5071 lines
		
	
	
		
			137 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			5071 lines
		
	
	
		
			137 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #define pr_fmt(fmt) "SVM: " fmt
 | |
| 
 | |
| #include <linux/kvm_host.h>
 | |
| 
 | |
| #include "irq.h"
 | |
| #include "mmu.h"
 | |
| #include "kvm_cache_regs.h"
 | |
| #include "x86.h"
 | |
| #include "smm.h"
 | |
| #include "cpuid.h"
 | |
| #include "pmu.h"
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/mod_devicetable.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/amd-iommu.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/trace_events.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/hashtable.h>
 | |
| #include <linux/objtool.h>
 | |
| #include <linux/psp-sev.h>
 | |
| #include <linux/file.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/rwsem.h>
 | |
| #include <linux/cc_platform.h>
 | |
| #include <linux/smp.h>
 | |
| 
 | |
| #include <asm/apic.h>
 | |
| #include <asm/perf_event.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/desc.h>
 | |
| #include <asm/debugreg.h>
 | |
| #include <asm/kvm_para.h>
 | |
| #include <asm/irq_remapping.h>
 | |
| #include <asm/spec-ctrl.h>
 | |
| #include <asm/cpu_device_id.h>
 | |
| #include <asm/traps.h>
 | |
| #include <asm/fpu/api.h>
 | |
| 
 | |
| #include <asm/virtext.h>
 | |
| 
 | |
| #include <trace/events/ipi.h>
 | |
| 
 | |
| #include "trace.h"
 | |
| 
 | |
| #include "svm.h"
 | |
| #include "svm_ops.h"
 | |
| 
 | |
| #include "kvm_onhyperv.h"
 | |
| #include "svm_onhyperv.h"
 | |
| 
 | |
| MODULE_AUTHOR("Qumranet");
 | |
| MODULE_LICENSE("GPL");
 | |
| 
 | |
| #ifdef MODULE
 | |
| static const struct x86_cpu_id svm_cpu_id[] = {
 | |
| 	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
 | |
| 	{}
 | |
| };
 | |
| MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
 | |
| #endif
 | |
| 
 | |
| #define SEG_TYPE_LDT 2
 | |
| #define SEG_TYPE_BUSY_TSS16 3
 | |
| 
 | |
| static bool erratum_383_found __read_mostly;
 | |
| 
 | |
| u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
 | |
| 
 | |
| /*
 | |
|  * Set osvw_len to higher value when updated Revision Guides
 | |
|  * are published and we know what the new status bits are
 | |
|  */
 | |
| static uint64_t osvw_len = 4, osvw_status;
 | |
| 
 | |
| static DEFINE_PER_CPU(u64, current_tsc_ratio);
 | |
| 
 | |
| #define X2APIC_MSR(x)	(APIC_BASE_MSR + (x >> 4))
 | |
| 
 | |
| static const struct svm_direct_access_msrs {
 | |
| 	u32 index;   /* Index of the MSR */
 | |
| 	bool always; /* True if intercept is initially cleared */
 | |
| } direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
 | |
| 	{ .index = MSR_STAR,				.always = true  },
 | |
| 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
 | |
| 	{ .index = MSR_IA32_SYSENTER_EIP,		.always = false },
 | |
| 	{ .index = MSR_IA32_SYSENTER_ESP,		.always = false },
 | |
| #ifdef CONFIG_X86_64
 | |
| 	{ .index = MSR_GS_BASE,				.always = true  },
 | |
| 	{ .index = MSR_FS_BASE,				.always = true  },
 | |
| 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
 | |
| 	{ .index = MSR_LSTAR,				.always = true  },
 | |
| 	{ .index = MSR_CSTAR,				.always = true  },
 | |
| 	{ .index = MSR_SYSCALL_MASK,			.always = true  },
 | |
| #endif
 | |
| 	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
 | |
| 	{ .index = MSR_IA32_PRED_CMD,			.always = false },
 | |
| 	{ .index = MSR_IA32_FLUSH_CMD,			.always = false },
 | |
| 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
 | |
| 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
 | |
| 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
 | |
| 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
 | |
| 	{ .index = MSR_EFER,				.always = false },
 | |
| 	{ .index = MSR_IA32_CR_PAT,			.always = false },
 | |
| 	{ .index = MSR_AMD64_SEV_ES_GHCB,		.always = true  },
 | |
| 	{ .index = X2APIC_MSR(APIC_ID),			.always = false },
 | |
| 	{ .index = X2APIC_MSR(APIC_LVR),		.always = false },
 | |
| 	{ .index = X2APIC_MSR(APIC_TASKPRI),		.always = false },
 | |
| 	{ .index = X2APIC_MSR(APIC_ARBPRI),		.always = false },
 | |
| 	{ .index = X2APIC_MSR(APIC_PROCPRI),		.always = false },
 | |
| 	{ .index = X2APIC_MSR(APIC_EOI),		.always = false },
 | |
| 	{ .index = X2APIC_MSR(APIC_RRR),		.always = false },
 | |
| 	{ .index = X2APIC_MSR(APIC_LDR),		.always = false },
 | |
| 	{ .index = X2APIC_MSR(APIC_DFR),		.always = false },
 | |
| 	{ .index = X2APIC_MSR(APIC_SPIV),		.always = false },
 | |
| 	{ .index = X2APIC_MSR(APIC_ISR),		.always = false },
 | |
| 	{ .index = X2APIC_MSR(APIC_TMR),		.always = false },
 | |
| 	{ .index = X2APIC_MSR(APIC_IRR),		.always = false },
 | |
| 	{ .index = X2APIC_MSR(APIC_ESR),		.always = false },
 | |
| 	{ .index = X2APIC_MSR(APIC_ICR),		.always = false },
 | |
| 	{ .index = X2APIC_MSR(APIC_ICR2),		.always = false },
 | |
| 
 | |
| 	/*
 | |
| 	 * Note:
 | |
| 	 * AMD does not virtualize APIC TSC-deadline timer mode, but it is
 | |
| 	 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18,
 | |
| 	 * the AVIC hardware would generate GP fault. Therefore, always
 | |
| 	 * intercept the MSR 0x832, and do not setup direct_access_msr.
 | |
| 	 */
 | |
| 	{ .index = X2APIC_MSR(APIC_LVTTHMR),		.always = false },
 | |
| 	{ .index = X2APIC_MSR(APIC_LVTPC),		.always = false },
 | |
| 	{ .index = X2APIC_MSR(APIC_LVT0),		.always = false },
 | |
| 	{ .index = X2APIC_MSR(APIC_LVT1),		.always = false },
 | |
| 	{ .index = X2APIC_MSR(APIC_LVTERR),		.always = false },
 | |
| 	{ .index = X2APIC_MSR(APIC_TMICT),		.always = false },
 | |
| 	{ .index = X2APIC_MSR(APIC_TMCCT),		.always = false },
 | |
| 	{ .index = X2APIC_MSR(APIC_TDCR),		.always = false },
 | |
| 	{ .index = MSR_INVALID,				.always = false },
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
 | |
|  * pause_filter_count: On processors that support Pause filtering(indicated
 | |
|  *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
 | |
|  *	count value. On VMRUN this value is loaded into an internal counter.
 | |
|  *	Each time a pause instruction is executed, this counter is decremented
 | |
|  *	until it reaches zero at which time a #VMEXIT is generated if pause
 | |
|  *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
 | |
|  *	Intercept Filtering for more details.
 | |
|  *	This also indicate if ple logic enabled.
 | |
|  *
 | |
|  * pause_filter_thresh: In addition, some processor families support advanced
 | |
|  *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
 | |
|  *	the amount of time a guest is allowed to execute in a pause loop.
 | |
|  *	In this mode, a 16-bit pause filter threshold field is added in the
 | |
|  *	VMCB. The threshold value is a cycle count that is used to reset the
 | |
|  *	pause counter. As with simple pause filtering, VMRUN loads the pause
 | |
|  *	count value from VMCB into an internal counter. Then, on each pause
 | |
|  *	instruction the hardware checks the elapsed number of cycles since
 | |
|  *	the most recent pause instruction against the pause filter threshold.
 | |
|  *	If the elapsed cycle count is greater than the pause filter threshold,
 | |
|  *	then the internal pause count is reloaded from the VMCB and execution
 | |
|  *	continues. If the elapsed cycle count is less than the pause filter
 | |
|  *	threshold, then the internal pause count is decremented. If the count
 | |
|  *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
 | |
|  *	triggered. If advanced pause filtering is supported and pause filter
 | |
|  *	threshold field is set to zero, the filter will operate in the simpler,
 | |
|  *	count only mode.
 | |
|  */
 | |
| 
 | |
| static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
 | |
| module_param(pause_filter_thresh, ushort, 0444);
 | |
| 
 | |
| static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
 | |
| module_param(pause_filter_count, ushort, 0444);
 | |
| 
 | |
| /* Default doubles per-vcpu window every exit. */
 | |
| static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
 | |
| module_param(pause_filter_count_grow, ushort, 0444);
 | |
| 
 | |
| /* Default resets per-vcpu window every exit to pause_filter_count. */
 | |
| static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
 | |
| module_param(pause_filter_count_shrink, ushort, 0444);
 | |
| 
 | |
| /* Default is to compute the maximum so we can never overflow. */
 | |
| static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
 | |
| module_param(pause_filter_count_max, ushort, 0444);
 | |
| 
 | |
| /*
 | |
|  * Use nested page tables by default.  Note, NPT may get forced off by
 | |
|  * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
 | |
|  */
 | |
| bool npt_enabled = true;
 | |
| module_param_named(npt, npt_enabled, bool, 0444);
 | |
| 
 | |
| /* allow nested virtualization in KVM/SVM */
 | |
| static int nested = true;
 | |
| module_param(nested, int, S_IRUGO);
 | |
| 
 | |
| /* enable/disable Next RIP Save */
 | |
| static int nrips = true;
 | |
| module_param(nrips, int, 0444);
 | |
| 
 | |
| /* enable/disable Virtual VMLOAD VMSAVE */
 | |
| static int vls = true;
 | |
| module_param(vls, int, 0444);
 | |
| 
 | |
| /* enable/disable Virtual GIF */
 | |
| static int vgif = true;
 | |
| module_param(vgif, int, 0444);
 | |
| 
 | |
| /* enable/disable LBR virtualization */
 | |
| static int lbrv = true;
 | |
| module_param(lbrv, int, 0444);
 | |
| 
 | |
| static int tsc_scaling = true;
 | |
| module_param(tsc_scaling, int, 0444);
 | |
| 
 | |
| /*
 | |
|  * enable / disable AVIC.  Because the defaults differ for APICv
 | |
|  * support between VMX and SVM we cannot use module_param_named.
 | |
|  */
 | |
| static bool avic;
 | |
| module_param(avic, bool, 0444);
 | |
| 
 | |
| bool __read_mostly dump_invalid_vmcb;
 | |
| module_param(dump_invalid_vmcb, bool, 0644);
 | |
| 
 | |
| 
 | |
| bool intercept_smi = true;
 | |
| module_param(intercept_smi, bool, 0444);
 | |
| 
 | |
| 
 | |
| static bool svm_gp_erratum_intercept = true;
 | |
| 
 | |
| static u8 rsm_ins_bytes[] = "\x0f\xaa";
 | |
| 
 | |
| static unsigned long iopm_base;
 | |
| 
 | |
| struct kvm_ldttss_desc {
 | |
| 	u16 limit0;
 | |
| 	u16 base0;
 | |
| 	unsigned base1:8, type:5, dpl:2, p:1;
 | |
| 	unsigned limit1:4, zero0:3, g:1, base2:8;
 | |
| 	u32 base3;
 | |
| 	u32 zero1;
 | |
| } __attribute__((packed));
 | |
| 
 | |
| DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
 | |
| 
 | |
| /*
 | |
|  * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
 | |
|  * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
 | |
|  *
 | |
|  * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
 | |
|  * defer the restoration of TSC_AUX until the CPU returns to userspace.
 | |
|  */
 | |
| static int tsc_aux_uret_slot __read_mostly = -1;
 | |
| 
 | |
| static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
 | |
| 
 | |
| #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
 | |
| #define MSRS_RANGE_SIZE 2048
 | |
| #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
 | |
| 
 | |
| u32 svm_msrpm_offset(u32 msr)
 | |
| {
 | |
| 	u32 offset;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < NUM_MSR_MAPS; i++) {
 | |
| 		if (msr < msrpm_ranges[i] ||
 | |
| 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
 | |
| 			continue;
 | |
| 
 | |
| 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
 | |
| 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
 | |
| 
 | |
| 		/* Now we have the u8 offset - but need the u32 offset */
 | |
| 		return offset / 4;
 | |
| 	}
 | |
| 
 | |
| 	/* MSR not in any range */
 | |
| 	return MSR_INVALID;
 | |
| }
 | |
| 
 | |
| static void svm_flush_tlb_current(struct kvm_vcpu *vcpu);
 | |
| 
 | |
| static int get_npt_level(void)
 | |
| {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
 | |
| #else
 | |
| 	return PT32E_ROOT_LEVEL;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	u64 old_efer = vcpu->arch.efer;
 | |
| 	vcpu->arch.efer = efer;
 | |
| 
 | |
| 	if (!npt_enabled) {
 | |
| 		/* Shadow paging assumes NX to be available.  */
 | |
| 		efer |= EFER_NX;
 | |
| 
 | |
| 		if (!(efer & EFER_LMA))
 | |
| 			efer &= ~EFER_LME;
 | |
| 	}
 | |
| 
 | |
| 	if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
 | |
| 		if (!(efer & EFER_SVME)) {
 | |
| 			svm_leave_nested(vcpu);
 | |
| 			svm_set_gif(svm, true);
 | |
| 			/* #GP intercept is still needed for vmware backdoor */
 | |
| 			if (!enable_vmware_backdoor)
 | |
| 				clr_exception_intercept(svm, GP_VECTOR);
 | |
| 
 | |
| 			/*
 | |
| 			 * Free the nested guest state, unless we are in SMM.
 | |
| 			 * In this case we will return to the nested guest
 | |
| 			 * as soon as we leave SMM.
 | |
| 			 */
 | |
| 			if (!is_smm(vcpu))
 | |
| 				svm_free_nested(svm);
 | |
| 
 | |
| 		} else {
 | |
| 			int ret = svm_allocate_nested(svm);
 | |
| 
 | |
| 			if (ret) {
 | |
| 				vcpu->arch.efer = old_efer;
 | |
| 				return ret;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Never intercept #GP for SEV guests, KVM can't
 | |
| 			 * decrypt guest memory to workaround the erratum.
 | |
| 			 */
 | |
| 			if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
 | |
| 				set_exception_intercept(svm, GP_VECTOR);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	svm->vmcb->save.efer = efer | EFER_SVME;
 | |
| 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int is_external_interrupt(u32 info)
 | |
| {
 | |
| 	info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
 | |
| 	return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
 | |
| }
 | |
| 
 | |
| static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	u32 ret = 0;
 | |
| 
 | |
| 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
 | |
| 		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	if (mask == 0)
 | |
| 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
 | |
| 	else
 | |
| 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
 | |
| 
 | |
| }
 | |
| 
 | |
| static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * SEV-ES does not expose the next RIP. The RIP update is controlled by
 | |
| 	 * the type of exit and the #VC handler in the guest.
 | |
| 	 */
 | |
| 	if (sev_es_guest(vcpu->kvm))
 | |
| 		goto done;
 | |
| 
 | |
| 	if (nrips && svm->vmcb->control.next_rip != 0) {
 | |
| 		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
 | |
| 		svm->next_rip = svm->vmcb->control.next_rip;
 | |
| 	}
 | |
| 
 | |
| 	if (!svm->next_rip) {
 | |
| 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
 | |
| 			return 0;
 | |
| 	} else {
 | |
| 		kvm_rip_write(vcpu, svm->next_rip);
 | |
| 	}
 | |
| 
 | |
| done:
 | |
| 	svm_set_interrupt_shadow(vcpu, 0);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void svm_queue_exception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	unsigned nr = vcpu->arch.exception.nr;
 | |
| 	bool has_error_code = vcpu->arch.exception.has_error_code;
 | |
| 	u32 error_code = vcpu->arch.exception.error_code;
 | |
| 
 | |
| 	kvm_deliver_exception_payload(vcpu);
 | |
| 
 | |
| 	if (nr == BP_VECTOR && !nrips) {
 | |
| 		unsigned long rip, old_rip = kvm_rip_read(vcpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * For guest debugging where we have to reinject #BP if some
 | |
| 		 * INT3 is guest-owned:
 | |
| 		 * Emulate nRIP by moving RIP forward. Will fail if injection
 | |
| 		 * raises a fault that is not intercepted. Still better than
 | |
| 		 * failing in all cases.
 | |
| 		 */
 | |
| 		(void)svm_skip_emulated_instruction(vcpu);
 | |
| 		rip = kvm_rip_read(vcpu);
 | |
| 		svm->int3_rip = rip + svm->vmcb->save.cs.base;
 | |
| 		svm->int3_injected = rip - old_rip;
 | |
| 	}
 | |
| 
 | |
| 	svm->vmcb->control.event_inj = nr
 | |
| 		| SVM_EVTINJ_VALID
 | |
| 		| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
 | |
| 		| SVM_EVTINJ_TYPE_EXEPT;
 | |
| 	svm->vmcb->control.event_inj_err = error_code;
 | |
| }
 | |
| 
 | |
| static void svm_init_erratum_383(void)
 | |
| {
 | |
| 	u32 low, high;
 | |
| 	int err;
 | |
| 	u64 val;
 | |
| 
 | |
| 	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
 | |
| 		return;
 | |
| 
 | |
| 	/* Use _safe variants to not break nested virtualization */
 | |
| 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
 | |
| 	if (err)
 | |
| 		return;
 | |
| 
 | |
| 	val |= (1ULL << 47);
 | |
| 
 | |
| 	low  = lower_32_bits(val);
 | |
| 	high = upper_32_bits(val);
 | |
| 
 | |
| 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
 | |
| 
 | |
| 	erratum_383_found = true;
 | |
| }
 | |
| 
 | |
| static void svm_init_osvw(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/*
 | |
| 	 * Guests should see errata 400 and 415 as fixed (assuming that
 | |
| 	 * HLT and IO instructions are intercepted).
 | |
| 	 */
 | |
| 	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
 | |
| 	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
 | |
| 	 * all osvw.status bits inside that length, including bit 0 (which is
 | |
| 	 * reserved for erratum 298), are valid. However, if host processor's
 | |
| 	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
 | |
| 	 * be conservative here and therefore we tell the guest that erratum 298
 | |
| 	 * is present (because we really don't know).
 | |
| 	 */
 | |
| 	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
 | |
| 		vcpu->arch.osvw.status |= 1;
 | |
| }
 | |
| 
 | |
| static int has_svm(void)
 | |
| {
 | |
| 	const char *msg;
 | |
| 
 | |
| 	if (!cpu_has_svm(&msg)) {
 | |
| 		printk(KERN_INFO "has_svm: %s\n", msg);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
 | |
| 		pr_info("KVM is unsupported when running as an SEV guest\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| void __svm_write_tsc_multiplier(u64 multiplier)
 | |
| {
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	if (multiplier == __this_cpu_read(current_tsc_ratio))
 | |
| 		goto out;
 | |
| 
 | |
| 	wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
 | |
| 	__this_cpu_write(current_tsc_ratio, multiplier);
 | |
| out:
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| static void svm_hardware_disable(void)
 | |
| {
 | |
| 	/* Make sure we clean up behind us */
 | |
| 	if (tsc_scaling)
 | |
| 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
 | |
| 
 | |
| 	cpu_svm_disable();
 | |
| 
 | |
| 	amd_pmu_disable_virt();
 | |
| }
 | |
| 
 | |
| static int svm_hardware_enable(void)
 | |
| {
 | |
| 
 | |
| 	struct svm_cpu_data *sd;
 | |
| 	uint64_t efer;
 | |
| 	struct desc_struct *gdt;
 | |
| 	int me = raw_smp_processor_id();
 | |
| 
 | |
| 	rdmsrl(MSR_EFER, efer);
 | |
| 	if (efer & EFER_SVME)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	if (!has_svm()) {
 | |
| 		pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	sd = per_cpu(svm_data, me);
 | |
| 	if (!sd) {
 | |
| 		pr_err("%s: svm_data is NULL on %d\n", __func__, me);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	sd->asid_generation = 1;
 | |
| 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
 | |
| 	sd->next_asid = sd->max_asid + 1;
 | |
| 	sd->min_asid = max_sev_asid + 1;
 | |
| 
 | |
| 	gdt = get_current_gdt_rw();
 | |
| 	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
 | |
| 
 | |
| 	wrmsrl(MSR_EFER, efer | EFER_SVME);
 | |
| 
 | |
| 	wrmsrl(MSR_VM_HSAVE_PA, __sme_page_pa(sd->save_area));
 | |
| 
 | |
| 	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
 | |
| 		/*
 | |
| 		 * Set the default value, even if we don't use TSC scaling
 | |
| 		 * to avoid having stale value in the msr
 | |
| 		 */
 | |
| 		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * Get OSVW bits.
 | |
| 	 *
 | |
| 	 * Note that it is possible to have a system with mixed processor
 | |
| 	 * revisions and therefore different OSVW bits. If bits are not the same
 | |
| 	 * on different processors then choose the worst case (i.e. if erratum
 | |
| 	 * is present on one processor and not on another then assume that the
 | |
| 	 * erratum is present everywhere).
 | |
| 	 */
 | |
| 	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
 | |
| 		uint64_t len, status = 0;
 | |
| 		int err;
 | |
| 
 | |
| 		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
 | |
| 		if (!err)
 | |
| 			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
 | |
| 						      &err);
 | |
| 
 | |
| 		if (err)
 | |
| 			osvw_status = osvw_len = 0;
 | |
| 		else {
 | |
| 			if (len < osvw_len)
 | |
| 				osvw_len = len;
 | |
| 			osvw_status |= status;
 | |
| 			osvw_status &= (1ULL << osvw_len) - 1;
 | |
| 		}
 | |
| 	} else
 | |
| 		osvw_status = osvw_len = 0;
 | |
| 
 | |
| 	svm_init_erratum_383();
 | |
| 
 | |
| 	amd_pmu_enable_virt();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void svm_cpu_uninit(int cpu)
 | |
| {
 | |
| 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
 | |
| 
 | |
| 	if (!sd)
 | |
| 		return;
 | |
| 
 | |
| 	per_cpu(svm_data, cpu) = NULL;
 | |
| 	kfree(sd->sev_vmcbs);
 | |
| 	__free_page(sd->save_area);
 | |
| 	kfree(sd);
 | |
| }
 | |
| 
 | |
| static int svm_cpu_init(int cpu)
 | |
| {
 | |
| 	struct svm_cpu_data *sd;
 | |
| 	int ret = -ENOMEM;
 | |
| 
 | |
| 	sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
 | |
| 	if (!sd)
 | |
| 		return ret;
 | |
| 	sd->cpu = cpu;
 | |
| 	sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO);
 | |
| 	if (!sd->save_area)
 | |
| 		goto free_cpu_data;
 | |
| 
 | |
| 	ret = sev_cpu_init(sd);
 | |
| 	if (ret)
 | |
| 		goto free_save_area;
 | |
| 
 | |
| 	per_cpu(svm_data, cpu) = sd;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| free_save_area:
 | |
| 	__free_page(sd->save_area);
 | |
| free_cpu_data:
 | |
| 	kfree(sd);
 | |
| 	return ret;
 | |
| 
 | |
| }
 | |
| 
 | |
| static int direct_access_msr_slot(u32 msr)
 | |
| {
 | |
| 	u32 i;
 | |
| 
 | |
| 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
 | |
| 		if (direct_access_msrs[i].index == msr)
 | |
| 			return i;
 | |
| 
 | |
| 	return -ENOENT;
 | |
| }
 | |
| 
 | |
| static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
 | |
| 				     int write)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	int slot = direct_access_msr_slot(msr);
 | |
| 
 | |
| 	if (slot == -ENOENT)
 | |
| 		return;
 | |
| 
 | |
| 	/* Set the shadow bitmaps to the desired intercept states */
 | |
| 	if (read)
 | |
| 		set_bit(slot, svm->shadow_msr_intercept.read);
 | |
| 	else
 | |
| 		clear_bit(slot, svm->shadow_msr_intercept.read);
 | |
| 
 | |
| 	if (write)
 | |
| 		set_bit(slot, svm->shadow_msr_intercept.write);
 | |
| 	else
 | |
| 		clear_bit(slot, svm->shadow_msr_intercept.write);
 | |
| }
 | |
| 
 | |
| static bool valid_msr_intercept(u32 index)
 | |
| {
 | |
| 	return direct_access_msr_slot(index) != -ENOENT;
 | |
| }
 | |
| 
 | |
| static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
 | |
| {
 | |
| 	u8 bit_write;
 | |
| 	unsigned long tmp;
 | |
| 	u32 offset;
 | |
| 	u32 *msrpm;
 | |
| 
 | |
| 	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
 | |
| 				      to_svm(vcpu)->msrpm;
 | |
| 
 | |
| 	offset    = svm_msrpm_offset(msr);
 | |
| 	bit_write = 2 * (msr & 0x0f) + 1;
 | |
| 	tmp       = msrpm[offset];
 | |
| 
 | |
| 	BUG_ON(offset == MSR_INVALID);
 | |
| 
 | |
| 	return !!test_bit(bit_write,  &tmp);
 | |
| }
 | |
| 
 | |
| static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
 | |
| 					u32 msr, int read, int write)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	u8 bit_read, bit_write;
 | |
| 	unsigned long tmp;
 | |
| 	u32 offset;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this warning triggers extend the direct_access_msrs list at the
 | |
| 	 * beginning of the file
 | |
| 	 */
 | |
| 	WARN_ON(!valid_msr_intercept(msr));
 | |
| 
 | |
| 	/* Enforce non allowed MSRs to trap */
 | |
| 	if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
 | |
| 		read = 0;
 | |
| 
 | |
| 	if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
 | |
| 		write = 0;
 | |
| 
 | |
| 	offset    = svm_msrpm_offset(msr);
 | |
| 	bit_read  = 2 * (msr & 0x0f);
 | |
| 	bit_write = 2 * (msr & 0x0f) + 1;
 | |
| 	tmp       = msrpm[offset];
 | |
| 
 | |
| 	BUG_ON(offset == MSR_INVALID);
 | |
| 
 | |
| 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
 | |
| 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
 | |
| 
 | |
| 	msrpm[offset] = tmp;
 | |
| 
 | |
| 	svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
 | |
| 	svm->nested.force_msr_bitmap_recalc = true;
 | |
| }
 | |
| 
 | |
| void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
 | |
| 			  int read, int write)
 | |
| {
 | |
| 	set_shadow_msr_intercept(vcpu, msr, read, write);
 | |
| 	set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
 | |
| }
 | |
| 
 | |
| u32 *svm_vcpu_alloc_msrpm(void)
 | |
| {
 | |
| 	unsigned int order = get_order(MSRPM_SIZE);
 | |
| 	struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
 | |
| 	u32 *msrpm;
 | |
| 
 | |
| 	if (!pages)
 | |
| 		return NULL;
 | |
| 
 | |
| 	msrpm = page_address(pages);
 | |
| 	memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
 | |
| 
 | |
| 	return msrpm;
 | |
| }
 | |
| 
 | |
| void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
 | |
| 		if (!direct_access_msrs[i].always)
 | |
| 			continue;
 | |
| 		set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (intercept == svm->x2avic_msrs_intercepted)
 | |
| 		return;
 | |
| 
 | |
| 	if (!x2avic_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) {
 | |
| 		int index = direct_access_msrs[i].index;
 | |
| 
 | |
| 		if ((index < APIC_BASE_MSR) ||
 | |
| 		    (index > APIC_BASE_MSR + 0xff))
 | |
| 			continue;
 | |
| 		set_msr_interception(&svm->vcpu, svm->msrpm, index,
 | |
| 				     !intercept, !intercept);
 | |
| 	}
 | |
| 
 | |
| 	svm->x2avic_msrs_intercepted = intercept;
 | |
| }
 | |
| 
 | |
| void svm_vcpu_free_msrpm(u32 *msrpm)
 | |
| {
 | |
| 	__free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
 | |
| }
 | |
| 
 | |
| static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	u32 i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set intercept permissions for all direct access MSRs again. They
 | |
| 	 * will automatically get filtered through the MSR filter, so we are
 | |
| 	 * back in sync after this.
 | |
| 	 */
 | |
| 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
 | |
| 		u32 msr = direct_access_msrs[i].index;
 | |
| 		u32 read = test_bit(i, svm->shadow_msr_intercept.read);
 | |
| 		u32 write = test_bit(i, svm->shadow_msr_intercept.write);
 | |
| 
 | |
| 		set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void add_msr_offset(u32 offset)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < MSRPM_OFFSETS; ++i) {
 | |
| 
 | |
| 		/* Offset already in list? */
 | |
| 		if (msrpm_offsets[i] == offset)
 | |
| 			return;
 | |
| 
 | |
| 		/* Slot used by another offset? */
 | |
| 		if (msrpm_offsets[i] != MSR_INVALID)
 | |
| 			continue;
 | |
| 
 | |
| 		/* Add offset to list */
 | |
| 		msrpm_offsets[i] = offset;
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
 | |
| 	 * increase MSRPM_OFFSETS in this case.
 | |
| 	 */
 | |
| 	BUG();
 | |
| }
 | |
| 
 | |
| static void init_msrpm_offsets(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
 | |
| 
 | |
| 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
 | |
| 		u32 offset;
 | |
| 
 | |
| 		offset = svm_msrpm_offset(direct_access_msrs[i].index);
 | |
| 		BUG_ON(offset == MSR_INVALID);
 | |
| 
 | |
| 		add_msr_offset(offset);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
 | |
| {
 | |
| 	to_vmcb->save.dbgctl		= from_vmcb->save.dbgctl;
 | |
| 	to_vmcb->save.br_from		= from_vmcb->save.br_from;
 | |
| 	to_vmcb->save.br_to		= from_vmcb->save.br_to;
 | |
| 	to_vmcb->save.last_excp_from	= from_vmcb->save.last_excp_from;
 | |
| 	to_vmcb->save.last_excp_to	= from_vmcb->save.last_excp_to;
 | |
| 
 | |
| 	vmcb_mark_dirty(to_vmcb, VMCB_LBR);
 | |
| }
 | |
| 
 | |
| static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
 | |
| 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
 | |
| 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
 | |
| 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
 | |
| 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
 | |
| 
 | |
| 	/* Move the LBR msrs to the vmcb02 so that the guest can see them. */
 | |
| 	if (is_guest_mode(vcpu))
 | |
| 		svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
 | |
| }
 | |
| 
 | |
| static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
 | |
| 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
 | |
| 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
 | |
| 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
 | |
| 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Move the LBR msrs back to the vmcb01 to avoid copying them
 | |
| 	 * on nested guest entries.
 | |
| 	 */
 | |
| 	if (is_guest_mode(vcpu))
 | |
| 		svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
 | |
| }
 | |
| 
 | |
| static int svm_get_lbr_msr(struct vcpu_svm *svm, u32 index)
 | |
| {
 | |
| 	/*
 | |
| 	 * If the LBR virtualization is disabled, the LBR msrs are always
 | |
| 	 * kept in the vmcb01 to avoid copying them on nested guest entries.
 | |
| 	 *
 | |
| 	 * If nested, and the LBR virtualization is enabled/disabled, the msrs
 | |
| 	 * are moved between the vmcb01 and vmcb02 as needed.
 | |
| 	 */
 | |
| 	struct vmcb *vmcb =
 | |
| 		(svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK) ?
 | |
| 			svm->vmcb : svm->vmcb01.ptr;
 | |
| 
 | |
| 	switch (index) {
 | |
| 	case MSR_IA32_DEBUGCTLMSR:
 | |
| 		return vmcb->save.dbgctl;
 | |
| 	case MSR_IA32_LASTBRANCHFROMIP:
 | |
| 		return vmcb->save.br_from;
 | |
| 	case MSR_IA32_LASTBRANCHTOIP:
 | |
| 		return vmcb->save.br_to;
 | |
| 	case MSR_IA32_LASTINTFROMIP:
 | |
| 		return vmcb->save.last_excp_from;
 | |
| 	case MSR_IA32_LASTINTTOIP:
 | |
| 		return vmcb->save.last_excp_to;
 | |
| 	default:
 | |
| 		KVM_BUG(false, svm->vcpu.kvm,
 | |
| 			"%s: Unknown MSR 0x%x", __func__, index);
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void svm_update_lbrv(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	bool enable_lbrv = svm_get_lbr_msr(svm, MSR_IA32_DEBUGCTLMSR) &
 | |
| 					   DEBUGCTLMSR_LBR;
 | |
| 
 | |
| 	bool current_enable_lbrv = !!(svm->vmcb->control.virt_ext &
 | |
| 				      LBR_CTL_ENABLE_MASK);
 | |
| 
 | |
| 	if (unlikely(is_guest_mode(vcpu) && svm->lbrv_enabled))
 | |
| 		if (unlikely(svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK))
 | |
| 			enable_lbrv = true;
 | |
| 
 | |
| 	if (enable_lbrv == current_enable_lbrv)
 | |
| 		return;
 | |
| 
 | |
| 	if (enable_lbrv)
 | |
| 		svm_enable_lbrv(vcpu);
 | |
| 	else
 | |
| 		svm_disable_lbrv(vcpu);
 | |
| }
 | |
| 
 | |
| void disable_nmi_singlestep(struct vcpu_svm *svm)
 | |
| {
 | |
| 	svm->nmi_singlestep = false;
 | |
| 
 | |
| 	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
 | |
| 		/* Clear our flags if they were not set by the guest */
 | |
| 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
 | |
| 			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
 | |
| 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
 | |
| 			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void grow_ple_window(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	struct vmcb_control_area *control = &svm->vmcb->control;
 | |
| 	int old = control->pause_filter_count;
 | |
| 
 | |
| 	if (kvm_pause_in_guest(vcpu->kvm))
 | |
| 		return;
 | |
| 
 | |
| 	control->pause_filter_count = __grow_ple_window(old,
 | |
| 							pause_filter_count,
 | |
| 							pause_filter_count_grow,
 | |
| 							pause_filter_count_max);
 | |
| 
 | |
| 	if (control->pause_filter_count != old) {
 | |
| 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
 | |
| 		trace_kvm_ple_window_update(vcpu->vcpu_id,
 | |
| 					    control->pause_filter_count, old);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void shrink_ple_window(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	struct vmcb_control_area *control = &svm->vmcb->control;
 | |
| 	int old = control->pause_filter_count;
 | |
| 
 | |
| 	if (kvm_pause_in_guest(vcpu->kvm))
 | |
| 		return;
 | |
| 
 | |
| 	control->pause_filter_count =
 | |
| 				__shrink_ple_window(old,
 | |
| 						    pause_filter_count,
 | |
| 						    pause_filter_count_shrink,
 | |
| 						    pause_filter_count);
 | |
| 	if (control->pause_filter_count != old) {
 | |
| 		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
 | |
| 		trace_kvm_ple_window_update(vcpu->vcpu_id,
 | |
| 					    control->pause_filter_count, old);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void svm_hardware_unsetup(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	sev_hardware_unsetup();
 | |
| 
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		svm_cpu_uninit(cpu);
 | |
| 
 | |
| 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
 | |
| 	get_order(IOPM_SIZE));
 | |
| 	iopm_base = 0;
 | |
| }
 | |
| 
 | |
| static void init_seg(struct vmcb_seg *seg)
 | |
| {
 | |
| 	seg->selector = 0;
 | |
| 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
 | |
| 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
 | |
| 	seg->limit = 0xffff;
 | |
| 	seg->base = 0;
 | |
| }
 | |
| 
 | |
| static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
 | |
| {
 | |
| 	seg->selector = 0;
 | |
| 	seg->attrib = SVM_SELECTOR_P_MASK | type;
 | |
| 	seg->limit = 0xffff;
 | |
| 	seg->base = 0;
 | |
| }
 | |
| 
 | |
| static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	return svm->nested.ctl.tsc_offset;
 | |
| }
 | |
| 
 | |
| static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	return svm->tsc_ratio_msr;
 | |
| }
 | |
| 
 | |
| static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
 | |
| 	svm->vmcb->control.tsc_offset = offset;
 | |
| 	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
 | |
| }
 | |
| 
 | |
| static void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
 | |
| {
 | |
| 	__svm_write_tsc_multiplier(multiplier);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Evaluate instruction intercepts that depend on guest CPUID features. */
 | |
| static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
 | |
| 					      struct vcpu_svm *svm)
 | |
| {
 | |
| 	/*
 | |
| 	 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
 | |
| 	 * roots, or if INVPCID is disabled in the guest to inject #UD.
 | |
| 	 */
 | |
| 	if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
 | |
| 		if (!npt_enabled ||
 | |
| 		    !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
 | |
| 			svm_set_intercept(svm, INTERCEPT_INVPCID);
 | |
| 		else
 | |
| 			svm_clr_intercept(svm, INTERCEPT_INVPCID);
 | |
| 	}
 | |
| 
 | |
| 	if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
 | |
| 		if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
 | |
| 			svm_clr_intercept(svm, INTERCEPT_RDTSCP);
 | |
| 		else
 | |
| 			svm_set_intercept(svm, INTERCEPT_RDTSCP);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	if (guest_cpuid_is_intel(vcpu)) {
 | |
| 		/*
 | |
| 		 * We must intercept SYSENTER_EIP and SYSENTER_ESP
 | |
| 		 * accesses because the processor only stores 32 bits.
 | |
| 		 * For the same reason we cannot use virtual VMLOAD/VMSAVE.
 | |
| 		 */
 | |
| 		svm_set_intercept(svm, INTERCEPT_VMLOAD);
 | |
| 		svm_set_intercept(svm, INTERCEPT_VMSAVE);
 | |
| 		svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
 | |
| 
 | |
| 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
 | |
| 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
 | |
| 
 | |
| 		svm->v_vmload_vmsave_enabled = false;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * If hardware supports Virtual VMLOAD VMSAVE then enable it
 | |
| 		 * in VMCB and clear intercepts to avoid #VMEXIT.
 | |
| 		 */
 | |
| 		if (vls) {
 | |
| 			svm_clr_intercept(svm, INTERCEPT_VMLOAD);
 | |
| 			svm_clr_intercept(svm, INTERCEPT_VMSAVE);
 | |
| 			svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
 | |
| 		}
 | |
| 		/* No need to intercept these MSRs */
 | |
| 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
 | |
| 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void init_vmcb(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	struct vmcb_control_area *control = &svm->vmcb->control;
 | |
| 	struct vmcb_save_area *save = &svm->vmcb->save;
 | |
| 
 | |
| 	svm_set_intercept(svm, INTERCEPT_CR0_READ);
 | |
| 	svm_set_intercept(svm, INTERCEPT_CR3_READ);
 | |
| 	svm_set_intercept(svm, INTERCEPT_CR4_READ);
 | |
| 	svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
 | |
| 	svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
 | |
| 	svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
 | |
| 	if (!kvm_vcpu_apicv_active(vcpu))
 | |
| 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
 | |
| 
 | |
| 	set_dr_intercepts(svm);
 | |
| 
 | |
| 	set_exception_intercept(svm, PF_VECTOR);
 | |
| 	set_exception_intercept(svm, UD_VECTOR);
 | |
| 	set_exception_intercept(svm, MC_VECTOR);
 | |
| 	set_exception_intercept(svm, AC_VECTOR);
 | |
| 	set_exception_intercept(svm, DB_VECTOR);
 | |
| 	/*
 | |
| 	 * Guest access to VMware backdoor ports could legitimately
 | |
| 	 * trigger #GP because of TSS I/O permission bitmap.
 | |
| 	 * We intercept those #GP and allow access to them anyway
 | |
| 	 * as VMware does.  Don't intercept #GP for SEV guests as KVM can't
 | |
| 	 * decrypt guest memory to decode the faulting instruction.
 | |
| 	 */
 | |
| 	if (enable_vmware_backdoor && !sev_guest(vcpu->kvm))
 | |
| 		set_exception_intercept(svm, GP_VECTOR);
 | |
| 
 | |
| 	svm_set_intercept(svm, INTERCEPT_INTR);
 | |
| 	svm_set_intercept(svm, INTERCEPT_NMI);
 | |
| 
 | |
| 	if (intercept_smi)
 | |
| 		svm_set_intercept(svm, INTERCEPT_SMI);
 | |
| 
 | |
| 	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
 | |
| 	svm_set_intercept(svm, INTERCEPT_RDPMC);
 | |
| 	svm_set_intercept(svm, INTERCEPT_CPUID);
 | |
| 	svm_set_intercept(svm, INTERCEPT_INVD);
 | |
| 	svm_set_intercept(svm, INTERCEPT_INVLPG);
 | |
| 	svm_set_intercept(svm, INTERCEPT_INVLPGA);
 | |
| 	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
 | |
| 	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
 | |
| 	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
 | |
| 	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
 | |
| 	svm_set_intercept(svm, INTERCEPT_VMRUN);
 | |
| 	svm_set_intercept(svm, INTERCEPT_VMMCALL);
 | |
| 	svm_set_intercept(svm, INTERCEPT_VMLOAD);
 | |
| 	svm_set_intercept(svm, INTERCEPT_VMSAVE);
 | |
| 	svm_set_intercept(svm, INTERCEPT_STGI);
 | |
| 	svm_set_intercept(svm, INTERCEPT_CLGI);
 | |
| 	svm_set_intercept(svm, INTERCEPT_SKINIT);
 | |
| 	svm_set_intercept(svm, INTERCEPT_WBINVD);
 | |
| 	svm_set_intercept(svm, INTERCEPT_XSETBV);
 | |
| 	svm_set_intercept(svm, INTERCEPT_RDPRU);
 | |
| 	svm_set_intercept(svm, INTERCEPT_RSM);
 | |
| 
 | |
| 	if (!kvm_mwait_in_guest(vcpu->kvm)) {
 | |
| 		svm_set_intercept(svm, INTERCEPT_MONITOR);
 | |
| 		svm_set_intercept(svm, INTERCEPT_MWAIT);
 | |
| 	}
 | |
| 
 | |
| 	if (!kvm_hlt_in_guest(vcpu->kvm))
 | |
| 		svm_set_intercept(svm, INTERCEPT_HLT);
 | |
| 
 | |
| 	control->iopm_base_pa = __sme_set(iopm_base);
 | |
| 	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
 | |
| 	control->int_ctl = V_INTR_MASKING_MASK;
 | |
| 
 | |
| 	init_seg(&save->es);
 | |
| 	init_seg(&save->ss);
 | |
| 	init_seg(&save->ds);
 | |
| 	init_seg(&save->fs);
 | |
| 	init_seg(&save->gs);
 | |
| 
 | |
| 	save->cs.selector = 0xf000;
 | |
| 	save->cs.base = 0xffff0000;
 | |
| 	/* Executable/Readable Code Segment */
 | |
| 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
 | |
| 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
 | |
| 	save->cs.limit = 0xffff;
 | |
| 
 | |
| 	save->gdtr.base = 0;
 | |
| 	save->gdtr.limit = 0xffff;
 | |
| 	save->idtr.base = 0;
 | |
| 	save->idtr.limit = 0xffff;
 | |
| 
 | |
| 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
 | |
| 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
 | |
| 
 | |
| 	if (npt_enabled) {
 | |
| 		/* Setup VMCB for Nested Paging */
 | |
| 		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
 | |
| 		svm_clr_intercept(svm, INTERCEPT_INVLPG);
 | |
| 		clr_exception_intercept(svm, PF_VECTOR);
 | |
| 		svm_clr_intercept(svm, INTERCEPT_CR3_READ);
 | |
| 		svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
 | |
| 		save->g_pat = vcpu->arch.pat;
 | |
| 		save->cr3 = 0;
 | |
| 	}
 | |
| 	svm->current_vmcb->asid_generation = 0;
 | |
| 	svm->asid = 0;
 | |
| 
 | |
| 	svm->nested.vmcb12_gpa = INVALID_GPA;
 | |
| 	svm->nested.last_vmcb12_gpa = INVALID_GPA;
 | |
| 
 | |
| 	if (!kvm_pause_in_guest(vcpu->kvm)) {
 | |
| 		control->pause_filter_count = pause_filter_count;
 | |
| 		if (pause_filter_thresh)
 | |
| 			control->pause_filter_thresh = pause_filter_thresh;
 | |
| 		svm_set_intercept(svm, INTERCEPT_PAUSE);
 | |
| 	} else {
 | |
| 		svm_clr_intercept(svm, INTERCEPT_PAUSE);
 | |
| 	}
 | |
| 
 | |
| 	svm_recalc_instruction_intercepts(vcpu, svm);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the host supports V_SPEC_CTRL then disable the interception
 | |
| 	 * of MSR_IA32_SPEC_CTRL.
 | |
| 	 */
 | |
| 	if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
 | |
| 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
 | |
| 
 | |
| 	if (kvm_vcpu_apicv_active(vcpu))
 | |
| 		avic_init_vmcb(svm);
 | |
| 
 | |
| 	if (vgif) {
 | |
| 		svm_clr_intercept(svm, INTERCEPT_STGI);
 | |
| 		svm_clr_intercept(svm, INTERCEPT_CLGI);
 | |
| 		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
 | |
| 	}
 | |
| 
 | |
| 	if (sev_guest(vcpu->kvm))
 | |
| 		sev_init_vmcb(svm);
 | |
| 
 | |
| 	svm_hv_init_vmcb(svm->vmcb);
 | |
| 	init_vmcb_after_set_cpuid(vcpu);
 | |
| 
 | |
| 	vmcb_mark_all_dirty(svm->vmcb);
 | |
| 
 | |
| 	enable_gif(svm);
 | |
| }
 | |
| 
 | |
| static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	svm_vcpu_init_msrpm(vcpu, svm->msrpm);
 | |
| 
 | |
| 	svm_init_osvw(vcpu);
 | |
| 	vcpu->arch.microcode_version = 0x01000065;
 | |
| 	svm->tsc_ratio_msr = kvm_default_tsc_scaling_ratio;
 | |
| 
 | |
| 	if (sev_es_guest(vcpu->kvm))
 | |
| 		sev_es_vcpu_reset(svm);
 | |
| }
 | |
| 
 | |
| static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	svm->spec_ctrl = 0;
 | |
| 	svm->virt_spec_ctrl = 0;
 | |
| 
 | |
| 	init_vmcb(vcpu);
 | |
| 
 | |
| 	if (!init_event)
 | |
| 		__svm_vcpu_reset(vcpu);
 | |
| }
 | |
| 
 | |
| void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
 | |
| {
 | |
| 	svm->current_vmcb = target_vmcb;
 | |
| 	svm->vmcb = target_vmcb->ptr;
 | |
| }
 | |
| 
 | |
| static int svm_vcpu_create(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm;
 | |
| 	struct page *vmcb01_page;
 | |
| 	struct page *vmsa_page = NULL;
 | |
| 	int err;
 | |
| 
 | |
| 	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
 | |
| 	svm = to_svm(vcpu);
 | |
| 
 | |
| 	err = -ENOMEM;
 | |
| 	vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
 | |
| 	if (!vmcb01_page)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (sev_es_guest(vcpu->kvm)) {
 | |
| 		/*
 | |
| 		 * SEV-ES guests require a separate VMSA page used to contain
 | |
| 		 * the encrypted register state of the guest.
 | |
| 		 */
 | |
| 		vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
 | |
| 		if (!vmsa_page)
 | |
| 			goto error_free_vmcb_page;
 | |
| 
 | |
| 		/*
 | |
| 		 * SEV-ES guests maintain an encrypted version of their FPU
 | |
| 		 * state which is restored and saved on VMRUN and VMEXIT.
 | |
| 		 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
 | |
| 		 * do xsave/xrstor on it.
 | |
| 		 */
 | |
| 		fpstate_set_confidential(&vcpu->arch.guest_fpu);
 | |
| 	}
 | |
| 
 | |
| 	err = avic_init_vcpu(svm);
 | |
| 	if (err)
 | |
| 		goto error_free_vmsa_page;
 | |
| 
 | |
| 	svm->msrpm = svm_vcpu_alloc_msrpm();
 | |
| 	if (!svm->msrpm) {
 | |
| 		err = -ENOMEM;
 | |
| 		goto error_free_vmsa_page;
 | |
| 	}
 | |
| 
 | |
| 	svm->x2avic_msrs_intercepted = true;
 | |
| 
 | |
| 	svm->vmcb01.ptr = page_address(vmcb01_page);
 | |
| 	svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
 | |
| 	svm_switch_vmcb(svm, &svm->vmcb01);
 | |
| 
 | |
| 	if (vmsa_page)
 | |
| 		svm->sev_es.vmsa = page_address(vmsa_page);
 | |
| 
 | |
| 	svm->guest_state_loaded = false;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| error_free_vmsa_page:
 | |
| 	if (vmsa_page)
 | |
| 		__free_page(vmsa_page);
 | |
| error_free_vmcb_page:
 | |
| 	__free_page(vmcb01_page);
 | |
| out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void svm_clear_current_vmcb(struct vmcb *vmcb)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_online_cpu(i)
 | |
| 		cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL);
 | |
| }
 | |
| 
 | |
| static void svm_vcpu_free(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * The vmcb page can be recycled, causing a false negative in
 | |
| 	 * svm_vcpu_load(). So, ensure that no logical CPU has this
 | |
| 	 * vmcb page recorded as its current vmcb.
 | |
| 	 */
 | |
| 	svm_clear_current_vmcb(svm->vmcb);
 | |
| 
 | |
| 	svm_free_nested(svm);
 | |
| 
 | |
| 	sev_free_vcpu(vcpu);
 | |
| 
 | |
| 	__free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
 | |
| 	__free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
 | |
| }
 | |
| 
 | |
| static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
 | |
| 
 | |
| 	if (sev_es_guest(vcpu->kvm))
 | |
| 		sev_es_unmap_ghcb(svm);
 | |
| 
 | |
| 	if (svm->guest_state_loaded)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Save additional host state that will be restored on VMEXIT (sev-es)
 | |
| 	 * or subsequent vmload of host save area.
 | |
| 	 */
 | |
| 	vmsave(__sme_page_pa(sd->save_area));
 | |
| 	if (sev_es_guest(vcpu->kvm)) {
 | |
| 		struct sev_es_save_area *hostsa;
 | |
| 		hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400);
 | |
| 
 | |
| 		sev_es_prepare_switch_to_guest(hostsa);
 | |
| 	}
 | |
| 
 | |
| 	if (tsc_scaling)
 | |
| 		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
 | |
| 
 | |
| 	if (likely(tsc_aux_uret_slot >= 0))
 | |
| 		kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
 | |
| 
 | |
| 	svm->guest_state_loaded = true;
 | |
| }
 | |
| 
 | |
| static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	to_svm(vcpu)->guest_state_loaded = false;
 | |
| }
 | |
| 
 | |
| static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
 | |
| 
 | |
| 	if (sd->current_vmcb != svm->vmcb) {
 | |
| 		sd->current_vmcb = svm->vmcb;
 | |
| 
 | |
| 		if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT))
 | |
| 			indirect_branch_prediction_barrier();
 | |
| 	}
 | |
| 	if (kvm_vcpu_apicv_active(vcpu))
 | |
| 		avic_vcpu_load(vcpu, cpu);
 | |
| }
 | |
| 
 | |
| static void svm_vcpu_put(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (kvm_vcpu_apicv_active(vcpu))
 | |
| 		avic_vcpu_put(vcpu);
 | |
| 
 | |
| 	svm_prepare_host_switch(vcpu);
 | |
| 
 | |
| 	++vcpu->stat.host_state_reload;
 | |
| }
 | |
| 
 | |
| static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	unsigned long rflags = svm->vmcb->save.rflags;
 | |
| 
 | |
| 	if (svm->nmi_singlestep) {
 | |
| 		/* Hide our flags if they were not set by the guest */
 | |
| 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
 | |
| 			rflags &= ~X86_EFLAGS_TF;
 | |
| 		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
 | |
| 			rflags &= ~X86_EFLAGS_RF;
 | |
| 	}
 | |
| 	return rflags;
 | |
| }
 | |
| 
 | |
| static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
 | |
| {
 | |
| 	if (to_svm(vcpu)->nmi_singlestep)
 | |
| 		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
 | |
| 
 | |
|        /*
 | |
|         * Any change of EFLAGS.VM is accompanied by a reload of SS
 | |
|         * (caused by either a task switch or an inter-privilege IRET),
 | |
|         * so we do not need to update the CPL here.
 | |
|         */
 | |
| 	to_svm(vcpu)->vmcb->save.rflags = rflags;
 | |
| }
 | |
| 
 | |
| static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vmcb *vmcb = to_svm(vcpu)->vmcb;
 | |
| 
 | |
| 	return sev_es_guest(vcpu->kvm)
 | |
| 		? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
 | |
| 		: kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
 | |
| }
 | |
| 
 | |
| static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
 | |
| {
 | |
| 	kvm_register_mark_available(vcpu, reg);
 | |
| 
 | |
| 	switch (reg) {
 | |
| 	case VCPU_EXREG_PDPTR:
 | |
| 		/*
 | |
| 		 * When !npt_enabled, mmu->pdptrs[] is already available since
 | |
| 		 * it is always updated per SDM when moving to CRs.
 | |
| 		 */
 | |
| 		if (npt_enabled)
 | |
| 			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
 | |
| 		break;
 | |
| 	default:
 | |
| 		KVM_BUG_ON(1, vcpu->kvm);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void svm_set_vintr(struct vcpu_svm *svm)
 | |
| {
 | |
| 	struct vmcb_control_area *control;
 | |
| 
 | |
| 	/*
 | |
| 	 * The following fields are ignored when AVIC is enabled
 | |
| 	 */
 | |
| 	WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
 | |
| 
 | |
| 	svm_set_intercept(svm, INTERCEPT_VINTR);
 | |
| 
 | |
| 	/*
 | |
| 	 * This is just a dummy VINTR to actually cause a vmexit to happen.
 | |
| 	 * Actual injection of virtual interrupts happens through EVENTINJ.
 | |
| 	 */
 | |
| 	control = &svm->vmcb->control;
 | |
| 	control->int_vector = 0x0;
 | |
| 	control->int_ctl &= ~V_INTR_PRIO_MASK;
 | |
| 	control->int_ctl |= V_IRQ_MASK |
 | |
| 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
 | |
| 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
 | |
| }
 | |
| 
 | |
| static void svm_clear_vintr(struct vcpu_svm *svm)
 | |
| {
 | |
| 	svm_clr_intercept(svm, INTERCEPT_VINTR);
 | |
| 
 | |
| 	/* Drop int_ctl fields related to VINTR injection.  */
 | |
| 	svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
 | |
| 	if (is_guest_mode(&svm->vcpu)) {
 | |
| 		svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
 | |
| 
 | |
| 		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
 | |
| 			(svm->nested.ctl.int_ctl & V_TPR_MASK));
 | |
| 
 | |
| 		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
 | |
| 			V_IRQ_INJECTION_BITS_MASK;
 | |
| 
 | |
| 		svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
 | |
| 	}
 | |
| 
 | |
| 	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
 | |
| }
 | |
| 
 | |
| static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
 | |
| {
 | |
| 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
 | |
| 	struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
 | |
| 
 | |
| 	switch (seg) {
 | |
| 	case VCPU_SREG_CS: return &save->cs;
 | |
| 	case VCPU_SREG_DS: return &save->ds;
 | |
| 	case VCPU_SREG_ES: return &save->es;
 | |
| 	case VCPU_SREG_FS: return &save01->fs;
 | |
| 	case VCPU_SREG_GS: return &save01->gs;
 | |
| 	case VCPU_SREG_SS: return &save->ss;
 | |
| 	case VCPU_SREG_TR: return &save01->tr;
 | |
| 	case VCPU_SREG_LDTR: return &save01->ldtr;
 | |
| 	}
 | |
| 	BUG();
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
 | |
| {
 | |
| 	struct vmcb_seg *s = svm_seg(vcpu, seg);
 | |
| 
 | |
| 	return s->base;
 | |
| }
 | |
| 
 | |
| static void svm_get_segment(struct kvm_vcpu *vcpu,
 | |
| 			    struct kvm_segment *var, int seg)
 | |
| {
 | |
| 	struct vmcb_seg *s = svm_seg(vcpu, seg);
 | |
| 
 | |
| 	var->base = s->base;
 | |
| 	var->limit = s->limit;
 | |
| 	var->selector = s->selector;
 | |
| 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
 | |
| 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
 | |
| 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
 | |
| 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
 | |
| 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
 | |
| 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
 | |
| 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
 | |
| 	 * However, the SVM spec states that the G bit is not observed by the
 | |
| 	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
 | |
| 	 * So let's synthesize a legal G bit for all segments, this helps
 | |
| 	 * running KVM nested. It also helps cross-vendor migration, because
 | |
| 	 * Intel's vmentry has a check on the 'G' bit.
 | |
| 	 */
 | |
| 	var->g = s->limit > 0xfffff;
 | |
| 
 | |
| 	/*
 | |
| 	 * AMD's VMCB does not have an explicit unusable field, so emulate it
 | |
| 	 * for cross vendor migration purposes by "not present"
 | |
| 	 */
 | |
| 	var->unusable = !var->present;
 | |
| 
 | |
| 	switch (seg) {
 | |
| 	case VCPU_SREG_TR:
 | |
| 		/*
 | |
| 		 * Work around a bug where the busy flag in the tr selector
 | |
| 		 * isn't exposed
 | |
| 		 */
 | |
| 		var->type |= 0x2;
 | |
| 		break;
 | |
| 	case VCPU_SREG_DS:
 | |
| 	case VCPU_SREG_ES:
 | |
| 	case VCPU_SREG_FS:
 | |
| 	case VCPU_SREG_GS:
 | |
| 		/*
 | |
| 		 * The accessed bit must always be set in the segment
 | |
| 		 * descriptor cache, although it can be cleared in the
 | |
| 		 * descriptor, the cached bit always remains at 1. Since
 | |
| 		 * Intel has a check on this, set it here to support
 | |
| 		 * cross-vendor migration.
 | |
| 		 */
 | |
| 		if (!var->unusable)
 | |
| 			var->type |= 0x1;
 | |
| 		break;
 | |
| 	case VCPU_SREG_SS:
 | |
| 		/*
 | |
| 		 * On AMD CPUs sometimes the DB bit in the segment
 | |
| 		 * descriptor is left as 1, although the whole segment has
 | |
| 		 * been made unusable. Clear it here to pass an Intel VMX
 | |
| 		 * entry check when cross vendor migrating.
 | |
| 		 */
 | |
| 		if (var->unusable)
 | |
| 			var->db = 0;
 | |
| 		/* This is symmetric with svm_set_segment() */
 | |
| 		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int svm_get_cpl(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
 | |
| 
 | |
| 	return save->cpl;
 | |
| }
 | |
| 
 | |
| static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
 | |
| {
 | |
| 	struct kvm_segment cs;
 | |
| 
 | |
| 	svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
 | |
| 	*db = cs.db;
 | |
| 	*l = cs.l;
 | |
| }
 | |
| 
 | |
| static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	dt->size = svm->vmcb->save.idtr.limit;
 | |
| 	dt->address = svm->vmcb->save.idtr.base;
 | |
| }
 | |
| 
 | |
| static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	svm->vmcb->save.idtr.limit = dt->size;
 | |
| 	svm->vmcb->save.idtr.base = dt->address ;
 | |
| 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
 | |
| }
 | |
| 
 | |
| static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	dt->size = svm->vmcb->save.gdtr.limit;
 | |
| 	dt->address = svm->vmcb->save.gdtr.base;
 | |
| }
 | |
| 
 | |
| static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	svm->vmcb->save.gdtr.limit = dt->size;
 | |
| 	svm->vmcb->save.gdtr.base = dt->address ;
 | |
| 	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
 | |
| }
 | |
| 
 | |
| static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * For guests that don't set guest_state_protected, the cr3 update is
 | |
| 	 * handled via kvm_mmu_load() while entering the guest. For guests
 | |
| 	 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
 | |
| 	 * VMCB save area now, since the save area will become the initial
 | |
| 	 * contents of the VMSA, and future VMCB save area updates won't be
 | |
| 	 * seen.
 | |
| 	 */
 | |
| 	if (sev_es_guest(vcpu->kvm)) {
 | |
| 		svm->vmcb->save.cr3 = cr3;
 | |
| 		vmcb_mark_dirty(svm->vmcb, VMCB_CR);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	u64 hcr0 = cr0;
 | |
| 	bool old_paging = is_paging(vcpu);
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if (vcpu->arch.efer & EFER_LME && !vcpu->arch.guest_state_protected) {
 | |
| 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
 | |
| 			vcpu->arch.efer |= EFER_LMA;
 | |
| 			svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
 | |
| 		}
 | |
| 
 | |
| 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
 | |
| 			vcpu->arch.efer &= ~EFER_LMA;
 | |
| 			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 	vcpu->arch.cr0 = cr0;
 | |
| 
 | |
| 	if (!npt_enabled) {
 | |
| 		hcr0 |= X86_CR0_PG | X86_CR0_WP;
 | |
| 		if (old_paging != is_paging(vcpu))
 | |
| 			svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * re-enable caching here because the QEMU bios
 | |
| 	 * does not do it - this results in some delay at
 | |
| 	 * reboot
 | |
| 	 */
 | |
| 	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
 | |
| 		hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
 | |
| 
 | |
| 	svm->vmcb->save.cr0 = hcr0;
 | |
| 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
 | |
| 
 | |
| 	/*
 | |
| 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
 | |
| 	 * tracking is done using the CR write traps.
 | |
| 	 */
 | |
| 	if (sev_es_guest(vcpu->kvm))
 | |
| 		return;
 | |
| 
 | |
| 	if (hcr0 == cr0) {
 | |
| 		/* Selective CR0 write remains on.  */
 | |
| 		svm_clr_intercept(svm, INTERCEPT_CR0_READ);
 | |
| 		svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
 | |
| 	} else {
 | |
| 		svm_set_intercept(svm, INTERCEPT_CR0_READ);
 | |
| 		svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
 | |
| {
 | |
| 	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
 | |
| 	unsigned long old_cr4 = vcpu->arch.cr4;
 | |
| 
 | |
| 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
 | |
| 		svm_flush_tlb_current(vcpu);
 | |
| 
 | |
| 	vcpu->arch.cr4 = cr4;
 | |
| 	if (!npt_enabled) {
 | |
| 		cr4 |= X86_CR4_PAE;
 | |
| 
 | |
| 		if (!is_paging(vcpu))
 | |
| 			cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
 | |
| 	}
 | |
| 	cr4 |= host_cr4_mce;
 | |
| 	to_svm(vcpu)->vmcb->save.cr4 = cr4;
 | |
| 	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
 | |
| 
 | |
| 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
 | |
| 		kvm_update_cpuid_runtime(vcpu);
 | |
| }
 | |
| 
 | |
| static void svm_set_segment(struct kvm_vcpu *vcpu,
 | |
| 			    struct kvm_segment *var, int seg)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	struct vmcb_seg *s = svm_seg(vcpu, seg);
 | |
| 
 | |
| 	s->base = var->base;
 | |
| 	s->limit = var->limit;
 | |
| 	s->selector = var->selector;
 | |
| 	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
 | |
| 	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
 | |
| 	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
 | |
| 	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
 | |
| 	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
 | |
| 	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
 | |
| 	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
 | |
| 	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
 | |
| 
 | |
| 	/*
 | |
| 	 * This is always accurate, except if SYSRET returned to a segment
 | |
| 	 * with SS.DPL != 3.  Intel does not have this quirk, and always
 | |
| 	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
 | |
| 	 * would entail passing the CPL to userspace and back.
 | |
| 	 */
 | |
| 	if (seg == VCPU_SREG_SS)
 | |
| 		/* This is symmetric with svm_get_segment() */
 | |
| 		svm->vmcb->save.cpl = (var->dpl & 3);
 | |
| 
 | |
| 	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
 | |
| }
 | |
| 
 | |
| static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	clr_exception_intercept(svm, BP_VECTOR);
 | |
| 
 | |
| 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
 | |
| 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
 | |
| 			set_exception_intercept(svm, BP_VECTOR);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
 | |
| {
 | |
| 	if (sd->next_asid > sd->max_asid) {
 | |
| 		++sd->asid_generation;
 | |
| 		sd->next_asid = sd->min_asid;
 | |
| 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
 | |
| 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
 | |
| 	}
 | |
| 
 | |
| 	svm->current_vmcb->asid_generation = sd->asid_generation;
 | |
| 	svm->asid = sd->next_asid++;
 | |
| }
 | |
| 
 | |
| static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
 | |
| {
 | |
| 	struct vmcb *vmcb = svm->vmcb;
 | |
| 
 | |
| 	if (svm->vcpu.arch.guest_state_protected)
 | |
| 		return;
 | |
| 
 | |
| 	if (unlikely(value != vmcb->save.dr6)) {
 | |
| 		vmcb->save.dr6 = value;
 | |
| 		vmcb_mark_dirty(vmcb, VMCB_DR);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	if (vcpu->arch.guest_state_protected)
 | |
| 		return;
 | |
| 
 | |
| 	get_debugreg(vcpu->arch.db[0], 0);
 | |
| 	get_debugreg(vcpu->arch.db[1], 1);
 | |
| 	get_debugreg(vcpu->arch.db[2], 2);
 | |
| 	get_debugreg(vcpu->arch.db[3], 3);
 | |
| 	/*
 | |
| 	 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
 | |
| 	 * because db_interception might need it.  We can do it before vmentry.
 | |
| 	 */
 | |
| 	vcpu->arch.dr6 = svm->vmcb->save.dr6;
 | |
| 	vcpu->arch.dr7 = svm->vmcb->save.dr7;
 | |
| 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
 | |
| 	set_dr_intercepts(svm);
 | |
| }
 | |
| 
 | |
| static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	if (vcpu->arch.guest_state_protected)
 | |
| 		return;
 | |
| 
 | |
| 	svm->vmcb->save.dr7 = value;
 | |
| 	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
 | |
| }
 | |
| 
 | |
| static int pf_interception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	u64 fault_address = svm->vmcb->control.exit_info_2;
 | |
| 	u64 error_code = svm->vmcb->control.exit_info_1;
 | |
| 
 | |
| 	return kvm_handle_page_fault(vcpu, error_code, fault_address,
 | |
| 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
 | |
| 			svm->vmcb->control.insn_bytes : NULL,
 | |
| 			svm->vmcb->control.insn_len);
 | |
| }
 | |
| 
 | |
| static int npf_interception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	u64 fault_address = svm->vmcb->control.exit_info_2;
 | |
| 	u64 error_code = svm->vmcb->control.exit_info_1;
 | |
| 
 | |
| 	trace_kvm_page_fault(fault_address, error_code);
 | |
| 	return kvm_mmu_page_fault(vcpu, fault_address, error_code,
 | |
| 			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
 | |
| 			svm->vmcb->control.insn_bytes : NULL,
 | |
| 			svm->vmcb->control.insn_len);
 | |
| }
 | |
| 
 | |
| static int db_interception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_run *kvm_run = vcpu->run;
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	if (!(vcpu->guest_debug &
 | |
| 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
 | |
| 		!svm->nmi_singlestep) {
 | |
| 		u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
 | |
| 		kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (svm->nmi_singlestep) {
 | |
| 		disable_nmi_singlestep(svm);
 | |
| 		/* Make sure we check for pending NMIs upon entry */
 | |
| 		kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 	}
 | |
| 
 | |
| 	if (vcpu->guest_debug &
 | |
| 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
 | |
| 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
 | |
| 		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
 | |
| 		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
 | |
| 		kvm_run->debug.arch.pc =
 | |
| 			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
 | |
| 		kvm_run->debug.arch.exception = DB_VECTOR;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int bp_interception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	struct kvm_run *kvm_run = vcpu->run;
 | |
| 
 | |
| 	kvm_run->exit_reason = KVM_EXIT_DEBUG;
 | |
| 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
 | |
| 	kvm_run->debug.arch.exception = BP_VECTOR;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ud_interception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return handle_ud(vcpu);
 | |
| }
 | |
| 
 | |
| static int ac_interception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static bool is_erratum_383(void)
 | |
| {
 | |
| 	int err, i;
 | |
| 	u64 value;
 | |
| 
 | |
| 	if (!erratum_383_found)
 | |
| 		return false;
 | |
| 
 | |
| 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
 | |
| 	if (err)
 | |
| 		return false;
 | |
| 
 | |
| 	/* Bit 62 may or may not be set for this mce */
 | |
| 	value &= ~(1ULL << 62);
 | |
| 
 | |
| 	if (value != 0xb600000000010015ULL)
 | |
| 		return false;
 | |
| 
 | |
| 	/* Clear MCi_STATUS registers */
 | |
| 	for (i = 0; i < 6; ++i)
 | |
| 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
 | |
| 
 | |
| 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
 | |
| 	if (!err) {
 | |
| 		u32 low, high;
 | |
| 
 | |
| 		value &= ~(1ULL << 2);
 | |
| 		low    = lower_32_bits(value);
 | |
| 		high   = upper_32_bits(value);
 | |
| 
 | |
| 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
 | |
| 	}
 | |
| 
 | |
| 	/* Flush tlb to evict multi-match entries */
 | |
| 	__flush_tlb_all();
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void svm_handle_mce(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (is_erratum_383()) {
 | |
| 		/*
 | |
| 		 * Erratum 383 triggered. Guest state is corrupt so kill the
 | |
| 		 * guest.
 | |
| 		 */
 | |
| 		pr_err("KVM: Guest triggered AMD Erratum 383\n");
 | |
| 
 | |
| 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * On an #MC intercept the MCE handler is not called automatically in
 | |
| 	 * the host. So do it by hand here.
 | |
| 	 */
 | |
| 	kvm_machine_check();
 | |
| }
 | |
| 
 | |
| static int mc_interception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int shutdown_interception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_run *kvm_run = vcpu->run;
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * The VM save area has already been encrypted so it
 | |
| 	 * cannot be reinitialized - just terminate.
 | |
| 	 */
 | |
| 	if (sev_es_guest(vcpu->kvm))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * VMCB is undefined after a SHUTDOWN intercept.  INIT the vCPU to put
 | |
| 	 * the VMCB in a known good state.  Unfortuately, KVM doesn't have
 | |
| 	 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
 | |
| 	 * userspace.  At a platform view, INIT is acceptable behavior as
 | |
| 	 * there exist bare metal platforms that automatically INIT the CPU
 | |
| 	 * in response to shutdown.
 | |
| 	 */
 | |
| 	clear_page(svm->vmcb);
 | |
| 	kvm_vcpu_reset(vcpu, true);
 | |
| 
 | |
| 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int io_interception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
 | |
| 	int size, in, string;
 | |
| 	unsigned port;
 | |
| 
 | |
| 	++vcpu->stat.io_exits;
 | |
| 	string = (io_info & SVM_IOIO_STR_MASK) != 0;
 | |
| 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
 | |
| 	port = io_info >> 16;
 | |
| 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
 | |
| 
 | |
| 	if (string) {
 | |
| 		if (sev_es_guest(vcpu->kvm))
 | |
| 			return sev_es_string_io(svm, size, port, in);
 | |
| 		else
 | |
| 			return kvm_emulate_instruction(vcpu, 0);
 | |
| 	}
 | |
| 
 | |
| 	svm->next_rip = svm->vmcb->control.exit_info_2;
 | |
| 
 | |
| 	return kvm_fast_pio(vcpu, size, port, in);
 | |
| }
 | |
| 
 | |
| static int nmi_interception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int smi_interception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int intr_interception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	++vcpu->stat.irq_exits;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	struct vmcb *vmcb12;
 | |
| 	struct kvm_host_map map;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (nested_svm_check_permissions(vcpu))
 | |
| 		return 1;
 | |
| 
 | |
| 	ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
 | |
| 	if (ret) {
 | |
| 		if (ret == -EINVAL)
 | |
| 			kvm_inject_gp(vcpu, 0);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	vmcb12 = map.hva;
 | |
| 
 | |
| 	ret = kvm_skip_emulated_instruction(vcpu);
 | |
| 
 | |
| 	if (vmload) {
 | |
| 		svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
 | |
| 		svm->sysenter_eip_hi = 0;
 | |
| 		svm->sysenter_esp_hi = 0;
 | |
| 	} else {
 | |
| 		svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
 | |
| 	}
 | |
| 
 | |
| 	kvm_vcpu_unmap(vcpu, &map, true);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int vmload_interception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return vmload_vmsave_interception(vcpu, true);
 | |
| }
 | |
| 
 | |
| static int vmsave_interception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return vmload_vmsave_interception(vcpu, false);
 | |
| }
 | |
| 
 | |
| static int vmrun_interception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (nested_svm_check_permissions(vcpu))
 | |
| 		return 1;
 | |
| 
 | |
| 	return nested_svm_vmrun(vcpu);
 | |
| }
 | |
| 
 | |
| enum {
 | |
| 	NONE_SVM_INSTR,
 | |
| 	SVM_INSTR_VMRUN,
 | |
| 	SVM_INSTR_VMLOAD,
 | |
| 	SVM_INSTR_VMSAVE,
 | |
| };
 | |
| 
 | |
| /* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
 | |
| static int svm_instr_opcode(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
 | |
| 
 | |
| 	if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
 | |
| 		return NONE_SVM_INSTR;
 | |
| 
 | |
| 	switch (ctxt->modrm) {
 | |
| 	case 0xd8: /* VMRUN */
 | |
| 		return SVM_INSTR_VMRUN;
 | |
| 	case 0xda: /* VMLOAD */
 | |
| 		return SVM_INSTR_VMLOAD;
 | |
| 	case 0xdb: /* VMSAVE */
 | |
| 		return SVM_INSTR_VMSAVE;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return NONE_SVM_INSTR;
 | |
| }
 | |
| 
 | |
| static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
 | |
| {
 | |
| 	const int guest_mode_exit_codes[] = {
 | |
| 		[SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
 | |
| 		[SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
 | |
| 		[SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
 | |
| 	};
 | |
| 	int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
 | |
| 		[SVM_INSTR_VMRUN] = vmrun_interception,
 | |
| 		[SVM_INSTR_VMLOAD] = vmload_interception,
 | |
| 		[SVM_INSTR_VMSAVE] = vmsave_interception,
 | |
| 	};
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (is_guest_mode(vcpu)) {
 | |
| 		/* Returns '1' or -errno on failure, '0' on success. */
 | |
| 		ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return svm_instr_handlers[opcode](vcpu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * #GP handling code. Note that #GP can be triggered under the following two
 | |
|  * cases:
 | |
|  *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
 | |
|  *      some AMD CPUs when EAX of these instructions are in the reserved memory
 | |
|  *      regions (e.g. SMM memory on host).
 | |
|  *   2) VMware backdoor
 | |
|  */
 | |
| static int gp_interception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	u32 error_code = svm->vmcb->control.exit_info_1;
 | |
| 	int opcode;
 | |
| 
 | |
| 	/* Both #GP cases have zero error_code */
 | |
| 	if (error_code)
 | |
| 		goto reinject;
 | |
| 
 | |
| 	/* Decode the instruction for usage later */
 | |
| 	if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
 | |
| 		goto reinject;
 | |
| 
 | |
| 	opcode = svm_instr_opcode(vcpu);
 | |
| 
 | |
| 	if (opcode == NONE_SVM_INSTR) {
 | |
| 		if (!enable_vmware_backdoor)
 | |
| 			goto reinject;
 | |
| 
 | |
| 		/*
 | |
| 		 * VMware backdoor emulation on #GP interception only handles
 | |
| 		 * IN{S}, OUT{S}, and RDPMC.
 | |
| 		 */
 | |
| 		if (!is_guest_mode(vcpu))
 | |
| 			return kvm_emulate_instruction(vcpu,
 | |
| 				EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
 | |
| 	} else {
 | |
| 		/* All SVM instructions expect page aligned RAX */
 | |
| 		if (svm->vmcb->save.rax & ~PAGE_MASK)
 | |
| 			goto reinject;
 | |
| 
 | |
| 		return emulate_svm_instr(vcpu, opcode);
 | |
| 	}
 | |
| 
 | |
| reinject:
 | |
| 	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| void svm_set_gif(struct vcpu_svm *svm, bool value)
 | |
| {
 | |
| 	if (value) {
 | |
| 		/*
 | |
| 		 * If VGIF is enabled, the STGI intercept is only added to
 | |
| 		 * detect the opening of the SMI/NMI window; remove it now.
 | |
| 		 * Likewise, clear the VINTR intercept, we will set it
 | |
| 		 * again while processing KVM_REQ_EVENT if needed.
 | |
| 		 */
 | |
| 		if (vgif_enabled(svm))
 | |
| 			svm_clr_intercept(svm, INTERCEPT_STGI);
 | |
| 		if (svm_is_intercept(svm, INTERCEPT_VINTR))
 | |
| 			svm_clear_vintr(svm);
 | |
| 
 | |
| 		enable_gif(svm);
 | |
| 		if (svm->vcpu.arch.smi_pending ||
 | |
| 		    svm->vcpu.arch.nmi_pending ||
 | |
| 		    kvm_cpu_has_injectable_intr(&svm->vcpu))
 | |
| 			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
 | |
| 	} else {
 | |
| 		disable_gif(svm);
 | |
| 
 | |
| 		/*
 | |
| 		 * After a CLGI no interrupts should come.  But if vGIF is
 | |
| 		 * in use, we still rely on the VINTR intercept (rather than
 | |
| 		 * STGI) to detect an open interrupt window.
 | |
| 		*/
 | |
| 		if (!vgif_enabled(svm))
 | |
| 			svm_clear_vintr(svm);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int stgi_interception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (nested_svm_check_permissions(vcpu))
 | |
| 		return 1;
 | |
| 
 | |
| 	ret = kvm_skip_emulated_instruction(vcpu);
 | |
| 	svm_set_gif(to_svm(vcpu), true);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int clgi_interception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (nested_svm_check_permissions(vcpu))
 | |
| 		return 1;
 | |
| 
 | |
| 	ret = kvm_skip_emulated_instruction(vcpu);
 | |
| 	svm_set_gif(to_svm(vcpu), false);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int invlpga_interception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	gva_t gva = kvm_rax_read(vcpu);
 | |
| 	u32 asid = kvm_rcx_read(vcpu);
 | |
| 
 | |
| 	/* FIXME: Handle an address size prefix. */
 | |
| 	if (!is_long_mode(vcpu))
 | |
| 		gva = (u32)gva;
 | |
| 
 | |
| 	trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
 | |
| 
 | |
| 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
 | |
| 	kvm_mmu_invlpg(vcpu, gva);
 | |
| 
 | |
| 	return kvm_skip_emulated_instruction(vcpu);
 | |
| }
 | |
| 
 | |
| static int skinit_interception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
 | |
| 
 | |
| 	kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int task_switch_interception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	u16 tss_selector;
 | |
| 	int reason;
 | |
| 	int int_type = svm->vmcb->control.exit_int_info &
 | |
| 		SVM_EXITINTINFO_TYPE_MASK;
 | |
| 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
 | |
| 	uint32_t type =
 | |
| 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
 | |
| 	uint32_t idt_v =
 | |
| 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
 | |
| 	bool has_error_code = false;
 | |
| 	u32 error_code = 0;
 | |
| 
 | |
| 	tss_selector = (u16)svm->vmcb->control.exit_info_1;
 | |
| 
 | |
| 	if (svm->vmcb->control.exit_info_2 &
 | |
| 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
 | |
| 		reason = TASK_SWITCH_IRET;
 | |
| 	else if (svm->vmcb->control.exit_info_2 &
 | |
| 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
 | |
| 		reason = TASK_SWITCH_JMP;
 | |
| 	else if (idt_v)
 | |
| 		reason = TASK_SWITCH_GATE;
 | |
| 	else
 | |
| 		reason = TASK_SWITCH_CALL;
 | |
| 
 | |
| 	if (reason == TASK_SWITCH_GATE) {
 | |
| 		switch (type) {
 | |
| 		case SVM_EXITINTINFO_TYPE_NMI:
 | |
| 			vcpu->arch.nmi_injected = false;
 | |
| 			break;
 | |
| 		case SVM_EXITINTINFO_TYPE_EXEPT:
 | |
| 			if (svm->vmcb->control.exit_info_2 &
 | |
| 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
 | |
| 				has_error_code = true;
 | |
| 				error_code =
 | |
| 					(u32)svm->vmcb->control.exit_info_2;
 | |
| 			}
 | |
| 			kvm_clear_exception_queue(vcpu);
 | |
| 			break;
 | |
| 		case SVM_EXITINTINFO_TYPE_INTR:
 | |
| 			kvm_clear_interrupt_queue(vcpu);
 | |
| 			break;
 | |
| 		default:
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (reason != TASK_SWITCH_GATE ||
 | |
| 	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
 | |
| 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
 | |
| 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
 | |
| 		if (!svm_skip_emulated_instruction(vcpu))
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
 | |
| 		int_vec = -1;
 | |
| 
 | |
| 	return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
 | |
| 			       has_error_code, error_code);
 | |
| }
 | |
| 
 | |
| static int iret_interception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	++vcpu->stat.nmi_window_exits;
 | |
| 	vcpu->arch.hflags |= HF_IRET_MASK;
 | |
| 	if (!sev_es_guest(vcpu->kvm)) {
 | |
| 		svm_clr_intercept(svm, INTERCEPT_IRET);
 | |
| 		svm->nmi_iret_rip = kvm_rip_read(vcpu);
 | |
| 	}
 | |
| 	kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int invlpg_interception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
 | |
| 		return kvm_emulate_instruction(vcpu, 0);
 | |
| 
 | |
| 	kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
 | |
| 	return kvm_skip_emulated_instruction(vcpu);
 | |
| }
 | |
| 
 | |
| static int emulate_on_interception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return kvm_emulate_instruction(vcpu, 0);
 | |
| }
 | |
| 
 | |
| static int rsm_interception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
 | |
| }
 | |
| 
 | |
| static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
 | |
| 					    unsigned long val)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	unsigned long cr0 = vcpu->arch.cr0;
 | |
| 	bool ret = false;
 | |
| 
 | |
| 	if (!is_guest_mode(vcpu) ||
 | |
| 	    (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
 | |
| 		return false;
 | |
| 
 | |
| 	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
 | |
| 	val &= ~SVM_CR0_SELECTIVE_MASK;
 | |
| 
 | |
| 	if (cr0 ^ val) {
 | |
| 		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
 | |
| 		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #define CR_VALID (1ULL << 63)
 | |
| 
 | |
| static int cr_interception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	int reg, cr;
 | |
| 	unsigned long val;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
 | |
| 		return emulate_on_interception(vcpu);
 | |
| 
 | |
| 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
 | |
| 		return emulate_on_interception(vcpu);
 | |
| 
 | |
| 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
 | |
| 	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
 | |
| 		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
 | |
| 	else
 | |
| 		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
 | |
| 
 | |
| 	err = 0;
 | |
| 	if (cr >= 16) { /* mov to cr */
 | |
| 		cr -= 16;
 | |
| 		val = kvm_register_read(vcpu, reg);
 | |
| 		trace_kvm_cr_write(cr, val);
 | |
| 		switch (cr) {
 | |
| 		case 0:
 | |
| 			if (!check_selective_cr0_intercepted(vcpu, val))
 | |
| 				err = kvm_set_cr0(vcpu, val);
 | |
| 			else
 | |
| 				return 1;
 | |
| 
 | |
| 			break;
 | |
| 		case 3:
 | |
| 			err = kvm_set_cr3(vcpu, val);
 | |
| 			break;
 | |
| 		case 4:
 | |
| 			err = kvm_set_cr4(vcpu, val);
 | |
| 			break;
 | |
| 		case 8:
 | |
| 			err = kvm_set_cr8(vcpu, val);
 | |
| 			break;
 | |
| 		default:
 | |
| 			WARN(1, "unhandled write to CR%d", cr);
 | |
| 			kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	} else { /* mov from cr */
 | |
| 		switch (cr) {
 | |
| 		case 0:
 | |
| 			val = kvm_read_cr0(vcpu);
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			val = vcpu->arch.cr2;
 | |
| 			break;
 | |
| 		case 3:
 | |
| 			val = kvm_read_cr3(vcpu);
 | |
| 			break;
 | |
| 		case 4:
 | |
| 			val = kvm_read_cr4(vcpu);
 | |
| 			break;
 | |
| 		case 8:
 | |
| 			val = kvm_get_cr8(vcpu);
 | |
| 			break;
 | |
| 		default:
 | |
| 			WARN(1, "unhandled read from CR%d", cr);
 | |
| 			kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 			return 1;
 | |
| 		}
 | |
| 		kvm_register_write(vcpu, reg, val);
 | |
| 		trace_kvm_cr_read(cr, val);
 | |
| 	}
 | |
| 	return kvm_complete_insn_gp(vcpu, err);
 | |
| }
 | |
| 
 | |
| static int cr_trap(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	unsigned long old_value, new_value;
 | |
| 	unsigned int cr;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	new_value = (unsigned long)svm->vmcb->control.exit_info_1;
 | |
| 
 | |
| 	cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
 | |
| 	switch (cr) {
 | |
| 	case 0:
 | |
| 		old_value = kvm_read_cr0(vcpu);
 | |
| 		svm_set_cr0(vcpu, new_value);
 | |
| 
 | |
| 		kvm_post_set_cr0(vcpu, old_value, new_value);
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		old_value = kvm_read_cr4(vcpu);
 | |
| 		svm_set_cr4(vcpu, new_value);
 | |
| 
 | |
| 		kvm_post_set_cr4(vcpu, old_value, new_value);
 | |
| 		break;
 | |
| 	case 8:
 | |
| 		ret = kvm_set_cr8(vcpu, new_value);
 | |
| 		break;
 | |
| 	default:
 | |
| 		WARN(1, "unhandled CR%d write trap", cr);
 | |
| 		kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return kvm_complete_insn_gp(vcpu, ret);
 | |
| }
 | |
| 
 | |
| static int dr_interception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	int reg, dr;
 | |
| 	unsigned long val;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	if (vcpu->guest_debug == 0) {
 | |
| 		/*
 | |
| 		 * No more DR vmexits; force a reload of the debug registers
 | |
| 		 * and reenter on this instruction.  The next vmexit will
 | |
| 		 * retrieve the full state of the debug registers.
 | |
| 		 */
 | |
| 		clr_dr_intercepts(svm);
 | |
| 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
 | |
| 		return emulate_on_interception(vcpu);
 | |
| 
 | |
| 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
 | |
| 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
 | |
| 	if (dr >= 16) { /* mov to DRn  */
 | |
| 		dr -= 16;
 | |
| 		val = kvm_register_read(vcpu, reg);
 | |
| 		err = kvm_set_dr(vcpu, dr, val);
 | |
| 	} else {
 | |
| 		kvm_get_dr(vcpu, dr, &val);
 | |
| 		kvm_register_write(vcpu, reg, val);
 | |
| 	}
 | |
| 
 | |
| 	return kvm_complete_insn_gp(vcpu, err);
 | |
| }
 | |
| 
 | |
| static int cr8_write_interception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	u8 cr8_prev = kvm_get_cr8(vcpu);
 | |
| 	/* instruction emulation calls kvm_set_cr8() */
 | |
| 	r = cr_interception(vcpu);
 | |
| 	if (lapic_in_kernel(vcpu))
 | |
| 		return r;
 | |
| 	if (cr8_prev <= kvm_get_cr8(vcpu))
 | |
| 		return r;
 | |
| 	vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int efer_trap(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct msr_data msr_info;
 | |
| 	int ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
 | |
| 	 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
 | |
| 	 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
 | |
| 	 * the guest doesn't have X86_FEATURE_SVM.
 | |
| 	 */
 | |
| 	msr_info.host_initiated = false;
 | |
| 	msr_info.index = MSR_EFER;
 | |
| 	msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
 | |
| 	ret = kvm_set_msr_common(vcpu, &msr_info);
 | |
| 
 | |
| 	return kvm_complete_insn_gp(vcpu, ret);
 | |
| }
 | |
| 
 | |
| static int svm_get_msr_feature(struct kvm_msr_entry *msr)
 | |
| {
 | |
| 	msr->data = 0;
 | |
| 
 | |
| 	switch (msr->index) {
 | |
| 	case MSR_AMD64_DE_CFG:
 | |
| 		if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
 | |
| 			msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
 | |
| 		break;
 | |
| 	case MSR_IA32_PERF_CAPABILITIES:
 | |
| 		return 0;
 | |
| 	default:
 | |
| 		return KVM_MSR_RET_INVALID;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	switch (msr_info->index) {
 | |
| 	case MSR_AMD64_TSC_RATIO:
 | |
| 		if (!msr_info->host_initiated && !svm->tsc_scaling_enabled)
 | |
| 			return 1;
 | |
| 		msr_info->data = svm->tsc_ratio_msr;
 | |
| 		break;
 | |
| 	case MSR_STAR:
 | |
| 		msr_info->data = svm->vmcb01.ptr->save.star;
 | |
| 		break;
 | |
| #ifdef CONFIG_X86_64
 | |
| 	case MSR_LSTAR:
 | |
| 		msr_info->data = svm->vmcb01.ptr->save.lstar;
 | |
| 		break;
 | |
| 	case MSR_CSTAR:
 | |
| 		msr_info->data = svm->vmcb01.ptr->save.cstar;
 | |
| 		break;
 | |
| 	case MSR_KERNEL_GS_BASE:
 | |
| 		msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
 | |
| 		break;
 | |
| 	case MSR_SYSCALL_MASK:
 | |
| 		msr_info->data = svm->vmcb01.ptr->save.sfmask;
 | |
| 		break;
 | |
| #endif
 | |
| 	case MSR_IA32_SYSENTER_CS:
 | |
| 		msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
 | |
| 		break;
 | |
| 	case MSR_IA32_SYSENTER_EIP:
 | |
| 		msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
 | |
| 		if (guest_cpuid_is_intel(vcpu))
 | |
| 			msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
 | |
| 		break;
 | |
| 	case MSR_IA32_SYSENTER_ESP:
 | |
| 		msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
 | |
| 		if (guest_cpuid_is_intel(vcpu))
 | |
| 			msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
 | |
| 		break;
 | |
| 	case MSR_TSC_AUX:
 | |
| 		msr_info->data = svm->tsc_aux;
 | |
| 		break;
 | |
| 	case MSR_IA32_DEBUGCTLMSR:
 | |
| 	case MSR_IA32_LASTBRANCHFROMIP:
 | |
| 	case MSR_IA32_LASTBRANCHTOIP:
 | |
| 	case MSR_IA32_LASTINTFROMIP:
 | |
| 	case MSR_IA32_LASTINTTOIP:
 | |
| 		msr_info->data = svm_get_lbr_msr(svm, msr_info->index);
 | |
| 		break;
 | |
| 	case MSR_VM_HSAVE_PA:
 | |
| 		msr_info->data = svm->nested.hsave_msr;
 | |
| 		break;
 | |
| 	case MSR_VM_CR:
 | |
| 		msr_info->data = svm->nested.vm_cr_msr;
 | |
| 		break;
 | |
| 	case MSR_IA32_SPEC_CTRL:
 | |
| 		if (!msr_info->host_initiated &&
 | |
| 		    !guest_has_spec_ctrl_msr(vcpu))
 | |
| 			return 1;
 | |
| 
 | |
| 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
 | |
| 			msr_info->data = svm->vmcb->save.spec_ctrl;
 | |
| 		else
 | |
| 			msr_info->data = svm->spec_ctrl;
 | |
| 		break;
 | |
| 	case MSR_AMD64_VIRT_SPEC_CTRL:
 | |
| 		if (!msr_info->host_initiated &&
 | |
| 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
 | |
| 			return 1;
 | |
| 
 | |
| 		msr_info->data = svm->virt_spec_ctrl;
 | |
| 		break;
 | |
| 	case MSR_F15H_IC_CFG: {
 | |
| 
 | |
| 		int family, model;
 | |
| 
 | |
| 		family = guest_cpuid_family(vcpu);
 | |
| 		model  = guest_cpuid_model(vcpu);
 | |
| 
 | |
| 		if (family < 0 || model < 0)
 | |
| 			return kvm_get_msr_common(vcpu, msr_info);
 | |
| 
 | |
| 		msr_info->data = 0;
 | |
| 
 | |
| 		if (family == 0x15 &&
 | |
| 		    (model >= 0x2 && model < 0x20))
 | |
| 			msr_info->data = 0x1E;
 | |
| 		}
 | |
| 		break;
 | |
| 	case MSR_AMD64_DE_CFG:
 | |
| 		msr_info->data = svm->msr_decfg;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return kvm_get_msr_common(vcpu, msr_info);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
 | |
| 		return kvm_complete_insn_gp(vcpu, err);
 | |
| 
 | |
| 	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
 | |
| 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
 | |
| 				X86_TRAP_GP |
 | |
| 				SVM_EVTINJ_TYPE_EXEPT |
 | |
| 				SVM_EVTINJ_VALID);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	int svm_dis, chg_mask;
 | |
| 
 | |
| 	if (data & ~SVM_VM_CR_VALID_MASK)
 | |
| 		return 1;
 | |
| 
 | |
| 	chg_mask = SVM_VM_CR_VALID_MASK;
 | |
| 
 | |
| 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
 | |
| 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
 | |
| 
 | |
| 	svm->nested.vm_cr_msr &= ~chg_mask;
 | |
| 	svm->nested.vm_cr_msr |= (data & chg_mask);
 | |
| 
 | |
| 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
 | |
| 
 | |
| 	/* check for svm_disable while efer.svme is set */
 | |
| 	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	u32 ecx = msr->index;
 | |
| 	u64 data = msr->data;
 | |
| 	switch (ecx) {
 | |
| 	case MSR_AMD64_TSC_RATIO:
 | |
| 
 | |
| 		if (!svm->tsc_scaling_enabled) {
 | |
| 
 | |
| 			if (!msr->host_initiated)
 | |
| 				return 1;
 | |
| 			/*
 | |
| 			 * In case TSC scaling is not enabled, always
 | |
| 			 * leave this MSR at the default value.
 | |
| 			 *
 | |
| 			 * Due to bug in qemu 6.2.0, it would try to set
 | |
| 			 * this msr to 0 if tsc scaling is not enabled.
 | |
| 			 * Ignore this value as well.
 | |
| 			 */
 | |
| 			if (data != 0 && data != svm->tsc_ratio_msr)
 | |
| 				return 1;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (data & SVM_TSC_RATIO_RSVD)
 | |
| 			return 1;
 | |
| 
 | |
| 		svm->tsc_ratio_msr = data;
 | |
| 
 | |
| 		if (svm->tsc_scaling_enabled && is_guest_mode(vcpu))
 | |
| 			nested_svm_update_tsc_ratio_msr(vcpu);
 | |
| 
 | |
| 		break;
 | |
| 	case MSR_IA32_CR_PAT:
 | |
| 		if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
 | |
| 			return 1;
 | |
| 		vcpu->arch.pat = data;
 | |
| 		svm->vmcb01.ptr->save.g_pat = data;
 | |
| 		if (is_guest_mode(vcpu))
 | |
| 			nested_vmcb02_compute_g_pat(svm);
 | |
| 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
 | |
| 		break;
 | |
| 	case MSR_IA32_SPEC_CTRL:
 | |
| 		if (!msr->host_initiated &&
 | |
| 		    !guest_has_spec_ctrl_msr(vcpu))
 | |
| 			return 1;
 | |
| 
 | |
| 		if (kvm_spec_ctrl_test_value(data))
 | |
| 			return 1;
 | |
| 
 | |
| 		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
 | |
| 			svm->vmcb->save.spec_ctrl = data;
 | |
| 		else
 | |
| 			svm->spec_ctrl = data;
 | |
| 		if (!data)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * For non-nested:
 | |
| 		 * When it's written (to non-zero) for the first time, pass
 | |
| 		 * it through.
 | |
| 		 *
 | |
| 		 * For nested:
 | |
| 		 * The handling of the MSR bitmap for L2 guests is done in
 | |
| 		 * nested_svm_vmrun_msrpm.
 | |
| 		 * We update the L1 MSR bit as well since it will end up
 | |
| 		 * touching the MSR anyway now.
 | |
| 		 */
 | |
| 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
 | |
| 		break;
 | |
| 	case MSR_AMD64_VIRT_SPEC_CTRL:
 | |
| 		if (!msr->host_initiated &&
 | |
| 		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
 | |
| 			return 1;
 | |
| 
 | |
| 		if (data & ~SPEC_CTRL_SSBD)
 | |
| 			return 1;
 | |
| 
 | |
| 		svm->virt_spec_ctrl = data;
 | |
| 		break;
 | |
| 	case MSR_STAR:
 | |
| 		svm->vmcb01.ptr->save.star = data;
 | |
| 		break;
 | |
| #ifdef CONFIG_X86_64
 | |
| 	case MSR_LSTAR:
 | |
| 		svm->vmcb01.ptr->save.lstar = data;
 | |
| 		break;
 | |
| 	case MSR_CSTAR:
 | |
| 		svm->vmcb01.ptr->save.cstar = data;
 | |
| 		break;
 | |
| 	case MSR_KERNEL_GS_BASE:
 | |
| 		svm->vmcb01.ptr->save.kernel_gs_base = data;
 | |
| 		break;
 | |
| 	case MSR_SYSCALL_MASK:
 | |
| 		svm->vmcb01.ptr->save.sfmask = data;
 | |
| 		break;
 | |
| #endif
 | |
| 	case MSR_IA32_SYSENTER_CS:
 | |
| 		svm->vmcb01.ptr->save.sysenter_cs = data;
 | |
| 		break;
 | |
| 	case MSR_IA32_SYSENTER_EIP:
 | |
| 		svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
 | |
| 		/*
 | |
| 		 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
 | |
| 		 * when we spoof an Intel vendor ID (for cross vendor migration).
 | |
| 		 * In this case we use this intercept to track the high
 | |
| 		 * 32 bit part of these msrs to support Intel's
 | |
| 		 * implementation of SYSENTER/SYSEXIT.
 | |
| 		 */
 | |
| 		svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
 | |
| 		break;
 | |
| 	case MSR_IA32_SYSENTER_ESP:
 | |
| 		svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
 | |
| 		svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
 | |
| 		break;
 | |
| 	case MSR_TSC_AUX:
 | |
| 		/*
 | |
| 		 * TSC_AUX is usually changed only during boot and never read
 | |
| 		 * directly.  Intercept TSC_AUX instead of exposing it to the
 | |
| 		 * guest via direct_access_msrs, and switch it via user return.
 | |
| 		 */
 | |
| 		preempt_disable();
 | |
| 		ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
 | |
| 		preempt_enable();
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		svm->tsc_aux = data;
 | |
| 		break;
 | |
| 	case MSR_IA32_DEBUGCTLMSR:
 | |
| 		if (!lbrv) {
 | |
| 			vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
 | |
| 				    __func__, data);
 | |
| 			break;
 | |
| 		}
 | |
| 		if (data & DEBUGCTL_RESERVED_BITS)
 | |
| 			return 1;
 | |
| 
 | |
| 		if (svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK)
 | |
| 			svm->vmcb->save.dbgctl = data;
 | |
| 		else
 | |
| 			svm->vmcb01.ptr->save.dbgctl = data;
 | |
| 
 | |
| 		svm_update_lbrv(vcpu);
 | |
| 
 | |
| 		break;
 | |
| 	case MSR_VM_HSAVE_PA:
 | |
| 		/*
 | |
| 		 * Old kernels did not validate the value written to
 | |
| 		 * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
 | |
| 		 * value to allow live migrating buggy or malicious guests
 | |
| 		 * originating from those kernels.
 | |
| 		 */
 | |
| 		if (!msr->host_initiated && !page_address_valid(vcpu, data))
 | |
| 			return 1;
 | |
| 
 | |
| 		svm->nested.hsave_msr = data & PAGE_MASK;
 | |
| 		break;
 | |
| 	case MSR_VM_CR:
 | |
| 		return svm_set_vm_cr(vcpu, data);
 | |
| 	case MSR_VM_IGNNE:
 | |
| 		vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
 | |
| 		break;
 | |
| 	case MSR_AMD64_DE_CFG: {
 | |
| 		struct kvm_msr_entry msr_entry;
 | |
| 
 | |
| 		msr_entry.index = msr->index;
 | |
| 		if (svm_get_msr_feature(&msr_entry))
 | |
| 			return 1;
 | |
| 
 | |
| 		/* Check the supported bits */
 | |
| 		if (data & ~msr_entry.data)
 | |
| 			return 1;
 | |
| 
 | |
| 		/* Don't allow the guest to change a bit, #GP */
 | |
| 		if (!msr->host_initiated && (data ^ msr_entry.data))
 | |
| 			return 1;
 | |
| 
 | |
| 		svm->msr_decfg = data;
 | |
| 		break;
 | |
| 	}
 | |
| 	default:
 | |
| 		return kvm_set_msr_common(vcpu, msr);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int msr_interception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (to_svm(vcpu)->vmcb->control.exit_info_1)
 | |
| 		return kvm_emulate_wrmsr(vcpu);
 | |
| 	else
 | |
| 		return kvm_emulate_rdmsr(vcpu);
 | |
| }
 | |
| 
 | |
| static int interrupt_window_interception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 	svm_clear_vintr(to_svm(vcpu));
 | |
| 
 | |
| 	/*
 | |
| 	 * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
 | |
| 	 * In this case AVIC was temporarily disabled for
 | |
| 	 * requesting the IRQ window and we have to re-enable it.
 | |
| 	 *
 | |
| 	 * If running nested, still remove the VM wide AVIC inhibit to
 | |
| 	 * support case in which the interrupt window was requested when the
 | |
| 	 * vCPU was not running nested.
 | |
| 
 | |
| 	 * All vCPUs which run still run nested, will remain to have their
 | |
| 	 * AVIC still inhibited due to per-cpu AVIC inhibition.
 | |
| 	 */
 | |
| 	kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
 | |
| 
 | |
| 	++vcpu->stat.irq_window_exits;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int pause_interception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	bool in_kernel;
 | |
| 	/*
 | |
| 	 * CPL is not made available for an SEV-ES guest, therefore
 | |
| 	 * vcpu->arch.preempted_in_kernel can never be true.  Just
 | |
| 	 * set in_kernel to false as well.
 | |
| 	 */
 | |
| 	in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
 | |
| 
 | |
| 	grow_ple_window(vcpu);
 | |
| 
 | |
| 	kvm_vcpu_on_spin(vcpu, in_kernel);
 | |
| 	return kvm_skip_emulated_instruction(vcpu);
 | |
| }
 | |
| 
 | |
| static int invpcid_interception(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	unsigned long type;
 | |
| 	gva_t gva;
 | |
| 
 | |
| 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
 | |
| 		kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For an INVPCID intercept:
 | |
| 	 * EXITINFO1 provides the linear address of the memory operand.
 | |
| 	 * EXITINFO2 provides the contents of the register operand.
 | |
| 	 */
 | |
| 	type = svm->vmcb->control.exit_info_2;
 | |
| 	gva = svm->vmcb->control.exit_info_1;
 | |
| 
 | |
| 	return kvm_handle_invpcid(vcpu, type, gva);
 | |
| }
 | |
| 
 | |
| static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
 | |
| 	[SVM_EXIT_READ_CR0]			= cr_interception,
 | |
| 	[SVM_EXIT_READ_CR3]			= cr_interception,
 | |
| 	[SVM_EXIT_READ_CR4]			= cr_interception,
 | |
| 	[SVM_EXIT_READ_CR8]			= cr_interception,
 | |
| 	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
 | |
| 	[SVM_EXIT_WRITE_CR0]			= cr_interception,
 | |
| 	[SVM_EXIT_WRITE_CR3]			= cr_interception,
 | |
| 	[SVM_EXIT_WRITE_CR4]			= cr_interception,
 | |
| 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
 | |
| 	[SVM_EXIT_READ_DR0]			= dr_interception,
 | |
| 	[SVM_EXIT_READ_DR1]			= dr_interception,
 | |
| 	[SVM_EXIT_READ_DR2]			= dr_interception,
 | |
| 	[SVM_EXIT_READ_DR3]			= dr_interception,
 | |
| 	[SVM_EXIT_READ_DR4]			= dr_interception,
 | |
| 	[SVM_EXIT_READ_DR5]			= dr_interception,
 | |
| 	[SVM_EXIT_READ_DR6]			= dr_interception,
 | |
| 	[SVM_EXIT_READ_DR7]			= dr_interception,
 | |
| 	[SVM_EXIT_WRITE_DR0]			= dr_interception,
 | |
| 	[SVM_EXIT_WRITE_DR1]			= dr_interception,
 | |
| 	[SVM_EXIT_WRITE_DR2]			= dr_interception,
 | |
| 	[SVM_EXIT_WRITE_DR3]			= dr_interception,
 | |
| 	[SVM_EXIT_WRITE_DR4]			= dr_interception,
 | |
| 	[SVM_EXIT_WRITE_DR5]			= dr_interception,
 | |
| 	[SVM_EXIT_WRITE_DR6]			= dr_interception,
 | |
| 	[SVM_EXIT_WRITE_DR7]			= dr_interception,
 | |
| 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
 | |
| 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
 | |
| 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
 | |
| 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
 | |
| 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
 | |
| 	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
 | |
| 	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
 | |
| 	[SVM_EXIT_INTR]				= intr_interception,
 | |
| 	[SVM_EXIT_NMI]				= nmi_interception,
 | |
| 	[SVM_EXIT_SMI]				= smi_interception,
 | |
| 	[SVM_EXIT_VINTR]			= interrupt_window_interception,
 | |
| 	[SVM_EXIT_RDPMC]			= kvm_emulate_rdpmc,
 | |
| 	[SVM_EXIT_CPUID]			= kvm_emulate_cpuid,
 | |
| 	[SVM_EXIT_IRET]                         = iret_interception,
 | |
| 	[SVM_EXIT_INVD]                         = kvm_emulate_invd,
 | |
| 	[SVM_EXIT_PAUSE]			= pause_interception,
 | |
| 	[SVM_EXIT_HLT]				= kvm_emulate_halt,
 | |
| 	[SVM_EXIT_INVLPG]			= invlpg_interception,
 | |
| 	[SVM_EXIT_INVLPGA]			= invlpga_interception,
 | |
| 	[SVM_EXIT_IOIO]				= io_interception,
 | |
| 	[SVM_EXIT_MSR]				= msr_interception,
 | |
| 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
 | |
| 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
 | |
| 	[SVM_EXIT_VMRUN]			= vmrun_interception,
 | |
| 	[SVM_EXIT_VMMCALL]			= kvm_emulate_hypercall,
 | |
| 	[SVM_EXIT_VMLOAD]			= vmload_interception,
 | |
| 	[SVM_EXIT_VMSAVE]			= vmsave_interception,
 | |
| 	[SVM_EXIT_STGI]				= stgi_interception,
 | |
| 	[SVM_EXIT_CLGI]				= clgi_interception,
 | |
| 	[SVM_EXIT_SKINIT]			= skinit_interception,
 | |
| 	[SVM_EXIT_RDTSCP]			= kvm_handle_invalid_op,
 | |
| 	[SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
 | |
| 	[SVM_EXIT_MONITOR]			= kvm_emulate_monitor,
 | |
| 	[SVM_EXIT_MWAIT]			= kvm_emulate_mwait,
 | |
| 	[SVM_EXIT_XSETBV]			= kvm_emulate_xsetbv,
 | |
| 	[SVM_EXIT_RDPRU]			= kvm_handle_invalid_op,
 | |
| 	[SVM_EXIT_EFER_WRITE_TRAP]		= efer_trap,
 | |
| 	[SVM_EXIT_CR0_WRITE_TRAP]		= cr_trap,
 | |
| 	[SVM_EXIT_CR4_WRITE_TRAP]		= cr_trap,
 | |
| 	[SVM_EXIT_CR8_WRITE_TRAP]		= cr_trap,
 | |
| 	[SVM_EXIT_INVPCID]                      = invpcid_interception,
 | |
| 	[SVM_EXIT_NPF]				= npf_interception,
 | |
| 	[SVM_EXIT_RSM]                          = rsm_interception,
 | |
| 	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
 | |
| 	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
 | |
| 	[SVM_EXIT_VMGEXIT]			= sev_handle_vmgexit,
 | |
| };
 | |
| 
 | |
| static void dump_vmcb(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	struct vmcb_control_area *control = &svm->vmcb->control;
 | |
| 	struct vmcb_save_area *save = &svm->vmcb->save;
 | |
| 	struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
 | |
| 
 | |
| 	if (!dump_invalid_vmcb) {
 | |
| 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
 | |
| 	       svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
 | |
| 	pr_err("VMCB Control Area:\n");
 | |
| 	pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
 | |
| 	pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
 | |
| 	pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
 | |
| 	pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
 | |
| 	pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
 | |
| 	pr_err("%-20s%08x %08x\n", "intercepts:",
 | |
|               control->intercepts[INTERCEPT_WORD3],
 | |
| 	       control->intercepts[INTERCEPT_WORD4]);
 | |
| 	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
 | |
| 	pr_err("%-20s%d\n", "pause filter threshold:",
 | |
| 	       control->pause_filter_thresh);
 | |
| 	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
 | |
| 	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
 | |
| 	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
 | |
| 	pr_err("%-20s%d\n", "asid:", control->asid);
 | |
| 	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
 | |
| 	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
 | |
| 	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
 | |
| 	pr_err("%-20s%08x\n", "int_state:", control->int_state);
 | |
| 	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
 | |
| 	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
 | |
| 	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
 | |
| 	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
 | |
| 	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
 | |
| 	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
 | |
| 	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
 | |
| 	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
 | |
| 	pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
 | |
| 	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
 | |
| 	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
 | |
| 	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
 | |
| 	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
 | |
| 	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
 | |
| 	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
 | |
| 	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
 | |
| 	pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
 | |
| 	pr_err("VMCB State Save Area:\n");
 | |
| 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
 | |
| 	       "es:",
 | |
| 	       save->es.selector, save->es.attrib,
 | |
| 	       save->es.limit, save->es.base);
 | |
| 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
 | |
| 	       "cs:",
 | |
| 	       save->cs.selector, save->cs.attrib,
 | |
| 	       save->cs.limit, save->cs.base);
 | |
| 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
 | |
| 	       "ss:",
 | |
| 	       save->ss.selector, save->ss.attrib,
 | |
| 	       save->ss.limit, save->ss.base);
 | |
| 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
 | |
| 	       "ds:",
 | |
| 	       save->ds.selector, save->ds.attrib,
 | |
| 	       save->ds.limit, save->ds.base);
 | |
| 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
 | |
| 	       "fs:",
 | |
| 	       save01->fs.selector, save01->fs.attrib,
 | |
| 	       save01->fs.limit, save01->fs.base);
 | |
| 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
 | |
| 	       "gs:",
 | |
| 	       save01->gs.selector, save01->gs.attrib,
 | |
| 	       save01->gs.limit, save01->gs.base);
 | |
| 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
 | |
| 	       "gdtr:",
 | |
| 	       save->gdtr.selector, save->gdtr.attrib,
 | |
| 	       save->gdtr.limit, save->gdtr.base);
 | |
| 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
 | |
| 	       "ldtr:",
 | |
| 	       save01->ldtr.selector, save01->ldtr.attrib,
 | |
| 	       save01->ldtr.limit, save01->ldtr.base);
 | |
| 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
 | |
| 	       "idtr:",
 | |
| 	       save->idtr.selector, save->idtr.attrib,
 | |
| 	       save->idtr.limit, save->idtr.base);
 | |
| 	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
 | |
| 	       "tr:",
 | |
| 	       save01->tr.selector, save01->tr.attrib,
 | |
| 	       save01->tr.limit, save01->tr.base);
 | |
| 	pr_err("vmpl: %d   cpl:  %d               efer:          %016llx\n",
 | |
| 	       save->vmpl, save->cpl, save->efer);
 | |
| 	pr_err("%-15s %016llx %-13s %016llx\n",
 | |
| 	       "cr0:", save->cr0, "cr2:", save->cr2);
 | |
| 	pr_err("%-15s %016llx %-13s %016llx\n",
 | |
| 	       "cr3:", save->cr3, "cr4:", save->cr4);
 | |
| 	pr_err("%-15s %016llx %-13s %016llx\n",
 | |
| 	       "dr6:", save->dr6, "dr7:", save->dr7);
 | |
| 	pr_err("%-15s %016llx %-13s %016llx\n",
 | |
| 	       "rip:", save->rip, "rflags:", save->rflags);
 | |
| 	pr_err("%-15s %016llx %-13s %016llx\n",
 | |
| 	       "rsp:", save->rsp, "rax:", save->rax);
 | |
| 	pr_err("%-15s %016llx %-13s %016llx\n",
 | |
| 	       "star:", save01->star, "lstar:", save01->lstar);
 | |
| 	pr_err("%-15s %016llx %-13s %016llx\n",
 | |
| 	       "cstar:", save01->cstar, "sfmask:", save01->sfmask);
 | |
| 	pr_err("%-15s %016llx %-13s %016llx\n",
 | |
| 	       "kernel_gs_base:", save01->kernel_gs_base,
 | |
| 	       "sysenter_cs:", save01->sysenter_cs);
 | |
| 	pr_err("%-15s %016llx %-13s %016llx\n",
 | |
| 	       "sysenter_esp:", save01->sysenter_esp,
 | |
| 	       "sysenter_eip:", save01->sysenter_eip);
 | |
| 	pr_err("%-15s %016llx %-13s %016llx\n",
 | |
| 	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
 | |
| 	pr_err("%-15s %016llx %-13s %016llx\n",
 | |
| 	       "br_from:", save->br_from, "br_to:", save->br_to);
 | |
| 	pr_err("%-15s %016llx %-13s %016llx\n",
 | |
| 	       "excp_from:", save->last_excp_from,
 | |
| 	       "excp_to:", save->last_excp_to);
 | |
| }
 | |
| 
 | |
| static bool svm_check_exit_valid(u64 exit_code)
 | |
| {
 | |
| 	return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
 | |
| 		svm_exit_handlers[exit_code]);
 | |
| }
 | |
| 
 | |
| static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
 | |
| {
 | |
| 	vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
 | |
| 	dump_vmcb(vcpu);
 | |
| 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 | |
| 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
 | |
| 	vcpu->run->internal.ndata = 2;
 | |
| 	vcpu->run->internal.data[0] = exit_code;
 | |
| 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
 | |
| {
 | |
| 	if (!svm_check_exit_valid(exit_code))
 | |
| 		return svm_handle_invalid_exit(vcpu, exit_code);
 | |
| 
 | |
| #ifdef CONFIG_RETPOLINE
 | |
| 	if (exit_code == SVM_EXIT_MSR)
 | |
| 		return msr_interception(vcpu);
 | |
| 	else if (exit_code == SVM_EXIT_VINTR)
 | |
| 		return interrupt_window_interception(vcpu);
 | |
| 	else if (exit_code == SVM_EXIT_INTR)
 | |
| 		return intr_interception(vcpu);
 | |
| 	else if (exit_code == SVM_EXIT_HLT)
 | |
| 		return kvm_emulate_halt(vcpu);
 | |
| 	else if (exit_code == SVM_EXIT_NPF)
 | |
| 		return npf_interception(vcpu);
 | |
| #endif
 | |
| 	return svm_exit_handlers[exit_code](vcpu);
 | |
| }
 | |
| 
 | |
| static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
 | |
| 			      u64 *info1, u64 *info2,
 | |
| 			      u32 *intr_info, u32 *error_code)
 | |
| {
 | |
| 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
 | |
| 
 | |
| 	*reason = control->exit_code;
 | |
| 	*info1 = control->exit_info_1;
 | |
| 	*info2 = control->exit_info_2;
 | |
| 	*intr_info = control->exit_int_info;
 | |
| 	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
 | |
| 	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
 | |
| 		*error_code = control->exit_int_info_err;
 | |
| 	else
 | |
| 		*error_code = 0;
 | |
| }
 | |
| 
 | |
| static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	struct kvm_run *kvm_run = vcpu->run;
 | |
| 	u32 exit_code = svm->vmcb->control.exit_code;
 | |
| 
 | |
| 	trace_kvm_exit(vcpu, KVM_ISA_SVM);
 | |
| 
 | |
| 	/* SEV-ES guests must use the CR write traps to track CR registers. */
 | |
| 	if (!sev_es_guest(vcpu->kvm)) {
 | |
| 		if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
 | |
| 			vcpu->arch.cr0 = svm->vmcb->save.cr0;
 | |
| 		if (npt_enabled)
 | |
| 			vcpu->arch.cr3 = svm->vmcb->save.cr3;
 | |
| 	}
 | |
| 
 | |
| 	if (is_guest_mode(vcpu)) {
 | |
| 		int vmexit;
 | |
| 
 | |
| 		trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
 | |
| 
 | |
| 		vmexit = nested_svm_exit_special(svm);
 | |
| 
 | |
| 		if (vmexit == NESTED_EXIT_CONTINUE)
 | |
| 			vmexit = nested_svm_exit_handled(svm);
 | |
| 
 | |
| 		if (vmexit == NESTED_EXIT_DONE)
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
 | |
| 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
 | |
| 		kvm_run->fail_entry.hardware_entry_failure_reason
 | |
| 			= svm->vmcb->control.exit_code;
 | |
| 		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
 | |
| 		dump_vmcb(vcpu);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
 | |
| 	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
 | |
| 	    exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
 | |
| 	    exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
 | |
| 		printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
 | |
| 		       "exit_code 0x%x\n",
 | |
| 		       __func__, svm->vmcb->control.exit_int_info,
 | |
| 		       exit_code);
 | |
| 
 | |
| 	if (exit_fastpath != EXIT_FASTPATH_NONE)
 | |
| 		return 1;
 | |
| 
 | |
| 	return svm_invoke_exit_handler(vcpu, exit_code);
 | |
| }
 | |
| 
 | |
| static void reload_tss(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
 | |
| 
 | |
| 	sd->tss_desc->type = 9; /* available 32/64-bit TSS */
 | |
| 	load_TR_desc();
 | |
| }
 | |
| 
 | |
| static void pre_svm_run(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the previous vmrun of the vmcb occurred on a different physical
 | |
| 	 * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
 | |
| 	 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
 | |
| 	 */
 | |
| 	if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
 | |
| 		svm->current_vmcb->asid_generation = 0;
 | |
| 		vmcb_mark_all_dirty(svm->vmcb);
 | |
| 		svm->current_vmcb->cpu = vcpu->cpu;
 | |
|         }
 | |
| 
 | |
| 	if (sev_guest(vcpu->kvm))
 | |
| 		return pre_sev_run(svm, vcpu->cpu);
 | |
| 
 | |
| 	/* FIXME: handle wraparound of asid_generation */
 | |
| 	if (svm->current_vmcb->asid_generation != sd->asid_generation)
 | |
| 		new_asid(svm, sd);
 | |
| }
 | |
| 
 | |
| static void svm_inject_nmi(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
 | |
| 	vcpu->arch.hflags |= HF_NMI_MASK;
 | |
| 	if (!sev_es_guest(vcpu->kvm))
 | |
| 		svm_set_intercept(svm, INTERCEPT_IRET);
 | |
| 	++vcpu->stat.nmi_injections;
 | |
| }
 | |
| 
 | |
| static void svm_inject_irq(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	BUG_ON(!(gif_set(svm)));
 | |
| 
 | |
| 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
 | |
| 	++vcpu->stat.irq_injections;
 | |
| 
 | |
| 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
 | |
| 		SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
 | |
| }
 | |
| 
 | |
| void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
 | |
| 				     int trig_mode, int vector)
 | |
| {
 | |
| 	/*
 | |
| 	 * vcpu->arch.apicv_active must be read after vcpu->mode.
 | |
| 	 * Pairs with smp_store_release in vcpu_enter_guest.
 | |
| 	 */
 | |
| 	bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
 | |
| 
 | |
| 	if (!READ_ONCE(vcpu->arch.apicv_active)) {
 | |
| 		/* Process the interrupt via inject_pending_event */
 | |
| 		kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 		kvm_vcpu_kick(vcpu);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
 | |
| 	if (in_guest_mode) {
 | |
| 		/*
 | |
| 		 * Signal the doorbell to tell hardware to inject the IRQ.  If
 | |
| 		 * the vCPU exits the guest before the doorbell chimes, hardware
 | |
| 		 * will automatically process AVIC interrupts at the next VMRUN.
 | |
| 		 */
 | |
| 		avic_ring_doorbell(vcpu);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Wake the vCPU if it was blocking.  KVM will then detect the
 | |
| 		 * pending IRQ when checking if the vCPU has a wake event.
 | |
| 		 */
 | |
| 		kvm_vcpu_wake_up(vcpu);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void svm_deliver_interrupt(struct kvm_lapic *apic,  int delivery_mode,
 | |
| 				  int trig_mode, int vector)
 | |
| {
 | |
| 	kvm_lapic_set_irr(vector, apic);
 | |
| 
 | |
| 	/*
 | |
| 	 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
 | |
| 	 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
 | |
| 	 * the read of guest_mode.  This guarantees that either VMRUN will see
 | |
| 	 * and process the new vIRR entry, or that svm_complete_interrupt_delivery
 | |
| 	 * will signal the doorbell if the CPU has already entered the guest.
 | |
| 	 */
 | |
| 	smp_mb__after_atomic();
 | |
| 	svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
 | |
| }
 | |
| 
 | |
| static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * SEV-ES guests must always keep the CR intercepts cleared. CR
 | |
| 	 * tracking is done using the CR write traps.
 | |
| 	 */
 | |
| 	if (sev_es_guest(vcpu->kvm))
 | |
| 		return;
 | |
| 
 | |
| 	if (nested_svm_virtualize_tpr(vcpu))
 | |
| 		return;
 | |
| 
 | |
| 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
 | |
| 
 | |
| 	if (irr == -1)
 | |
| 		return;
 | |
| 
 | |
| 	if (tpr >= irr)
 | |
| 		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
 | |
| }
 | |
| 
 | |
| bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	struct vmcb *vmcb = svm->vmcb;
 | |
| 	bool ret;
 | |
| 
 | |
| 	if (!gif_set(svm))
 | |
| 		return true;
 | |
| 
 | |
| 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
 | |
| 		return false;
 | |
| 
 | |
| 	ret = (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
 | |
| 	      (vcpu->arch.hflags & HF_NMI_MASK);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	if (svm->nested.nested_run_pending)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	if (svm_nmi_blocked(vcpu))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
 | |
| 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
 | |
| 		return -EBUSY;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return !!(vcpu->arch.hflags & HF_NMI_MASK);
 | |
| }
 | |
| 
 | |
| static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	if (masked) {
 | |
| 		vcpu->arch.hflags |= HF_NMI_MASK;
 | |
| 		if (!sev_es_guest(vcpu->kvm))
 | |
| 			svm_set_intercept(svm, INTERCEPT_IRET);
 | |
| 	} else {
 | |
| 		vcpu->arch.hflags &= ~HF_NMI_MASK;
 | |
| 		if (!sev_es_guest(vcpu->kvm))
 | |
| 			svm_clr_intercept(svm, INTERCEPT_IRET);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	struct vmcb *vmcb = svm->vmcb;
 | |
| 
 | |
| 	if (!gif_set(svm))
 | |
| 		return true;
 | |
| 
 | |
| 	if (is_guest_mode(vcpu)) {
 | |
| 		/* As long as interrupts are being delivered...  */
 | |
| 		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
 | |
| 		    ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
 | |
| 		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
 | |
| 			return true;
 | |
| 
 | |
| 		/* ... vmexits aren't blocked by the interrupt shadow  */
 | |
| 		if (nested_exit_on_intr(svm))
 | |
| 			return false;
 | |
| 	} else {
 | |
| 		if (!svm_get_if_flag(vcpu))
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
 | |
| }
 | |
| 
 | |
| static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	if (svm->nested.nested_run_pending)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	if (svm_interrupt_blocked(vcpu))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
 | |
| 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
 | |
| 	 */
 | |
| 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
 | |
| 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
 | |
| 	 * get that intercept, this function will be called again though and
 | |
| 	 * we'll get the vintr intercept. However, if the vGIF feature is
 | |
| 	 * enabled, the STGI interception will not occur. Enable the irq
 | |
| 	 * window under the assumption that the hardware will set the GIF.
 | |
| 	 */
 | |
| 	if (vgif_enabled(svm) || gif_set(svm)) {
 | |
| 		/*
 | |
| 		 * IRQ window is not needed when AVIC is enabled,
 | |
| 		 * unless we have pending ExtINT since it cannot be injected
 | |
| 		 * via AVIC. In such case, KVM needs to temporarily disable AVIC,
 | |
| 		 * and fallback to injecting IRQ via V_IRQ.
 | |
| 		 *
 | |
| 		 * If running nested, AVIC is already locally inhibited
 | |
| 		 * on this vCPU, therefore there is no need to request
 | |
| 		 * the VM wide AVIC inhibition.
 | |
| 		 */
 | |
| 		if (!is_guest_mode(vcpu))
 | |
| 			kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
 | |
| 
 | |
| 		svm_set_vintr(svm);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	if ((vcpu->arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) == HF_NMI_MASK)
 | |
| 		return; /* IRET will cause a vm exit */
 | |
| 
 | |
| 	if (!gif_set(svm)) {
 | |
| 		if (vgif_enabled(svm))
 | |
| 			svm_set_intercept(svm, INTERCEPT_STGI);
 | |
| 		return; /* STGI will cause a vm exit */
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Something prevents NMI from been injected. Single step over possible
 | |
| 	 * problem (IRET or exception injection or interrupt shadow)
 | |
| 	 */
 | |
| 	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
 | |
| 	svm->nmi_singlestep = true;
 | |
| 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
 | |
| }
 | |
| 
 | |
| static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush only the current ASID even if the TLB flush was invoked via
 | |
| 	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
 | |
| 	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
 | |
| 	 * unconditionally does a TLB flush on both nested VM-Enter and nested
 | |
| 	 * VM-Exit (via kvm_mmu_reset_context()).
 | |
| 	 */
 | |
| 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
 | |
| 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
 | |
| 	else
 | |
| 		svm->current_vmcb->asid_generation--;
 | |
| }
 | |
| 
 | |
| static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	invlpga(gva, svm->vmcb->control.asid);
 | |
| }
 | |
| 
 | |
| static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	if (nested_svm_virtualize_tpr(vcpu))
 | |
| 		return;
 | |
| 
 | |
| 	if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
 | |
| 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
 | |
| 		kvm_set_cr8(vcpu, cr8);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	u64 cr8;
 | |
| 
 | |
| 	if (nested_svm_virtualize_tpr(vcpu) ||
 | |
| 	    kvm_vcpu_apicv_active(vcpu))
 | |
| 		return;
 | |
| 
 | |
| 	cr8 = kvm_get_cr8(vcpu);
 | |
| 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
 | |
| 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
 | |
| }
 | |
| 
 | |
| static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	u8 vector;
 | |
| 	int type;
 | |
| 	u32 exitintinfo = svm->vmcb->control.exit_int_info;
 | |
| 	unsigned int3_injected = svm->int3_injected;
 | |
| 
 | |
| 	svm->int3_injected = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we've made progress since setting HF_IRET_MASK, we've
 | |
| 	 * executed an IRET and can allow NMI injection.
 | |
| 	 */
 | |
| 	if ((vcpu->arch.hflags & HF_IRET_MASK) &&
 | |
| 	    (sev_es_guest(vcpu->kvm) ||
 | |
| 	     kvm_rip_read(vcpu) != svm->nmi_iret_rip)) {
 | |
| 		vcpu->arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
 | |
| 		kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 	}
 | |
| 
 | |
| 	vcpu->arch.nmi_injected = false;
 | |
| 	kvm_clear_exception_queue(vcpu);
 | |
| 	kvm_clear_interrupt_queue(vcpu);
 | |
| 
 | |
| 	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
 | |
| 		return;
 | |
| 
 | |
| 	kvm_make_request(KVM_REQ_EVENT, vcpu);
 | |
| 
 | |
| 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
 | |
| 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
 | |
| 
 | |
| 	switch (type) {
 | |
| 	case SVM_EXITINTINFO_TYPE_NMI:
 | |
| 		vcpu->arch.nmi_injected = true;
 | |
| 		break;
 | |
| 	case SVM_EXITINTINFO_TYPE_EXEPT:
 | |
| 		/*
 | |
| 		 * Never re-inject a #VC exception.
 | |
| 		 */
 | |
| 		if (vector == X86_TRAP_VC)
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * In case of software exceptions, do not reinject the vector,
 | |
| 		 * but re-execute the instruction instead. Rewind RIP first
 | |
| 		 * if we emulated INT3 before.
 | |
| 		 */
 | |
| 		if (kvm_exception_is_soft(vector)) {
 | |
| 			if (vector == BP_VECTOR && int3_injected &&
 | |
| 			    kvm_is_linear_rip(vcpu, svm->int3_rip))
 | |
| 				kvm_rip_write(vcpu,
 | |
| 					      kvm_rip_read(vcpu) - int3_injected);
 | |
| 			break;
 | |
| 		}
 | |
| 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
 | |
| 			u32 err = svm->vmcb->control.exit_int_info_err;
 | |
| 			kvm_requeue_exception_e(vcpu, vector, err);
 | |
| 
 | |
| 		} else
 | |
| 			kvm_requeue_exception(vcpu, vector);
 | |
| 		break;
 | |
| 	case SVM_EXITINTINFO_TYPE_INTR:
 | |
| 		kvm_queue_interrupt(vcpu, vector, false);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void svm_cancel_injection(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	struct vmcb_control_area *control = &svm->vmcb->control;
 | |
| 
 | |
| 	control->exit_int_info = control->event_inj;
 | |
| 	control->exit_int_info_err = control->event_inj_err;
 | |
| 	control->event_inj = 0;
 | |
| 	svm_complete_interrupts(vcpu);
 | |
| }
 | |
| 
 | |
| static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
 | |
| 	    to_svm(vcpu)->vmcb->control.exit_info_1)
 | |
| 		return handle_fastpath_set_msr_irqoff(vcpu);
 | |
| 
 | |
| 	return EXIT_FASTPATH_NONE;
 | |
| }
 | |
| 
 | |
| static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	unsigned long vmcb_pa = svm->current_vmcb->pa;
 | |
| 
 | |
| 	kvm_guest_enter_irqoff();
 | |
| 
 | |
| 	amd_clear_divider();
 | |
| 
 | |
| 	if (sev_es_guest(vcpu->kvm)) {
 | |
| 		__svm_sev_es_vcpu_run(vmcb_pa);
 | |
| 	} else {
 | |
| 		struct svm_cpu_data *sd = per_cpu(svm_data, vcpu->cpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * Use a single vmcb (vmcb01 because it's always valid) for
 | |
| 		 * context switching guest state via VMLOAD/VMSAVE, that way
 | |
| 		 * the state doesn't need to be copied between vmcb01 and
 | |
| 		 * vmcb02 when switching vmcbs for nested virtualization.
 | |
| 		 */
 | |
| 		vmload(svm->vmcb01.pa);
 | |
| 		__svm_vcpu_run(vmcb_pa, (unsigned long *)&vcpu->arch.regs);
 | |
| 		vmsave(svm->vmcb01.pa);
 | |
| 
 | |
| 		vmload(__sme_page_pa(sd->save_area));
 | |
| 	}
 | |
| 
 | |
| 	kvm_guest_exit_irqoff();
 | |
| }
 | |
| 
 | |
| static fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	trace_kvm_entry(vcpu);
 | |
| 
 | |
| 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
 | |
| 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
 | |
| 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable singlestep if we're injecting an interrupt/exception.
 | |
| 	 * We don't want our modified rflags to be pushed on the stack where
 | |
| 	 * we might not be able to easily reset them if we disabled NMI
 | |
| 	 * singlestep later.
 | |
| 	 */
 | |
| 	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
 | |
| 		/*
 | |
| 		 * Event injection happens before external interrupts cause a
 | |
| 		 * vmexit and interrupts are disabled here, so smp_send_reschedule
 | |
| 		 * is enough to force an immediate vmexit.
 | |
| 		 */
 | |
| 		disable_nmi_singlestep(svm);
 | |
| 		smp_send_reschedule(vcpu->cpu);
 | |
| 	}
 | |
| 
 | |
| 	pre_svm_run(vcpu);
 | |
| 
 | |
| 	sync_lapic_to_cr8(vcpu);
 | |
| 
 | |
| 	if (unlikely(svm->asid != svm->vmcb->control.asid)) {
 | |
| 		svm->vmcb->control.asid = svm->asid;
 | |
| 		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
 | |
| 	}
 | |
| 	svm->vmcb->save.cr2 = vcpu->arch.cr2;
 | |
| 
 | |
| 	svm_hv_update_vp_id(svm->vmcb, vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Run with all-zero DR6 unless needed, so that we can get the exact cause
 | |
| 	 * of a #DB.
 | |
| 	 */
 | |
| 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
 | |
| 		svm_set_dr6(svm, vcpu->arch.dr6);
 | |
| 	else
 | |
| 		svm_set_dr6(svm, DR6_ACTIVE_LOW);
 | |
| 
 | |
| 	clgi();
 | |
| 	kvm_load_guest_xsave_state(vcpu);
 | |
| 
 | |
| 	kvm_wait_lapic_expire(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
 | |
| 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
 | |
| 	 * is no need to worry about the conditional branch over the wrmsr
 | |
| 	 * being speculatively taken.
 | |
| 	 */
 | |
| 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
 | |
| 		x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl);
 | |
| 
 | |
| 	svm_vcpu_enter_exit(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * We do not use IBRS in the kernel. If this vCPU has used the
 | |
| 	 * SPEC_CTRL MSR it may have left it on; save the value and
 | |
| 	 * turn it off. This is much more efficient than blindly adding
 | |
| 	 * it to the atomic save/restore list. Especially as the former
 | |
| 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
 | |
| 	 *
 | |
| 	 * For non-nested case:
 | |
| 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
 | |
| 	 * save it.
 | |
| 	 *
 | |
| 	 * For nested case:
 | |
| 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
 | |
| 	 * save it.
 | |
| 	 */
 | |
| 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL) &&
 | |
| 	    unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
 | |
| 		svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
 | |
| 
 | |
| 	if (!sev_es_guest(vcpu->kvm))
 | |
| 		reload_tss(vcpu);
 | |
| 
 | |
| 	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
 | |
| 		x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl);
 | |
| 
 | |
| 	if (!sev_es_guest(vcpu->kvm)) {
 | |
| 		vcpu->arch.cr2 = svm->vmcb->save.cr2;
 | |
| 		vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
 | |
| 		vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
 | |
| 		vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
 | |
| 	}
 | |
| 	vcpu->arch.regs_dirty = 0;
 | |
| 
 | |
| 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
 | |
| 		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
 | |
| 
 | |
| 	kvm_load_host_xsave_state(vcpu);
 | |
| 	stgi();
 | |
| 
 | |
| 	/* Any pending NMI will happen here */
 | |
| 
 | |
| 	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
 | |
| 		kvm_after_interrupt(vcpu);
 | |
| 
 | |
| 	sync_cr8_to_lapic(vcpu);
 | |
| 
 | |
| 	svm->next_rip = 0;
 | |
| 	if (is_guest_mode(vcpu)) {
 | |
| 		nested_sync_control_from_vmcb02(svm);
 | |
| 
 | |
| 		/* Track VMRUNs that have made past consistency checking */
 | |
| 		if (svm->nested.nested_run_pending &&
 | |
| 		    svm->vmcb->control.exit_code != SVM_EXIT_ERR)
 | |
|                         ++vcpu->stat.nested_run;
 | |
| 
 | |
| 		svm->nested.nested_run_pending = 0;
 | |
| 	}
 | |
| 
 | |
| 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
 | |
| 	vmcb_mark_all_clean(svm->vmcb);
 | |
| 
 | |
| 	/* if exit due to PF check for async PF */
 | |
| 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
 | |
| 		vcpu->arch.apf.host_apf_flags =
 | |
| 			kvm_read_and_reset_apf_flags();
 | |
| 
 | |
| 	vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to handle MC intercepts here before the vcpu has a chance to
 | |
| 	 * change the physical cpu
 | |
| 	 */
 | |
| 	if (unlikely(svm->vmcb->control.exit_code ==
 | |
| 		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
 | |
| 		svm_handle_mce(vcpu);
 | |
| 
 | |
| 	svm_complete_interrupts(vcpu);
 | |
| 
 | |
| 	if (is_guest_mode(vcpu))
 | |
| 		return EXIT_FASTPATH_NONE;
 | |
| 
 | |
| 	return svm_exit_handlers_fastpath(vcpu);
 | |
| }
 | |
| 
 | |
| static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
 | |
| 			     int root_level)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	unsigned long cr3;
 | |
| 
 | |
| 	if (npt_enabled) {
 | |
| 		svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
 | |
| 		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
 | |
| 
 | |
| 		hv_track_root_tdp(vcpu, root_hpa);
 | |
| 
 | |
| 		cr3 = vcpu->arch.cr3;
 | |
| 	} else if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
 | |
| 		cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
 | |
| 	} else {
 | |
| 		/* PCID in the guest should be impossible with a 32-bit MMU. */
 | |
| 		WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
 | |
| 		cr3 = root_hpa;
 | |
| 	}
 | |
| 
 | |
| 	svm->vmcb->save.cr3 = cr3;
 | |
| 	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
 | |
| }
 | |
| 
 | |
| static int is_disabled(void)
 | |
| {
 | |
| 	u64 vm_cr;
 | |
| 
 | |
| 	rdmsrl(MSR_VM_CR, vm_cr);
 | |
| 	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void
 | |
| svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
 | |
| {
 | |
| 	/*
 | |
| 	 * Patch in the VMMCALL instruction:
 | |
| 	 */
 | |
| 	hypercall[0] = 0x0f;
 | |
| 	hypercall[1] = 0x01;
 | |
| 	hypercall[2] = 0xd9;
 | |
| }
 | |
| 
 | |
| static int __init svm_check_processor_compat(void)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The kvm parameter can be NULL (module initialization, or invocation before
 | |
|  * VM creation). Be sure to check the kvm parameter before using it.
 | |
|  */
 | |
| static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
 | |
| {
 | |
| 	switch (index) {
 | |
| 	case MSR_IA32_MCG_EXT_CTL:
 | |
| 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
 | |
| 		return false;
 | |
| 	case MSR_IA32_SMBASE:
 | |
| 		/* SEV-ES guests do not support SMM, so report false */
 | |
| 		if (kvm && sev_es_guest(kvm))
 | |
| 			return false;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	struct kvm_cpuid_entry2 *best;
 | |
| 
 | |
| 	vcpu->arch.xsaves_enabled = guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
 | |
| 				    boot_cpu_has(X86_FEATURE_XSAVE) &&
 | |
| 				    boot_cpu_has(X86_FEATURE_XSAVES);
 | |
| 
 | |
| 	/* Update nrips enabled cache */
 | |
| 	svm->nrips_enabled = kvm_cpu_cap_has(X86_FEATURE_NRIPS) &&
 | |
| 			     guest_cpuid_has(vcpu, X86_FEATURE_NRIPS);
 | |
| 
 | |
| 	svm->tsc_scaling_enabled = tsc_scaling && guest_cpuid_has(vcpu, X86_FEATURE_TSCRATEMSR);
 | |
| 	svm->lbrv_enabled = lbrv && guest_cpuid_has(vcpu, X86_FEATURE_LBRV);
 | |
| 
 | |
| 	svm->v_vmload_vmsave_enabled = vls && guest_cpuid_has(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
 | |
| 
 | |
| 	svm->pause_filter_enabled = kvm_cpu_cap_has(X86_FEATURE_PAUSEFILTER) &&
 | |
| 			guest_cpuid_has(vcpu, X86_FEATURE_PAUSEFILTER);
 | |
| 
 | |
| 	svm->pause_threshold_enabled = kvm_cpu_cap_has(X86_FEATURE_PFTHRESHOLD) &&
 | |
| 			guest_cpuid_has(vcpu, X86_FEATURE_PFTHRESHOLD);
 | |
| 
 | |
| 	svm_recalc_instruction_intercepts(vcpu, svm);
 | |
| 
 | |
| 	if (boot_cpu_has(X86_FEATURE_IBPB))
 | |
| 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0,
 | |
| 				     !!guest_has_pred_cmd_msr(vcpu));
 | |
| 
 | |
| 	if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
 | |
| 		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0,
 | |
| 				     !!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
 | |
| 
 | |
| 	/* For sev guests, the memory encryption bit is not reserved in CR3.  */
 | |
| 	if (sev_guest(vcpu->kvm)) {
 | |
| 		best = kvm_find_cpuid_entry(vcpu, 0x8000001F, 0);
 | |
| 		if (best)
 | |
| 			vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
 | |
| 	}
 | |
| 
 | |
| 	init_vmcb_after_set_cpuid(vcpu);
 | |
| }
 | |
| 
 | |
| static bool svm_has_wbinvd_exit(void)
 | |
| {
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| #define PRE_EX(exit)  { .exit_code = (exit), \
 | |
| 			.stage = X86_ICPT_PRE_EXCEPT, }
 | |
| #define POST_EX(exit) { .exit_code = (exit), \
 | |
| 			.stage = X86_ICPT_POST_EXCEPT, }
 | |
| #define POST_MEM(exit) { .exit_code = (exit), \
 | |
| 			.stage = X86_ICPT_POST_MEMACCESS, }
 | |
| 
 | |
| static const struct __x86_intercept {
 | |
| 	u32 exit_code;
 | |
| 	enum x86_intercept_stage stage;
 | |
| } x86_intercept_map[] = {
 | |
| 	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
 | |
| 	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
 | |
| 	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
 | |
| 	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
 | |
| 	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
 | |
| 	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
 | |
| 	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
 | |
| 	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
 | |
| 	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
 | |
| 	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
 | |
| 	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
 | |
| 	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
 | |
| 	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
 | |
| 	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
 | |
| 	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
 | |
| 	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
 | |
| 	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
 | |
| 	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
 | |
| 	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
 | |
| 	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
 | |
| 	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
 | |
| 	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
 | |
| 	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
 | |
| 	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
 | |
| 	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
 | |
| 	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
 | |
| 	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
 | |
| 	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
 | |
| 	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
 | |
| 	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
 | |
| 	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
 | |
| 	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
 | |
| 	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
 | |
| 	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
 | |
| 	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
 | |
| 	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
 | |
| 	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
 | |
| 	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
 | |
| 	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
 | |
| 	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
 | |
| 	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
 | |
| 	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
 | |
| 	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
 | |
| 	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
 | |
| 	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
 | |
| 	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
 | |
| 	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
 | |
| };
 | |
| 
 | |
| #undef PRE_EX
 | |
| #undef POST_EX
 | |
| #undef POST_MEM
 | |
| 
 | |
| static int svm_check_intercept(struct kvm_vcpu *vcpu,
 | |
| 			       struct x86_instruction_info *info,
 | |
| 			       enum x86_intercept_stage stage,
 | |
| 			       struct x86_exception *exception)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	int vmexit, ret = X86EMUL_CONTINUE;
 | |
| 	struct __x86_intercept icpt_info;
 | |
| 	struct vmcb *vmcb = svm->vmcb;
 | |
| 
 | |
| 	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
 | |
| 		goto out;
 | |
| 
 | |
| 	icpt_info = x86_intercept_map[info->intercept];
 | |
| 
 | |
| 	if (stage != icpt_info.stage)
 | |
| 		goto out;
 | |
| 
 | |
| 	switch (icpt_info.exit_code) {
 | |
| 	case SVM_EXIT_READ_CR0:
 | |
| 		if (info->intercept == x86_intercept_cr_read)
 | |
| 			icpt_info.exit_code += info->modrm_reg;
 | |
| 		break;
 | |
| 	case SVM_EXIT_WRITE_CR0: {
 | |
| 		unsigned long cr0, val;
 | |
| 
 | |
| 		if (info->intercept == x86_intercept_cr_write)
 | |
| 			icpt_info.exit_code += info->modrm_reg;
 | |
| 
 | |
| 		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
 | |
| 		    info->intercept == x86_intercept_clts)
 | |
| 			break;
 | |
| 
 | |
| 		if (!(vmcb12_is_intercept(&svm->nested.ctl,
 | |
| 					INTERCEPT_SELECTIVE_CR0)))
 | |
| 			break;
 | |
| 
 | |
| 		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
 | |
| 		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
 | |
| 
 | |
| 		if (info->intercept == x86_intercept_lmsw) {
 | |
| 			cr0 &= 0xfUL;
 | |
| 			val &= 0xfUL;
 | |
| 			/* lmsw can't clear PE - catch this here */
 | |
| 			if (cr0 & X86_CR0_PE)
 | |
| 				val |= X86_CR0_PE;
 | |
| 		}
 | |
| 
 | |
| 		if (cr0 ^ val)
 | |
| 			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
 | |
| 
 | |
| 		break;
 | |
| 	}
 | |
| 	case SVM_EXIT_READ_DR0:
 | |
| 	case SVM_EXIT_WRITE_DR0:
 | |
| 		icpt_info.exit_code += info->modrm_reg;
 | |
| 		break;
 | |
| 	case SVM_EXIT_MSR:
 | |
| 		if (info->intercept == x86_intercept_wrmsr)
 | |
| 			vmcb->control.exit_info_1 = 1;
 | |
| 		else
 | |
| 			vmcb->control.exit_info_1 = 0;
 | |
| 		break;
 | |
| 	case SVM_EXIT_PAUSE:
 | |
| 		/*
 | |
| 		 * We get this for NOP only, but pause
 | |
| 		 * is rep not, check this here
 | |
| 		 */
 | |
| 		if (info->rep_prefix != REPE_PREFIX)
 | |
| 			goto out;
 | |
| 		break;
 | |
| 	case SVM_EXIT_IOIO: {
 | |
| 		u64 exit_info;
 | |
| 		u32 bytes;
 | |
| 
 | |
| 		if (info->intercept == x86_intercept_in ||
 | |
| 		    info->intercept == x86_intercept_ins) {
 | |
| 			exit_info = ((info->src_val & 0xffff) << 16) |
 | |
| 				SVM_IOIO_TYPE_MASK;
 | |
| 			bytes = info->dst_bytes;
 | |
| 		} else {
 | |
| 			exit_info = (info->dst_val & 0xffff) << 16;
 | |
| 			bytes = info->src_bytes;
 | |
| 		}
 | |
| 
 | |
| 		if (info->intercept == x86_intercept_outs ||
 | |
| 		    info->intercept == x86_intercept_ins)
 | |
| 			exit_info |= SVM_IOIO_STR_MASK;
 | |
| 
 | |
| 		if (info->rep_prefix)
 | |
| 			exit_info |= SVM_IOIO_REP_MASK;
 | |
| 
 | |
| 		bytes = min(bytes, 4u);
 | |
| 
 | |
| 		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
 | |
| 
 | |
| 		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
 | |
| 
 | |
| 		vmcb->control.exit_info_1 = exit_info;
 | |
| 		vmcb->control.exit_info_2 = info->next_rip;
 | |
| 
 | |
| 		break;
 | |
| 	}
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
 | |
| 	if (static_cpu_has(X86_FEATURE_NRIPS))
 | |
| 		vmcb->control.next_rip  = info->next_rip;
 | |
| 	vmcb->control.exit_code = icpt_info.exit_code;
 | |
| 	vmexit = nested_svm_exit_handled(svm);
 | |
| 
 | |
| 	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
 | |
| 					   : X86EMUL_CONTINUE;
 | |
| 
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
 | |
| 		vcpu->arch.at_instruction_boundary = true;
 | |
| }
 | |
| 
 | |
| static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
 | |
| {
 | |
| 	if (!kvm_pause_in_guest(vcpu->kvm))
 | |
| 		shrink_ple_window(vcpu);
 | |
| }
 | |
| 
 | |
| static void svm_setup_mce(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/* [63:9] are reserved. */
 | |
| 	vcpu->arch.mcg_cap &= 0x1ff;
 | |
| }
 | |
| 
 | |
| bool svm_smi_blocked(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	/* Per APM Vol.2 15.22.2 "Response to SMI" */
 | |
| 	if (!gif_set(svm))
 | |
| 		return true;
 | |
| 
 | |
| 	return is_smm(vcpu);
 | |
| }
 | |
| 
 | |
| static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	if (svm->nested.nested_run_pending)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	if (svm_smi_blocked(vcpu))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
 | |
| 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	struct kvm_host_map map_save;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!is_guest_mode(vcpu))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * 32-bit SMRAM format doesn't preserve EFER and SVM state.  Userspace is
 | |
| 	 * responsible for ensuring nested SVM and SMIs are mutually exclusive.
 | |
| 	 */
 | |
| 
 | |
| 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
 | |
| 		return 1;
 | |
| 
 | |
| 	smram->smram64.svm_guest_flag = 1;
 | |
| 	smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;
 | |
| 
 | |
| 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
 | |
| 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
 | |
| 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
 | |
| 
 | |
| 	ret = nested_svm_vmexit(svm);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * KVM uses VMCB01 to store L1 host state while L2 runs but
 | |
| 	 * VMCB01 is going to be used during SMM and thus the state will
 | |
| 	 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
 | |
| 	 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
 | |
| 	 * format of the area is identical to guest save area offsetted
 | |
| 	 * by 0x400 (matches the offset of 'struct vmcb_save_area'
 | |
| 	 * within 'struct vmcb'). Note: HSAVE area may also be used by
 | |
| 	 * L1 hypervisor to save additional host context (e.g. KVM does
 | |
| 	 * that, see svm_prepare_switch_to_guest()) which must be
 | |
| 	 * preserved.
 | |
| 	 */
 | |
| 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
 | |
| 		return 1;
 | |
| 
 | |
| 	BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
 | |
| 
 | |
| 	svm_copy_vmrun_state(map_save.hva + 0x400,
 | |
| 			     &svm->vmcb01.ptr->save);
 | |
| 
 | |
| 	kvm_vcpu_unmap(vcpu, &map_save, true);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	struct kvm_host_map map, map_save;
 | |
| 	struct vmcb *vmcb12;
 | |
| 	int ret;
 | |
| 
 | |
| 	const struct kvm_smram_state_64 *smram64 = &smram->smram64;
 | |
| 
 | |
| 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Non-zero if SMI arrived while vCPU was in guest mode. */
 | |
| 	if (!smram64->svm_guest_flag)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (!(smram64->efer & EFER_SVME))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
 | |
| 		return 1;
 | |
| 
 | |
| 	ret = 1;
 | |
| 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
 | |
| 		goto unmap_map;
 | |
| 
 | |
| 	if (svm_allocate_nested(svm))
 | |
| 		goto unmap_save;
 | |
| 
 | |
| 	/*
 | |
| 	 * Restore L1 host state from L1 HSAVE area as VMCB01 was
 | |
| 	 * used during SMM (see svm_enter_smm())
 | |
| 	 */
 | |
| 
 | |
| 	svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
 | |
| 
 | |
| 	/*
 | |
| 	 * Enter the nested guest now
 | |
| 	 */
 | |
| 
 | |
| 	vmcb_mark_all_dirty(svm->vmcb01.ptr);
 | |
| 
 | |
| 	vmcb12 = map.hva;
 | |
| 	nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
 | |
| 	nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
 | |
| 	ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);
 | |
| 
 | |
| 	if (ret)
 | |
| 		goto unmap_save;
 | |
| 
 | |
| 	svm->nested.nested_run_pending = 1;
 | |
| 
 | |
| unmap_save:
 | |
| 	kvm_vcpu_unmap(vcpu, &map_save, true);
 | |
| unmap_map:
 | |
| 	kvm_vcpu_unmap(vcpu, &map, true);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	if (!gif_set(svm)) {
 | |
| 		if (vgif_enabled(svm))
 | |
| 			svm_set_intercept(svm, INTERCEPT_STGI);
 | |
| 		/* STGI will cause a vm exit */
 | |
| 	} else {
 | |
| 		/* We must be in SMM; RSM will cause a vmexit anyway.  */
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
 | |
| 					void *insn, int insn_len)
 | |
| {
 | |
| 	bool smep, smap, is_user;
 | |
| 	unsigned long cr4;
 | |
| 	u64 error_code;
 | |
| 
 | |
| 	/* Emulation is always possible when KVM has access to all guest state. */
 | |
| 	if (!sev_guest(vcpu->kvm))
 | |
| 		return true;
 | |
| 
 | |
| 	/* #UD and #GP should never be intercepted for SEV guests. */
 | |
| 	WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
 | |
| 				  EMULTYPE_TRAP_UD_FORCED |
 | |
| 				  EMULTYPE_VMWARE_GP));
 | |
| 
 | |
| 	/*
 | |
| 	 * Emulation is impossible for SEV-ES guests as KVM doesn't have access
 | |
| 	 * to guest register state.
 | |
| 	 */
 | |
| 	if (sev_es_guest(vcpu->kvm))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Emulation is possible if the instruction is already decoded, e.g.
 | |
| 	 * when completing I/O after returning from userspace.
 | |
| 	 */
 | |
| 	if (emul_type & EMULTYPE_NO_DECODE)
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * Emulation is possible for SEV guests if and only if a prefilled
 | |
| 	 * buffer containing the bytes of the intercepted instruction is
 | |
| 	 * available. SEV guest memory is encrypted with a guest specific key
 | |
| 	 * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and
 | |
| 	 * decode garbage.
 | |
| 	 *
 | |
| 	 * Inject #UD if KVM reached this point without an instruction buffer.
 | |
| 	 * In practice, this path should never be hit by a well-behaved guest,
 | |
| 	 * e.g. KVM doesn't intercept #UD or #GP for SEV guests, but this path
 | |
| 	 * is still theoretically reachable, e.g. via unaccelerated fault-like
 | |
| 	 * AVIC access, and needs to be handled by KVM to avoid putting the
 | |
| 	 * guest into an infinite loop.   Injecting #UD is somewhat arbitrary,
 | |
| 	 * but its the least awful option given lack of insight into the guest.
 | |
| 	 */
 | |
| 	if (unlikely(!insn)) {
 | |
| 		kvm_queue_exception(vcpu, UD_VECTOR);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Emulate for SEV guests if the insn buffer is not empty.  The buffer
 | |
| 	 * will be empty if the DecodeAssist microcode cannot fetch bytes for
 | |
| 	 * the faulting instruction because the code fetch itself faulted, e.g.
 | |
| 	 * the guest attempted to fetch from emulated MMIO or a guest page
 | |
| 	 * table used to translate CS:RIP resides in emulated MMIO.
 | |
| 	 */
 | |
| 	if (likely(insn_len))
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
 | |
| 	 *
 | |
| 	 * Errata:
 | |
| 	 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
 | |
| 	 * possible that CPU microcode implementing DecodeAssist will fail to
 | |
| 	 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
 | |
| 	 * be '0'.  This happens because microcode reads CS:RIP using a _data_
 | |
| 	 * loap uop with CPL=0 privileges.  If the load hits a SMAP #PF, ucode
 | |
| 	 * gives up and does not fill the instruction bytes buffer.
 | |
| 	 *
 | |
| 	 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
 | |
| 	 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
 | |
| 	 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
 | |
| 	 * GuestIntrBytes field of the VMCB.
 | |
| 	 *
 | |
| 	 * This does _not_ mean that the erratum has been encountered, as the
 | |
| 	 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
 | |
| 	 * #PF, e.g. if the guest attempt to execute from emulated MMIO and
 | |
| 	 * encountered a reserved/not-present #PF.
 | |
| 	 *
 | |
| 	 * To hit the erratum, the following conditions must be true:
 | |
| 	 *    1. CR4.SMAP=1 (obviously).
 | |
| 	 *    2. CR4.SMEP=0 || CPL=3.  If SMEP=1 and CPL<3, the erratum cannot
 | |
| 	 *       have been hit as the guest would have encountered a SMEP
 | |
| 	 *       violation #PF, not a #NPF.
 | |
| 	 *    3. The #NPF is not due to a code fetch, in which case failure to
 | |
| 	 *       retrieve the instruction bytes is legitimate (see abvoe).
 | |
| 	 *
 | |
| 	 * In addition, don't apply the erratum workaround if the #NPF occurred
 | |
| 	 * while translating guest page tables (see below).
 | |
| 	 */
 | |
| 	error_code = to_svm(vcpu)->vmcb->control.exit_info_1;
 | |
| 	if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
 | |
| 		goto resume_guest;
 | |
| 
 | |
| 	cr4 = kvm_read_cr4(vcpu);
 | |
| 	smep = cr4 & X86_CR4_SMEP;
 | |
| 	smap = cr4 & X86_CR4_SMAP;
 | |
| 	is_user = svm_get_cpl(vcpu) == 3;
 | |
| 	if (smap && (!smep || is_user)) {
 | |
| 		pr_err_ratelimited("KVM: SEV Guest triggered AMD Erratum 1096\n");
 | |
| 
 | |
| 		/*
 | |
| 		 * If the fault occurred in userspace, arbitrarily inject #GP
 | |
| 		 * to avoid killing the guest and to hopefully avoid confusing
 | |
| 		 * the guest kernel too much, e.g. injecting #PF would not be
 | |
| 		 * coherent with respect to the guest's page tables.  Request
 | |
| 		 * triple fault if the fault occurred in the kernel as there's
 | |
| 		 * no fault that KVM can inject without confusing the guest.
 | |
| 		 * In practice, the triple fault is moot as no sane SEV kernel
 | |
| 		 * will execute from user memory while also running with SMAP=1.
 | |
| 		 */
 | |
| 		if (is_user)
 | |
| 			kvm_inject_gp(vcpu, 0);
 | |
| 		else
 | |
| 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 | |
| 	}
 | |
| 
 | |
| resume_guest:
 | |
| 	/*
 | |
| 	 * If the erratum was not hit, simply resume the guest and let it fault
 | |
| 	 * again.  While awful, e.g. the vCPU may get stuck in an infinite loop
 | |
| 	 * if the fault is at CPL=0, it's the lesser of all evils.  Exiting to
 | |
| 	 * userspace will kill the guest, and letting the emulator read garbage
 | |
| 	 * will yield random behavior and potentially corrupt the guest.
 | |
| 	 *
 | |
| 	 * Simply resuming the guest is technically not a violation of the SEV
 | |
| 	 * architecture.  AMD's APM states that all code fetches and page table
 | |
| 	 * accesses for SEV guest are encrypted, regardless of the C-Bit.  The
 | |
| 	 * APM also states that encrypted accesses to MMIO are "ignored", but
 | |
| 	 * doesn't explicitly define "ignored", i.e. doing nothing and letting
 | |
| 	 * the guest spin is technically "ignoring" the access.
 | |
| 	 */
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * TODO: Last condition latch INIT signals on vCPU when
 | |
| 	 * vCPU is in guest-mode and vmcb12 defines intercept on INIT.
 | |
| 	 * To properly emulate the INIT intercept,
 | |
| 	 * svm_check_nested_events() should call nested_svm_vmexit()
 | |
| 	 * if an INIT signal is pending.
 | |
| 	 */
 | |
| 	return !gif_set(svm) ||
 | |
| 		   (vmcb_is_intercept(&svm->vmcb->control, INTERCEPT_INIT));
 | |
| }
 | |
| 
 | |
| static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
 | |
| {
 | |
| 	if (!sev_es_guest(vcpu->kvm))
 | |
| 		return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
 | |
| 
 | |
| 	sev_vcpu_deliver_sipi_vector(vcpu, vector);
 | |
| }
 | |
| 
 | |
| static void svm_vm_destroy(struct kvm *kvm)
 | |
| {
 | |
| 	avic_vm_destroy(kvm);
 | |
| 	sev_vm_destroy(kvm);
 | |
| }
 | |
| 
 | |
| static int svm_vm_init(struct kvm *kvm)
 | |
| {
 | |
| 	if (!pause_filter_count || !pause_filter_thresh)
 | |
| 		kvm->arch.pause_in_guest = true;
 | |
| 
 | |
| 	if (enable_apicv) {
 | |
| 		int ret = avic_vm_init(kvm);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct kvm_x86_ops svm_x86_ops __initdata = {
 | |
| 	.name = "kvm_amd",
 | |
| 
 | |
| 	.hardware_unsetup = svm_hardware_unsetup,
 | |
| 	.hardware_enable = svm_hardware_enable,
 | |
| 	.hardware_disable = svm_hardware_disable,
 | |
| 	.has_emulated_msr = svm_has_emulated_msr,
 | |
| 
 | |
| 	.vcpu_create = svm_vcpu_create,
 | |
| 	.vcpu_free = svm_vcpu_free,
 | |
| 	.vcpu_reset = svm_vcpu_reset,
 | |
| 
 | |
| 	.vm_size = sizeof(struct kvm_svm),
 | |
| 	.vm_init = svm_vm_init,
 | |
| 	.vm_destroy = svm_vm_destroy,
 | |
| 
 | |
| 	.prepare_switch_to_guest = svm_prepare_switch_to_guest,
 | |
| 	.vcpu_load = svm_vcpu_load,
 | |
| 	.vcpu_put = svm_vcpu_put,
 | |
| 	.vcpu_blocking = avic_vcpu_blocking,
 | |
| 	.vcpu_unblocking = avic_vcpu_unblocking,
 | |
| 
 | |
| 	.update_exception_bitmap = svm_update_exception_bitmap,
 | |
| 	.get_msr_feature = svm_get_msr_feature,
 | |
| 	.get_msr = svm_get_msr,
 | |
| 	.set_msr = svm_set_msr,
 | |
| 	.get_segment_base = svm_get_segment_base,
 | |
| 	.get_segment = svm_get_segment,
 | |
| 	.set_segment = svm_set_segment,
 | |
| 	.get_cpl = svm_get_cpl,
 | |
| 	.get_cs_db_l_bits = svm_get_cs_db_l_bits,
 | |
| 	.set_cr0 = svm_set_cr0,
 | |
| 	.post_set_cr3 = sev_post_set_cr3,
 | |
| 	.is_valid_cr4 = svm_is_valid_cr4,
 | |
| 	.set_cr4 = svm_set_cr4,
 | |
| 	.set_efer = svm_set_efer,
 | |
| 	.get_idt = svm_get_idt,
 | |
| 	.set_idt = svm_set_idt,
 | |
| 	.get_gdt = svm_get_gdt,
 | |
| 	.set_gdt = svm_set_gdt,
 | |
| 	.set_dr7 = svm_set_dr7,
 | |
| 	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
 | |
| 	.cache_reg = svm_cache_reg,
 | |
| 	.get_rflags = svm_get_rflags,
 | |
| 	.set_rflags = svm_set_rflags,
 | |
| 	.get_if_flag = svm_get_if_flag,
 | |
| 
 | |
| 	.flush_tlb_all = svm_flush_tlb_current,
 | |
| 	.flush_tlb_current = svm_flush_tlb_current,
 | |
| 	.flush_tlb_gva = svm_flush_tlb_gva,
 | |
| 	.flush_tlb_guest = svm_flush_tlb_current,
 | |
| 
 | |
| 	.vcpu_pre_run = svm_vcpu_pre_run,
 | |
| 	.vcpu_run = svm_vcpu_run,
 | |
| 	.handle_exit = svm_handle_exit,
 | |
| 	.skip_emulated_instruction = svm_skip_emulated_instruction,
 | |
| 	.update_emulated_instruction = NULL,
 | |
| 	.set_interrupt_shadow = svm_set_interrupt_shadow,
 | |
| 	.get_interrupt_shadow = svm_get_interrupt_shadow,
 | |
| 	.patch_hypercall = svm_patch_hypercall,
 | |
| 	.inject_irq = svm_inject_irq,
 | |
| 	.inject_nmi = svm_inject_nmi,
 | |
| 	.queue_exception = svm_queue_exception,
 | |
| 	.cancel_injection = svm_cancel_injection,
 | |
| 	.interrupt_allowed = svm_interrupt_allowed,
 | |
| 	.nmi_allowed = svm_nmi_allowed,
 | |
| 	.get_nmi_mask = svm_get_nmi_mask,
 | |
| 	.set_nmi_mask = svm_set_nmi_mask,
 | |
| 	.enable_nmi_window = svm_enable_nmi_window,
 | |
| 	.enable_irq_window = svm_enable_irq_window,
 | |
| 	.update_cr8_intercept = svm_update_cr8_intercept,
 | |
| 	.set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
 | |
| 	.refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
 | |
| 	.apicv_post_state_restore = avic_apicv_post_state_restore,
 | |
| 	.required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS,
 | |
| 
 | |
| 	.set_tss_addr = svm_set_tss_addr,
 | |
| 	.set_identity_map_addr = svm_set_identity_map_addr,
 | |
| 	.get_mt_mask = svm_get_mt_mask,
 | |
| 
 | |
| 	.get_exit_info = svm_get_exit_info,
 | |
| 
 | |
| 	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
 | |
| 
 | |
| 	.has_wbinvd_exit = svm_has_wbinvd_exit,
 | |
| 
 | |
| 	.get_l2_tsc_offset = svm_get_l2_tsc_offset,
 | |
| 	.get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
 | |
| 	.write_tsc_offset = svm_write_tsc_offset,
 | |
| 	.write_tsc_multiplier = svm_write_tsc_multiplier,
 | |
| 
 | |
| 	.load_mmu_pgd = svm_load_mmu_pgd,
 | |
| 
 | |
| 	.check_intercept = svm_check_intercept,
 | |
| 	.handle_exit_irqoff = svm_handle_exit_irqoff,
 | |
| 
 | |
| 	.request_immediate_exit = __kvm_request_immediate_exit,
 | |
| 
 | |
| 	.sched_in = svm_sched_in,
 | |
| 
 | |
| 	.pmu_ops = &amd_pmu_ops,
 | |
| 	.nested_ops = &svm_nested_ops,
 | |
| 
 | |
| 	.deliver_interrupt = svm_deliver_interrupt,
 | |
| 	.dy_apicv_has_pending_interrupt = avic_dy_apicv_has_pending_interrupt,
 | |
| 	.pi_update_irte = avic_pi_update_irte,
 | |
| 	.setup_mce = svm_setup_mce,
 | |
| 
 | |
| 	.smi_allowed = svm_smi_allowed,
 | |
| 	.enter_smm = svm_enter_smm,
 | |
| 	.leave_smm = svm_leave_smm,
 | |
| 	.enable_smi_window = svm_enable_smi_window,
 | |
| 
 | |
| 	.mem_enc_ioctl = sev_mem_enc_ioctl,
 | |
| 	.mem_enc_register_region = sev_mem_enc_register_region,
 | |
| 	.mem_enc_unregister_region = sev_mem_enc_unregister_region,
 | |
| 	.guest_memory_reclaimed = sev_guest_memory_reclaimed,
 | |
| 
 | |
| 	.vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
 | |
| 	.vm_move_enc_context_from = sev_vm_move_enc_context_from,
 | |
| 
 | |
| 	.can_emulate_instruction = svm_can_emulate_instruction,
 | |
| 
 | |
| 	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
 | |
| 
 | |
| 	.msr_filter_changed = svm_msr_filter_changed,
 | |
| 	.complete_emulated_msr = svm_complete_emulated_msr,
 | |
| 
 | |
| 	.vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
 | |
| 	.vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * The default MMIO mask is a single bit (excluding the present bit),
 | |
|  * which could conflict with the memory encryption bit. Check for
 | |
|  * memory encryption support and override the default MMIO mask if
 | |
|  * memory encryption is enabled.
 | |
|  */
 | |
| static __init void svm_adjust_mmio_mask(void)
 | |
| {
 | |
| 	unsigned int enc_bit, mask_bit;
 | |
| 	u64 msr, mask;
 | |
| 
 | |
| 	/* If there is no memory encryption support, use existing mask */
 | |
| 	if (cpuid_eax(0x80000000) < 0x8000001f)
 | |
| 		return;
 | |
| 
 | |
| 	/* If memory encryption is not enabled, use existing mask */
 | |
| 	rdmsrl(MSR_AMD64_SYSCFG, msr);
 | |
| 	if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
 | |
| 		return;
 | |
| 
 | |
| 	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
 | |
| 	mask_bit = boot_cpu_data.x86_phys_bits;
 | |
| 
 | |
| 	/* Increment the mask bit if it is the same as the encryption bit */
 | |
| 	if (enc_bit == mask_bit)
 | |
| 		mask_bit++;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the mask bit location is below 52, then some bits above the
 | |
| 	 * physical addressing limit will always be reserved, so use the
 | |
| 	 * rsvd_bits() function to generate the mask. This mask, along with
 | |
| 	 * the present bit, will be used to generate a page fault with
 | |
| 	 * PFER.RSV = 1.
 | |
| 	 *
 | |
| 	 * If the mask bit location is 52 (or above), then clear the mask.
 | |
| 	 */
 | |
| 	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
 | |
| 
 | |
| 	kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
 | |
| }
 | |
| 
 | |
| static __init void svm_set_cpu_caps(void)
 | |
| {
 | |
| 	kvm_set_cpu_caps();
 | |
| 
 | |
| 	supported_xss = 0;
 | |
| 
 | |
| 	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
 | |
| 	if (nested) {
 | |
| 		kvm_cpu_cap_set(X86_FEATURE_SVM);
 | |
| 		kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
 | |
| 
 | |
| 		if (nrips)
 | |
| 			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
 | |
| 
 | |
| 		if (npt_enabled)
 | |
| 			kvm_cpu_cap_set(X86_FEATURE_NPT);
 | |
| 
 | |
| 		if (tsc_scaling)
 | |
| 			kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
 | |
| 
 | |
| 		if (vls)
 | |
| 			kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
 | |
| 		if (lbrv)
 | |
| 			kvm_cpu_cap_set(X86_FEATURE_LBRV);
 | |
| 
 | |
| 		if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
 | |
| 			kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
 | |
| 
 | |
| 		if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
 | |
| 			kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
 | |
| 
 | |
| 		/* Nested VM can receive #VMEXIT instead of triggering #GP */
 | |
| 		kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
 | |
| 	}
 | |
| 
 | |
| 	/* CPUID 0x80000008 */
 | |
| 	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
 | |
| 	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
 | |
| 		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
 | |
| 
 | |
| 	/* AMD PMU PERFCTR_CORE CPUID */
 | |
| 	if (enable_pmu && boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
 | |
| 		kvm_cpu_cap_set(X86_FEATURE_PERFCTR_CORE);
 | |
| 
 | |
| 	/* CPUID 0x8000001F (SME/SEV features) */
 | |
| 	sev_set_cpu_caps();
 | |
| }
 | |
| 
 | |
| static __init int svm_hardware_setup(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 	struct page *iopm_pages;
 | |
| 	void *iopm_va;
 | |
| 	int r;
 | |
| 	unsigned int order = get_order(IOPM_SIZE);
 | |
| 
 | |
| 	/*
 | |
| 	 * NX is required for shadow paging and for NPT if the NX huge pages
 | |
| 	 * mitigation is enabled.
 | |
| 	 */
 | |
| 	if (!boot_cpu_has(X86_FEATURE_NX)) {
 | |
| 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| 	kvm_enable_efer_bits(EFER_NX);
 | |
| 
 | |
| 	iopm_pages = alloc_pages(GFP_KERNEL, order);
 | |
| 
 | |
| 	if (!iopm_pages)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	iopm_va = page_address(iopm_pages);
 | |
| 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
 | |
| 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
 | |
| 
 | |
| 	init_msrpm_offsets();
 | |
| 
 | |
| 	supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
 | |
| 
 | |
| 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
 | |
| 		kvm_enable_efer_bits(EFER_FFXSR);
 | |
| 
 | |
| 	if (tsc_scaling) {
 | |
| 		if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
 | |
| 			tsc_scaling = false;
 | |
| 		} else {
 | |
| 			pr_info("TSC scaling supported\n");
 | |
| 			kvm_has_tsc_control = true;
 | |
| 		}
 | |
| 	}
 | |
| 	kvm_max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
 | |
| 	kvm_tsc_scaling_ratio_frac_bits = 32;
 | |
| 
 | |
| 	tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
 | |
| 
 | |
| 	if (boot_cpu_has(X86_FEATURE_AUTOIBRS))
 | |
| 		kvm_enable_efer_bits(EFER_AUTOIBRS);
 | |
| 
 | |
| 	/* Check for pause filtering support */
 | |
| 	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
 | |
| 		pause_filter_count = 0;
 | |
| 		pause_filter_thresh = 0;
 | |
| 	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
 | |
| 		pause_filter_thresh = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (nested) {
 | |
| 		printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
 | |
| 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * KVM's MMU doesn't support using 2-level paging for itself, and thus
 | |
| 	 * NPT isn't supported if the host is using 2-level paging since host
 | |
| 	 * CR4 is unchanged on VMRUN.
 | |
| 	 */
 | |
| 	if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
 | |
| 		npt_enabled = false;
 | |
| 
 | |
| 	if (!boot_cpu_has(X86_FEATURE_NPT))
 | |
| 		npt_enabled = false;
 | |
| 
 | |
| 	/* Force VM NPT level equal to the host's paging level */
 | |
| 	kvm_configure_mmu(npt_enabled, get_npt_level(),
 | |
| 			  get_npt_level(), PG_LEVEL_1G);
 | |
| 	pr_info("kvm: Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
 | |
| 
 | |
| 	/* Note, SEV setup consumes npt_enabled. */
 | |
| 	sev_hardware_setup();
 | |
| 
 | |
| 	svm_hv_hardware_setup();
 | |
| 
 | |
| 	svm_adjust_mmio_mask();
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		r = svm_cpu_init(cpu);
 | |
| 		if (r)
 | |
| 			goto err;
 | |
| 	}
 | |
| 
 | |
| 	if (nrips) {
 | |
| 		if (!boot_cpu_has(X86_FEATURE_NRIPS))
 | |
| 			nrips = false;
 | |
| 	}
 | |
| 
 | |
| 	enable_apicv = avic = avic && avic_hardware_setup();
 | |
| 
 | |
| 	if (!enable_apicv) {
 | |
| 		svm_x86_ops.vcpu_blocking = NULL;
 | |
| 		svm_x86_ops.vcpu_unblocking = NULL;
 | |
| 		svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
 | |
| 	} else if (!x2avic_enabled) {
 | |
| 		svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true;
 | |
| 	}
 | |
| 
 | |
| 	if (vls) {
 | |
| 		if (!npt_enabled ||
 | |
| 		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
 | |
| 		    !IS_ENABLED(CONFIG_X86_64)) {
 | |
| 			vls = false;
 | |
| 		} else {
 | |
| 			pr_info("Virtual VMLOAD VMSAVE supported\n");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
 | |
| 		svm_gp_erratum_intercept = false;
 | |
| 
 | |
| 	if (vgif) {
 | |
| 		if (!boot_cpu_has(X86_FEATURE_VGIF))
 | |
| 			vgif = false;
 | |
| 		else
 | |
| 			pr_info("Virtual GIF supported\n");
 | |
| 	}
 | |
| 
 | |
| 	if (lbrv) {
 | |
| 		if (!boot_cpu_has(X86_FEATURE_LBRV))
 | |
| 			lbrv = false;
 | |
| 		else
 | |
| 			pr_info("LBR virtualization supported\n");
 | |
| 	}
 | |
| 
 | |
| 	if (!enable_pmu)
 | |
| 		pr_info("PMU virtualization is disabled\n");
 | |
| 
 | |
| 	svm_set_cpu_caps();
 | |
| 
 | |
| 	/*
 | |
| 	 * It seems that on AMD processors PTE's accessed bit is
 | |
| 	 * being set by the CPU hardware before the NPF vmexit.
 | |
| 	 * This is not expected behaviour and our tests fail because
 | |
| 	 * of it.
 | |
| 	 * A workaround here is to disable support for
 | |
| 	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
 | |
| 	 * In this case userspace can know if there is support using
 | |
| 	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
 | |
| 	 * it
 | |
| 	 * If future AMD CPU models change the behaviour described above,
 | |
| 	 * this variable can be changed accordingly
 | |
| 	 */
 | |
| 	allow_smaller_maxphyaddr = !npt_enabled;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err:
 | |
| 	svm_hardware_unsetup();
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| 
 | |
| static struct kvm_x86_init_ops svm_init_ops __initdata = {
 | |
| 	.cpu_has_kvm_support = has_svm,
 | |
| 	.disabled_by_bios = is_disabled,
 | |
| 	.hardware_setup = svm_hardware_setup,
 | |
| 	.check_processor_compatibility = svm_check_processor_compat,
 | |
| 
 | |
| 	.runtime_ops = &svm_x86_ops,
 | |
| };
 | |
| 
 | |
| static int __init svm_init(void)
 | |
| {
 | |
| 	__unused_size_checks();
 | |
| 
 | |
| 	return kvm_init(&svm_init_ops, sizeof(struct vcpu_svm),
 | |
| 			__alignof__(struct vcpu_svm), THIS_MODULE);
 | |
| }
 | |
| 
 | |
| static void __exit svm_exit(void)
 | |
| {
 | |
| 	kvm_exit();
 | |
| }
 | |
| 
 | |
| module_init(svm_init)
 | |
| module_exit(svm_exit)
 |