
| 		vmx->nested.has_preemption_timer_deadline = true;
 | |
| 	}
 | |
| 	return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
 | |
| }
 | |
| 
 | |
| static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
 | |
| 					u64 preemption_timeout)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * A timer value of zero is architecturally guaranteed to cause
 | |
| 	 * a VMExit prior to executing any instructions in the guest.
 | |
| 	 */
 | |
| 	if (preemption_timeout == 0) {
 | |
| 		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (vcpu->arch.virtual_tsc_khz == 0)
 | |
| 		return;
 | |
| 
 | |
| 	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
 | |
| 	preemption_timeout *= 1000000;
 | |
| 	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
 | |
| 	hrtimer_start(&vmx->nested.preemption_timer,
 | |
| 		      ktime_add_ns(ktime_get(), preemption_timeout),
 | |
| 		      HRTIMER_MODE_ABS_PINNED);
 | |
| }
 | |
| 
 | |
| static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	if (vmx->nested.nested_run_pending &&
 | |
| 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
 | |
| 		return vmcs12->guest_ia32_efer;
 | |
| 	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
 | |
| 		return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
 | |
| 	else
 | |
| 		return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
 | |
| }
 | |
| 
 | |
| static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	/*
 | |
| 	 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
 | |
| 	 * according to L0's settings (vmcs12 is irrelevant here).  Host
 | |
| 	 * fields that come from L0 and are not constant, e.g. HOST_CR3,
 | |
| 	 * will be set as needed prior to VMLAUNCH/VMRESUME.
 | |
| 	 */
 | |
| 	if (vmx->nested.vmcs02_initialized)
 | |
| 		return;
 | |
| 	vmx->nested.vmcs02_initialized = true;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't care what the EPTP value is we just need to guarantee
 | |
| 	 * it's valid so we don't get a false positive when doing early
 | |
| 	 * consistency checks.
 | |
| 	 */
 | |
| 	if (enable_ept && nested_early_check)
 | |
| 		vmcs_write64(EPT_POINTER,
 | |
| 			     construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
 | |
| 
 | |
| 	/* All VMFUNCs are currently emulated through L0 vmexits.  */
 | |
| 	if (cpu_has_vmx_vmfunc())
 | |
| 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
 | |
| 
 | |
| 	if (cpu_has_vmx_posted_intr())
 | |
| 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
 | |
| 
 | |
| 	if (cpu_has_vmx_msr_bitmap())
 | |
| 		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
 | |
| 
 | |
| 	/*
 | |
| 	 * PML is emulated for L2, but never enabled in hardware as the MMU
 | |
| 	 * handles A/D emulation.  Disabling PML for L2 also avoids having to
 | |
| 	 * deal with filtering out L2 GPAs from the buffer.
 | |
| 	 */
 | |
| 	if (enable_pml) {
 | |
| 		vmcs_write64(PML_ADDRESS, 0);
 | |
| 		vmcs_write16(GUEST_PML_INDEX, -1);
 | |
| 	}
 | |
| 
 | |
| 	if (cpu_has_vmx_encls_vmexit())
 | |
| 		vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the MSR load/store lists to match L0's settings.  Only the
 | |
| 	 * addresses are constant (for vmcs02), the counts can change based
 | |
| 	 * on L2's behavior, e.g. switching to/from long mode.
 | |
| 	 */
 | |
| 	vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
 | |
| 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
 | |
| 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
 | |
| 
 | |
| 	vmx_set_constant_host_state(vmx);
 | |
| }
 | |
| 
 | |
| static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
 | |
| 				      struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	prepare_vmcs02_constant_state(vmx);
 | |
| 
 | |
| 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
 | |
| 
 | |
| 	if (enable_vpid) {
 | |
| 		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
 | |
| 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
 | |
| 		else
 | |
| 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
 | |
| 				 struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	u32 exec_control;
 | |
| 	u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
 | |
| 
 | |
| 	if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
 | |
| 		prepare_vmcs02_early_rare(vmx, vmcs12);
 | |
| 
 | |
| 	/*
 | |
| 	 * PIN CONTROLS
 | |
| 	 */
 | |
| 	exec_control = __pin_controls_get(vmcs01);
 | |
| 	exec_control |= (vmcs12->pin_based_vm_exec_control &
 | |
| 			 ~PIN_BASED_VMX_PREEMPTION_TIMER);
 | |
| 
 | |
| 	/* Posted interrupts setting is only taken from vmcs12.  */
 | |
| 	vmx->nested.pi_pending = false;
 | |
| 	if (nested_cpu_has_posted_intr(vmcs12))
 | |
| 		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
 | |
| 	else
 | |
| 		exec_control &= ~PIN_BASED_POSTED_INTR;
 | |
| 	pin_controls_set(vmx, exec_control);
 | |
| 
 | |
| 	/*
 | |
| 	 * EXEC CONTROLS
 | |
| 	 */
 | |
| 	exec_control = __exec_controls_get(vmcs01); /* L0's desires */
 | |
| 	exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
 | |
| 	exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
 | |
| 	exec_control &= ~CPU_BASED_TPR_SHADOW;
 | |
| 	exec_control |= vmcs12->cpu_based_vm_exec_control;
 | |
| 
 | |
| 	vmx->nested.l1_tpr_threshold = -1;
 | |
| 	if (exec_control & CPU_BASED_TPR_SHADOW)
 | |
| 		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
 | |
| #ifdef CONFIG_X86_64
 | |
| 	else
 | |
| 		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
 | |
| 				CPU_BASED_CR8_STORE_EXITING;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
 | |
| 	 * for I/O port accesses.
 | |
| 	 */
 | |
| 	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
 | |
| 	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
 | |
| 
 | |
| 	/*
 | |
| 	 * This bit will be computed in nested_get_vmcs12_pages, because
 | |
| 	 * we do not have access to L1's MSR bitmap yet.  For now, keep
 | |
| 	 * the same bit as before, hoping to avoid multiple VMWRITEs that
 | |
| 	 * only set/clear this bit.
 | |
| 	 */
 | |
| 	exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
 | |
| 	exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
 | |
| 
 | |
| 	exec_controls_set(vmx, exec_control);
 | |
| 
 | |
| 	/*
 | |
| 	 * SECONDARY EXEC CONTROLS
 | |
| 	 */
 | |
| 	if (cpu_has_secondary_exec_ctrls()) {
 | |
| 		exec_control = __secondary_exec_controls_get(vmcs01);
 | |
| 
 | |
| 		/* Take the following fields only from vmcs12 */
 | |
| 		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
 | |
| 				  SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
 | |
| 				  SECONDARY_EXEC_ENABLE_INVPCID |
 | |
| 				  SECONDARY_EXEC_ENABLE_RDTSCP |
 | |
| 				  SECONDARY_EXEC_XSAVES |
 | |
| 				  SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
 | |
| 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
 | |
| 				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
 | |
| 				  SECONDARY_EXEC_ENABLE_VMFUNC |
 | |
| 				  SECONDARY_EXEC_DESC);
 | |
| 
 | |
| 		if (nested_cpu_has(vmcs12,
 | |
| 				   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
 | |
| 			exec_control |= vmcs12->secondary_vm_exec_control;
 | |
| 
 | |
| 		/* PML is emulated and never enabled in hardware for L2. */
 | |
| 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
 | |
| 
 | |
| 		/* VMCS shadowing for L2 is emulated for now */
 | |
| 		exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
 | |
| 
 | |
| 		/*
 | |
| 		 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
 | |
| 		 * will not have to rewrite the controls just for this bit.
 | |
| 		 */
 | |
| 		if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
 | |
| 		    (vmcs12->guest_cr4 & X86_CR4_UMIP))
 | |
| 			exec_control |= SECONDARY_EXEC_DESC;
 | |
| 
 | |
| 		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
 | |
| 			vmcs_write16(GUEST_INTR_STATUS,
 | |
| 				vmcs12->guest_intr_status);
 | |
| 
 | |
| 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
 | |
| 		    exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
 | |
| 
 | |
| 		if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
 | |
| 			vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
 | |
| 
 | |
| 		secondary_exec_controls_set(vmx, exec_control);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * ENTRY CONTROLS
 | |
| 	 *
 | |
| 	 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
 | |
| 	 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
 | |
| 	 * on the related bits (if supported by the CPU) in the hope that
 | |
| 	 * we can avoid VMWrites during vmx_set_efer().
 | |
| 	 */
 | |
| 	exec_control = __vm_entry_controls_get(vmcs01);
 | |
| 	exec_control |= vmcs12->vm_entry_controls;
 | |
| 	exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
 | |
| 	if (cpu_has_load_ia32_efer()) {
 | |
| 		if (guest_efer & EFER_LMA)
 | |
| 			exec_control |= VM_ENTRY_IA32E_MODE;
 | |
| 		if (guest_efer != host_efer)
 | |
| 			exec_control |= VM_ENTRY_LOAD_IA32_EFER;
 | |
| 	}
 | |
| 	vm_entry_controls_set(vmx, exec_control);
 | |
| 
 | |
| 	/*
 | |
| 	 * EXIT CONTROLS
 | |
| 	 *
 | |
| 	 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
 | |
| 	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
 | |
| 	 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
 | |
| 	 */
 | |
| 	exec_control = __vm_exit_controls_get(vmcs01);
 | |
| 	if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
 | |
| 		exec_control |= VM_EXIT_LOAD_IA32_EFER;
 | |
| 	else
 | |
| 		exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
 | |
| 	vm_exit_controls_set(vmx, exec_control);
 | |
| 
 | |
| 	/*
 | |
| 	 * Interrupt/Exception Fields
 | |
| 	 */
 | |
| 	if (vmx->nested.nested_run_pending) {
 | |
| 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
 | |
| 			     vmcs12->vm_entry_intr_info_field);
 | |
| 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
 | |
| 			     vmcs12->vm_entry_exception_error_code);
 | |
| 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
 | |
| 			     vmcs12->vm_entry_instruction_len);
 | |
| 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
 | |
| 			     vmcs12->guest_interruptibility_info);
 | |
| 		vmx->loaded_vmcs->nmi_known_unmasked =
 | |
| 			!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
 | |
| 	} else {
 | |
| 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
 | |
| 
 | |
| 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
 | |
| 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
 | |
| 		vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
 | |
| 		vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
 | |
| 		vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
 | |
| 		vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
 | |
| 		vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
 | |
| 		vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
 | |
| 		vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
 | |
| 		vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
 | |
| 		vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
 | |
| 		vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
 | |
| 		vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
 | |
| 		vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
 | |
| 		vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
 | |
| 		vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
 | |
| 		vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
 | |
| 		vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
 | |
| 		vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
 | |
| 		vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
 | |
| 		vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
 | |
| 		vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
 | |
| 		vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
 | |
| 		vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
 | |
| 		vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
 | |
| 		vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
 | |
| 		vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
 | |
| 		vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
 | |
| 		vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
 | |
| 		vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
 | |
| 		vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
 | |
| 		vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
 | |
| 		vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
 | |
| 		vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
 | |
| 		vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
 | |
| 		vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
 | |
| 		vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
 | |
| 		vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
 | |
| 
 | |
| 		vmx->segment_cache.bitmask = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
 | |
| 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
 | |
| 		vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
 | |
| 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
 | |
| 			    vmcs12->guest_pending_dbg_exceptions);
 | |
| 		vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
 | |
| 		vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
 | |
| 
 | |
| 		/*
 | |
| 		 * L1 may access the L2's PDPTR, so save them to construct
 | |
| 		 * vmcs12
 | |
| 		 */
 | |
| 		if (enable_ept) {
 | |
| 			vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
 | |
| 			vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
 | |
| 			vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
 | |
| 			vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
 | |
| 		}
 | |
| 
 | |
| 		if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
 | |
| 		    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
 | |
| 			vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
 | |
| 	}
 | |
| 
 | |
| 	if (nested_cpu_has_xsaves(vmcs12))
 | |
| 		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
 | |
| 
 | |
| 	/*
 | |
| 	 * Whether page-faults are trapped is determined by a combination of
 | |
| 	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
 | |
| 	 * doesn't care about page faults then we should set all of these to
 | |
| 	 * L1's desires. However, if L0 does care about (some) page faults, it
 | |
| 	 * is not easy (if at all possible?) to merge L0 and L1's desires, we
 | |
| 	 * simply ask to exit on each and every L2 page fault. This is done by
 | |
| 	 * setting MASK=MATCH=0 and (see below) EB.PF=1.
 | |
| 	 * Note that below we don't need special code to set EB.PF beyond the
 | |
| 	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
 | |
| 	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
 | |
| 	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
 | |
| 	 */
 | |
| 	if (vmx_need_pf_intercept(&vmx->vcpu)) {
 | |
| 		/*
 | |
| 		 * TODO: if both L0 and L1 need the same MASK and MATCH,
 | |
| 		 * go ahead and use it?
 | |
| 		 */
 | |
| 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
 | |
| 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
 | |
| 	} else {
 | |
| 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
 | |
| 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
 | |
| 	}
 | |
| 
 | |
| 	if (cpu_has_vmx_apicv()) {
 | |
| 		vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
 | |
| 		vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
 | |
| 		vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
 | |
| 		vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure the msr_autostore list is up to date before we set the
 | |
| 	 * count in the vmcs02.
 | |
| 	 */
 | |
| 	prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
 | |
| 
 | |
| 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
 | |
| 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
 | |
| 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
 | |
| 
 | |
| 	set_cr4_guest_host_mask(vmx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
 | |
|  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
 | |
|  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
 | |
|  * guest in a way that will both be appropriate to L1's requests, and our
 | |
|  * needs. In addition to modifying the active vmcs (which is vmcs02), this
 | |
|  * function also has additional necessary side-effects, like setting various
 | |
|  * vcpu->arch fields.
 | |
|  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
 | |
|  * is assigned to entry_failure_code on failure.
 | |
|  */
 | |
| static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
 | |
| 			  bool from_vmentry,
 | |
| 			  enum vm_entry_failure_code *entry_failure_code)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	bool load_guest_pdptrs_vmcs12 = false;
 | |
| 
 | |
| 	if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
 | |
| 		prepare_vmcs02_rare(vmx, vmcs12);
 | |
| 		vmx->nested.dirty_vmcs12 = false;
 | |
| 
 | |
| 		load_guest_pdptrs_vmcs12 = !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) ||
 | |
| 			!(vmx->nested.hv_evmcs->hv_clean_fields &
 | |
| 			  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
 | |
| 	}
 | |
| 
 | |
| 	if (vmx->nested.nested_run_pending &&
 | |
| 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
 | |
| 		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
 | |
| 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
 | |
| 	} else {
 | |
| 		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
 | |
| 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
 | |
| 	}
 | |
| 	if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
 | |
| 	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
 | |
| 		vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
 | |
| 	vmx_set_rflags(vcpu, vmcs12->guest_rflags);
 | |
| 
 | |
| 	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
 | |
| 	 * bitwise-or of what L1 wants to trap for L2, and what we want to
 | |
| 	 * trap. Note that CR0.TS also needs updating - we do this later.
 | |
| 	 */
 | |
| 	vmx_update_exception_bitmap(vcpu);
 | |
| 	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
 | |
| 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
 | |
| 
 | |
| 	if (vmx->nested.nested_run_pending &&
 | |
| 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
 | |
| 		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
 | |
| 		vcpu->arch.pat = vmcs12->guest_ia32_pat;
 | |
| 	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
 | |
| 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
 | |
| 	}
 | |
| 
 | |
| 	vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
 | |
| 			vcpu->arch.l1_tsc_offset,
 | |
| 			vmx_get_l2_tsc_offset(vcpu),
 | |
| 			vmx_get_l2_tsc_multiplier(vcpu));
 | |
| 
 | |
| 	vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
 | |
| 			vcpu->arch.l1_tsc_scaling_ratio,
 | |
| 			vmx_get_l2_tsc_multiplier(vcpu));
 | |
| 
 | |
| 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
 | |
| 	if (kvm_has_tsc_control)
 | |
| 		vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
 | |
| 
 | |
| 	nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
 | |
| 
 | |
| 	if (nested_cpu_has_ept(vmcs12))
 | |
| 		nested_ept_init_mmu_context(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
 | |
| 	 * bits which we consider mandatory enabled.
 | |
| 	 * The CR0_READ_SHADOW is what L2 should have expected to read given
 | |
| 	 * the specifications by L1; It's not enough to take
 | |
| 	 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
 | |
| 	 * have more bits than L1 expected.
 | |
| 	 */
 | |
| 	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
 | |
| 	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
 | |
| 
 | |
| 	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
 | |
| 	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
 | |
| 
 | |
| 	vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
 | |
| 	/* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
 | |
| 	vmx_set_efer(vcpu, vcpu->arch.efer);
 | |
| 
 | |
| 	/*
 | |
| 	 * Guest state is invalid and unrestricted guest is disabled,
 | |
| 	 * which means L1 attempted VMEntry to L2 with invalid state.
 | |
| 	 * Fail the VMEntry.
 | |
| 	 *
 | |
| 	 * However when force loading the guest state (SMM exit or
 | |
| 	 * loading nested state after migration, it is possible to
 | |
| 	 * have invalid guest state now, which will be later fixed by
 | |
| 	 * restoring L2 register state
 | |
| 	 */
 | |
| 	if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
 | |
| 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Shadow page tables on either EPT or shadow page tables. */
 | |
| 	if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
 | |
| 				from_vmentry, entry_failure_code))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
 | |
| 	 * on nested VM-Exit, which can occur without actually running L2 and
 | |
| 	 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
 | |
| 	 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
 | |
| 	 * transition to HLT instead of running L2.
 | |
| 	 */
 | |
| 	if (enable_ept)
 | |
| 		vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
 | |
| 
 | |
| 	/* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
 | |
| 	if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
 | |
| 	    is_pae_paging(vcpu)) {
 | |
| 		vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
 | |
| 		vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
 | |
| 		vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
 | |
| 		vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
 | |
| 	}
 | |
| 
 | |
| 	if (!enable_ept)
 | |
| 		vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
 | |
| 
 | |
| 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
 | |
| 	    WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
 | |
| 				     vmcs12->guest_ia32_perf_global_ctrl))) {
 | |
| 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	kvm_rsp_write(vcpu, vmcs12->guest_rsp);
 | |
| 	kvm_rip_write(vcpu, vmcs12->guest_rip);
 | |
| 
 | |
| 	/*
 | |
| 	 * It was observed that genuine Hyper-V running in L1 doesn't reset
 | |
| 	 * 'hv_clean_fields' by itself, it only sets the corresponding dirty
 | |
| 	 * bits when it changes a field in eVMCS. Mark all fields as clean
 | |
| 	 * here.
 | |
| 	 */
 | |
| 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
 | |
| 		vmx->nested.hv_evmcs->hv_clean_fields |=
 | |
| 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
 | |
| 	       nested_cpu_has_virtual_nmis(vmcs12)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
 | |
| 	       nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	/* Check for memory type validity */
 | |
| 	switch (new_eptp & VMX_EPTP_MT_MASK) {
 | |
| 	case VMX_EPTP_MT_UC:
 | |
| 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
 | |
| 			return false;
 | |
| 		break;
 | |
| 	case VMX_EPTP_MT_WB:
 | |
| 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
 | |
| 			return false;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/* Page-walk levels validity. */
 | |
| 	switch (new_eptp & VMX_EPTP_PWL_MASK) {
 | |
| 	case VMX_EPTP_PWL_5:
 | |
| 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
 | |
| 			return false;
 | |
| 		break;
 | |
| 	case VMX_EPTP_PWL_4:
 | |
| 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
 | |
| 			return false;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/* Reserved bits should not be set */
 | |
| 	if (CC(kvm_vcpu_is_illegal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
 | |
| 		return false;
 | |
| 
 | |
| 	/* AD, if set, should be supported */
 | |
| 	if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
 | |
| 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Checks related to VM-Execution Control Fields
 | |
|  */
 | |
| static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
 | |
|                                               struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
 | |
| 				   vmx->nested.msrs.pinbased_ctls_low,
 | |
| 				   vmx->nested.msrs.pinbased_ctls_high)) ||
 | |
| 	    CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
 | |
| 				   vmx->nested.msrs.procbased_ctls_low,
 | |
| 				   vmx->nested.msrs.procbased_ctls_high)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
 | |
| 	    CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
 | |
| 				   vmx->nested.msrs.secondary_ctls_low,
 | |
| 				   vmx->nested.msrs.secondary_ctls_high)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
 | |
| 	    nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
 | |
| 	    nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
 | |
| 	    nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
 | |
| 	    nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
 | |
| 	    nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
 | |
| 	    nested_vmx_check_nmi_controls(vmcs12) ||
 | |
| 	    nested_vmx_check_pml_controls(vcpu, vmcs12) ||
 | |
| 	    nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
 | |
| 	    nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
 | |
| 	    nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
 | |
| 	    CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!nested_cpu_has_preemption_timer(vmcs12) &&
 | |
| 	    nested_cpu_has_save_preemption_timer(vmcs12))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (nested_cpu_has_ept(vmcs12) &&
 | |
| 	    CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (nested_cpu_has_vmfunc(vmcs12)) {
 | |
| 		if (CC(vmcs12->vm_function_control &
 | |
| 		       ~vmx->nested.msrs.vmfunc_controls))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (nested_cpu_has_eptp_switching(vmcs12)) {
 | |
| 			if (CC(!nested_cpu_has_ept(vmcs12)) ||
 | |
| 			    CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
 | |
| 				return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Checks related to VM-Exit Control Fields
 | |
|  */
 | |
| static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
 | |
|                                          struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
 | |
| 				    vmx->nested.msrs.exit_ctls_low,
 | |
| 				    vmx->nested.msrs.exit_ctls_high)) ||
 | |
| 	    CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Checks related to VM-Entry Control Fields
 | |
|  */
 | |
| static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
 | |
| 					  struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
 | |
| 				    vmx->nested.msrs.entry_ctls_low,
 | |
| 				    vmx->nested.msrs.entry_ctls_high)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * From the Intel SDM, volume 3:
 | |
| 	 * Fields relevant to VM-entry event injection must be set properly.
 | |
| 	 * These fields are the VM-entry interruption-information field, the
 | |
| 	 * VM-entry exception error code, and the VM-entry instruction length.
 | |
| 	 */
 | |
| 	if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
 | |
| 		u32 intr_info = vmcs12->vm_entry_intr_info_field;
 | |
| 		u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
 | |
| 		u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
 | |
| 		bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
 | |
| 		bool should_have_error_code;
 | |
| 		bool urg = nested_cpu_has2(vmcs12,
 | |
| 					   SECONDARY_EXEC_UNRESTRICTED_GUEST);
 | |
| 		bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
 | |
| 
 | |
| 		/* VM-entry interruption-info field: interruption type */
 | |
| 		if (CC(intr_type == INTR_TYPE_RESERVED) ||
 | |
| 		    CC(intr_type == INTR_TYPE_OTHER_EVENT &&
 | |
| 		       !nested_cpu_supports_monitor_trap_flag(vcpu)))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		/* VM-entry interruption-info field: vector */
 | |
| 		if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
 | |
| 		    CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
 | |
| 		    CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		/* VM-entry interruption-info field: deliver error code */
 | |
| 		should_have_error_code =
 | |
| 			intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
 | |
| 			x86_exception_has_error_code(vector);
 | |
| 		if (CC(has_error_code != should_have_error_code))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		/* VM-entry exception error code */
 | |
| 		if (CC(has_error_code &&
 | |
| 		       vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		/* VM-entry interruption-info field: reserved bits */
 | |
| 		if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		/* VM-entry instruction length */
 | |
| 		switch (intr_type) {
 | |
| 		case INTR_TYPE_SOFT_EXCEPTION:
 | |
| 		case INTR_TYPE_SOFT_INTR:
 | |
| 		case INTR_TYPE_PRIV_SW_EXCEPTION:
 | |
| 			if (CC(vmcs12->vm_entry_instruction_len > 15) ||
 | |
| 			    CC(vmcs12->vm_entry_instruction_len == 0 &&
 | |
| 			    CC(!nested_cpu_has_zero_length_injection(vcpu))))
 | |
| 				return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
 | |
| 				     struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
 | |
| 	    nested_check_vm_exit_controls(vcpu, vmcs12) ||
 | |
| 	    nested_check_vm_entry_controls(vcpu, vmcs12))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
 | |
| 		return nested_evmcs_check_controls(vmcs12);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
 | |
| 				       struct vmcs12 *vmcs12)
 | |
| {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
 | |
| 		!!(vcpu->arch.efer & EFER_LMA)))
 | |
| 		return -EINVAL;
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
 | |
| 				       struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	bool ia32e;
 | |
| 
 | |
| 	if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
 | |
| 	    CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
 | |
| 	    CC(kvm_vcpu_is_illegal_gpa(vcpu, vmcs12->host_cr3)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
 | |
| 	    CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
 | |
| 	    CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
 | |
| 	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
 | |
| 					   vmcs12->host_ia32_perf_global_ctrl)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
 | |
| #else
 | |
| 	ia32e = false;
 | |
| #endif
 | |
| 
 | |
| 	if (ia32e) {
 | |
| 		if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
 | |
| 			return -EINVAL;
 | |
| 	} else {
 | |
| 		if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
 | |
| 		    CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
 | |
| 		    CC((vmcs12->host_rip) >> 32))
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
 | |
| 	    CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
 | |
| 	    CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
 | |
| 	    CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
 | |
| 	    CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
 | |
| 	    CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
 | |
| 	    CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
 | |
| 	    CC(vmcs12->host_cs_selector == 0) ||
 | |
| 	    CC(vmcs12->host_tr_selector == 0) ||
 | |
| 	    CC(vmcs12->host_ss_selector == 0 && !ia32e))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
 | |
| 	    CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
 | |
| 	    CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
 | |
| 	    CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
 | |
| 	    CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
 | |
| 	    CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
 | |
| 	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
 | |
| 	 * the values of the LMA and LME bits in the field must each be that of
 | |
| 	 * the host address-space size VM-exit control.
 | |
| 	 */
 | |
| 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
 | |
| 		if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
 | |
| 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
 | |
| 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
 | |
| 					  struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
 | |
| 	struct vmcs_hdr hdr;
 | |
| 
 | |
| 	if (vmcs12->vmcs_link_pointer == INVALID_GPA)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
 | |
| 	    CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
 | |
| 					 vmcs12->vmcs_link_pointer, VMCS12_SIZE)))
 | |
|                 return -EINVAL;
 | |
| 
 | |
| 	if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
 | |
| 					    offsetof(struct vmcs12, hdr),
 | |
| 					    sizeof(hdr))))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (CC(hdr.revision_id != VMCS12_REVISION) ||
 | |
| 	    CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Checks related to Guest Non-register State
 | |
|  */
 | |
| static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
 | |
| 	       vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
 | |
| 	       vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
 | |
| 					struct vmcs12 *vmcs12,
 | |
| 					enum vm_entry_failure_code *entry_failure_code)
 | |
| {
 | |
| 	bool ia32e = !!(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE);
 | |
| 
 | |
| 	*entry_failure_code = ENTRY_FAIL_DEFAULT;
 | |
| 
 | |
| 	if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
 | |
| 	    CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
 | |
| 	    CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
 | |
| 	    CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
 | |
| 		*entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
 | |
| 	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
 | |
| 					   vmcs12->guest_ia32_perf_global_ctrl)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (CC((vmcs12->guest_cr0 & (X86_CR0_PG | X86_CR0_PE)) == X86_CR0_PG))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (CC(ia32e && !(vmcs12->guest_cr4 & X86_CR4_PAE)) ||
 | |
| 	    CC(ia32e && !(vmcs12->guest_cr0 & X86_CR0_PG)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the load IA32_EFER VM-entry control is 1, the following checks
 | |
| 	 * are performed on the field for the IA32_EFER MSR:
 | |
| 	 * - Bits reserved in the IA32_EFER MSR must be 0.
 | |
| 	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
 | |
| 	 *   the IA-32e mode guest VM-exit control. It must also be identical
 | |
| 	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
 | |
| 	 *   CR0.PG) is 1.
 | |
| 	 */
 | |
| 	if (to_vmx(vcpu)->nested.nested_run_pending &&
 | |
| 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
 | |
| 		if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
 | |
| 		    CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
 | |
| 		    CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
 | |
| 		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
 | |
| 	    (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
 | |
| 	     CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (nested_check_guest_non_reg_state(vmcs12))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	unsigned long cr3, cr4;
 | |
| 	bool vm_fail;
 | |
| 
 | |
| 	if (!nested_early_check)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (vmx->msr_autoload.host.nr)
 | |
| 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
 | |
| 	if (vmx->msr_autoload.guest.nr)
 | |
| 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
 | |
| 
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	vmx_prepare_switch_to_guest(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
 | |
| 	 * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
 | |
| 	 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
 | |
| 	 * there is no need to preserve other bits or save/restore the field.
 | |
| 	 */
 | |
| 	vmcs_writel(GUEST_RFLAGS, 0);
 | |
| 
 | |
| 	cr3 = __get_current_cr3_fast();
 | |
| 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
 | |
| 		vmcs_writel(HOST_CR3, cr3);
 | |
| 		vmx->loaded_vmcs->host_state.cr3 = cr3;
 | |
| 	}
 | |
| 
 | |
| 	cr4 = cr4_read_shadow();
 | |
| 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
 | |
| 		vmcs_writel(HOST_CR4, cr4);
 | |
| 		vmx->loaded_vmcs->host_state.cr4 = cr4;
 | |
| 	}
 | |
| 
 | |
| 	vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
 | |
| 				 __vmx_vcpu_run_flags(vmx));
 | |
| 
 | |
| 	if (vmx->msr_autoload.host.nr)
 | |
| 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
 | |
| 	if (vmx->msr_autoload.guest.nr)
 | |
| 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
 | |
| 
 | |
| 	if (vm_fail) {
 | |
| 		u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
 | |
| 
 | |
| 		preempt_enable();
 | |
| 
 | |
| 		trace_kvm_nested_vmenter_failed(
 | |
| 			"early hardware check VM-instruction error: ", error);
 | |
| 		WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
 | |
| 	 */
 | |
| 	local_irq_enable();
 | |
| 	if (hw_breakpoint_active())
 | |
| 		set_debugreg(__this_cpu_read(cpu_dr7), 7);
 | |
| 	preempt_enable();
 | |
| 
 | |
| 	/*
 | |
| 	 * A non-failing VMEntry means we somehow entered guest mode with
 | |
| 	 * an illegal RIP, and that's just the tip of the iceberg.  There
 | |
| 	 * is no telling what memory has been modified or what state has
 | |
| 	 * been exposed to unknown code.  Hitting this all but guarantees
 | |
| 	 * a (very critical) hardware issue.
 | |
| 	 */
 | |
| 	WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
 | |
| 		VMX_EXIT_REASONS_FAILED_VMENTRY));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * hv_evmcs may end up being not mapped after migration (when
 | |
| 	 * L2 was running), map it here to make sure vmcs12 changes are
 | |
| 	 * properly reflected.
 | |
| 	 */
 | |
| 	if (vmx->nested.enlightened_vmcs_enabled &&
 | |
| 	    vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
 | |
| 		enum nested_evmptrld_status evmptrld_status =
 | |
| 			nested_vmx_handle_enlightened_vmptrld(vcpu, false);
 | |
| 
 | |
| 		if (evmptrld_status == EVMPTRLD_VMFAIL ||
 | |
| 		    evmptrld_status == EVMPTRLD_ERROR)
 | |
| 			return false;
 | |
| 
 | |
| 		/*
 | |
| 		 * Post migration VMCS12 always provides the most actual
 | |
| 		 * information, copy it to eVMCS upon entry.
 | |
| 		 */
 | |
| 		vmx->nested.need_vmcs12_to_shadow_sync = true;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	struct kvm_host_map *map;
 | |
| 	struct page *page;
 | |
| 	u64 hpa;
 | |
| 
 | |
| 	if (!vcpu->arch.pdptrs_from_userspace &&
 | |
| 	    !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
 | |
| 		/*
 | |
| 		 * Reload the guest's PDPTRs since after a migration
 | |
| 		 * the guest CR3 might be restored prior to setting the nested
 | |
| 		 * state which can lead to a load of wrong PDPTRs.
 | |
| 		 */
 | |
| 		if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
 | |
| 		/*
 | |
| 		 * Translate L1 physical address to host physical
 | |
| 		 * address for vmcs02. Keep the page pinned, so this
 | |
| 		 * physical address remains valid. We keep a reference
 | |
| 		 * to it so we can release it later.
 | |
| 		 */
 | |
| 		if (vmx->nested.apic_access_page) { /* shouldn't happen */
 | |
| 			kvm_release_page_clean(vmx->nested.apic_access_page);
 | |
| 			vmx->nested.apic_access_page = NULL;
 | |
| 		}
 | |
| 		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
 | |
| 		if (!is_error_page(page)) {
 | |
| 			vmx->nested.apic_access_page = page;
 | |
| 			hpa = page_to_phys(vmx->nested.apic_access_page);
 | |
| 			vmcs_write64(APIC_ACCESS_ADDR, hpa);
 | |
| 		} else {
 | |
| 			pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
 | |
| 					     __func__);
 | |
| 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 | |
| 			vcpu->run->internal.suberror =
 | |
| 				KVM_INTERNAL_ERROR_EMULATION;
 | |
| 			vcpu->run->internal.ndata = 0;
 | |
| 			return false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
 | |
| 		map = &vmx->nested.virtual_apic_map;
 | |
| 
 | |
| 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
 | |
| 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
 | |
| 		} else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
 | |
| 		           nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
 | |
| 			   !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
 | |
| 			/*
 | |
| 			 * The processor will never use the TPR shadow, simply
 | |
| 			 * clear the bit from the execution control.  Such a
 | |
| 			 * configuration is useless, but it happens in tests.
 | |
| 			 * For any other configuration, failing the vm entry is
 | |
| 			 * _not_ what the processor does but it's basically the
 | |
| 			 * only possibility we have.
 | |
| 			 */
 | |
| 			exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
 | |
| 			 * force VM-Entry to fail.
 | |
| 			 */
 | |
| 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (nested_cpu_has_posted_intr(vmcs12)) {
 | |
| 		map = &vmx->nested.pi_desc_map;
 | |
| 
 | |
| 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
 | |
| 			vmx->nested.pi_desc =
 | |
| 				(struct pi_desc *)(((void *)map->hva) +
 | |
| 				offset_in_page(vmcs12->posted_intr_desc_addr));
 | |
| 			vmcs_write64(POSTED_INTR_DESC_ADDR,
 | |
| 				     pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Defer the KVM_INTERNAL_EXIT until KVM tries to
 | |
| 			 * access the contents of the VMCS12 posted interrupt
 | |
| 			 * descriptor. (Note that KVM may do this when it
 | |
| 			 * should not, per the architectural specification.)
 | |
| 			 */
 | |
| 			vmx->nested.pi_desc = NULL;
 | |
| 			pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
 | |
| 		}
 | |
| 	}
 | |
| 	if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
 | |
| 		exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
 | |
| 	else
 | |
| 		exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (!nested_get_evmcs_page(vcpu)) {
 | |
| 		pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
 | |
| 				     __func__);
 | |
| 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 | |
| 		vcpu->run->internal.suberror =
 | |
| 			KVM_INTERNAL_ERROR_EMULATION;
 | |
| 		vcpu->run->internal.ndata = 0;
 | |
| 
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
 | |
| 		return false;
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
 | |
| {
 | |
| 	struct vmcs12 *vmcs12;
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	gpa_t dst;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(vmx->nested.pml_full))
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
 | |
| 	 * set is already checked as part of A/D emulation.
 | |
| 	 */
 | |
| 	vmcs12 = get_vmcs12(vcpu);
 | |
| 	if (!nested_cpu_has_pml(vmcs12))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
 | |
| 		vmx->nested.pml_full = true;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	gpa &= ~0xFFFull;
 | |
| 	dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
 | |
| 
 | |
| 	if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
 | |
| 				 offset_in_page(dst), sizeof(gpa)))
 | |
| 		return 0;
 | |
| 
 | |
| 	vmcs12->guest_pml_index--;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Intel's VMX Instruction Reference specifies a common set of prerequisites
 | |
|  * for running VMX instructions (except VMXON, whose prerequisites are
 | |
|  * slightly different). It also specifies what exception to inject otherwise.
 | |
|  * Note that many of these exceptions have priority over VM exits, so they
 | |
|  * don't have to be checked again here.
 | |
|  */
 | |
| static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (!to_vmx(vcpu)->nested.vmxon) {
 | |
| 		kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (vmx_get_cpl(vcpu)) {
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u8 rvi = vmx_get_rvi();
 | |
| 	u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
 | |
| 
 | |
| 	return ((rvi & 0xf0) > (vppr & 0xf0));
 | |
| }
 | |
| 
 | |
| static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
 | |
| 				   struct vmcs12 *vmcs12);
 | |
| 
 | |
| /*
 | |
|  * If from_vmentry is false, this is being called from state restore (either RSM
 | |
|  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
 | |
|  *
 | |
|  * Returns:
 | |
|  *	NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
 | |
|  *	NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
 | |
|  *	NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
 | |
|  *	NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
 | |
|  */
 | |
| enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
 | |
| 							bool from_vmentry)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 | |
| 	enum vm_entry_failure_code entry_failure_code;
 | |
| 	bool evaluate_pending_interrupts;
 | |
| 	union vmx_exit_reason exit_reason = {
 | |
| 		.basic = EXIT_REASON_INVALID_STATE,
 | |
| 		.failed_vmentry = 1,
 | |
| 	};
 | |
| 	u32 failed_index;
 | |
| 
 | |
| 	kvm_service_local_tlb_flush_requests(vcpu);
 | |
| 
 | |
| 	evaluate_pending_interrupts = exec_controls_get(vmx) &
 | |
| 		(CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
 | |
| 	if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
 | |
| 		evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
 | |
| 
 | |
| 	if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
 | |
| 		vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
 | |
| 	if (kvm_mpx_supported() &&
 | |
| 		!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
 | |
| 		vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
 | |
| 
 | |
| 	/*
 | |
| 	 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
 | |
| 	 * nested early checks are disabled.  In the event of a "late" VM-Fail,
 | |
| 	 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
 | |
| 	 * software model to the pre-VMEntry host state.  When EPT is disabled,
 | |
| 	 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
 | |
| 	 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
 | |
| 	 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
 | |
| 	 * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
 | |
| 	 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
 | |
| 	 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
 | |
| 	 * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
 | |
| 	 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
 | |
| 	 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
 | |
| 	 * path would need to manually save/restore vmcs01.GUEST_CR3.
 | |
| 	 */
 | |
| 	if (!enable_ept && !nested_early_check)
 | |
| 		vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
 | |
| 
 | |
| 	vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
 | |
| 
 | |
| 	prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
 | |
| 
 | |
| 	if (from_vmentry) {
 | |
| 		if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
 | |
| 			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
 | |
| 			return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
 | |
| 		}
 | |
| 
 | |
| 		if (nested_vmx_check_vmentry_hw(vcpu)) {
 | |
| 			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
 | |
| 			return NVMX_VMENTRY_VMFAIL;
 | |
| 		}
 | |
| 
 | |
| 		if (nested_vmx_check_guest_state(vcpu, vmcs12,
 | |
| 						 &entry_failure_code)) {
 | |
| 			exit_reason.basic = EXIT_REASON_INVALID_STATE;
 | |
| 			vmcs12->exit_qualification = entry_failure_code;
 | |
| 			goto vmentry_fail_vmexit;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	enter_guest_mode(vcpu);
 | |
| 
 | |
| 	if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
 | |
| 		exit_reason.basic = EXIT_REASON_INVALID_STATE;
 | |
| 		vmcs12->exit_qualification = entry_failure_code;
 | |
| 		goto vmentry_fail_vmexit_guest_mode;
 | |
| 	}
 | |
| 
 | |
| 	if (from_vmentry) {
 | |
| 		failed_index = nested_vmx_load_msr(vcpu,
 | |
| 						   vmcs12->vm_entry_msr_load_addr,
 | |
| 						   vmcs12->vm_entry_msr_load_count);
 | |
| 		if (failed_index) {
 | |
| 			exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
 | |
| 			vmcs12->exit_qualification = failed_index;
 | |
| 			goto vmentry_fail_vmexit_guest_mode;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * The MMU is not initialized to point at the right entities yet and
 | |
| 		 * "get pages" would need to read data from the guest (i.e. we will
 | |
| 		 * need to perform gpa to hpa translation). Request a call
 | |
| 		 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
 | |
| 		 * have already been set at vmentry time and should not be reset.
 | |
| 		 */
 | |
| 		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If L1 had a pending IRQ/NMI until it executed
 | |
| 	 * VMLAUNCH/VMRESUME which wasn't delivered because it was
 | |
| 	 * disallowed (e.g. interrupts disabled), L0 needs to
 | |
| 	 * evaluate if this pending event should cause an exit from L2
 | |
| 	 * to L1 or delivered directly to L2 (e.g. In case L1 don't
 | |
| 	 * intercept EXTERNAL_INTERRUPT).
 | |
| 	 *
 | |
| 	 * Usually this would be handled by the processor noticing an
 | |
| 	 * IRQ/NMI window request, or checking RVI during evaluation of
 | |
| 	 * pending virtual interrupts.  However, this setting was done
 | |
| 	 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
 | |
| 	 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
 | |
| 	 */
 | |
| 	if (unlikely(evaluate_pending_interrupts))
 | |
| 		kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Do not start the preemption timer hrtimer until after we know
 | |
| 	 * we are successful, so that only nested_vmx_vmexit needs to cancel
 | |
| 	 * the timer.
 | |
| 	 */
 | |
| 	vmx->nested.preemption_timer_expired = false;
 | |
| 	if (nested_cpu_has_preemption_timer(vmcs12)) {
 | |
| 		u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
 | |
| 		vmx_start_preemption_timer(vcpu, timer_value);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
 | |
| 	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
 | |
| 	 * returned as far as L1 is concerned. It will only return (and set
 | |
| 	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
 | |
| 	 */
 | |
| 	return NVMX_VMENTRY_SUCCESS;
 | |
| 
 | |
| 	/*
 | |
| 	 * A failed consistency check that leads to a VMExit during L1's
 | |
| 	 * VMEnter to L2 is a variation of a normal VMexit, as explained in
 | |
| 	 * 26.7 "VM-entry failures during or after loading guest state".
 | |
| 	 */
 | |
| vmentry_fail_vmexit_guest_mode:
 | |
| 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
 | |
| 		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
 | |
| 	leave_guest_mode(vcpu);
 | |
| 
 | |
| vmentry_fail_vmexit:
 | |
| 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
 | |
| 
 | |
| 	if (!from_vmentry)
 | |
| 		return NVMX_VMENTRY_VMEXIT;
 | |
| 
 | |
| 	load_vmcs12_host_state(vcpu, vmcs12);
 | |
| 	vmcs12->vm_exit_reason = exit_reason.full;
 | |
| 	if (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
 | |
| 		vmx->nested.need_vmcs12_to_shadow_sync = true;
 | |
| 	return NVMX_VMENTRY_VMEXIT;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
 | |
|  * for running an L2 nested guest.
 | |
|  */
 | |
| static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
 | |
| {
 | |
| 	struct vmcs12 *vmcs12;
 | |
| 	enum nvmx_vmentry_status status;
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
 | |
| 	enum nested_evmptrld_status evmptrld_status;
 | |
| 
 | |
| 	if (!nested_vmx_check_permission(vcpu))
 | |
| 		return 1;
 | |
| 
 | |
| 	evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
 | |
| 	if (evmptrld_status == EVMPTRLD_ERROR) {
 | |
| 		kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
 | |
| 
 | |
| 	if (CC(evmptrld_status == EVMPTRLD_VMFAIL))
 | |
| 		return nested_vmx_failInvalid(vcpu);
 | |
| 
 | |
| 	if (CC(!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) &&
 | |
| 	       vmx->nested.current_vmptr == INVALID_GPA))
 | |
| 		return nested_vmx_failInvalid(vcpu);
 | |
| 
 | |
| 	vmcs12 = get_vmcs12(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
 | |
| 	 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
 | |
| 	 * rather than RFLAGS.ZF, and no error number is stored to the
 | |
| 	 * VM-instruction error field.
 | |
| 	 */
 | |
| 	if (CC(vmcs12->hdr.shadow_vmcs))
 | |
| 		return nested_vmx_failInvalid(vcpu);
 | |
| 
 | |
| 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
 | |
| 		copy_enlightened_to_vmcs12(vmx, vmx->nested.hv_evmcs->hv_clean_fields);
 | |
| 		/* Enlightened VMCS doesn't have launch state */
 | |
| 		vmcs12->launch_state = !launch;
 | |
| 	} else if (enable_shadow_vmcs) {
 | |
| 		copy_shadow_to_vmcs12(vmx);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The nested entry process starts with enforcing various prerequisites
 | |
| 	 * on vmcs12 as required by the Intel SDM, and act appropriately when
 | |
| 	 * they fail: As the SDM explains, some conditions should cause the
 | |
| 	 * instruction to fail, while others will cause the instruction to seem
 | |
| 	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
 | |
| 	 * To speed up the normal (success) code path, we should avoid checking
 | |
| 	 * for misconfigurations which will anyway be caught by the processor
 | |
| 	 * when using the merged vmcs02.
 | |
| 	 */
 | |
| 	if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
 | |
| 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
 | |
| 
 | |
| 	if (CC(vmcs12->launch_state == launch))
 | |
| 		return nested_vmx_fail(vcpu,
 | |
| 			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
 | |
| 			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
 | |
| 
 | |
| 	if (nested_vmx_check_controls(vcpu, vmcs12))
 | |
| 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
 | |
| 
 | |
| 	if (nested_vmx_check_address_space_size(vcpu, vmcs12))
 | |
| 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
 | |
| 
 | |
| 	if (nested_vmx_check_host_state(vcpu, vmcs12))
 | |
| 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
 | |
| 
 | |
| 	/*
 | |
| 	 * We're finally done with prerequisite checking, and can start with
 | |
| 	 * the nested entry.
 | |
| 	 */
 | |
| 	vmx->nested.nested_run_pending = 1;
 | |
| 	vmx->nested.has_preemption_timer_deadline = false;
 | |
| 	status = nested_vmx_enter_non_root_mode(vcpu, true);
 | |
| 	if (unlikely(status != NVMX_VMENTRY_SUCCESS))
 | |
| 		goto vmentry_failed;
 | |
| 
 | |
| 	/* Emulate processing of posted interrupts on VM-Enter. */
 | |
| 	if (nested_cpu_has_posted_intr(vmcs12) &&
 | |
| 	    kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
 | |
| 		vmx->nested.pi_pending = true;
 | |
| 		kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 		kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
 | |
| 	}
 | |
| 
 | |
| 	/* Hide L1D cache contents from the nested guest.  */
 | |
| 	vmx->vcpu.arch.l1tf_flush_l1d = true;
 | |
| 
 | |
| 	/*
 | |
| 	 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
 | |
| 	 * also be used as part of restoring nVMX state for
 | |
| 	 * snapshot restore (migration).
 | |
| 	 *
 | |
| 	 * In this flow, it is assumed that vmcs12 cache was
 | |
| 	 * trasferred as part of captured nVMX state and should
 | |
| 	 * therefore not be read from guest memory (which may not
 | |
| 	 * exist on destination host yet).
 | |
| 	 */
 | |
| 	nested_cache_shadow_vmcs12(vcpu, vmcs12);
 | |
| 
 | |
| 	switch (vmcs12->guest_activity_state) {
 | |
| 	case GUEST_ACTIVITY_HLT:
 | |
| 		/*
 | |
| 		 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
 | |
| 		 * awakened by event injection or by an NMI-window VM-exit or
 | |
| 		 * by an interrupt-window VM-exit, halt the vcpu.
 | |
| 		 */
 | |
| 		if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
 | |
| 		    !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
 | |
| 		    !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
 | |
| 		      (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
 | |
| 			vmx->nested.nested_run_pending = 0;
 | |
| 			return kvm_emulate_halt_noskip(vcpu);
 | |
| 		}
 | |
| 		break;
 | |
| 	case GUEST_ACTIVITY_WAIT_SIPI:
 | |
| 		vmx->nested.nested_run_pending = 0;
 | |
| 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| 
 | |
| vmentry_failed:
 | |
| 	vmx->nested.nested_run_pending = 0;
 | |
| 	if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
 | |
| 		return 0;
 | |
| 	if (status == NVMX_VMENTRY_VMEXIT)
 | |
| 		return 1;
 | |
| 	WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
 | |
| 	return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
 | |
|  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
 | |
|  * This function returns the new value we should put in vmcs12.guest_cr0.
 | |
|  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
 | |
|  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
 | |
|  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
 | |
|  *     didn't trap the bit, because if L1 did, so would L0).
 | |
|  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
 | |
|  *     been modified by L2, and L1 knows it. So just leave the old value of
 | |
|  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
 | |
|  *     isn't relevant, because if L0 traps this bit it can set it to anything.
 | |
|  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
 | |
|  *     changed these bits, and therefore they need to be updated, but L0
 | |
|  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
 | |
|  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
 | |
|  */
 | |
| static inline unsigned long
 | |
| vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	return
 | |
| 	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
 | |
| 	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
 | |
| 	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
 | |
| 			vcpu->arch.cr0_guest_owned_bits));
 | |
| }
 | |
| 
 | |
| static inline unsigned long
 | |
| vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	return
 | |
| 	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
 | |
| 	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
 | |
| 	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
 | |
| 			vcpu->arch.cr4_guest_owned_bits));
 | |
| }
 | |
| 
 | |
| static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
 | |
| 				      struct vmcs12 *vmcs12,
 | |
| 				      u32 vm_exit_reason, u32 exit_intr_info)
 | |
| {
 | |
| 	u32 idt_vectoring;
 | |
| 	unsigned int nr;
 | |
| 
 | |
| 	/*
 | |
| 	 * Per the SDM, VM-Exits due to double and triple faults are never
 | |
| 	 * considered to occur during event delivery, even if the double/triple
 | |
| 	 * fault is the result of an escalating vectoring issue.
 | |
| 	 *
 | |
| 	 * Note, the SDM qualifies the double fault behavior with "The original
 | |
| 	 * event results in a double-fault exception".  It's unclear why the
 | |
| 	 * qualification exists since exits due to double fault can occur only
 | |
| 	 * while vectoring a different exception (injected events are never
 | |
| 	 * subject to interception), i.e. there's _always_ an original event.
 | |
| 	 *
 | |
| 	 * The SDM also uses NMI as a confusing example for the "original event
 | |
| 	 * causes the VM exit directly" clause.  NMI isn't special in any way,
 | |
| 	 * the same rule applies to all events that cause an exit directly.
 | |
| 	 * NMI is an odd choice for the example because NMIs can only occur on
 | |
| 	 * instruction boundaries, i.e. they _can't_ occur during vectoring.
 | |
| 	 */
 | |
| 	if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT ||
 | |
| 	    ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI &&
 | |
| 	     is_double_fault(exit_intr_info))) {
 | |
| 		vmcs12->idt_vectoring_info_field = 0;
 | |
| 	} else if (vcpu->arch.exception.injected) {
 | |
| 		nr = vcpu->arch.exception.nr;
 | |
| 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
 | |
| 
 | |
| 		if (kvm_exception_is_soft(nr)) {
 | |
| 			vmcs12->vm_exit_instruction_len =
 | |
| 				vcpu->arch.event_exit_inst_len;
 | |
| 			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
 | |
| 		} else
 | |
| 			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
 | |
| 
 | |
| 		if (vcpu->arch.exception.has_error_code) {
 | |
| 			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
 | |
| 			vmcs12->idt_vectoring_error_code =
 | |
| 				vcpu->arch.exception.error_code;
 | |
| 		}
 | |
| 
 | |
| 		vmcs12->idt_vectoring_info_field = idt_vectoring;
 | |
| 	} else if (vcpu->arch.nmi_injected) {
 | |
| 		vmcs12->idt_vectoring_info_field =
 | |
| 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
 | |
| 	} else if (vcpu->arch.interrupt.injected) {
 | |
| 		nr = vcpu->arch.interrupt.nr;
 | |
| 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
 | |
| 
 | |
| 		if (vcpu->arch.interrupt.soft) {
 | |
| 			idt_vectoring |= INTR_TYPE_SOFT_INTR;
 | |
| 			vmcs12->vm_entry_instruction_len =
 | |
| 				vcpu->arch.event_exit_inst_len;
 | |
| 		} else
 | |
| 			idt_vectoring |= INTR_TYPE_EXT_INTR;
 | |
| 
 | |
| 		vmcs12->idt_vectoring_info_field = idt_vectoring;
 | |
| 	} else {
 | |
| 		vmcs12->idt_vectoring_info_field = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 | |
| 	gfn_t gfn;
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't need to mark the APIC access page dirty; it is never
 | |
| 	 * written to by the CPU during APIC virtualization.
 | |
| 	 */
 | |
| 
 | |
| 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
 | |
| 		gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
 | |
| 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
 | |
| 	}
 | |
| 
 | |
| 	if (nested_cpu_has_posted_intr(vmcs12)) {
 | |
| 		gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
 | |
| 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	int max_irr;
 | |
| 	void *vapic_page;
 | |
| 	u16 status;
 | |
| 
 | |
| 	if (!vmx->nested.pi_pending)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!vmx->nested.pi_desc)
 | |
| 		goto mmio_needed;
 | |
| 
 | |
| 	vmx->nested.pi_pending = false;
 | |
| 
 | |
| 	if (!pi_test_and_clear_on(vmx->nested.pi_desc))
 | |
| 		return 0;
 | |
| 
 | |
| 	max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
 | |
| 	if (max_irr != 256) {
 | |
| 		vapic_page = vmx->nested.virtual_apic_map.hva;
 | |
| 		if (!vapic_page)
 | |
| 			goto mmio_needed;
 | |
| 
 | |
| 		__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
 | |
| 			vapic_page, &max_irr);
 | |
| 		status = vmcs_read16(GUEST_INTR_STATUS);
 | |
| 		if ((u8)max_irr > ((u8)status & 0xff)) {
 | |
| 			status &= ~0xff;
 | |
| 			status |= (u8)max_irr;
 | |
| 			vmcs_write16(GUEST_INTR_STATUS, status);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	nested_mark_vmcs12_pages_dirty(vcpu);
 | |
| 	return 0;
 | |
| 
 | |
| mmio_needed:
 | |
| 	kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
 | |
| 	return -ENXIO;
 | |
| }
 | |
| 
 | |
| static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
 | |
| 					       unsigned long exit_qual)
 | |
| {
 | |
| 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 | |
| 	unsigned int nr = vcpu->arch.exception.nr;
 | |
| 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
 | |
| 
 | |
| 	if (vcpu->arch.exception.has_error_code) {
 | |
| 		vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
 | |
| 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
 | |
| 	}
 | |
| 
 | |
| 	if (kvm_exception_is_soft(nr))
 | |
| 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
 | |
| 	else
 | |
| 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
 | |
| 
 | |
| 	if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
 | |
| 	    vmx_get_nmi_mask(vcpu))
 | |
| 		intr_info |= INTR_INFO_UNBLOCK_NMI;
 | |
| 
 | |
| 	nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns true if a debug trap is pending delivery.
 | |
|  *
 | |
|  * In KVM, debug traps bear an exception payload. As such, the class of a #DB
 | |
|  * exception may be inferred from the presence of an exception payload.
 | |
|  */
 | |
| static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return vcpu->arch.exception.pending &&
 | |
| 			vcpu->arch.exception.nr == DB_VECTOR &&
 | |
| 			vcpu->arch.exception.payload;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Certain VM-exits set the 'pending debug exceptions' field to indicate a
 | |
|  * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
 | |
|  * represents these debug traps with a payload that is said to be compatible
 | |
|  * with the 'pending debug exceptions' field, write the payload to the VMCS
 | |
|  * field if a VM-exit is delivered before the debug trap.
 | |
|  */
 | |
| static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (vmx_pending_dbg_trap(vcpu))
 | |
| 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
 | |
| 			    vcpu->arch.exception.payload);
 | |
| }
 | |
| 
 | |
| static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
 | |
| 	       to_vmx(vcpu)->nested.preemption_timer_expired;
 | |
| }
 | |
| 
 | |
| static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	unsigned long exit_qual;
 | |
| 	bool block_nested_events =
 | |
| 	    vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
 | |
| 	bool mtf_pending = vmx->nested.mtf_pending;
 | |
| 	struct kvm_lapic *apic = vcpu->arch.apic;
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear the MTF state. If a higher priority VM-exit is delivered first,
 | |
| 	 * this state is discarded.
 | |
| 	 */
 | |
| 	if (!block_nested_events)
 | |
| 		vmx->nested.mtf_pending = false;
 | |
| 
 | |
| 	if (lapic_in_kernel(vcpu) &&
 | |
| 		test_bit(KVM_APIC_INIT, &apic->pending_events)) {
 | |
| 		if (block_nested_events)
 | |
| 			return -EBUSY;
 | |
| 		nested_vmx_update_pending_dbg(vcpu);
 | |
| 		clear_bit(KVM_APIC_INIT, &apic->pending_events);
 | |
| 		if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
 | |
| 			nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (lapic_in_kernel(vcpu) &&
 | |
| 	    test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
 | |
| 		if (block_nested_events)
 | |
| 			return -EBUSY;
 | |
| 
 | |
| 		clear_bit(KVM_APIC_SIPI, &apic->pending_events);
 | |
| 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
 | |
| 			nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
 | |
| 						apic->sipi_vector & 0xFFUL);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Process any exceptions that are not debug traps before MTF.
 | |
| 	 *
 | |
| 	 * Note that only a pending nested run can block a pending exception.
 | |
| 	 * Otherwise an injected NMI/interrupt should either be
 | |
| 	 * lost or delivered to the nested hypervisor in the IDT_VECTORING_INFO,
 | |
| 	 * while delivering the pending exception.
 | |
| 	 */
 | |
| 
 | |
| 	if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
 | |
| 		if (vmx->nested.nested_run_pending)
 | |
| 			return -EBUSY;
 | |
| 		if (!nested_vmx_check_exception(vcpu, &exit_qual))
 | |
| 			goto no_vmexit;
 | |
| 		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (mtf_pending) {
 | |
| 		if (block_nested_events)
 | |
| 			return -EBUSY;
 | |
| 		nested_vmx_update_pending_dbg(vcpu);
 | |
| 		nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (vcpu->arch.exception.pending) {
 | |
| 		if (vmx->nested.nested_run_pending)
 | |
| 			return -EBUSY;
 | |
| 		if (!nested_vmx_check_exception(vcpu, &exit_qual))
 | |
| 			goto no_vmexit;
 | |
| 		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (nested_vmx_preemption_timer_pending(vcpu)) {
 | |
| 		if (block_nested_events)
 | |
| 			return -EBUSY;
 | |
| 		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
 | |
| 		if (block_nested_events)
 | |
| 			return -EBUSY;
 | |
| 		goto no_vmexit;
 | |
| 	}
 | |
| 
 | |
| 	if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
 | |
| 		if (block_nested_events)
 | |
| 			return -EBUSY;
 | |
| 		if (!nested_exit_on_nmi(vcpu))
 | |
| 			goto no_vmexit;
 | |
| 
 | |
| 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
 | |
| 				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
 | |
| 				  INTR_INFO_VALID_MASK, 0);
 | |
| 		/*
 | |
| 		 * The NMI-triggered VM exit counts as injection:
 | |
| 		 * clear this one and block further NMIs.
 | |
| 		 */
 | |
| 		vcpu->arch.nmi_pending = 0;
 | |
| 		vmx_set_nmi_mask(vcpu, true);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
 | |
| 		if (block_nested_events)
 | |
| 			return -EBUSY;
 | |
| 		if (!nested_exit_on_intr(vcpu))
 | |
| 			goto no_vmexit;
 | |
| 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| no_vmexit:
 | |
| 	return vmx_complete_nested_posted_interrupt(vcpu);
 | |
| }
 | |
| 
 | |
| static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	ktime_t remaining =
 | |
| 		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
 | |
| 	u64 value;
 | |
| 
 | |
| 	if (ktime_to_ns(remaining) <= 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
 | |
| 	do_div(value, 1000000);
 | |
| 	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
 | |
| }
 | |
| 
 | |
| static bool is_vmcs12_ext_field(unsigned long field)
 | |
| {
 | |
| 	switch (field) {
 | |
| 	case GUEST_ES_SELECTOR:
 | |
| 	case GUEST_CS_SELECTOR:
 | |
| 	case GUEST_SS_SELECTOR:
 | |
| 	case GUEST_DS_SELECTOR:
 | |
| 	case GUEST_FS_SELECTOR:
 | |
| 	case GUEST_GS_SELECTOR:
 | |
| 	case GUEST_LDTR_SELECTOR:
 | |
| 	case GUEST_TR_SELECTOR:
 | |
| 	case GUEST_ES_LIMIT:
 | |
| 	case GUEST_CS_LIMIT:
 | |
| 	case GUEST_SS_LIMIT:
 | |
| 	case GUEST_DS_LIMIT:
 | |
| 	case GUEST_FS_LIMIT:
 | |
| 	case GUEST_GS_LIMIT:
 | |
| 	case GUEST_LDTR_LIMIT:
 | |
| 	case GUEST_TR_LIMIT:
 | |
| 	case GUEST_GDTR_LIMIT:
 | |
| 	case GUEST_IDTR_LIMIT:
 | |
| 	case GUEST_ES_AR_BYTES:
 | |
| 	case GUEST_DS_AR_BYTES:
 | |
| 	case GUEST_FS_AR_BYTES:
 | |
| 	case GUEST_GS_AR_BYTES:
 | |
| 	case GUEST_LDTR_AR_BYTES:
 | |
| 	case GUEST_TR_AR_BYTES:
 | |
| 	case GUEST_ES_BASE:
 | |
| 	case GUEST_CS_BASE:
 | |
| 	case GUEST_SS_BASE:
 | |
| 	case GUEST_DS_BASE:
 | |
| 	case GUEST_FS_BASE:
 | |
| 	case GUEST_GS_BASE:
 | |
| 	case GUEST_LDTR_BASE:
 | |
| 	case GUEST_TR_BASE:
 | |
| 	case GUEST_GDTR_BASE:
 | |
| 	case GUEST_IDTR_BASE:
 | |
| 	case GUEST_PENDING_DBG_EXCEPTIONS:
 | |
| 	case GUEST_BNDCFGS:
 | |
| 		return true;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
 | |
| 				       struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
 | |
| 	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
 | |
| 	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
 | |
| 	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
 | |
| 	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
 | |
| 	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
 | |
| 	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
 | |
| 	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
 | |
| 	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
 | |
| 	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
 | |
| 	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
 | |
| 	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
 | |
| 	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
 | |
| 	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
 | |
| 	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
 | |
| 	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
 | |
| 	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
 | |
| 	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
 | |
| 	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
 | |
| 	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
 | |
| 	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
 | |
| 	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
 | |
| 	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
 | |
| 	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
 | |
| 	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
 | |
| 	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
 | |
| 	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
 | |
| 	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
 | |
| 	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
 | |
| 	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
 | |
| 	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
 | |
| 	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
 | |
| 	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
 | |
| 	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
 | |
| 	vmcs12->guest_pending_dbg_exceptions =
 | |
| 		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
 | |
| 	if (kvm_mpx_supported())
 | |
| 		vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
 | |
| 
 | |
| 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
 | |
| }
 | |
| 
 | |
| static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
 | |
| 				       struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	int cpu;
 | |
| 
 | |
| 	if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
 | |
| 		return;
 | |
| 
 | |
| 
 | |
| 	WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
 | |
| 
 | |
| 	cpu = get_cpu();
 | |
| 	vmx->loaded_vmcs = &vmx->nested.vmcs02;
 | |
| 	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
 | |
| 
 | |
| 	sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
 | |
| 
 | |
| 	vmx->loaded_vmcs = &vmx->vmcs01;
 | |
| 	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
 | |
| 	put_cpu();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the guest state fields of vmcs12 to reflect changes that
 | |
|  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
 | |
|  * VM-entry controls is also updated, since this is really a guest
 | |
|  * state bit.)
 | |
|  */
 | |
| static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
 | |
| 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
 | |
| 
 | |
| 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
 | |
| 		!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr);
 | |
| 
 | |
| 	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
 | |
| 	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
 | |
| 
 | |
| 	vmcs12->guest_rsp = kvm_rsp_read(vcpu);
 | |
| 	vmcs12->guest_rip = kvm_rip_read(vcpu);
 | |
| 	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
 | |
| 
 | |
| 	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
 | |
| 	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
 | |
| 
 | |
| 	vmcs12->guest_interruptibility_info =
 | |
| 		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
 | |
| 
 | |
| 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
 | |
| 		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
 | |
| 	else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
 | |
| 		vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
 | |
| 	else
 | |
| 		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
 | |
| 
 | |
| 	if (nested_cpu_has_preemption_timer(vmcs12) &&
 | |
| 	    vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
 | |
| 	    !vmx->nested.nested_run_pending)
 | |
| 		vmcs12->vmx_preemption_timer_value =
 | |
| 			vmx_get_preemption_timer_value(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * In some cases (usually, nested EPT), L2 is allowed to change its
 | |
| 	 * own CR3 without exiting. If it has changed it, we must keep it.
 | |
| 	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
 | |
| 	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
 | |
| 	 *
 | |
| 	 * Additionally, restore L2's PDPTR to vmcs12.
 | |
| 	 */
 | |
| 	if (enable_ept) {
 | |
| 		vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
 | |
| 		if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
 | |
| 			vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
 | |
| 			vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
 | |
| 			vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
 | |
| 			vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
 | |
| 
 | |
| 	if (nested_cpu_has_vid(vmcs12))
 | |
| 		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
 | |
| 
 | |
| 	vmcs12->vm_entry_controls =
 | |
| 		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
 | |
| 		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
 | |
| 
 | |
| 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
 | |
| 		kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
 | |
| 
 | |
| 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
 | |
| 		vmcs12->guest_ia32_efer = vcpu->arch.efer;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
 | |
|  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
 | |
|  * and this function updates it to reflect the changes to the guest state while
 | |
|  * L2 was running (and perhaps made some exits which were handled directly by L0
 | |
|  * without going back to L1), and to reflect the exit reason.
 | |
|  * Note that we do not have to copy here all VMCS fields, just those that
 | |
|  * could have changed by the L2 guest or the exit - i.e., the guest-state and
 | |
|  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
 | |
|  * which already writes to vmcs12 directly.
 | |
|  */
 | |
| static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
 | |
| 			   u32 vm_exit_reason, u32 exit_intr_info,
 | |
| 			   unsigned long exit_qualification)
 | |
| {
 | |
| 	/* update exit information fields: */
 | |
| 	vmcs12->vm_exit_reason = vm_exit_reason;
 | |
| 	if (to_vmx(vcpu)->exit_reason.enclave_mode)
 | |
| 		vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
 | |
| 	vmcs12->exit_qualification = exit_qualification;
 | |
| 
 | |
| 	/*
 | |
| 	 * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched
 | |
| 	 * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other
 | |
| 	 * exit info fields are unmodified.
 | |
| 	 */
 | |
| 	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
 | |
| 		vmcs12->launch_state = 1;
 | |
| 
 | |
| 		/* vm_entry_intr_info_field is cleared on exit. Emulate this
 | |
| 		 * instead of reading the real value. */
 | |
| 		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
 | |
| 
 | |
| 		/*
 | |
| 		 * Transfer the event that L0 or L1 may wanted to inject into
 | |
| 		 * L2 to IDT_VECTORING_INFO_FIELD.
 | |
| 		 */
 | |
| 		vmcs12_save_pending_event(vcpu, vmcs12,
 | |
| 					  vm_exit_reason, exit_intr_info);
 | |
| 
 | |
| 		vmcs12->vm_exit_intr_info = exit_intr_info;
 | |
| 		vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
 | |
| 		vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
 | |
| 
 | |
| 		/*
 | |
| 		 * According to spec, there's no need to store the guest's
 | |
| 		 * MSRs if the exit is due to a VM-entry failure that occurs
 | |
| 		 * during or after loading the guest state. Since this exit
 | |
| 		 * does not fall in that category, we need to save the MSRs.
 | |
| 		 */
 | |
| 		if (nested_vmx_store_msr(vcpu,
 | |
| 					 vmcs12->vm_exit_msr_store_addr,
 | |
| 					 vmcs12->vm_exit_msr_store_count))
 | |
| 			nested_vmx_abort(vcpu,
 | |
| 					 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
 | |
| 	 * preserved above and would only end up incorrectly in L1.
 | |
| 	 */
 | |
| 	vcpu->arch.nmi_injected = false;
 | |
| 	kvm_clear_exception_queue(vcpu);
 | |
| 	kvm_clear_interrupt_queue(vcpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A part of what we need to when the nested L2 guest exits and we want to
 | |
|  * run its L1 parent, is to reset L1's guest state to the host state specified
 | |
|  * in vmcs12.
 | |
|  * This function is to be called not only on normal nested exit, but also on
 | |
|  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
 | |
|  * Failures During or After Loading Guest State").
 | |
|  * This function should be called when the active VMCS is L1's (vmcs01).
 | |
|  */
 | |
| static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
 | |
| 				   struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	enum vm_entry_failure_code ignored;
 | |
| 	struct kvm_segment seg;
 | |
| 
 | |
| 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
 | |
| 		vcpu->arch.efer = vmcs12->host_ia32_efer;
 | |
| 	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
 | |
| 		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
 | |
| 	else
 | |
| 		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
 | |
| 	vmx_set_efer(vcpu, vcpu->arch.efer);
 | |
| 
 | |
| 	kvm_rsp_write(vcpu, vmcs12->host_rsp);
 | |
| 	kvm_rip_write(vcpu, vmcs12->host_rip);
 | |
| 	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
 | |
| 	vmx_set_interrupt_shadow(vcpu, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
 | |
| 	 * actually changed, because vmx_set_cr0 refers to efer set above.
 | |
| 	 *
 | |
| 	 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
 | |
| 	 * (KVM doesn't change it);
 | |
| 	 */
 | |
| 	vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
 | |
| 	vmx_set_cr0(vcpu, vmcs12->host_cr0);
 | |
| 
 | |
| 	/* Same as above - no reason to call set_cr4_guest_host_mask().  */
 | |
| 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
 | |
| 	vmx_set_cr4(vcpu, vmcs12->host_cr4);
 | |
| 
 | |
| 	nested_ept_uninit_mmu_context(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Only PDPTE load can fail as the value of cr3 was checked on entry and
 | |
| 	 * couldn't have changed.
 | |
| 	 */
 | |
| 	if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
 | |
| 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
 | |
| 
 | |
| 	nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
 | |
| 
 | |
| 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
 | |
| 	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
 | |
| 	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
 | |
| 	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
 | |
| 	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
 | |
| 	vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
 | |
| 	vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
 | |
| 
 | |
| 	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
 | |
| 	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
 | |
| 		vmcs_write64(GUEST_BNDCFGS, 0);
 | |
| 
 | |
| 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
 | |
| 		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
 | |
| 		vcpu->arch.pat = vmcs12->host_ia32_pat;
 | |
| 	}
 | |
| 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
 | |
| 		WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
 | |
| 					 vmcs12->host_ia32_perf_global_ctrl));
 | |
| 
 | |
| 	/* Set L1 segment info according to Intel SDM
 | |
| 	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
 | |
| 	seg = (struct kvm_segment) {
 | |
| 		.base = 0,
 | |
| 		.limit = 0xFFFFFFFF,
 | |
| 		.selector = vmcs12->host_cs_selector,
 | |
| 		.type = 11,
 | |
| 		.present = 1,
 | |
| 		.s = 1,
 | |
| 		.g = 1
 | |
| 	};
 | |
| 	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
 | |
| 		seg.l = 1;
 | |
| 	else
 | |
| 		seg.db = 1;
 | |
| 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
 | |
| 	seg = (struct kvm_segment) {
 | |
| 		.base = 0,
 | |
| 		.limit = 0xFFFFFFFF,
 | |
| 		.type = 3,
 | |
| 		.present = 1,
 | |
| 		.s = 1,
 | |
| 		.db = 1,
 | |
| 		.g = 1
 | |
| 	};
 | |
| 	seg.selector = vmcs12->host_ds_selector;
 | |
| 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
 | |
| 	seg.selector = vmcs12->host_es_selector;
 | |
| 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
 | |
| 	seg.selector = vmcs12->host_ss_selector;
 | |
| 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
 | |
| 	seg.selector = vmcs12->host_fs_selector;
 | |
| 	seg.base = vmcs12->host_fs_base;
 | |
| 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
 | |
| 	seg.selector = vmcs12->host_gs_selector;
 | |
| 	seg.base = vmcs12->host_gs_base;
 | |
| 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
 | |
| 	seg = (struct kvm_segment) {
 | |
| 		.base = vmcs12->host_tr_base,
 | |
| 		.limit = 0x67,
 | |
| 		.selector = vmcs12->host_tr_selector,
 | |
| 		.type = 11,
 | |
| 		.present = 1
 | |
| 	};
 | |
| 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
 | |
| 
 | |
| 	memset(&seg, 0, sizeof(seg));
 | |
| 	seg.unusable = 1;
 | |
| 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
 | |
| 
 | |
| 	kvm_set_dr(vcpu, 7, 0x400);
 | |
| 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
 | |
| 
 | |
| 	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
 | |
| 				vmcs12->vm_exit_msr_load_count))
 | |
| 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
 | |
| 
 | |
| 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
 | |
| }
 | |
| 
 | |
| static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
 | |
| {
 | |
| 	struct vmx_uret_msr *efer_msr;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
 | |
| 		return vmcs_read64(GUEST_IA32_EFER);
 | |
| 
 | |
| 	if (cpu_has_load_ia32_efer())
 | |
| 		return host_efer;
 | |
| 
 | |
| 	for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
 | |
| 		if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
 | |
| 			return vmx->msr_autoload.guest.val[i].value;
 | |
| 	}
 | |
| 
 | |
| 	efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
 | |
| 	if (efer_msr)
 | |
| 		return efer_msr->data;
 | |
| 
 | |
| 	return host_efer;
 | |
| }
 | |
| 
 | |
| static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	struct vmx_msr_entry g, h;
 | |
| 	gpa_t gpa;
 | |
| 	u32 i, j;
 | |
| 
 | |
| 	vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
 | |
| 
 | |
| 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
 | |
| 		/*
 | |
| 		 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
 | |
| 		 * as vmcs01.GUEST_DR7 contains a userspace defined value
 | |
| 		 * and vcpu->arch.dr7 is not squirreled away before the
 | |
| 		 * nested VMENTER (not worth adding a variable in nested_vmx).
 | |
| 		 */
 | |
| 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
 | |
| 			kvm_set_dr(vcpu, 7, DR7_FIXED_1);
 | |
| 		else
 | |
| 			WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
 | |
| 	 * handle a variety of side effects to KVM's software model.
 | |
| 	 */
 | |
| 	vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
 | |
| 
 | |
| 	vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
 | |
| 	vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
 | |
| 
 | |
| 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
 | |
| 	vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
 | |
| 
 | |
| 	nested_ept_uninit_mmu_context(vcpu);
 | |
| 	vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
 | |
| 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
 | |
| 
 | |
| 	/*
 | |
| 	 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
 | |
| 	 * from vmcs01 (if necessary).  The PDPTRs are not loaded on
 | |
| 	 * VMFail, like everything else we just need to ensure our
 | |
| 	 * software model is up-to-date.
 | |
| 	 */
 | |
| 	if (enable_ept && is_pae_paging(vcpu))
 | |
| 		ept_save_pdptrs(vcpu);
 | |
| 
 | |
| 	kvm_mmu_reset_context(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * This nasty bit of open coding is a compromise between blindly
 | |
| 	 * loading L1's MSRs using the exit load lists (incorrect emulation
 | |
| 	 * of VMFail), leaving the nested VM's MSRs in the software model
 | |
| 	 * (incorrect behavior) and snapshotting the modified MSRs (too
 | |
| 	 * expensive since the lists are unbound by hardware).  For each
 | |
| 	 * MSR that was (prematurely) loaded from the nested VMEntry load
 | |
| 	 * list, reload it from the exit load list if it exists and differs
 | |
| 	 * from the guest value.  The intent is to stuff host state as
 | |
| 	 * silently as possible, not to fully process the exit load list.
 | |
| 	 */
 | |
| 	for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
 | |
| 		gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
 | |
| 		if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
 | |
| 			pr_debug_ratelimited(
 | |
| 				"%s read MSR index failed (%u, 0x%08llx)\n",
 | |
| 				__func__, i, gpa);
 | |
| 			goto vmabort;
 | |
| 		}
 | |
| 
 | |
| 		for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
 | |
| 			gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
 | |
| 			if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
 | |
| 				pr_debug_ratelimited(
 | |
| 					"%s read MSR failed (%u, 0x%08llx)\n",
 | |
| 					__func__, j, gpa);
 | |
| 				goto vmabort;
 | |
| 			}
 | |
| 			if (h.index != g.index)
 | |
| 				continue;
 | |
| 			if (h.value == g.value)
 | |
| 				break;
 | |
| 
 | |
| 			if (nested_vmx_load_msr_check(vcpu, &h)) {
 | |
| 				pr_debug_ratelimited(
 | |
| 					"%s check failed (%u, 0x%x, 0x%x)\n",
 | |
| 					__func__, j, h.index, h.reserved);
 | |
| 				goto vmabort;
 | |
| 			}
 | |
| 
 | |
| 			if (kvm_set_msr(vcpu, h.index, h.value)) {
 | |
| 				pr_debug_ratelimited(
 | |
| 					"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
 | |
| 					__func__, j, h.index, h.value);
 | |
| 				goto vmabort;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| 
 | |
| vmabort:
 | |
| 	nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
 | |
|  * and modify vmcs12 to make it see what it would expect to see there if
 | |
|  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
 | |
|  */
 | |
| void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
 | |
| 		       u32 exit_intr_info, unsigned long exit_qualification)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 | |
| 
 | |
| 	/* trying to cancel vmlaunch/vmresume is a bug */
 | |
| 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
 | |
| 
 | |
| 	if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
 | |
| 		/*
 | |
| 		 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
 | |
| 		 * Enlightened VMCS after migration and we still need to
 | |
| 		 * do that when something is forcing L2->L1 exit prior to
 | |
| 		 * the first L2 run.
 | |
| 		 */
 | |
| 		(void)nested_get_evmcs_page(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	/* Service pending TLB flush requests for L2 before switching to L1. */
 | |
| 	kvm_service_local_tlb_flush_requests(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
 | |
| 	 * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
 | |
| 	 * up-to-date before switching to L1.
 | |
| 	 */
 | |
| 	if (enable_ept && is_pae_paging(vcpu))
 | |
| 		vmx_ept_load_pdptrs(vcpu);
 | |
| 
 | |
| 	leave_guest_mode(vcpu);
 | |
| 
 | |
| 	if (nested_cpu_has_preemption_timer(vmcs12))
 | |
| 		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
 | |
| 
 | |
| 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
 | |
| 		vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
 | |
| 		if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
 | |
| 			vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
 | |
| 	}
 | |
| 
 | |
| 	if (likely(!vmx->fail)) {
 | |
| 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
 | |
| 
 | |
| 		if (vm_exit_reason != -1)
 | |
| 			prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
 | |
| 				       exit_intr_info, exit_qualification);
 | |
| 
 | |
| 		/*
 | |
| 		 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
 | |
| 		 * also be used to capture vmcs12 cache as part of
 | |
| 		 * capturing nVMX state for snapshot (migration).
 | |
| 		 *
 | |
| 		 * Otherwise, this flush will dirty guest memory at a
 | |
| 		 * point it is already assumed by user-space to be
 | |
| 		 * immutable.
 | |
| 		 */
 | |
| 		nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * The only expected VM-instruction error is "VM entry with
 | |
| 		 * invalid control field(s)." Anything else indicates a
 | |
| 		 * problem with L0.  And we should never get here with a
 | |
| 		 * VMFail of any type if early consistency checks are enabled.
 | |
| 		 */
 | |
| 		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
 | |
| 			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
 | |
| 		WARN_ON_ONCE(nested_early_check);
 | |
| 	}
 | |
| 
 | |
| 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
 | |
| 
 | |
| 	/*
 | |
| 	 * If IBRS is advertised to the vCPU, KVM must flush the indirect
 | |
| 	 * branch predictors when transitioning from L2 to L1, as L1 expects
 | |
| 	 * hardware (KVM in this case) to provide separate predictor modes.
 | |
| 	 * Bare metal isolates VMX root (host) from VMX non-root (guest), but
 | |
| 	 * doesn't isolate different VMCSs, i.e. in this case, doesn't provide
 | |
| 	 * separate modes for L2 vs L1.
 | |
| 	 */
 | |
| 	if (guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
 | |
| 		indirect_branch_prediction_barrier();
 | |
| 
 | |
| 	/* Update any VMCS fields that might have changed while L2 ran */
 | |
| 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
 | |
| 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
 | |
| 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
 | |
| 	if (kvm_has_tsc_control)
 | |
| 		vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
 | |
| 
 | |
| 	if (vmx->nested.l1_tpr_threshold != -1)
 | |
| 		vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
 | |
| 
 | |
| 	if (vmx->nested.change_vmcs01_virtual_apic_mode) {
 | |
| 		vmx->nested.change_vmcs01_virtual_apic_mode = false;
 | |
| 		vmx_set_virtual_apic_mode(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
 | |
| 		vmx->nested.update_vmcs01_cpu_dirty_logging = false;
 | |
| 		vmx_update_cpu_dirty_logging(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	/* Unpin physical memory we referred to in vmcs02 */
 | |
| 	if (vmx->nested.apic_access_page) {
 | |
| 		kvm_release_page_clean(vmx->nested.apic_access_page);
 | |
| 		vmx->nested.apic_access_page = NULL;
 | |
| 	}
 | |
| 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
 | |
| 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
 | |
| 	vmx->nested.pi_desc = NULL;
 | |
| 
 | |
| 	if (vmx->nested.reload_vmcs01_apic_access_page) {
 | |
| 		vmx->nested.reload_vmcs01_apic_access_page = false;
 | |
| 		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
 | |
| 	}
 | |
| 
 | |
| 	if (vmx->nested.update_vmcs01_apicv_status) {
 | |
| 		vmx->nested.update_vmcs01_apicv_status = false;
 | |
| 		kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
 | |
| 	}
 | |
| 
 | |
| 	if ((vm_exit_reason != -1) &&
 | |
| 	    (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)))
 | |
| 		vmx->nested.need_vmcs12_to_shadow_sync = true;
 | |
| 
 | |
| 	/* in case we halted in L2 */
 | |
| 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
 | |
| 
 | |
| 	if (likely(!vmx->fail)) {
 | |
| 		if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
 | |
| 		    nested_exit_intr_ack_set(vcpu)) {
 | |
| 			int irq = kvm_cpu_get_interrupt(vcpu);
 | |
| 			WARN_ON(irq < 0);
 | |
| 			vmcs12->vm_exit_intr_info = irq |
 | |
| 				INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
 | |
| 		}
 | |
| 
 | |
| 		if (vm_exit_reason != -1)
 | |
| 			trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
 | |
| 						       vmcs12->exit_qualification,
 | |
| 						       vmcs12->idt_vectoring_info_field,
 | |
| 						       vmcs12->vm_exit_intr_info,
 | |
| 						       vmcs12->vm_exit_intr_error_code,
 | |
| 						       KVM_ISA_VMX);
 | |
| 
 | |
| 		load_vmcs12_host_state(vcpu, vmcs12);
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * After an early L2 VM-entry failure, we're now back
 | |
| 	 * in L1 which thinks it just finished a VMLAUNCH or
 | |
| 	 * VMRESUME instruction, so we need to set the failure
 | |
| 	 * flag and the VM-instruction error field of the VMCS
 | |
| 	 * accordingly, and skip the emulated instruction.
 | |
| 	 */
 | |
| 	(void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
 | |
| 
 | |
| 	/*
 | |
| 	 * Restore L1's host state to KVM's software model.  We're here
 | |
| 	 * because a consistency check was caught by hardware, which
 | |
| 	 * means some amount of guest state has been propagated to KVM's
 | |
| 	 * model and needs to be unwound to the host's state.
 | |
| 	 */
 | |
| 	nested_vmx_restore_host_state(vcpu);
 | |
| 
 | |
| 	vmx->fail = 0;
 | |
| }
 | |
| 
 | |
| static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Decode the memory-address operand of a vmx instruction, as recorded on an
 | |
|  * exit caused by such an instruction (run by a guest hypervisor).
 | |
|  * On success, returns 0. When the operand is invalid, returns 1 and throws
 | |
|  * #UD, #GP, or #SS.
 | |
|  */
 | |
| int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
 | |
| 			u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
 | |
| {
 | |
| 	gva_t off;
 | |
| 	bool exn;
 | |
| 	struct kvm_segment s;
 | |
| 
 | |
| 	/*
 | |
| 	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
 | |
| 	 * Execution", on an exit, vmx_instruction_info holds most of the
 | |
| 	 * addressing components of the operand. Only the displacement part
 | |
| 	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
 | |
| 	 * For how an actual address is calculated from all these components,
 | |
| 	 * refer to Vol. 1, "Operand Addressing".
 | |
| 	 */
 | |
| 	int  scaling = vmx_instruction_info & 3;
 | |
| 	int  addr_size = (vmx_instruction_info >> 7) & 7;
 | |
| 	bool is_reg = vmx_instruction_info & (1u << 10);
 | |
| 	int  seg_reg = (vmx_instruction_info >> 15) & 7;
 | |
| 	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
 | |
| 	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
 | |
| 	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
 | |
| 	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
 | |
| 
 | |
| 	if (is_reg) {
 | |
| 		kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Addr = segment_base + offset */
 | |
| 	/* offset = base + [index * scale] + displacement */
 | |
| 	off = exit_qualification; /* holds the displacement */
 | |
| 	if (addr_size == 1)
 | |
| 		off = (gva_t)sign_extend64(off, 31);
 | |
| 	else if (addr_size == 0)
 | |
| 		off = (gva_t)sign_extend64(off, 15);
 | |
| 	if (base_is_valid)
 | |
| 		off += kvm_register_read(vcpu, base_reg);
 | |
| 	if (index_is_valid)
 | |
| 		off += kvm_register_read(vcpu, index_reg) << scaling;
 | |
| 	vmx_get_segment(vcpu, &s, seg_reg);
 | |
| 
 | |
| 	/*
 | |
| 	 * The effective address, i.e. @off, of a memory operand is truncated
 | |
| 	 * based on the address size of the instruction.  Note that this is
 | |
| 	 * the *effective address*, i.e. the address prior to accounting for
 | |
| 	 * the segment's base.
 | |
| 	 */
 | |
| 	if (addr_size == 1) /* 32 bit */
 | |
| 		off &= 0xffffffff;
 | |
| 	else if (addr_size == 0) /* 16 bit */
 | |
| 		off &= 0xffff;
 | |
| 
 | |
| 	/* Checks for #GP/#SS exceptions. */
 | |
| 	exn = false;
 | |
| 	if (is_long_mode(vcpu)) {
 | |
| 		/*
 | |
| 		 * The virtual/linear address is never truncated in 64-bit
 | |
| 		 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
 | |
| 		 * address when using FS/GS with a non-zero base.
 | |
| 		 */
 | |
| 		if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
 | |
| 			*ret = s.base + off;
 | |
| 		else
 | |
| 			*ret = off;
 | |
| 
 | |
| 		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
 | |
| 		 * non-canonical form. This is the only check on the memory
 | |
| 		 * destination for long mode!
 | |
| 		 */
 | |
| 		exn = is_noncanonical_address(*ret, vcpu);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * When not in long mode, the virtual/linear address is
 | |
| 		 * unconditionally truncated to 32 bits regardless of the
 | |
| 		 * address size.
 | |
| 		 */
 | |
| 		*ret = (s.base + off) & 0xffffffff;
 | |
| 
 | |
| 		/* Protected mode: apply checks for segment validity in the
 | |
| 		 * following order:
 | |
| 		 * - segment type check (#GP(0) may be thrown)
 | |
| 		 * - usability check (#GP(0)/#SS(0))
 | |
| 		 * - limit check (#GP(0)/#SS(0))
 | |
| 		 */
 | |
| 		if (wr)
 | |
| 			/* #GP(0) if the destination operand is located in a
 | |
| 			 * read-only data segment or any code segment.
 | |
| 			 */
 | |
| 			exn = ((s.type & 0xa) == 0 || (s.type & 8));
 | |
| 		else
 | |
| 			/* #GP(0) if the source operand is located in an
 | |
| 			 * execute-only code segment
 | |
| 			 */
 | |
| 			exn = ((s.type & 0xa) == 8);
 | |
| 		if (exn) {
 | |
| 			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
 | |
| 			return 1;
 | |
| 		}
 | |
| 		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
 | |
| 		 */
 | |
| 		exn = (s.unusable != 0);
 | |
| 
 | |
| 		/*
 | |
| 		 * Protected mode: #GP(0)/#SS(0) if the memory operand is
 | |
| 		 * outside the segment limit.  All CPUs that support VMX ignore
 | |
| 		 * limit checks for flat segments, i.e. segments with base==0,
 | |
| 		 * limit==0xffffffff and of type expand-up data or code.
 | |
| 		 */
 | |
| 		if (!(s.base == 0 && s.limit == 0xffffffff &&
 | |
| 		     ((s.type & 8) || !(s.type & 4))))
 | |
| 			exn = exn || ((u64)off + len - 1 > s.limit);
 | |
| 	}
 | |
| 	if (exn) {
 | |
| 		kvm_queue_exception_e(vcpu,
 | |
| 				      seg_reg == VCPU_SREG_SS ?
 | |
| 						SS_VECTOR : GP_VECTOR,
 | |
| 				      0);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void nested_vmx_pmu_refresh(struct kvm_vcpu *vcpu,
 | |
| 			    bool vcpu_has_perf_global_ctrl)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx;
 | |
| 
 | |
| 	if (!nested_vmx_allowed(vcpu))
 | |
| 		return;
 | |
| 
 | |
| 	vmx = to_vmx(vcpu);
 | |
| 	if (vcpu_has_perf_global_ctrl) {
 | |
| 		vmx->nested.msrs.entry_ctls_high |=
 | |
| 				VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
 | |
| 		vmx->nested.msrs.exit_ctls_high |=
 | |
| 				VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
 | |
| 	} else {
 | |
| 		vmx->nested.msrs.entry_ctls_high &=
 | |
| 				~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
 | |
| 		vmx->nested.msrs.exit_ctls_high &=
 | |
| 				~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
 | |
| 				int *ret)
 | |
| {
 | |
| 	gva_t gva;
 | |
| 	struct x86_exception e;
 | |
| 	int r;
 | |
| 
 | |
| 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
 | |
| 				vmcs_read32(VMX_INSTRUCTION_INFO), false,
 | |
| 				sizeof(*vmpointer), &gva)) {
 | |
| 		*ret = 1;
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
 | |
| 	if (r != X86EMUL_CONTINUE) {
 | |
| 		*ret = kvm_handle_memory_failure(vcpu, r, &e);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a shadow VMCS and associate it with the currently loaded
 | |
|  * VMCS, unless such a shadow VMCS already exists. The newly allocated
 | |
|  * VMCS is also VMCLEARed, so that it is ready for use.
 | |
|  */
 | |
| static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
 | |
| 
 | |
| 	/*
 | |
| 	 * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it
 | |
| 	 * when L1 executes VMXOFF or the vCPU is forced out of nested
 | |
| 	 * operation.  VMXON faults if the CPU is already post-VMXON, so it
 | |
| 	 * should be impossible to already have an allocated shadow VMCS.  KVM
 | |
| 	 * doesn't support virtualization of VMCS shadowing, so vmcs01 should
 | |
| 	 * always be the loaded VMCS.
 | |
| 	 */
 | |
| 	if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs))
 | |
| 		return loaded_vmcs->shadow_vmcs;
 | |
| 
 | |
| 	loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
 | |
| 	if (loaded_vmcs->shadow_vmcs)
 | |
| 		vmcs_clear(loaded_vmcs->shadow_vmcs);
 | |
| 
 | |
| 	return loaded_vmcs->shadow_vmcs;
 | |
| }
 | |
| 
 | |
| static int enter_vmx_operation(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	int r;
 | |
| 
 | |
| 	r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
 | |
| 	if (r < 0)
 | |
| 		goto out_vmcs02;
 | |
| 
 | |
| 	vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
 | |
| 	if (!vmx->nested.cached_vmcs12)
 | |
| 		goto out_cached_vmcs12;
 | |
| 
 | |
| 	vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA;
 | |
| 	vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
 | |
| 	if (!vmx->nested.cached_shadow_vmcs12)
 | |
| 		goto out_cached_shadow_vmcs12;
 | |
| 
 | |
| 	if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
 | |
| 		goto out_shadow_vmcs;
 | |
| 
 | |
| 	hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
 | |
| 		     HRTIMER_MODE_ABS_PINNED);
 | |
| 	vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
 | |
| 
 | |
| 	vmx->nested.vpid02 = allocate_vpid();
 | |
| 
 | |
| 	vmx->nested.vmcs02_initialized = false;
 | |
| 	vmx->nested.vmxon = true;
 | |
| 
 | |
| 	if (vmx_pt_mode_is_host_guest()) {
 | |
| 		vmx->pt_desc.guest.ctl = 0;
 | |
| 		pt_update_intercept_for_msr(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_shadow_vmcs:
 | |
| 	kfree(vmx->nested.cached_shadow_vmcs12);
 | |
| 
 | |
| out_cached_shadow_vmcs12:
 | |
| 	kfree(vmx->nested.cached_vmcs12);
 | |
| 
 | |
| out_cached_vmcs12:
 | |
| 	free_loaded_vmcs(&vmx->nested.vmcs02);
 | |
| 
 | |
| out_vmcs02:
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /* Emulate the VMXON instruction. */
 | |
| static int handle_vmon(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int ret;
 | |
| 	gpa_t vmptr;
 | |
| 	uint32_t revision;
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
 | |
| 		| FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
 | |
| 
 | |
| 	/*
 | |
| 	 * Manually check CR4.VMXE checks, KVM must force CR4.VMXE=1 to enter
 | |
| 	 * the guest and so cannot rely on hardware to perform the check,
 | |
| 	 * which has higher priority than VM-Exit (see Intel SDM's pseudocode
 | |
| 	 * for VMXON).
 | |
| 	 *
 | |
| 	 * Rely on hardware for the other pre-VM-Exit checks, CR0.PE=1, !VM86
 | |
| 	 * and !COMPATIBILITY modes.  For an unrestricted guest, KVM doesn't
 | |
| 	 * force any of the relevant guest state.  For a restricted guest, KVM
 | |
| 	 * does force CR0.PE=1, but only to also force VM86 in order to emulate
 | |
| 	 * Real Mode, and so there's no need to check CR0.PE manually.
 | |
| 	 */
 | |
| 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
 | |
| 		kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The CPL is checked for "not in VMX operation" and for "in VMX root",
 | |
| 	 * and has higher priority than the VM-Fail due to being post-VMXON,
 | |
| 	 * i.e. VMXON #GPs outside of VMX non-root if CPL!=0.  In VMX non-root,
 | |
| 	 * VMXON causes VM-Exit and KVM unconditionally forwards VMXON VM-Exits
 | |
| 	 * from L2 to L1, i.e. there's no need to check for the vCPU being in
 | |
| 	 * VMX non-root.
 | |
| 	 *
 | |
| 	 * Forwarding the VM-Exit unconditionally, i.e. without performing the
 | |
| 	 * #UD checks (see above), is functionally ok because KVM doesn't allow
 | |
| 	 * L1 to run L2 without CR4.VMXE=0, and because KVM never modifies L2's
 | |
| 	 * CR0 or CR4, i.e. it's L2's responsibility to emulate #UDs that are
 | |
| 	 * missed by hardware due to shadowing CR0 and/or CR4.
 | |
| 	 */
 | |
| 	if (vmx_get_cpl(vcpu)) {
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (vmx->nested.vmxon)
 | |
| 		return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
 | |
| 
 | |
| 	/*
 | |
| 	 * Invalid CR0/CR4 generates #GP.  These checks are performed if and
 | |
| 	 * only if the vCPU isn't already in VMX operation, i.e. effectively
 | |
| 	 * have lower priority than the VM-Fail above.
 | |
| 	 */
 | |
| 	if (!nested_host_cr0_valid(vcpu, kvm_read_cr0(vcpu)) ||
 | |
| 	    !nested_host_cr4_valid(vcpu, kvm_read_cr4(vcpu))) {
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
 | |
| 			!= VMXON_NEEDED_FEATURES) {
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * SDM 3: 24.11.5
 | |
| 	 * The first 4 bytes of VMXON region contain the supported
 | |
| 	 * VMCS revision identifier
 | |
| 	 *
 | |
| 	 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
 | |
| 	 * which replaces physical address width with 32
 | |
| 	 */
 | |
| 	if (!page_address_valid(vcpu, vmptr))
 | |
| 		return nested_vmx_failInvalid(vcpu);
 | |
| 
 | |
| 	if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
 | |
| 	    revision != VMCS12_REVISION)
 | |
| 		return nested_vmx_failInvalid(vcpu);
 | |
| 
 | |
| 	vmx->nested.vmxon_ptr = vmptr;
 | |
| 	ret = enter_vmx_operation(vcpu);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	return nested_vmx_succeed(vcpu);
 | |
| }
 | |
| 
 | |
| static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 
 | |
| 	if (vmx->nested.current_vmptr == INVALID_GPA)
 | |
| 		return;
 | |
| 
 | |
| 	copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
 | |
| 
 | |
| 	if (enable_shadow_vmcs) {
 | |
| 		/* copy to memory all shadowed fields in case
 | |
| 		   they were modified */
 | |
| 		copy_shadow_to_vmcs12(vmx);
 | |
| 		vmx_disable_shadow_vmcs(vmx);
 | |
| 	}
 | |
| 	vmx->nested.posted_intr_nv = -1;
 | |
| 
 | |
| 	/* Flush VMCS12 to guest memory */
 | |
| 	kvm_vcpu_write_guest_page(vcpu,
 | |
| 				  vmx->nested.current_vmptr >> PAGE_SHIFT,
 | |
| 				  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
 | |
| 
 | |
| 	kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
 | |
| 
 | |
| 	vmx->nested.current_vmptr = INVALID_GPA;
 | |
| }
 | |
| 
 | |
| /* Emulate the VMXOFF instruction */
 | |
| static int handle_vmoff(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (!nested_vmx_check_permission(vcpu))
 | |
| 		return 1;
 | |
| 
 | |
| 	free_nested(vcpu);
 | |
| 
 | |
| 	/* Process a latched INIT during time CPU was in VMX operation */
 | |
| 	kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 
 | |
| 	return nested_vmx_succeed(vcpu);
 | |
| }
 | |
| 
 | |
| /* Emulate the VMCLEAR instruction */
 | |
| static int handle_vmclear(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	u32 zero = 0;
 | |
| 	gpa_t vmptr;
 | |
| 	u64 evmcs_gpa;
 | |
| 	int r;
 | |
| 
 | |
| 	if (!nested_vmx_check_permission(vcpu))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
 | |
| 		return r;
 | |
| 
 | |
| 	if (!page_address_valid(vcpu, vmptr))
 | |
| 		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
 | |
| 
 | |
| 	if (vmptr == vmx->nested.vmxon_ptr)
 | |
| 		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
 | |
| 
 | |
| 	/*
 | |
| 	 * When Enlightened VMEntry is enabled on the calling CPU we treat
 | |
| 	 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
 | |
| 	 * way to distinguish it from VMCS12) and we must not corrupt it by
 | |
| 	 * writing to the non-existent 'launch_state' field. The area doesn't
 | |
| 	 * have to be the currently active EVMCS on the calling CPU and there's
 | |
| 	 * nothing KVM has to do to transition it from 'active' to 'non-active'
 | |
| 	 * state. It is possible that the area will stay mapped as
 | |
| 	 * vmx->nested.hv_evmcs but this shouldn't be a problem.
 | |
| 	 */
 | |
| 	if (likely(!vmx->nested.enlightened_vmcs_enabled ||
 | |
| 		   !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
 | |
| 		if (vmptr == vmx->nested.current_vmptr)
 | |
| 			nested_release_vmcs12(vcpu);
 | |
| 
 | |
| 		kvm_vcpu_write_guest(vcpu,
 | |
| 				     vmptr + offsetof(struct vmcs12,
 | |
| 						      launch_state),
 | |
| 				     &zero, sizeof(zero));
 | |
| 	} else if (vmx->nested.hv_evmcs && vmptr == vmx->nested.hv_evmcs_vmptr) {
 | |
| 		nested_release_evmcs(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	return nested_vmx_succeed(vcpu);
 | |
| }
 | |
| 
 | |
| /* Emulate the VMLAUNCH instruction */
 | |
| static int handle_vmlaunch(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return nested_vmx_run(vcpu, true);
 | |
| }
 | |
| 
 | |
| /* Emulate the VMRESUME instruction */
 | |
| static int handle_vmresume(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 
 | |
| 	return nested_vmx_run(vcpu, false);
 | |
| }
 | |
| 
 | |
| static int handle_vmread(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
 | |
| 						    : get_vmcs12(vcpu);
 | |
| 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
 | |
| 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	struct x86_exception e;
 | |
| 	unsigned long field;
 | |
| 	u64 value;
 | |
| 	gva_t gva = 0;
 | |
| 	short offset;
 | |
| 	int len, r;
 | |
| 
 | |
| 	if (!nested_vmx_check_permission(vcpu))
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Decode instruction info and find the field to read */
 | |
| 	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
 | |
| 
 | |
| 	if (!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
 | |
| 		/*
 | |
| 		 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
 | |
| 		 * any VMREAD sets the ALU flags for VMfailInvalid.
 | |
| 		 */
 | |
| 		if (vmx->nested.current_vmptr == INVALID_GPA ||
 | |
| 		    (is_guest_mode(vcpu) &&
 | |
| 		     get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
 | |
| 			return nested_vmx_failInvalid(vcpu);
 | |
| 
 | |
| 		offset = get_vmcs12_field_offset(field);
 | |
| 		if (offset < 0)
 | |
| 			return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
 | |
| 
 | |
| 		if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
 | |
| 			copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
 | |
| 
 | |
| 		/* Read the field, zero-extended to a u64 value */
 | |
| 		value = vmcs12_read_any(vmcs12, field, offset);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Hyper-V TLFS (as of 6.0b) explicitly states, that while an
 | |
| 		 * enlightened VMCS is active VMREAD/VMWRITE instructions are
 | |
| 		 * unsupported. Unfortunately, certain versions of Windows 11
 | |
| 		 * don't comply with this requirement which is not enforced in
 | |
| 		 * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a
 | |
| 		 * workaround, as misbehaving guests will panic on VM-Fail.
 | |
| 		 * Note, enlightened VMCS is incompatible with shadow VMCS so
 | |
| 		 * all VMREADs from L2 should go to L1.
 | |
| 		 */
 | |
| 		if (WARN_ON_ONCE(is_guest_mode(vcpu)))
 | |
| 			return nested_vmx_failInvalid(vcpu);
 | |
| 
 | |
| 		offset = evmcs_field_offset(field, NULL);
 | |
| 		if (offset < 0)
 | |
| 			return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
 | |
| 
 | |
| 		/* Read the field, zero-extended to a u64 value */
 | |
| 		value = evmcs_read_any(vmx->nested.hv_evmcs, field, offset);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now copy part of this value to register or memory, as requested.
 | |
| 	 * Note that the number of bits actually copied is 32 or 64 depending
 | |
| 	 * on the guest's mode (32 or 64 bit), not on the given field's length.
 | |
| 	 */
 | |
| 	if (instr_info & BIT(10)) {
 | |
| 		kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
 | |
| 	} else {
 | |
| 		len = is_64_bit_mode(vcpu) ? 8 : 4;
 | |
| 		if (get_vmx_mem_address(vcpu, exit_qualification,
 | |
| 					instr_info, true, len, &gva))
 | |
| 			return 1;
 | |
| 		/* _system ok, nested_vmx_check_permission has verified cpl=0 */
 | |
| 		r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
 | |
| 		if (r != X86EMUL_CONTINUE)
 | |
| 			return kvm_handle_memory_failure(vcpu, r, &e);
 | |
| 	}
 | |
| 
 | |
| 	return nested_vmx_succeed(vcpu);
 | |
| }
 | |
| 
 | |
| static bool is_shadow_field_rw(unsigned long field)
 | |
| {
 | |
| 	switch (field) {
 | |
| #define SHADOW_FIELD_RW(x, y) case x:
 | |
| #include "vmcs_shadow_fields.h"
 | |
| 		return true;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool is_shadow_field_ro(unsigned long field)
 | |
| {
 | |
| 	switch (field) {
 | |
| #define SHADOW_FIELD_RO(x, y) case x:
 | |
| #include "vmcs_shadow_fields.h"
 | |
| 		return true;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int handle_vmwrite(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
 | |
| 						    : get_vmcs12(vcpu);
 | |
| 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
 | |
| 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	struct x86_exception e;
 | |
| 	unsigned long field;
 | |
| 	short offset;
 | |
| 	gva_t gva;
 | |
| 	int len, r;
 | |
| 
 | |
| 	/*
 | |
| 	 * The value to write might be 32 or 64 bits, depending on L1's long
 | |
| 	 * mode, and eventually we need to write that into a field of several
 | |
| 	 * possible lengths. The code below first zero-extends the value to 64
 | |
| 	 * bit (value), and then copies only the appropriate number of
 | |
| 	 * bits into the vmcs12 field.
 | |
| 	 */
 | |
| 	u64 value = 0;
 | |
| 
 | |
| 	if (!nested_vmx_check_permission(vcpu))
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
 | |
| 	 * any VMWRITE sets the ALU flags for VMfailInvalid.
 | |
| 	 */
 | |
| 	if (vmx->nested.current_vmptr == INVALID_GPA ||
 | |
| 	    (is_guest_mode(vcpu) &&
 | |
| 	     get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
 | |
| 		return nested_vmx_failInvalid(vcpu);
 | |
| 
 | |
| 	if (instr_info & BIT(10))
 | |
| 		value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
 | |
| 	else {
 | |
| 		len = is_64_bit_mode(vcpu) ? 8 : 4;
 | |
| 		if (get_vmx_mem_address(vcpu, exit_qualification,
 | |
| 					instr_info, false, len, &gva))
 | |
| 			return 1;
 | |
| 		r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
 | |
| 		if (r != X86EMUL_CONTINUE)
 | |
| 			return kvm_handle_memory_failure(vcpu, r, &e);
 | |
| 	}
 | |
| 
 | |
| 	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
 | |
| 
 | |
| 	offset = get_vmcs12_field_offset(field);
 | |
| 	if (offset < 0)
 | |
| 		return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the vCPU supports "VMWRITE to any supported field in the
 | |
| 	 * VMCS," then the "read-only" fields are actually read/write.
 | |
| 	 */
 | |
| 	if (vmcs_field_readonly(field) &&
 | |
| 	    !nested_cpu_has_vmwrite_any_field(vcpu))
 | |
| 		return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
 | |
| 	 * vmcs12, else we may crush a field or consume a stale value.
 | |
| 	 */
 | |
| 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
 | |
| 		copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
 | |
| 
 | |
| 	/*
 | |
| 	 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
 | |
| 	 * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
 | |
| 	 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
 | |
| 	 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
 | |
| 	 * from L1 will return a different value than VMREAD from L2 (L1 sees
 | |
| 	 * the stripped down value, L2 sees the full value as stored by KVM).
 | |
| 	 */
 | |
| 	if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
 | |
| 		value &= 0x1f0ff;
 | |
| 
 | |
| 	vmcs12_write_any(vmcs12, field, offset, value);
 | |
| 
 | |
| 	/*
 | |
| 	 * Do not track vmcs12 dirty-state if in guest-mode as we actually
 | |
| 	 * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
 | |
| 	 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
 | |
| 	 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
 | |
| 	 */
 | |
| 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
 | |
| 		/*
 | |
| 		 * L1 can read these fields without exiting, ensure the
 | |
| 		 * shadow VMCS is up-to-date.
 | |
| 		 */
 | |
| 		if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
 | |
| 			preempt_disable();
 | |
| 			vmcs_load(vmx->vmcs01.shadow_vmcs);
 | |
| 
 | |
| 			__vmcs_writel(field, value);
 | |
| 
 | |
| 			vmcs_clear(vmx->vmcs01.shadow_vmcs);
 | |
| 			vmcs_load(vmx->loaded_vmcs->vmcs);
 | |
| 			preempt_enable();
 | |
| 		}
 | |
| 		vmx->nested.dirty_vmcs12 = true;
 | |
| 	}
 | |
| 
 | |
| 	return nested_vmx_succeed(vcpu);
 | |
| }
 | |
| 
 | |
| static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
 | |
| {
 | |
| 	vmx->nested.current_vmptr = vmptr;
 | |
| 	if (enable_shadow_vmcs) {
 | |
| 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
 | |
| 		vmcs_write64(VMCS_LINK_POINTER,
 | |
| 			     __pa(vmx->vmcs01.shadow_vmcs));
 | |
| 		vmx->nested.need_vmcs12_to_shadow_sync = true;
 | |
| 	}
 | |
| 	vmx->nested.dirty_vmcs12 = true;
 | |
| 	vmx->nested.force_msr_bitmap_recalc = true;
 | |
| }
 | |
| 
 | |
| /* Emulate the VMPTRLD instruction */
 | |
| static int handle_vmptrld(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	gpa_t vmptr;
 | |
| 	int r;
 | |
| 
 | |
| 	if (!nested_vmx_check_permission(vcpu))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
 | |
| 		return r;
 | |
| 
 | |
| 	if (!page_address_valid(vcpu, vmptr))
 | |
| 		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
 | |
| 
 | |
| 	if (vmptr == vmx->nested.vmxon_ptr)
 | |
| 		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
 | |
| 
 | |
| 	/* Forbid normal VMPTRLD if Enlightened version was used */
 | |
| 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (vmx->nested.current_vmptr != vmptr) {
 | |
| 		struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache;
 | |
| 		struct vmcs_hdr hdr;
 | |
| 
 | |
| 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) {
 | |
| 			/*
 | |
| 			 * Reads from an unbacked page return all 1s,
 | |
| 			 * which means that the 32 bits located at the
 | |
| 			 * given physical address won't match the required
 | |
| 			 * VMCS12_REVISION identifier.
 | |
| 			 */
 | |
| 			return nested_vmx_fail(vcpu,
 | |
| 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
 | |
| 		}
 | |
| 
 | |
| 		if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
 | |
| 						 offsetof(struct vmcs12, hdr),
 | |
| 						 sizeof(hdr))) {
 | |
| 			return nested_vmx_fail(vcpu,
 | |
| 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
 | |
| 		}
 | |
| 
 | |
| 		if (hdr.revision_id != VMCS12_REVISION ||
 | |
| 		    (hdr.shadow_vmcs &&
 | |
| 		     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
 | |
| 			return nested_vmx_fail(vcpu,
 | |
| 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
 | |
| 		}
 | |
| 
 | |
| 		nested_release_vmcs12(vcpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * Load VMCS12 from guest memory since it is not already
 | |
| 		 * cached.
 | |
| 		 */
 | |
| 		if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12,
 | |
| 					  VMCS12_SIZE)) {
 | |
| 			return nested_vmx_fail(vcpu,
 | |
| 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
 | |
| 		}
 | |
| 
 | |
| 		set_current_vmptr(vmx, vmptr);
 | |
| 	}
 | |
| 
 | |
| 	return nested_vmx_succeed(vcpu);
 | |
| }
 | |
| 
 | |
| /* Emulate the VMPTRST instruction */
 | |
| static int handle_vmptrst(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
 | |
| 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
 | |
| 	gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
 | |
| 	struct x86_exception e;
 | |
| 	gva_t gva;
 | |
| 	int r;
 | |
| 
 | |
| 	if (!nested_vmx_check_permission(vcpu))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (unlikely(evmptr_is_valid(to_vmx(vcpu)->nested.hv_evmcs_vmptr)))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
 | |
| 				true, sizeof(gpa_t), &gva))
 | |
| 		return 1;
 | |
| 	/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
 | |
| 	r = kvm_write_guest_virt_system(vcpu, gva, (void *)¤t_vmptr,
 | |
| 					sizeof(gpa_t), &e);
 | |
| 	if (r != X86EMUL_CONTINUE)
 | |
| 		return kvm_handle_memory_failure(vcpu, r, &e);
 | |
| 
 | |
| 	return nested_vmx_succeed(vcpu);
 | |
| }
 | |
| 
 | |
| /* Emulate the INVEPT instruction */
 | |
| static int handle_invept(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	u32 vmx_instruction_info, types;
 | |
| 	unsigned long type, roots_to_free;
 | |
| 	struct kvm_mmu *mmu;
 | |
| 	gva_t gva;
 | |
| 	struct x86_exception e;
 | |
| 	struct {
 | |
| 		u64 eptp, gpa;
 | |
| 	} operand;
 | |
| 	int i, r, gpr_index;
 | |
| 
 | |
| 	if (!(vmx->nested.msrs.secondary_ctls_high &
 | |
| 	      SECONDARY_EXEC_ENABLE_EPT) ||
 | |
| 	    !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
 | |
| 		kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (!nested_vmx_check_permission(vcpu))
 | |
| 		return 1;
 | |
| 
 | |
| 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
 | |
| 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
 | |
| 	type = kvm_register_read(vcpu, gpr_index);
 | |
| 
 | |
| 	types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
 | |
| 
 | |
| 	if (type >= 32 || !(types & (1 << type)))
 | |
| 		return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
 | |
| 
 | |
| 	/* According to the Intel VMX instruction reference, the memory
 | |
| 	 * operand is read even if it isn't needed (e.g., for type==global)
 | |
| 	 */
 | |
| 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
 | |
| 			vmx_instruction_info, false, sizeof(operand), &gva))
 | |
| 		return 1;
 | |
| 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
 | |
| 	if (r != X86EMUL_CONTINUE)
 | |
| 		return kvm_handle_memory_failure(vcpu, r, &e);
 | |
| 
 | |
| 	/*
 | |
| 	 * Nested EPT roots are always held through guest_mmu,
 | |
| 	 * not root_mmu.
 | |
| 	 */
 | |
| 	mmu = &vcpu->arch.guest_mmu;
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case VMX_EPT_EXTENT_CONTEXT:
 | |
| 		if (!nested_vmx_check_eptp(vcpu, operand.eptp))
 | |
| 			return nested_vmx_fail(vcpu,
 | |
| 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
 | |
| 
 | |
| 		roots_to_free = 0;
 | |
| 		if (nested_ept_root_matches(mmu->root.hpa, mmu->root.pgd,
 | |
| 					    operand.eptp))
 | |
| 			roots_to_free |= KVM_MMU_ROOT_CURRENT;
 | |
| 
 | |
| 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
 | |
| 			if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
 | |
| 						    mmu->prev_roots[i].pgd,
 | |
| 						    operand.eptp))
 | |
| 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
 | |
| 		}
 | |
| 		break;
 | |
| 	case VMX_EPT_EXTENT_GLOBAL:
 | |
| 		roots_to_free = KVM_MMU_ROOTS_ALL;
 | |
| 		break;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (roots_to_free)
 | |
| 		kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
 | |
| 
 | |
| 	return nested_vmx_succeed(vcpu);
 | |
| }
 | |
| 
 | |
| static int handle_invvpid(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	u32 vmx_instruction_info;
 | |
| 	unsigned long type, types;
 | |
| 	gva_t gva;
 | |
| 	struct x86_exception e;
 | |
| 	struct {
 | |
| 		u64 vpid;
 | |
| 		u64 gla;
 | |
| 	} operand;
 | |
| 	u16 vpid02;
 | |
| 	int r, gpr_index;
 | |
| 
 | |
| 	if (!(vmx->nested.msrs.secondary_ctls_high &
 | |
| 	      SECONDARY_EXEC_ENABLE_VPID) ||
 | |
| 			!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
 | |
| 		kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (!nested_vmx_check_permission(vcpu))
 | |
| 		return 1;
 | |
| 
 | |
| 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
 | |
| 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
 | |
| 	type = kvm_register_read(vcpu, gpr_index);
 | |
| 
 | |
| 	types = (vmx->nested.msrs.vpid_caps &
 | |
| 			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
 | |
| 
 | |
| 	if (type >= 32 || !(types & (1 << type)))
 | |
| 		return nested_vmx_fail(vcpu,
 | |
| 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
 | |
| 
 | |
| 	/* according to the intel vmx instruction reference, the memory
 | |
| 	 * operand is read even if it isn't needed (e.g., for type==global)
 | |
| 	 */
 | |
| 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
 | |
| 			vmx_instruction_info, false, sizeof(operand), &gva))
 | |
| 		return 1;
 | |
| 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
 | |
| 	if (r != X86EMUL_CONTINUE)
 | |
| 		return kvm_handle_memory_failure(vcpu, r, &e);
 | |
| 
 | |
| 	if (operand.vpid >> 16)
 | |
| 		return nested_vmx_fail(vcpu,
 | |
| 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
 | |
| 
 | |
| 	vpid02 = nested_get_vpid02(vcpu);
 | |
| 	switch (type) {
 | |
| 	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
 | |
| 		if (!operand.vpid ||
 | |
| 		    is_noncanonical_address(operand.gla, vcpu))
 | |
| 			return nested_vmx_fail(vcpu,
 | |
| 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
 | |
| 		vpid_sync_vcpu_addr(vpid02, operand.gla);
 | |
| 		break;
 | |
| 	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
 | |
| 	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
 | |
| 		if (!operand.vpid)
 | |
| 			return nested_vmx_fail(vcpu,
 | |
| 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
 | |
| 		vpid_sync_context(vpid02);
 | |
| 		break;
 | |
| 	case VMX_VPID_EXTENT_ALL_CONTEXT:
 | |
| 		vpid_sync_context(vpid02);
 | |
| 		break;
 | |
| 	default:
 | |
| 		WARN_ON_ONCE(1);
 | |
| 		return kvm_skip_emulated_instruction(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
 | |
| 	 * linear mappings for L2 (tagged with L2's VPID).  Free all guest
 | |
| 	 * roots as VPIDs are not tracked in the MMU role.
 | |
| 	 *
 | |
| 	 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
 | |
| 	 * an MMU when EPT is disabled.
 | |
| 	 *
 | |
| 	 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
 | |
| 	 */
 | |
| 	if (!enable_ept)
 | |
| 		kvm_mmu_free_guest_mode_roots(vcpu->kvm, &vcpu->arch.root_mmu);
 | |
| 
 | |
| 	return nested_vmx_succeed(vcpu);
 | |
| }
 | |
| 
 | |
| static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
 | |
| 				     struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	u32 index = kvm_rcx_read(vcpu);
 | |
| 	u64 new_eptp;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
 | |
| 		return 1;
 | |
| 	if (index >= VMFUNC_EPTP_ENTRIES)
 | |
| 		return 1;
 | |
| 
 | |
| 	if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
 | |
| 				     &new_eptp, index * 8, 8))
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the (L2) guest does a vmfunc to the currently
 | |
| 	 * active ept pointer, we don't have to do anything else
 | |
| 	 */
 | |
| 	if (vmcs12->ept_pointer != new_eptp) {
 | |
| 		if (!nested_vmx_check_eptp(vcpu, new_eptp))
 | |
| 			return 1;
 | |
| 
 | |
| 		vmcs12->ept_pointer = new_eptp;
 | |
| 		nested_ept_new_eptp(vcpu);
 | |
| 
 | |
| 		if (!nested_cpu_has_vpid(vmcs12))
 | |
| 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int handle_vmfunc(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	struct vmcs12 *vmcs12;
 | |
| 	u32 function = kvm_rax_read(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * VMFUNC is only supported for nested guests, but we always enable the
 | |
| 	 * secondary control for simplicity; for non-nested mode, fake that we
 | |
| 	 * didn't by injecting #UD.
 | |
| 	 */
 | |
| 	if (!is_guest_mode(vcpu)) {
 | |
| 		kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	vmcs12 = get_vmcs12(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
 | |
| 	 * is enabled in vmcs02 if and only if it's enabled in vmcs12.
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
 | |
| 		kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (!(vmcs12->vm_function_control & BIT_ULL(function)))
 | |
| 		goto fail;
 | |
| 
 | |
| 	switch (function) {
 | |
| 	case 0:
 | |
| 		if (nested_vmx_eptp_switching(vcpu, vmcs12))
 | |
| 			goto fail;
 | |
| 		break;
 | |
| 	default:
 | |
| 		goto fail;
 | |
| 	}
 | |
| 	return kvm_skip_emulated_instruction(vcpu);
 | |
| 
 | |
| fail:
 | |
| 	/*
 | |
| 	 * This is effectively a reflected VM-Exit, as opposed to a synthesized
 | |
| 	 * nested VM-Exit.  Pass the original exit reason, i.e. don't hardcode
 | |
| 	 * EXIT_REASON_VMFUNC as the exit reason.
 | |
| 	 */
 | |
| 	nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
 | |
| 			  vmx_get_intr_info(vcpu),
 | |
| 			  vmx_get_exit_qual(vcpu));
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return true if an IO instruction with the specified port and size should cause
 | |
|  * a VM-exit into L1.
 | |
|  */
 | |
| bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
 | |
| 				 int size)
 | |
| {
 | |
| 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 | |
| 	gpa_t bitmap, last_bitmap;
 | |
| 	u8 b;
 | |
| 
 | |
| 	last_bitmap = INVALID_GPA;
 | |
| 	b = -1;
 | |
| 
 | |
| 	while (size > 0) {
 | |
| 		if (port < 0x8000)
 | |
| 			bitmap = vmcs12->io_bitmap_a;
 | |
| 		else if (port < 0x10000)
 | |
| 			bitmap = vmcs12->io_bitmap_b;
 | |
| 		else
 | |
| 			return true;
 | |
| 		bitmap += (port & 0x7fff) / 8;
 | |
| 
 | |
| 		if (last_bitmap != bitmap)
 | |
| 			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
 | |
| 				return true;
 | |
| 		if (b & (1 << (port & 7)))
 | |
| 			return true;
 | |
| 
 | |
| 		port++;
 | |
| 		size--;
 | |
| 		last_bitmap = bitmap;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
 | |
| 				       struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	unsigned long exit_qualification;
 | |
| 	unsigned short port;
 | |
| 	int size;
 | |
| 
 | |
| 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
 | |
| 		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
 | |
| 
 | |
| 	exit_qualification = vmx_get_exit_qual(vcpu);
 | |
| 
 | |
| 	port = exit_qualification >> 16;
 | |
| 	size = (exit_qualification & 7) + 1;
 | |
| 
 | |
| 	return nested_vmx_check_io_bitmaps(vcpu, port, size);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return 1 if we should exit from L2 to L1 to handle an MSR access,
 | |
|  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
 | |
|  * disinterest in the current event (read or write a specific MSR) by using an
 | |
|  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
 | |
|  */
 | |
| static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
 | |
| 					struct vmcs12 *vmcs12,
 | |
| 					union vmx_exit_reason exit_reason)
 | |
| {
 | |
| 	u32 msr_index = kvm_rcx_read(vcpu);
 | |
| 	gpa_t bitmap;
 | |
| 
 | |
| 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
 | |
| 	 * for the four combinations of read/write and low/high MSR numbers.
 | |
| 	 * First we need to figure out which of the four to use:
 | |
| 	 */
 | |
| 	bitmap = vmcs12->msr_bitmap;
 | |
| 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
 | |
| 		bitmap += 2048;
 | |
| 	if (msr_index >= 0xc0000000) {
 | |
| 		msr_index -= 0xc0000000;
 | |
| 		bitmap += 1024;
 | |
| 	}
 | |
| 
 | |
| 	/* Then read the msr_index'th bit from this bitmap: */
 | |
| 	if (msr_index < 1024*8) {
 | |
| 		unsigned char b;
 | |
| 		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
 | |
| 			return true;
 | |
| 		return 1 & (b >> (msr_index & 7));
 | |
| 	} else
 | |
| 		return true; /* let L1 handle the wrong parameter */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
 | |
|  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
 | |
|  * intercept (via guest_host_mask etc.) the current event.
 | |
|  */
 | |
| static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
 | |
| 	struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
 | |
| 	int cr = exit_qualification & 15;
 | |
| 	int reg;
 | |
| 	unsigned long val;
 | |
| 
 | |
| 	switch ((exit_qualification >> 4) & 3) {
 | |
| 	case 0: /* mov to cr */
 | |
| 		reg = (exit_qualification >> 8) & 15;
 | |
| 		val = kvm_register_read(vcpu, reg);
 | |
| 		switch (cr) {
 | |
| 		case 0:
 | |
| 			if (vmcs12->cr0_guest_host_mask &
 | |
| 			    (val ^ vmcs12->cr0_read_shadow))
 | |
| 				return true;
 | |
| 			break;
 | |
| 		case 3:
 | |
| 			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
 | |
| 				return true;
 | |
| 			break;
 | |
| 		case 4:
 | |
| 			if (vmcs12->cr4_guest_host_mask &
 | |
| 			    (vmcs12->cr4_read_shadow ^ val))
 | |
| 				return true;
 | |
| 			break;
 | |
| 		case 8:
 | |
| 			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
 | |
| 				return true;
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	case 2: /* clts */
 | |
| 		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
 | |
| 		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
 | |
| 			return true;
 | |
| 		break;
 | |
| 	case 1: /* mov from cr */
 | |
| 		switch (cr) {
 | |
| 		case 3:
 | |
| 			if (vmcs12->cpu_based_vm_exec_control &
 | |
| 			    CPU_BASED_CR3_STORE_EXITING)
 | |
| 				return true;
 | |
| 			break;
 | |
| 		case 8:
 | |
| 			if (vmcs12->cpu_based_vm_exec_control &
 | |
| 			    CPU_BASED_CR8_STORE_EXITING)
 | |
| 				return true;
 | |
| 			break;
 | |
| 		}
 | |
| 		break;
 | |
| 	case 3: /* lmsw */
 | |
| 		/*
 | |
| 		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
 | |
| 		 * cr0. Other attempted changes are ignored, with no exit.
 | |
| 		 */
 | |
| 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
 | |
| 		if (vmcs12->cr0_guest_host_mask & 0xe &
 | |
| 		    (val ^ vmcs12->cr0_read_shadow))
 | |
| 			return true;
 | |
| 		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
 | |
| 		    !(vmcs12->cr0_read_shadow & 0x1) &&
 | |
| 		    (val & 0x1))
 | |
| 			return true;
 | |
| 		break;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
 | |
| 					  struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	u32 encls_leaf;
 | |
| 
 | |
| 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
 | |
| 	    !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
 | |
| 		return false;
 | |
| 
 | |
| 	encls_leaf = kvm_rax_read(vcpu);
 | |
| 	if (encls_leaf > 62)
 | |
| 		encls_leaf = 63;
 | |
| 	return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
 | |
| }
 | |
| 
 | |
| static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
 | |
| 	struct vmcs12 *vmcs12, gpa_t bitmap)
 | |
| {
 | |
| 	u32 vmx_instruction_info;
 | |
| 	unsigned long field;
 | |
| 	u8 b;
 | |
| 
 | |
| 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
 | |
| 		return true;
 | |
| 
 | |
| 	/* Decode instruction info and find the field to access */
 | |
| 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
 | |
| 	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
 | |
| 
 | |
| 	/* Out-of-range fields always cause a VM exit from L2 to L1 */
 | |
| 	if (field >> 15)
 | |
| 		return true;
 | |
| 
 | |
| 	if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
 | |
| 		return true;
 | |
| 
 | |
| 	return 1 & (b >> (field & 7));
 | |
| }
 | |
| 
 | |
| static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
 | |
| {
 | |
| 	u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
 | |
| 
 | |
| 	if (nested_cpu_has_mtf(vmcs12))
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * An MTF VM-exit may be injected into the guest by setting the
 | |
| 	 * interruption-type to 7 (other event) and the vector field to 0. Such
 | |
| 	 * is the case regardless of the 'monitor trap flag' VM-execution
 | |
| 	 * control.
 | |
| 	 */
 | |
| 	return entry_intr_info == (INTR_INFO_VALID_MASK
 | |
| 				   | INTR_TYPE_OTHER_EVENT);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return true if L0 wants to handle an exit from L2 regardless of whether or not
 | |
|  * L1 wants the exit.  Only call this when in is_guest_mode (L2).
 | |
|  */
 | |
| static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
 | |
| 				     union vmx_exit_reason exit_reason)
 | |
| {
 | |
| 	u32 intr_info;
 | |
| 
 | |
| 	switch ((u16)exit_reason.basic) {
 | |
| 	case EXIT_REASON_EXCEPTION_NMI:
 | |
| 		intr_info = vmx_get_intr_info(vcpu);
 | |
| 		if (is_nmi(intr_info))
 | |
| 			return true;
 | |
| 		else if (is_page_fault(intr_info))
 | |
| 			return vcpu->arch.apf.host_apf_flags ||
 | |
| 			       vmx_need_pf_intercept(vcpu);
 | |
| 		else if (is_debug(intr_info) &&
 | |
| 			 vcpu->guest_debug &
 | |
| 			 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
 | |
| 			return true;
 | |
| 		else if (is_breakpoint(intr_info) &&
 | |
| 			 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
 | |
| 			return true;
 | |
| 		else if (is_alignment_check(intr_info) &&
 | |
| 			 !vmx_guest_inject_ac(vcpu))
 | |
| 			return true;
 | |
| 		return false;
 | |
| 	case EXIT_REASON_EXTERNAL_INTERRUPT:
 | |
| 		return true;
 | |
| 	case EXIT_REASON_MCE_DURING_VMENTRY:
 | |
| 		return true;
 | |
| 	case EXIT_REASON_EPT_VIOLATION:
 | |
| 		/*
 | |
| 		 * L0 always deals with the EPT violation. If nested EPT is
 | |
| 		 * used, and the nested mmu code discovers that the address is
 | |
| 		 * missing in the guest EPT table (EPT12), the EPT violation
 | |
| 		 * will be injected with nested_ept_inject_page_fault()
 | |
| 		 */
 | |
| 		return true;
 | |
| 	case EXIT_REASON_EPT_MISCONFIG:
 | |
| 		/*
 | |
| 		 * L2 never uses directly L1's EPT, but rather L0's own EPT
 | |
| 		 * table (shadow on EPT) or a merged EPT table that L0 built
 | |
| 		 * (EPT on EPT). So any problems with the structure of the
 | |
| 		 * table is L0's fault.
 | |
| 		 */
 | |
| 		return true;
 | |
| 	case EXIT_REASON_PREEMPTION_TIMER:
 | |
| 		return true;
 | |
| 	case EXIT_REASON_PML_FULL:
 | |
| 		/*
 | |
| 		 * PML is emulated for an L1 VMM and should never be enabled in
 | |
| 		 * vmcs02, always "handle" PML_FULL by exiting to userspace.
 | |
| 		 */
 | |
| 		return true;
 | |
| 	case EXIT_REASON_VMFUNC:
 | |
| 		/* VM functions are emulated through L2->L0 vmexits. */
 | |
| 		return true;
 | |
| 	case EXIT_REASON_BUS_LOCK:
 | |
| 		/*
 | |
| 		 * At present, bus lock VM exit is never exposed to L1.
 | |
| 		 * Handle L2's bus locks in L0 directly.
 | |
| 		 */
 | |
| 		return true;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
 | |
|  * is_guest_mode (L2).
 | |
|  */
 | |
| static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
 | |
| 				     union vmx_exit_reason exit_reason)
 | |
| {
 | |
| 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 | |
| 	u32 intr_info;
 | |
| 
 | |
| 	switch ((u16)exit_reason.basic) {
 | |
| 	case EXIT_REASON_EXCEPTION_NMI:
 | |
| 		intr_info = vmx_get_intr_info(vcpu);
 | |
| 		if (is_nmi(intr_info))
 | |
| 			return true;
 | |
| 		else if (is_page_fault(intr_info))
 | |
| 			return true;
 | |
| 		return vmcs12->exception_bitmap &
 | |
| 				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
 | |
| 	case EXIT_REASON_EXTERNAL_INTERRUPT:
 | |
| 		return nested_exit_on_intr(vcpu);
 | |
| 	case EXIT_REASON_TRIPLE_FAULT:
 | |
| 		return true;
 | |
| 	case EXIT_REASON_INTERRUPT_WINDOW:
 | |
| 		return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
 | |
| 	case EXIT_REASON_NMI_WINDOW:
 | |
| 		return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
 | |
| 	case EXIT_REASON_TASK_SWITCH:
 | |
| 		return true;
 | |
| 	case EXIT_REASON_CPUID:
 | |
| 		return true;
 | |
| 	case EXIT_REASON_HLT:
 | |
| 		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
 | |
| 	case EXIT_REASON_INVD:
 | |
| 		return true;
 | |
| 	case EXIT_REASON_INVLPG:
 | |
| 		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
 | |
| 	case EXIT_REASON_RDPMC:
 | |
| 		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
 | |
| 	case EXIT_REASON_RDRAND:
 | |
| 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
 | |
| 	case EXIT_REASON_RDSEED:
 | |
| 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
 | |
| 	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
 | |
| 		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
 | |
| 	case EXIT_REASON_VMREAD:
 | |
| 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
 | |
| 			vmcs12->vmread_bitmap);
 | |
| 	case EXIT_REASON_VMWRITE:
 | |
| 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
 | |
| 			vmcs12->vmwrite_bitmap);
 | |
| 	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
 | |
| 	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
 | |
| 	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
 | |
| 	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
 | |
| 	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
 | |
| 		/*
 | |
| 		 * VMX instructions trap unconditionally. This allows L1 to
 | |
| 		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
 | |
| 		 */
 | |
| 		return true;
 | |
| 	case EXIT_REASON_CR_ACCESS:
 | |
| 		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
 | |
| 	case EXIT_REASON_DR_ACCESS:
 | |
| 		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
 | |
| 	case EXIT_REASON_IO_INSTRUCTION:
 | |
| 		return nested_vmx_exit_handled_io(vcpu, vmcs12);
 | |
| 	case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
 | |
| 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
 | |
| 	case EXIT_REASON_MSR_READ:
 | |
| 	case EXIT_REASON_MSR_WRITE:
 | |
| 		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
 | |
| 	case EXIT_REASON_INVALID_STATE:
 | |
| 		return true;
 | |
| 	case EXIT_REASON_MWAIT_INSTRUCTION:
 | |
| 		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
 | |
| 	case EXIT_REASON_MONITOR_TRAP_FLAG:
 | |
| 		return nested_vmx_exit_handled_mtf(vmcs12);
 | |
| 	case EXIT_REASON_MONITOR_INSTRUCTION:
 | |
| 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
 | |
| 	case EXIT_REASON_PAUSE_INSTRUCTION:
 | |
| 		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
 | |
| 			nested_cpu_has2(vmcs12,
 | |
| 				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
 | |
| 	case EXIT_REASON_MCE_DURING_VMENTRY:
 | |
| 		return true;
 | |
| 	case EXIT_REASON_TPR_BELOW_THRESHOLD:
 | |
| 		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
 | |
| 	case EXIT_REASON_APIC_ACCESS:
 | |
| 	case EXIT_REASON_APIC_WRITE:
 | |
| 	case EXIT_REASON_EOI_INDUCED:
 | |
| 		/*
 | |
| 		 * The controls for "virtualize APIC accesses," "APIC-
 | |
| 		 * register virtualization," and "virtual-interrupt
 | |
| 		 * delivery" only come from vmcs12.
 | |
| 		 */
 | |
| 		return true;
 | |
| 	case EXIT_REASON_INVPCID:
 | |
| 		return
 | |
| 			nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
 | |
| 			nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
 | |
| 	case EXIT_REASON_WBINVD:
 | |
| 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
 | |
| 	case EXIT_REASON_XSETBV:
 | |
| 		return true;
 | |
| 	case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
 | |
| 		/*
 | |
| 		 * This should never happen, since it is not possible to
 | |
| 		 * set XSS to a non-zero value---neither in L1 nor in L2.
 | |
| 		 * If if it were, XSS would have to be checked against
 | |
| 		 * the XSS exit bitmap in vmcs12.
 | |
| 		 */
 | |
| 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
 | |
| 	case EXIT_REASON_UMWAIT:
 | |
| 	case EXIT_REASON_TPAUSE:
 | |
| 		return nested_cpu_has2(vmcs12,
 | |
| 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
 | |
| 	case EXIT_REASON_ENCLS:
 | |
| 		return nested_vmx_exit_handled_encls(vcpu, vmcs12);
 | |
| 	default:
 | |
| 		return true;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
 | |
|  * reflected into L1.
 | |
|  */
 | |
| bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	union vmx_exit_reason exit_reason = vmx->exit_reason;
 | |
| 	unsigned long exit_qual;
 | |
| 	u32 exit_intr_info;
 | |
| 
 | |
| 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
 | |
| 
 | |
| 	/*
 | |
| 	 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
 | |
| 	 * has already loaded L2's state.
 | |
| 	 */
 | |
| 	if (unlikely(vmx->fail)) {
 | |
| 		trace_kvm_nested_vmenter_failed(
 | |
| 			"hardware VM-instruction error: ",
 | |
| 			vmcs_read32(VM_INSTRUCTION_ERROR));
 | |
| 		exit_intr_info = 0;
 | |
| 		exit_qual = 0;
 | |
| 		goto reflect_vmexit;
 | |
| 	}
 | |
| 
 | |
| 	trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX);
 | |
| 
 | |
| 	/* If L0 (KVM) wants the exit, it trumps L1's desires. */
 | |
| 	if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
 | |
| 		return false;
 | |
| 
 | |
| 	/* If L1 doesn't want the exit, handle it in L0. */
 | |
| 	if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
 | |
| 	 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
 | |
| 	 * need to be synthesized by querying the in-kernel LAPIC, but external
 | |
| 	 * interrupts are never reflected to L1 so it's a non-issue.
 | |
| 	 */
 | |
| 	exit_intr_info = vmx_get_intr_info(vcpu);
 | |
| 	if (is_exception_with_error_code(exit_intr_info)) {
 | |
| 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
 | |
| 
 | |
| 		vmcs12->vm_exit_intr_error_code =
 | |
| 			vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
 | |
| 	}
 | |
| 	exit_qual = vmx_get_exit_qual(vcpu);
 | |
| 
 | |
| reflect_vmexit:
 | |
| 	nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
 | |
| 				struct kvm_nested_state __user *user_kvm_nested_state,
 | |
| 				u32 user_data_size)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx;
 | |
| 	struct vmcs12 *vmcs12;
 | |
| 	struct kvm_nested_state kvm_state = {
 | |
| 		.flags = 0,
 | |
| 		.format = KVM_STATE_NESTED_FORMAT_VMX,
 | |
| 		.size = sizeof(kvm_state),
 | |
| 		.hdr.vmx.flags = 0,
 | |
| 		.hdr.vmx.vmxon_pa = INVALID_GPA,
 | |
| 		.hdr.vmx.vmcs12_pa = INVALID_GPA,
 | |
| 		.hdr.vmx.preemption_timer_deadline = 0,
 | |
| 	};
 | |
| 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
 | |
| 		&user_kvm_nested_state->data.vmx[0];
 | |
| 
 | |
| 	if (!vcpu)
 | |
| 		return kvm_state.size + sizeof(*user_vmx_nested_state);
 | |
| 
 | |
| 	vmx = to_vmx(vcpu);
 | |
| 	vmcs12 = get_vmcs12(vcpu);
 | |
| 
 | |
| 	if (nested_vmx_allowed(vcpu) &&
 | |
| 	    (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
 | |
| 		kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
 | |
| 		kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
 | |
| 
 | |
| 		if (vmx_has_valid_vmcs12(vcpu)) {
 | |
| 			kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
 | |
| 
 | |
| 			/* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
 | |
| 			if (vmx->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
 | |
| 				kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
 | |
| 
 | |
| 			if (is_guest_mode(vcpu) &&
 | |
| 			    nested_cpu_has_shadow_vmcs(vmcs12) &&
 | |
| 			    vmcs12->vmcs_link_pointer != INVALID_GPA)
 | |
| 				kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
 | |
| 		}
 | |
| 
 | |
| 		if (vmx->nested.smm.vmxon)
 | |
| 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
 | |
| 
 | |
| 		if (vmx->nested.smm.guest_mode)
 | |
| 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
 | |
| 
 | |
| 		if (is_guest_mode(vcpu)) {
 | |
| 			kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
 | |
| 
 | |
| 			if (vmx->nested.nested_run_pending)
 | |
| 				kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
 | |
| 
 | |
| 			if (vmx->nested.mtf_pending)
 | |
| 				kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
 | |
| 
 | |
| 			if (nested_cpu_has_preemption_timer(vmcs12) &&
 | |
| 			    vmx->nested.has_preemption_timer_deadline) {
 | |
| 				kvm_state.hdr.vmx.flags |=
 | |
| 					KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
 | |
| 				kvm_state.hdr.vmx.preemption_timer_deadline =
 | |
| 					vmx->nested.preemption_timer_deadline;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (user_data_size < kvm_state.size)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (!vmx_has_valid_vmcs12(vcpu))
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * When running L2, the authoritative vmcs12 state is in the
 | |
| 	 * vmcs02. When running L1, the authoritative vmcs12 state is
 | |
| 	 * in the shadow or enlightened vmcs linked to vmcs01, unless
 | |
| 	 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
 | |
| 	 * vmcs12 state is in the vmcs12 already.
 | |
| 	 */
 | |
| 	if (is_guest_mode(vcpu)) {
 | |
| 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
 | |
| 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
 | |
| 	} else  {
 | |
| 		copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
 | |
| 		if (!vmx->nested.need_vmcs12_to_shadow_sync) {
 | |
| 			if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
 | |
| 				/*
 | |
| 				 * L1 hypervisor is not obliged to keep eVMCS
 | |
| 				 * clean fields data always up-to-date while
 | |
| 				 * not in guest mode, 'hv_clean_fields' is only
 | |
| 				 * supposed to be actual upon vmentry so we need
 | |
| 				 * to ignore it here and do full copy.
 | |
| 				 */
 | |
| 				copy_enlightened_to_vmcs12(vmx, 0);
 | |
| 			else if (enable_shadow_vmcs)
 | |
| 				copy_shadow_to_vmcs12(vmx);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
 | |
| 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
 | |
| 
 | |
| 	/*
 | |
| 	 * Copy over the full allocated size of vmcs12 rather than just the size
 | |
| 	 * of the struct.
 | |
| 	 */
 | |
| 	if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
 | |
| 	    vmcs12->vmcs_link_pointer != INVALID_GPA) {
 | |
| 		if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
 | |
| 				 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
 | |
| 			return -EFAULT;
 | |
| 	}
 | |
| out:
 | |
| 	return kvm_state.size;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
 | |
|  */
 | |
| void vmx_leave_nested(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (is_guest_mode(vcpu)) {
 | |
| 		to_vmx(vcpu)->nested.nested_run_pending = 0;
 | |
| 		nested_vmx_vmexit(vcpu, -1, 0, 0);
 | |
| 	}
 | |
| 	free_nested(vcpu);
 | |
| }
 | |
| 
 | |
| static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
 | |
| 				struct kvm_nested_state __user *user_kvm_nested_state,
 | |
| 				struct kvm_nested_state *kvm_state)
 | |
| {
 | |
| 	struct vcpu_vmx *vmx = to_vmx(vcpu);
 | |
| 	struct vmcs12 *vmcs12;
 | |
| 	enum vm_entry_failure_code ignored;
 | |
| 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
 | |
| 		&user_kvm_nested_state->data.vmx[0];
 | |
| 	int ret;
 | |
| 
 | |
| 	if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) {
 | |
| 		if (kvm_state->hdr.vmx.smm.flags)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		/*
 | |
| 		 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
 | |
| 		 * enable eVMCS capability on vCPU. However, since then
 | |
| 		 * code was changed such that flag signals vmcs12 should
 | |
| 		 * be copied into eVMCS in guest memory.
 | |
| 		 *
 | |
| 		 * To preserve backwards compatability, allow user
 | |
| 		 * to set this flag even when there is no VMXON region.
 | |
| 		 */
 | |
| 		if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
 | |
| 			return -EINVAL;
 | |
| 	} else {
 | |
| 		if (!nested_vmx_allowed(vcpu))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
 | |
| 	    (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (kvm_state->hdr.vmx.smm.flags &
 | |
| 	    ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * SMM temporarily disables VMX, so we cannot be in guest mode,
 | |
| 	 * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
 | |
| 	 * must be zero.
 | |
| 	 */
 | |
| 	if (is_smm(vcpu) ?
 | |
| 		(kvm_state->flags &
 | |
| 		 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
 | |
| 		: kvm_state->hdr.vmx.smm.flags)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
 | |
| 	    !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
 | |
| 		(!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 	vmx_leave_nested(vcpu);
 | |
| 
 | |
| 	if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA)
 | |
| 		return 0;
 | |
| 
 | |
| 	vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
 | |
| 	ret = enter_vmx_operation(vcpu);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/* Empty 'VMXON' state is permitted if no VMCS loaded */
 | |
| 	if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
 | |
| 		/* See vmx_has_valid_vmcs12.  */
 | |
| 		if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
 | |
| 		    (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
 | |
| 		    (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA))
 | |
| 			return -EINVAL;
 | |
| 		else
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) {
 | |
| 		if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
 | |
| 		    !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
 | |
| 	} else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
 | |
| 		/*
 | |
| 		 * nested_vmx_handle_enlightened_vmptrld() cannot be called
 | |
| 		 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
 | |
| 		 * restored yet. EVMCS will be mapped from
 | |
| 		 * nested_get_vmcs12_pages().
 | |
| 		 */
 | |
| 		vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
 | |
| 		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
 | |
| 	} else {
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
 | |
| 		vmx->nested.smm.vmxon = true;
 | |
| 		vmx->nested.vmxon = false;
 | |
| 
 | |
| 		if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
 | |
| 			vmx->nested.smm.guest_mode = true;
 | |
| 	}
 | |
| 
 | |
| 	vmcs12 = get_vmcs12(vcpu);
 | |
| 	if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (vmcs12->hdr.revision_id != VMCS12_REVISION)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
 | |
| 		return 0;
 | |
| 
 | |
| 	vmx->nested.nested_run_pending =
 | |
| 		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
 | |
| 
 | |
| 	vmx->nested.mtf_pending =
 | |
| 		!!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
 | |
| 
 | |
| 	ret = -EINVAL;
 | |
| 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
 | |
| 	    vmcs12->vmcs_link_pointer != INVALID_GPA) {
 | |
| 		struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
 | |
| 
 | |
| 		if (kvm_state->size <
 | |
| 		    sizeof(*kvm_state) +
 | |
| 		    sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
 | |
| 			goto error_guest_mode;
 | |
| 
 | |
| 		if (copy_from_user(shadow_vmcs12,
 | |
| 				   user_vmx_nested_state->shadow_vmcs12,
 | |
| 				   sizeof(*shadow_vmcs12))) {
 | |
| 			ret = -EFAULT;
 | |
| 			goto error_guest_mode;
 | |
| 		}
 | |
| 
 | |
| 		if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
 | |
| 		    !shadow_vmcs12->hdr.shadow_vmcs)
 | |
| 			goto error_guest_mode;
 | |
| 	}
 | |
| 
 | |
| 	vmx->nested.has_preemption_timer_deadline = false;
 | |
| 	if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
 | |
| 		vmx->nested.has_preemption_timer_deadline = true;
 | |
| 		vmx->nested.preemption_timer_deadline =
 | |
| 			kvm_state->hdr.vmx.preemption_timer_deadline;
 | |
| 	}
 | |
| 
 | |
| 	if (nested_vmx_check_controls(vcpu, vmcs12) ||
 | |
| 	    nested_vmx_check_host_state(vcpu, vmcs12) ||
 | |
| 	    nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
 | |
| 		goto error_guest_mode;
 | |
| 
 | |
| 	vmx->nested.dirty_vmcs12 = true;
 | |
| 	vmx->nested.force_msr_bitmap_recalc = true;
 | |
| 	ret = nested_vmx_enter_non_root_mode(vcpu, false);
 | |
| 	if (ret)
 | |
| 		goto error_guest_mode;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| error_guest_mode:
 | |
| 	vmx->nested.nested_run_pending = 0;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void nested_vmx_set_vmcs_shadowing_bitmap(void)
 | |
| {
 | |
| 	if (enable_shadow_vmcs) {
 | |
| 		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
 | |
| 		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6.  Undo
 | |
|  * that madness to get the encoding for comparison.
 | |
|  */
 | |
| #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
 | |
| 
 | |
| static u64 nested_vmx_calc_vmcs_enum_msr(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * Note these are the so called "index" of the VMCS field encoding, not
 | |
| 	 * the index into vmcs12.
 | |
| 	 */
 | |
| 	unsigned int max_idx, idx;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
 | |
| 	 * vmcs12, regardless of whether or not the associated feature is
 | |
| 	 * exposed to L1.  Simply find the field with the highest index.
 | |
| 	 */
 | |
| 	max_idx = 0;
 | |
| 	for (i = 0; i < nr_vmcs12_fields; i++) {
 | |
| 		/* The vmcs12 table is very, very sparsely populated. */
 | |
| 		if (!vmcs12_field_offsets[i])
 | |
| 			continue;
 | |
| 
 | |
| 		idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
 | |
| 		if (idx > max_idx)
 | |
| 			max_idx = idx;
 | |
| 	}
 | |
| 
 | |
| 	return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
 | |
|  * returned for the various VMX controls MSRs when nested VMX is enabled.
 | |
|  * The same values should also be used to verify that vmcs12 control fields are
 | |
|  * valid during nested entry from L1 to L2.
 | |
|  * Each of these control msrs has a low and high 32-bit half: A low bit is on
 | |
|  * if the corresponding bit in the (32-bit) control field *must* be on, and a
 | |
|  * bit in the high half is on if the corresponding bit in the control field
 | |
|  * may be on. See also vmx_control_verify().
 | |
|  */
 | |
| void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
 | |
| {
 | |
| 	/*
 | |
| 	 * Note that as a general rule, the high half of the MSRs (bits in
 | |
| 	 * the control fields which may be 1) should be initialized by the
 | |
| 	 * intersection of the underlying hardware's MSR (i.e., features which
 | |
| 	 * can be supported) and the list of features we want to expose -
 | |
| 	 * because they are known to be properly supported in our code.
 | |
| 	 * Also, usually, the low half of the MSRs (bits which must be 1) can
 | |
| 	 * be set to 0, meaning that L1 may turn off any of these bits. The
 | |
| 	 * reason is that if one of these bits is necessary, it will appear
 | |
| 	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
 | |
| 	 * fields of vmcs01 and vmcs02, will turn these bits off - and
 | |
| 	 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
 | |
| 	 * These rules have exceptions below.
 | |
| 	 */
 | |
| 
 | |
| 	/* pin-based controls */
 | |
| 	rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
 | |
| 		msrs->pinbased_ctls_low,
 | |
| 		msrs->pinbased_ctls_high);
 | |
| 	msrs->pinbased_ctls_low |=
 | |
| 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
 | |
| 	msrs->pinbased_ctls_high &=
 | |
| 		PIN_BASED_EXT_INTR_MASK |
 | |
| 		PIN_BASED_NMI_EXITING |
 | |
| 		PIN_BASED_VIRTUAL_NMIS |
 | |
| 		(enable_apicv ? PIN_BASED_POSTED_INTR : 0);
 | |
| 	msrs->pinbased_ctls_high |=
 | |
| 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
 | |
| 		PIN_BASED_VMX_PREEMPTION_TIMER;
 | |
| 
 | |
| 	/* exit controls */
 | |
| 	rdmsr(MSR_IA32_VMX_EXIT_CTLS,
 | |
| 		msrs->exit_ctls_low,
 | |
| 		msrs->exit_ctls_high);
 | |
| 	msrs->exit_ctls_low =
 | |
| 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
 | |
| 
 | |
| 	msrs->exit_ctls_high &=
 | |
| #ifdef CONFIG_X86_64
 | |
| 		VM_EXIT_HOST_ADDR_SPACE_SIZE |
 | |
| #endif
 | |
| 		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
 | |
| 		VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
 | |
| 	msrs->exit_ctls_high |=
 | |
| 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
 | |
| 		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
 | |
| 		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
 | |
| 
 | |
| 	/* We support free control of debug control saving. */
 | |
| 	msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
 | |
| 
 | |
| 	/* entry controls */
 | |
| 	rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
 | |
| 		msrs->entry_ctls_low,
 | |
| 		msrs->entry_ctls_high);
 | |
| 	msrs->entry_ctls_low =
 | |
| 		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
 | |
| 	msrs->entry_ctls_high &=
 | |
| #ifdef CONFIG_X86_64
 | |
| 		VM_ENTRY_IA32E_MODE |
 | |
| #endif
 | |
| 		VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS |
 | |
| 		VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
 | |
| 	msrs->entry_ctls_high |=
 | |
| 		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
 | |
| 
 | |
| 	/* We support free control of debug control loading. */
 | |
| 	msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
 | |
| 
 | |
| 	/* cpu-based controls */
 | |
| 	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
 | |
| 		msrs->procbased_ctls_low,
 | |
| 		msrs->procbased_ctls_high);
 | |
| 	msrs->procbased_ctls_low =
 | |
| 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
 | |
| 	msrs->procbased_ctls_high &=
 | |
| 		CPU_BASED_INTR_WINDOW_EXITING |
 | |
| 		CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
 | |
| 		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
 | |
| 		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
 | |
| 		CPU_BASED_CR3_STORE_EXITING |
 | |
| #ifdef CONFIG_X86_64
 | |
| 		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
 | |
| #endif
 | |
| 		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
 | |
| 		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
 | |
| 		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
 | |
| 		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
 | |
| 		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
 | |
| 	/*
 | |
| 	 * We can allow some features even when not supported by the
 | |
| 	 * hardware. For example, L1 can specify an MSR bitmap - and we
 | |
| 	 * can use it to avoid exits to L1 - even when L0 runs L2
 | |
| 	 * without MSR bitmaps.
 | |
| 	 */
 | |
| 	msrs->procbased_ctls_high |=
 | |
| 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
 | |
| 		CPU_BASED_USE_MSR_BITMAPS;
 | |
| 
 | |
| 	/* We support free control of CR3 access interception. */
 | |
| 	msrs->procbased_ctls_low &=
 | |
| 		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
 | |
| 
 | |
| 	/*
 | |
| 	 * secondary cpu-based controls.  Do not include those that
 | |
| 	 * depend on CPUID bits, they are added later by
 | |
| 	 * vmx_vcpu_after_set_cpuid.
 | |
| 	 */
 | |
| 	if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
 | |
| 		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
 | |
| 		      msrs->secondary_ctls_low,
 | |
| 		      msrs->secondary_ctls_high);
 | |
| 
 | |
| 	msrs->secondary_ctls_low = 0;
 | |
| 	msrs->secondary_ctls_high &=
 | |
| 		SECONDARY_EXEC_DESC |
 | |
| 		SECONDARY_EXEC_ENABLE_RDTSCP |
 | |
| 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
 | |
| 		SECONDARY_EXEC_WBINVD_EXITING |
 | |
| 		SECONDARY_EXEC_APIC_REGISTER_VIRT |
 | |
| 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
 | |
| 		SECONDARY_EXEC_RDRAND_EXITING |
 | |
| 		SECONDARY_EXEC_ENABLE_INVPCID |
 | |
| 		SECONDARY_EXEC_RDSEED_EXITING |
 | |
| 		SECONDARY_EXEC_XSAVES |
 | |
| 		SECONDARY_EXEC_TSC_SCALING;
 | |
| 
 | |
| 	/*
 | |
| 	 * We can emulate "VMCS shadowing," even if the hardware
 | |
| 	 * doesn't support it.
 | |
| 	 */
 | |
| 	msrs->secondary_ctls_high |=
 | |
| 		SECONDARY_EXEC_SHADOW_VMCS;
 | |
| 
 | |
| 	if (enable_ept) {
 | |
| 		/* nested EPT: emulate EPT also to L1 */
 | |
| 		msrs->secondary_ctls_high |=
 | |
| 			SECONDARY_EXEC_ENABLE_EPT;
 | |
| 		msrs->ept_caps =
 | |
| 			VMX_EPT_PAGE_WALK_4_BIT |
 | |
| 			VMX_EPT_PAGE_WALK_5_BIT |
 | |
| 			VMX_EPTP_WB_BIT |
 | |
| 			VMX_EPT_INVEPT_BIT |
 | |
| 			VMX_EPT_EXECUTE_ONLY_BIT;
 | |
| 
 | |
| 		msrs->ept_caps &= ept_caps;
 | |
| 		msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
 | |
| 			VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
 | |
| 			VMX_EPT_1GB_PAGE_BIT;
 | |
| 		if (enable_ept_ad_bits) {
 | |
| 			msrs->secondary_ctls_high |=
 | |
| 				SECONDARY_EXEC_ENABLE_PML;
 | |
| 			msrs->ept_caps |= VMX_EPT_AD_BIT;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (cpu_has_vmx_vmfunc()) {
 | |
| 		msrs->secondary_ctls_high |=
 | |
| 			SECONDARY_EXEC_ENABLE_VMFUNC;
 | |
| 		/*
 | |
| 		 * Advertise EPTP switching unconditionally
 | |
| 		 * since we emulate it
 | |
| 		 */
 | |
| 		if (enable_ept)
 | |
| 			msrs->vmfunc_controls =
 | |
| 				VMX_VMFUNC_EPTP_SWITCHING;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Old versions of KVM use the single-context version without
 | |
| 	 * checking for support, so declare that it is supported even
 | |
| 	 * though it is treated as global context.  The alternative is
 | |
| 	 * not failing the single-context invvpid, and it is worse.
 | |
| 	 */
 | |
| 	if (enable_vpid) {
 | |
| 		msrs->secondary_ctls_high |=
 | |
| 			SECONDARY_EXEC_ENABLE_VPID;
 | |
| 		msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
 | |
| 			VMX_VPID_EXTENT_SUPPORTED_MASK;
 | |
| 	}
 | |
| 
 | |
| 	if (enable_unrestricted_guest)
 | |
| 		msrs->secondary_ctls_high |=
 | |
| 			SECONDARY_EXEC_UNRESTRICTED_GUEST;
 | |
| 
 | |
| 	if (flexpriority_enabled)
 | |
| 		msrs->secondary_ctls_high |=
 | |
| 			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
 | |
| 
 | |
| 	if (enable_sgx)
 | |
| 		msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
 | |
| 
 | |
| 	/* miscellaneous data */
 | |
| 	rdmsr(MSR_IA32_VMX_MISC,
 | |
| 		msrs->misc_low,
 | |
| 		msrs->misc_high);
 | |
| 	msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
 | |
| 	msrs->misc_low |=
 | |
| 		MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
 | |
| 		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
 | |
| 		VMX_MISC_ACTIVITY_HLT |
 | |
| 		VMX_MISC_ACTIVITY_WAIT_SIPI;
 | |
| 	msrs->misc_high = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * This MSR reports some information about VMX support. We
 | |
| 	 * should return information about the VMX we emulate for the
 | |
| 	 * guest, and the VMCS structure we give it - not about the
 | |
| 	 * VMX support of the underlying hardware.
 | |
| 	 */
 | |
| 	msrs->basic =
 | |
| 		VMCS12_REVISION |
 | |
| 		VMX_BASIC_TRUE_CTLS |
 | |
| 		((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
 | |
| 		(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
 | |
| 
 | |
| 	if (cpu_has_vmx_basic_inout())
 | |
| 		msrs->basic |= VMX_BASIC_INOUT;
 | |
| 
 | |
| 	/*
 | |
| 	 * These MSRs specify bits which the guest must keep fixed on
 | |
| 	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
 | |
| 	 * We picked the standard core2 setting.
 | |
| 	 */
 | |
| #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
 | |
| #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
 | |
| 	msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
 | |
| 	msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
 | |
| 
 | |
| 	/* These MSRs specify bits which the guest must keep fixed off. */
 | |
| 	rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
 | |
| 	rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
 | |
| 
 | |
| 	msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
 | |
| }
 | |
| 
 | |
| void nested_vmx_hardware_unsetup(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (enable_shadow_vmcs) {
 | |
| 		for (i = 0; i < VMX_BITMAP_NR; i++)
 | |
| 			free_page((unsigned long)vmx_bitmap[i]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!cpu_has_vmx_shadow_vmcs())
 | |
| 		enable_shadow_vmcs = 0;
 | |
| 
 | |
| 	if (nested == -1) {
 | |
| 		nested = enable_ept && enable_shadow_vmcs;
 | |
| 		if (!nested)
 | |
| 			return 0;
 | |
| 	}
 | |
| 	if (!enable_ept || !enable_shadow_vmcs)
 | |
|                 pr_crit("Processors without extended page tables or support for shadow VMCS are not recommended by Red Hat for nested virtualization.\n");
 | |
| 
 | |
| 	if (enable_shadow_vmcs) {
 | |
| 		for (i = 0; i < VMX_BITMAP_NR; i++) {
 | |
| 			/*
 | |
| 			 * The vmx_bitmap is not tied to a VM and so should
 | |
| 			 * not be charged to a memcg.
 | |
| 			 */
 | |
| 			vmx_bitmap[i] = (unsigned long *)
 | |
| 				__get_free_page(GFP_KERNEL);
 | |
| 			if (!vmx_bitmap[i]) {
 | |
| 				nested_vmx_hardware_unsetup();
 | |
| 				return -ENOMEM;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		init_vmcs_shadow_fields();
 | |
| 	}
 | |
| 
 | |
| 	nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
 | |
| 				   vmx_capability.ept);
 | |
| 
 | |
| 	exit_handlers[EXIT_REASON_VMCLEAR]	= handle_vmclear;
 | |
| 	exit_handlers[EXIT_REASON_VMLAUNCH]	= handle_vmlaunch;
 | |
| 	exit_handlers[EXIT_REASON_VMPTRLD]	= handle_vmptrld;
 | |
| 	exit_handlers[EXIT_REASON_VMPTRST]	= handle_vmptrst;
 | |
| 	exit_handlers[EXIT_REASON_VMREAD]	= handle_vmread;
 | |
| 	exit_handlers[EXIT_REASON_VMRESUME]	= handle_vmresume;
 | |
| 	exit_handlers[EXIT_REASON_VMWRITE]	= handle_vmwrite;
 | |
| 	exit_handlers[EXIT_REASON_VMOFF]	= handle_vmoff;
 | |
| 	exit_handlers[EXIT_REASON_VMON]		= handle_vmon;
 | |
| 	exit_handlers[EXIT_REASON_INVEPT]	= handle_invept;
 | |
| 	exit_handlers[EXIT_REASON_INVVPID]	= handle_invvpid;
 | |
| 	exit_handlers[EXIT_REASON_VMFUNC]	= handle_vmfunc;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct kvm_x86_nested_ops vmx_nested_ops = {
 | |
| 	.leave_nested = vmx_leave_nested,
 | |
| 	.check_events = vmx_check_nested_events,
 | |
| 	.hv_timer_pending = nested_vmx_preemption_timer_pending,
 | |
| 	.triple_fault = nested_vmx_triple_fault,
 | |
| 	.get_state = vmx_get_nested_state,
 | |
| 	.set_state = vmx_set_nested_state,
 | |
| 	.get_nested_state_pages = vmx_get_nested_state_pages,
 | |
| 	.write_log_dirty = nested_vmx_write_pml_buffer,
 | |
| 	.enable_evmcs = nested_enable_evmcs,
 | |
| 	.get_evmcs_version = nested_get_evmcs_version,
 | |
| };
 |