3030 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3030 lines
		
	
	
		
			76 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Kernel-based Virtual Machine driver for Linux
 | |
|  *
 | |
|  * AMD SVM-SEV support
 | |
|  *
 | |
|  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
 | |
|  */
 | |
| 
 | |
| #include <linux/kvm_types.h>
 | |
| #include <linux/kvm_host.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/psp.h>
 | |
| #include <linux/psp-sev.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/misc_cgroup.h>
 | |
| #include <linux/processor.h>
 | |
| #include <linux/trace_events.h>
 | |
| 
 | |
| #include <asm/pkru.h>
 | |
| #include <asm/trapnr.h>
 | |
| #include <asm/fpu/xcr.h>
 | |
| 
 | |
| #include "x86.h"
 | |
| #include "svm.h"
 | |
| #include "svm_ops.h"
 | |
| #include "cpuid.h"
 | |
| #include "trace.h"
 | |
| 
 | |
| #ifndef CONFIG_KVM_AMD_SEV
 | |
| /*
 | |
|  * When this config is not defined, SEV feature is not supported and APIs in
 | |
|  * this file are not used but this file still gets compiled into the KVM AMD
 | |
|  * module.
 | |
|  *
 | |
|  * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum
 | |
|  * misc_res_type {} defined in linux/misc_cgroup.h.
 | |
|  *
 | |
|  * Below macros allow compilation to succeed.
 | |
|  */
 | |
| #define MISC_CG_RES_SEV MISC_CG_RES_TYPES
 | |
| #define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_KVM_AMD_SEV
 | |
| /* enable/disable SEV support */
 | |
| static bool sev_enabled = true;
 | |
| module_param_named(sev, sev_enabled, bool, 0444);
 | |
| 
 | |
| /* enable/disable SEV-ES support */
 | |
| static bool sev_es_enabled = true;
 | |
| module_param_named(sev_es, sev_es_enabled, bool, 0444);
 | |
| #else
 | |
| #define sev_enabled false
 | |
| #define sev_es_enabled false
 | |
| #endif /* CONFIG_KVM_AMD_SEV */
 | |
| 
 | |
| static u8 sev_enc_bit;
 | |
| static DECLARE_RWSEM(sev_deactivate_lock);
 | |
| static DEFINE_MUTEX(sev_bitmap_lock);
 | |
| unsigned int max_sev_asid;
 | |
| static unsigned int min_sev_asid;
 | |
| static unsigned long sev_me_mask;
 | |
| static unsigned int nr_asids;
 | |
| static unsigned long *sev_asid_bitmap;
 | |
| static unsigned long *sev_reclaim_asid_bitmap;
 | |
| 
 | |
| struct enc_region {
 | |
| 	struct list_head list;
 | |
| 	unsigned long npages;
 | |
| 	struct page **pages;
 | |
| 	unsigned long uaddr;
 | |
| 	unsigned long size;
 | |
| };
 | |
| 
 | |
| /* Called with the sev_bitmap_lock held, or on shutdown  */
 | |
| static int sev_flush_asids(int min_asid, int max_asid)
 | |
| {
 | |
| 	int ret, asid, error = 0;
 | |
| 
 | |
| 	/* Check if there are any ASIDs to reclaim before performing a flush */
 | |
| 	asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
 | |
| 	if (asid > max_asid)
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	/*
 | |
| 	 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
 | |
| 	 * so it must be guarded.
 | |
| 	 */
 | |
| 	down_write(&sev_deactivate_lock);
 | |
| 
 | |
| 	wbinvd_on_all_cpus();
 | |
| 	ret = sev_guest_df_flush(&error);
 | |
| 
 | |
| 	up_write(&sev_deactivate_lock);
 | |
| 
 | |
| 	if (ret)
 | |
| 		pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static inline bool is_mirroring_enc_context(struct kvm *kvm)
 | |
| {
 | |
| 	return !!to_kvm_svm(kvm)->sev_info.enc_context_owner;
 | |
| }
 | |
| 
 | |
| /* Must be called with the sev_bitmap_lock held */
 | |
| static bool __sev_recycle_asids(int min_asid, int max_asid)
 | |
| {
 | |
| 	if (sev_flush_asids(min_asid, max_asid))
 | |
| 		return false;
 | |
| 
 | |
| 	/* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
 | |
| 	bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
 | |
| 		   nr_asids);
 | |
| 	bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
 | |
| {
 | |
| 	enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
 | |
| 	return misc_cg_try_charge(type, sev->misc_cg, 1);
 | |
| }
 | |
| 
 | |
| static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
 | |
| {
 | |
| 	enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
 | |
| 	misc_cg_uncharge(type, sev->misc_cg, 1);
 | |
| }
 | |
| 
 | |
| static int sev_asid_new(struct kvm_sev_info *sev)
 | |
| {
 | |
| 	int asid, min_asid, max_asid, ret;
 | |
| 	bool retry = true;
 | |
| 
 | |
| 	WARN_ON(sev->misc_cg);
 | |
| 	sev->misc_cg = get_current_misc_cg();
 | |
| 	ret = sev_misc_cg_try_charge(sev);
 | |
| 	if (ret) {
 | |
| 		put_misc_cg(sev->misc_cg);
 | |
| 		sev->misc_cg = NULL;
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&sev_bitmap_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
 | |
| 	 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
 | |
| 	 */
 | |
| 	min_asid = sev->es_active ? 1 : min_sev_asid;
 | |
| 	max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
 | |
| again:
 | |
| 	asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
 | |
| 	if (asid > max_asid) {
 | |
| 		if (retry && __sev_recycle_asids(min_asid, max_asid)) {
 | |
| 			retry = false;
 | |
| 			goto again;
 | |
| 		}
 | |
| 		mutex_unlock(&sev_bitmap_lock);
 | |
| 		ret = -EBUSY;
 | |
| 		goto e_uncharge;
 | |
| 	}
 | |
| 
 | |
| 	__set_bit(asid, sev_asid_bitmap);
 | |
| 
 | |
| 	mutex_unlock(&sev_bitmap_lock);
 | |
| 
 | |
| 	return asid;
 | |
| e_uncharge:
 | |
| 	sev_misc_cg_uncharge(sev);
 | |
| 	put_misc_cg(sev->misc_cg);
 | |
| 	sev->misc_cg = NULL;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int sev_get_asid(struct kvm *kvm)
 | |
| {
 | |
| 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 | |
| 
 | |
| 	return sev->asid;
 | |
| }
 | |
| 
 | |
| static void sev_asid_free(struct kvm_sev_info *sev)
 | |
| {
 | |
| 	struct svm_cpu_data *sd;
 | |
| 	int cpu;
 | |
| 
 | |
| 	mutex_lock(&sev_bitmap_lock);
 | |
| 
 | |
| 	__set_bit(sev->asid, sev_reclaim_asid_bitmap);
 | |
| 
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		sd = per_cpu(svm_data, cpu);
 | |
| 		sd->sev_vmcbs[sev->asid] = NULL;
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&sev_bitmap_lock);
 | |
| 
 | |
| 	sev_misc_cg_uncharge(sev);
 | |
| 	put_misc_cg(sev->misc_cg);
 | |
| 	sev->misc_cg = NULL;
 | |
| }
 | |
| 
 | |
| static void sev_decommission(unsigned int handle)
 | |
| {
 | |
| 	struct sev_data_decommission decommission;
 | |
| 
 | |
| 	if (!handle)
 | |
| 		return;
 | |
| 
 | |
| 	decommission.handle = handle;
 | |
| 	sev_guest_decommission(&decommission, NULL);
 | |
| }
 | |
| 
 | |
| static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
 | |
| {
 | |
| 	struct sev_data_deactivate deactivate;
 | |
| 
 | |
| 	if (!handle)
 | |
| 		return;
 | |
| 
 | |
| 	deactivate.handle = handle;
 | |
| 
 | |
| 	/* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
 | |
| 	down_read(&sev_deactivate_lock);
 | |
| 	sev_guest_deactivate(&deactivate, NULL);
 | |
| 	up_read(&sev_deactivate_lock);
 | |
| 
 | |
| 	sev_decommission(handle);
 | |
| }
 | |
| 
 | |
| static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
 | |
| {
 | |
| 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 | |
| 	int asid, ret;
 | |
| 
 | |
| 	if (kvm->created_vcpus)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	ret = -EBUSY;
 | |
| 	if (unlikely(sev->active))
 | |
| 		return ret;
 | |
| 
 | |
| 	sev->active = true;
 | |
| 	sev->es_active = argp->id == KVM_SEV_ES_INIT;
 | |
| 	asid = sev_asid_new(sev);
 | |
| 	if (asid < 0)
 | |
| 		goto e_no_asid;
 | |
| 	sev->asid = asid;
 | |
| 
 | |
| 	ret = sev_platform_init(&argp->error);
 | |
| 	if (ret)
 | |
| 		goto e_free;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&sev->regions_list);
 | |
| 	INIT_LIST_HEAD(&sev->mirror_vms);
 | |
| 
 | |
| 	kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| e_free:
 | |
| 	sev_asid_free(sev);
 | |
| 	sev->asid = 0;
 | |
| e_no_asid:
 | |
| 	sev->es_active = false;
 | |
| 	sev->active = false;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
 | |
| {
 | |
| 	struct sev_data_activate activate;
 | |
| 	int asid = sev_get_asid(kvm);
 | |
| 	int ret;
 | |
| 
 | |
| 	/* activate ASID on the given handle */
 | |
| 	activate.handle = handle;
 | |
| 	activate.asid   = asid;
 | |
| 	ret = sev_guest_activate(&activate, error);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __sev_issue_cmd(int fd, int id, void *data, int *error)
 | |
| {
 | |
| 	struct fd f;
 | |
| 	int ret;
 | |
| 
 | |
| 	f = fdget(fd);
 | |
| 	if (!f.file)
 | |
| 		return -EBADF;
 | |
| 
 | |
| 	ret = sev_issue_cmd_external_user(f.file, id, data, error);
 | |
| 
 | |
| 	fdput(f);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
 | |
| {
 | |
| 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 | |
| 
 | |
| 	return __sev_issue_cmd(sev->fd, id, data, error);
 | |
| }
 | |
| 
 | |
| static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
 | |
| {
 | |
| 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 | |
| 	struct sev_data_launch_start start;
 | |
| 	struct kvm_sev_launch_start params;
 | |
| 	void *dh_blob, *session_blob;
 | |
| 	int *error = &argp->error;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!sev_guest(kvm))
 | |
| 		return -ENOTTY;
 | |
| 
 | |
| 	if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	memset(&start, 0, sizeof(start));
 | |
| 
 | |
| 	dh_blob = NULL;
 | |
| 	if (params.dh_uaddr) {
 | |
| 		dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
 | |
| 		if (IS_ERR(dh_blob))
 | |
| 			return PTR_ERR(dh_blob);
 | |
| 
 | |
| 		start.dh_cert_address = __sme_set(__pa(dh_blob));
 | |
| 		start.dh_cert_len = params.dh_len;
 | |
| 	}
 | |
| 
 | |
| 	session_blob = NULL;
 | |
| 	if (params.session_uaddr) {
 | |
| 		session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
 | |
| 		if (IS_ERR(session_blob)) {
 | |
| 			ret = PTR_ERR(session_blob);
 | |
| 			goto e_free_dh;
 | |
| 		}
 | |
| 
 | |
| 		start.session_address = __sme_set(__pa(session_blob));
 | |
| 		start.session_len = params.session_len;
 | |
| 	}
 | |
| 
 | |
| 	start.handle = params.handle;
 | |
| 	start.policy = params.policy;
 | |
| 
 | |
| 	/* create memory encryption context */
 | |
| 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
 | |
| 	if (ret)
 | |
| 		goto e_free_session;
 | |
| 
 | |
| 	/* Bind ASID to this guest */
 | |
| 	ret = sev_bind_asid(kvm, start.handle, error);
 | |
| 	if (ret) {
 | |
| 		sev_decommission(start.handle);
 | |
| 		goto e_free_session;
 | |
| 	}
 | |
| 
 | |
| 	/* return handle to userspace */
 | |
| 	params.handle = start.handle;
 | |
| 	if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) {
 | |
| 		sev_unbind_asid(kvm, start.handle);
 | |
| 		ret = -EFAULT;
 | |
| 		goto e_free_session;
 | |
| 	}
 | |
| 
 | |
| 	sev->handle = start.handle;
 | |
| 	sev->fd = argp->sev_fd;
 | |
| 
 | |
| e_free_session:
 | |
| 	kfree(session_blob);
 | |
| e_free_dh:
 | |
| 	kfree(dh_blob);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
 | |
| 				    unsigned long ulen, unsigned long *n,
 | |
| 				    int write)
 | |
| {
 | |
| 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 | |
| 	unsigned long npages, size;
 | |
| 	int npinned;
 | |
| 	unsigned long locked, lock_limit;
 | |
| 	struct page **pages;
 | |
| 	unsigned long first, last;
 | |
| 	int ret;
 | |
| 
 | |
| 	lockdep_assert_held(&kvm->lock);
 | |
| 
 | |
| 	if (ulen == 0 || uaddr + ulen < uaddr)
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	/* Calculate number of pages. */
 | |
| 	first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
 | |
| 	last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
 | |
| 	npages = (last - first + 1);
 | |
| 
 | |
| 	locked = sev->pages_locked + npages;
 | |
| 	lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
 | |
| 	if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
 | |
| 		pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 	}
 | |
| 
 | |
| 	if (WARN_ON_ONCE(npages > INT_MAX))
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	/* Avoid using vmalloc for smaller buffers. */
 | |
| 	size = npages * sizeof(struct page *);
 | |
| 	if (size > PAGE_SIZE)
 | |
| 		pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO,
 | |
| 				  PAGE_KERNEL);
 | |
| 	else
 | |
| 		pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
 | |
| 
 | |
| 	if (!pages)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	/* Pin the user virtual address. */
 | |
| 	npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
 | |
| 	if (npinned != npages) {
 | |
| 		pr_err("SEV: Failure locking %lu pages.\n", npages);
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err;
 | |
| 	}
 | |
| 
 | |
| 	*n = npages;
 | |
| 	sev->pages_locked = locked;
 | |
| 
 | |
| 	return pages;
 | |
| 
 | |
| err:
 | |
| 	if (npinned > 0)
 | |
| 		unpin_user_pages(pages, npinned);
 | |
| 
 | |
| 	kvfree(pages);
 | |
| 	return ERR_PTR(ret);
 | |
| }
 | |
| 
 | |
| static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
 | |
| 			     unsigned long npages)
 | |
| {
 | |
| 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 | |
| 
 | |
| 	unpin_user_pages(pages, npages);
 | |
| 	kvfree(pages);
 | |
| 	sev->pages_locked -= npages;
 | |
| }
 | |
| 
 | |
| static void sev_clflush_pages(struct page *pages[], unsigned long npages)
 | |
| {
 | |
| 	uint8_t *page_virtual;
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
 | |
| 	    pages == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < npages; i++) {
 | |
| 		page_virtual = kmap_atomic(pages[i]);
 | |
| 		clflush_cache_range(page_virtual, PAGE_SIZE);
 | |
| 		kunmap_atomic(page_virtual);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static unsigned long get_num_contig_pages(unsigned long idx,
 | |
| 				struct page **inpages, unsigned long npages)
 | |
| {
 | |
| 	unsigned long paddr, next_paddr;
 | |
| 	unsigned long i = idx + 1, pages = 1;
 | |
| 
 | |
| 	/* find the number of contiguous pages starting from idx */
 | |
| 	paddr = __sme_page_pa(inpages[idx]);
 | |
| 	while (i < npages) {
 | |
| 		next_paddr = __sme_page_pa(inpages[i++]);
 | |
| 		if ((paddr + PAGE_SIZE) == next_paddr) {
 | |
| 			pages++;
 | |
| 			paddr = next_paddr;
 | |
| 			continue;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return pages;
 | |
| }
 | |
| 
 | |
| static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
 | |
| {
 | |
| 	unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
 | |
| 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 | |
| 	struct kvm_sev_launch_update_data params;
 | |
| 	struct sev_data_launch_update_data data;
 | |
| 	struct page **inpages;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!sev_guest(kvm))
 | |
| 		return -ENOTTY;
 | |
| 
 | |
| 	if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	vaddr = params.uaddr;
 | |
| 	size = params.len;
 | |
| 	vaddr_end = vaddr + size;
 | |
| 
 | |
| 	/* Lock the user memory. */
 | |
| 	inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
 | |
| 	if (IS_ERR(inpages))
 | |
| 		return PTR_ERR(inpages);
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
 | |
| 	 * place; the cache may contain the data that was written unencrypted.
 | |
| 	 */
 | |
| 	sev_clflush_pages(inpages, npages);
 | |
| 
 | |
| 	data.reserved = 0;
 | |
| 	data.handle = sev->handle;
 | |
| 
 | |
| 	for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
 | |
| 		int offset, len;
 | |
| 
 | |
| 		/*
 | |
| 		 * If the user buffer is not page-aligned, calculate the offset
 | |
| 		 * within the page.
 | |
| 		 */
 | |
| 		offset = vaddr & (PAGE_SIZE - 1);
 | |
| 
 | |
| 		/* Calculate the number of pages that can be encrypted in one go. */
 | |
| 		pages = get_num_contig_pages(i, inpages, npages);
 | |
| 
 | |
| 		len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
 | |
| 
 | |
| 		data.len = len;
 | |
| 		data.address = __sme_page_pa(inpages[i]) + offset;
 | |
| 		ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
 | |
| 		if (ret)
 | |
| 			goto e_unpin;
 | |
| 
 | |
| 		size -= len;
 | |
| 		next_vaddr = vaddr + len;
 | |
| 	}
 | |
| 
 | |
| e_unpin:
 | |
| 	/* content of memory is updated, mark pages dirty */
 | |
| 	for (i = 0; i < npages; i++) {
 | |
| 		set_page_dirty_lock(inpages[i]);
 | |
| 		mark_page_accessed(inpages[i]);
 | |
| 	}
 | |
| 	/* unlock the user pages */
 | |
| 	sev_unpin_memory(kvm, inpages, npages);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int sev_es_sync_vmsa(struct vcpu_svm *svm)
 | |
| {
 | |
| 	struct sev_es_save_area *save = svm->sev_es.vmsa;
 | |
| 
 | |
| 	/* Check some debug related fields before encrypting the VMSA */
 | |
| 	if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * SEV-ES will use a VMSA that is pointed to by the VMCB, not
 | |
| 	 * the traditional VMSA that is part of the VMCB. Copy the
 | |
| 	 * traditional VMSA as it has been built so far (in prep
 | |
| 	 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
 | |
| 	 */
 | |
| 	memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save));
 | |
| 
 | |
| 	/* Sync registgers */
 | |
| 	save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
 | |
| 	save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
 | |
| 	save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
 | |
| 	save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
 | |
| 	save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
 | |
| 	save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
 | |
| 	save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
 | |
| 	save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
 | |
| #ifdef CONFIG_X86_64
 | |
| 	save->r8  = svm->vcpu.arch.regs[VCPU_REGS_R8];
 | |
| 	save->r9  = svm->vcpu.arch.regs[VCPU_REGS_R9];
 | |
| 	save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
 | |
| 	save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
 | |
| 	save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
 | |
| 	save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
 | |
| 	save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
 | |
| 	save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
 | |
| #endif
 | |
| 	save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
 | |
| 
 | |
| 	/* Sync some non-GPR registers before encrypting */
 | |
| 	save->xcr0 = svm->vcpu.arch.xcr0;
 | |
| 	save->pkru = svm->vcpu.arch.pkru;
 | |
| 	save->xss  = svm->vcpu.arch.ia32_xss;
 | |
| 	save->dr6  = svm->vcpu.arch.dr6;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
 | |
| 				    int *error)
 | |
| {
 | |
| 	struct sev_data_launch_update_vmsa vmsa;
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Perform some pre-encryption checks against the VMSA */
 | |
| 	ret = sev_es_sync_vmsa(svm);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
 | |
| 	 * the VMSA memory content (i.e it will write the same memory region
 | |
| 	 * with the guest's key), so invalidate it first.
 | |
| 	 */
 | |
| 	clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);
 | |
| 
 | |
| 	vmsa.reserved = 0;
 | |
| 	vmsa.handle = to_kvm_svm(kvm)->sev_info.handle;
 | |
| 	vmsa.address = __sme_pa(svm->sev_es.vmsa);
 | |
| 	vmsa.len = PAGE_SIZE;
 | |
| 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
 | |
| 	if (ret)
 | |
| 	  return ret;
 | |
| 
 | |
| 	vcpu->arch.guest_state_protected = true;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu;
 | |
| 	unsigned long i;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!sev_es_guest(kvm))
 | |
| 		return -ENOTTY;
 | |
| 
 | |
| 	kvm_for_each_vcpu(i, vcpu, kvm) {
 | |
| 		ret = mutex_lock_killable(&vcpu->mutex);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 
 | |
| 		ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
 | |
| 
 | |
| 		mutex_unlock(&vcpu->mutex);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
 | |
| {
 | |
| 	void __user *measure = (void __user *)(uintptr_t)argp->data;
 | |
| 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 | |
| 	struct sev_data_launch_measure data;
 | |
| 	struct kvm_sev_launch_measure params;
 | |
| 	void __user *p = NULL;
 | |
| 	void *blob = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!sev_guest(kvm))
 | |
| 		return -ENOTTY;
 | |
| 
 | |
| 	if (copy_from_user(¶ms, measure, sizeof(params)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	memset(&data, 0, sizeof(data));
 | |
| 
 | |
| 	/* User wants to query the blob length */
 | |
| 	if (!params.len)
 | |
| 		goto cmd;
 | |
| 
 | |
| 	p = (void __user *)(uintptr_t)params.uaddr;
 | |
| 	if (p) {
 | |
| 		if (params.len > SEV_FW_BLOB_MAX_SIZE)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
 | |
| 		if (!blob)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		data.address = __psp_pa(blob);
 | |
| 		data.len = params.len;
 | |
| 	}
 | |
| 
 | |
| cmd:
 | |
| 	data.handle = sev->handle;
 | |
| 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we query the session length, FW responded with expected data.
 | |
| 	 */
 | |
| 	if (!params.len)
 | |
| 		goto done;
 | |
| 
 | |
| 	if (ret)
 | |
| 		goto e_free_blob;
 | |
| 
 | |
| 	if (blob) {
 | |
| 		if (copy_to_user(p, blob, params.len))
 | |
| 			ret = -EFAULT;
 | |
| 	}
 | |
| 
 | |
| done:
 | |
| 	params.len = data.len;
 | |
| 	if (copy_to_user(measure, ¶ms, sizeof(params)))
 | |
| 		ret = -EFAULT;
 | |
| e_free_blob:
 | |
| 	kfree(blob);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
 | |
| {
 | |
| 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 | |
| 	struct sev_data_launch_finish data;
 | |
| 
 | |
| 	if (!sev_guest(kvm))
 | |
| 		return -ENOTTY;
 | |
| 
 | |
| 	data.handle = sev->handle;
 | |
| 	return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
 | |
| }
 | |
| 
 | |
| static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
 | |
| {
 | |
| 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 | |
| 	struct kvm_sev_guest_status params;
 | |
| 	struct sev_data_guest_status data;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!sev_guest(kvm))
 | |
| 		return -ENOTTY;
 | |
| 
 | |
| 	memset(&data, 0, sizeof(data));
 | |
| 
 | |
| 	data.handle = sev->handle;
 | |
| 	ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	params.policy = data.policy;
 | |
| 	params.state = data.state;
 | |
| 	params.handle = data.handle;
 | |
| 
 | |
| 	if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params)))
 | |
| 		ret = -EFAULT;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
 | |
| 			       unsigned long dst, int size,
 | |
| 			       int *error, bool enc)
 | |
| {
 | |
| 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 | |
| 	struct sev_data_dbg data;
 | |
| 
 | |
| 	data.reserved = 0;
 | |
| 	data.handle = sev->handle;
 | |
| 	data.dst_addr = dst;
 | |
| 	data.src_addr = src;
 | |
| 	data.len = size;
 | |
| 
 | |
| 	return sev_issue_cmd(kvm,
 | |
| 			     enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
 | |
| 			     &data, error);
 | |
| }
 | |
| 
 | |
| static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
 | |
| 			     unsigned long dst_paddr, int sz, int *err)
 | |
| {
 | |
| 	int offset;
 | |
| 
 | |
| 	/*
 | |
| 	 * Its safe to read more than we are asked, caller should ensure that
 | |
| 	 * destination has enough space.
 | |
| 	 */
 | |
| 	offset = src_paddr & 15;
 | |
| 	src_paddr = round_down(src_paddr, 16);
 | |
| 	sz = round_up(sz + offset, 16);
 | |
| 
 | |
| 	return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
 | |
| }
 | |
| 
 | |
| static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
 | |
| 				  void __user *dst_uaddr,
 | |
| 				  unsigned long dst_paddr,
 | |
| 				  int size, int *err)
 | |
| {
 | |
| 	struct page *tpage = NULL;
 | |
| 	int ret, offset;
 | |
| 
 | |
| 	/* if inputs are not 16-byte then use intermediate buffer */
 | |
| 	if (!IS_ALIGNED(dst_paddr, 16) ||
 | |
| 	    !IS_ALIGNED(paddr,     16) ||
 | |
| 	    !IS_ALIGNED(size,      16)) {
 | |
| 		tpage = (void *)alloc_page(GFP_KERNEL | __GFP_ZERO);
 | |
| 		if (!tpage)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		dst_paddr = __sme_page_pa(tpage);
 | |
| 	}
 | |
| 
 | |
| 	ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
 | |
| 	if (ret)
 | |
| 		goto e_free;
 | |
| 
 | |
| 	if (tpage) {
 | |
| 		offset = paddr & 15;
 | |
| 		if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
 | |
| 			ret = -EFAULT;
 | |
| 	}
 | |
| 
 | |
| e_free:
 | |
| 	if (tpage)
 | |
| 		__free_page(tpage);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
 | |
| 				  void __user *vaddr,
 | |
| 				  unsigned long dst_paddr,
 | |
| 				  void __user *dst_vaddr,
 | |
| 				  int size, int *error)
 | |
| {
 | |
| 	struct page *src_tpage = NULL;
 | |
| 	struct page *dst_tpage = NULL;
 | |
| 	int ret, len = size;
 | |
| 
 | |
| 	/* If source buffer is not aligned then use an intermediate buffer */
 | |
| 	if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
 | |
| 		src_tpage = alloc_page(GFP_KERNEL);
 | |
| 		if (!src_tpage)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		if (copy_from_user(page_address(src_tpage), vaddr, size)) {
 | |
| 			__free_page(src_tpage);
 | |
| 			return -EFAULT;
 | |
| 		}
 | |
| 
 | |
| 		paddr = __sme_page_pa(src_tpage);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 *  If destination buffer or length is not aligned then do read-modify-write:
 | |
| 	 *   - decrypt destination in an intermediate buffer
 | |
| 	 *   - copy the source buffer in an intermediate buffer
 | |
| 	 *   - use the intermediate buffer as source buffer
 | |
| 	 */
 | |
| 	if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
 | |
| 		int dst_offset;
 | |
| 
 | |
| 		dst_tpage = alloc_page(GFP_KERNEL);
 | |
| 		if (!dst_tpage) {
 | |
| 			ret = -ENOMEM;
 | |
| 			goto e_free;
 | |
| 		}
 | |
| 
 | |
| 		ret = __sev_dbg_decrypt(kvm, dst_paddr,
 | |
| 					__sme_page_pa(dst_tpage), size, error);
 | |
| 		if (ret)
 | |
| 			goto e_free;
 | |
| 
 | |
| 		/*
 | |
| 		 *  If source is kernel buffer then use memcpy() otherwise
 | |
| 		 *  copy_from_user().
 | |
| 		 */
 | |
| 		dst_offset = dst_paddr & 15;
 | |
| 
 | |
| 		if (src_tpage)
 | |
| 			memcpy(page_address(dst_tpage) + dst_offset,
 | |
| 			       page_address(src_tpage), size);
 | |
| 		else {
 | |
| 			if (copy_from_user(page_address(dst_tpage) + dst_offset,
 | |
| 					   vaddr, size)) {
 | |
| 				ret = -EFAULT;
 | |
| 				goto e_free;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		paddr = __sme_page_pa(dst_tpage);
 | |
| 		dst_paddr = round_down(dst_paddr, 16);
 | |
| 		len = round_up(size, 16);
 | |
| 	}
 | |
| 
 | |
| 	ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
 | |
| 
 | |
| e_free:
 | |
| 	if (src_tpage)
 | |
| 		__free_page(src_tpage);
 | |
| 	if (dst_tpage)
 | |
| 		__free_page(dst_tpage);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
 | |
| {
 | |
| 	unsigned long vaddr, vaddr_end, next_vaddr;
 | |
| 	unsigned long dst_vaddr;
 | |
| 	struct page **src_p, **dst_p;
 | |
| 	struct kvm_sev_dbg debug;
 | |
| 	unsigned long n;
 | |
| 	unsigned int size;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!sev_guest(kvm))
 | |
| 		return -ENOTTY;
 | |
| 
 | |
| 	if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
 | |
| 		return -EINVAL;
 | |
| 	if (!debug.dst_uaddr)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	vaddr = debug.src_uaddr;
 | |
| 	size = debug.len;
 | |
| 	vaddr_end = vaddr + size;
 | |
| 	dst_vaddr = debug.dst_uaddr;
 | |
| 
 | |
| 	for (; vaddr < vaddr_end; vaddr = next_vaddr) {
 | |
| 		int len, s_off, d_off;
 | |
| 
 | |
| 		/* lock userspace source and destination page */
 | |
| 		src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
 | |
| 		if (IS_ERR(src_p))
 | |
| 			return PTR_ERR(src_p);
 | |
| 
 | |
| 		dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
 | |
| 		if (IS_ERR(dst_p)) {
 | |
| 			sev_unpin_memory(kvm, src_p, n);
 | |
| 			return PTR_ERR(dst_p);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
 | |
| 		 * the pages; flush the destination too so that future accesses do not
 | |
| 		 * see stale data.
 | |
| 		 */
 | |
| 		sev_clflush_pages(src_p, 1);
 | |
| 		sev_clflush_pages(dst_p, 1);
 | |
| 
 | |
| 		/*
 | |
| 		 * Since user buffer may not be page aligned, calculate the
 | |
| 		 * offset within the page.
 | |
| 		 */
 | |
| 		s_off = vaddr & ~PAGE_MASK;
 | |
| 		d_off = dst_vaddr & ~PAGE_MASK;
 | |
| 		len = min_t(size_t, (PAGE_SIZE - s_off), size);
 | |
| 
 | |
| 		if (dec)
 | |
| 			ret = __sev_dbg_decrypt_user(kvm,
 | |
| 						     __sme_page_pa(src_p[0]) + s_off,
 | |
| 						     (void __user *)dst_vaddr,
 | |
| 						     __sme_page_pa(dst_p[0]) + d_off,
 | |
| 						     len, &argp->error);
 | |
| 		else
 | |
| 			ret = __sev_dbg_encrypt_user(kvm,
 | |
| 						     __sme_page_pa(src_p[0]) + s_off,
 | |
| 						     (void __user *)vaddr,
 | |
| 						     __sme_page_pa(dst_p[0]) + d_off,
 | |
| 						     (void __user *)dst_vaddr,
 | |
| 						     len, &argp->error);
 | |
| 
 | |
| 		sev_unpin_memory(kvm, src_p, n);
 | |
| 		sev_unpin_memory(kvm, dst_p, n);
 | |
| 
 | |
| 		if (ret)
 | |
| 			goto err;
 | |
| 
 | |
| 		next_vaddr = vaddr + len;
 | |
| 		dst_vaddr = dst_vaddr + len;
 | |
| 		size -= len;
 | |
| 	}
 | |
| err:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
 | |
| {
 | |
| 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 | |
| 	struct sev_data_launch_secret data;
 | |
| 	struct kvm_sev_launch_secret params;
 | |
| 	struct page **pages;
 | |
| 	void *blob, *hdr;
 | |
| 	unsigned long n, i;
 | |
| 	int ret, offset;
 | |
| 
 | |
| 	if (!sev_guest(kvm))
 | |
| 		return -ENOTTY;
 | |
| 
 | |
| 	if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
 | |
| 	if (IS_ERR(pages))
 | |
| 		return PTR_ERR(pages);
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
 | |
| 	 * place; the cache may contain the data that was written unencrypted.
 | |
| 	 */
 | |
| 	sev_clflush_pages(pages, n);
 | |
| 
 | |
| 	/*
 | |
| 	 * The secret must be copied into contiguous memory region, lets verify
 | |
| 	 * that userspace memory pages are contiguous before we issue command.
 | |
| 	 */
 | |
| 	if (get_num_contig_pages(0, pages, n) != n) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto e_unpin_memory;
 | |
| 	}
 | |
| 
 | |
| 	memset(&data, 0, sizeof(data));
 | |
| 
 | |
| 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
 | |
| 	data.guest_address = __sme_page_pa(pages[0]) + offset;
 | |
| 	data.guest_len = params.guest_len;
 | |
| 
 | |
| 	blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
 | |
| 	if (IS_ERR(blob)) {
 | |
| 		ret = PTR_ERR(blob);
 | |
| 		goto e_unpin_memory;
 | |
| 	}
 | |
| 
 | |
| 	data.trans_address = __psp_pa(blob);
 | |
| 	data.trans_len = params.trans_len;
 | |
| 
 | |
| 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
 | |
| 	if (IS_ERR(hdr)) {
 | |
| 		ret = PTR_ERR(hdr);
 | |
| 		goto e_free_blob;
 | |
| 	}
 | |
| 	data.hdr_address = __psp_pa(hdr);
 | |
| 	data.hdr_len = params.hdr_len;
 | |
| 
 | |
| 	data.handle = sev->handle;
 | |
| 	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
 | |
| 
 | |
| 	kfree(hdr);
 | |
| 
 | |
| e_free_blob:
 | |
| 	kfree(blob);
 | |
| e_unpin_memory:
 | |
| 	/* content of memory is updated, mark pages dirty */
 | |
| 	for (i = 0; i < n; i++) {
 | |
| 		set_page_dirty_lock(pages[i]);
 | |
| 		mark_page_accessed(pages[i]);
 | |
| 	}
 | |
| 	sev_unpin_memory(kvm, pages, n);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
 | |
| {
 | |
| 	void __user *report = (void __user *)(uintptr_t)argp->data;
 | |
| 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 | |
| 	struct sev_data_attestation_report data;
 | |
| 	struct kvm_sev_attestation_report params;
 | |
| 	void __user *p;
 | |
| 	void *blob = NULL;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!sev_guest(kvm))
 | |
| 		return -ENOTTY;
 | |
| 
 | |
| 	if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	memset(&data, 0, sizeof(data));
 | |
| 
 | |
| 	/* User wants to query the blob length */
 | |
| 	if (!params.len)
 | |
| 		goto cmd;
 | |
| 
 | |
| 	p = (void __user *)(uintptr_t)params.uaddr;
 | |
| 	if (p) {
 | |
| 		if (params.len > SEV_FW_BLOB_MAX_SIZE)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
 | |
| 		if (!blob)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		data.address = __psp_pa(blob);
 | |
| 		data.len = params.len;
 | |
| 		memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
 | |
| 	}
 | |
| cmd:
 | |
| 	data.handle = sev->handle;
 | |
| 	ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
 | |
| 	/*
 | |
| 	 * If we query the session length, FW responded with expected data.
 | |
| 	 */
 | |
| 	if (!params.len)
 | |
| 		goto done;
 | |
| 
 | |
| 	if (ret)
 | |
| 		goto e_free_blob;
 | |
| 
 | |
| 	if (blob) {
 | |
| 		if (copy_to_user(p, blob, params.len))
 | |
| 			ret = -EFAULT;
 | |
| 	}
 | |
| 
 | |
| done:
 | |
| 	params.len = data.len;
 | |
| 	if (copy_to_user(report, ¶ms, sizeof(params)))
 | |
| 		ret = -EFAULT;
 | |
| e_free_blob:
 | |
| 	kfree(blob);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Userspace wants to query session length. */
 | |
| static int
 | |
| __sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
 | |
| 				      struct kvm_sev_send_start *params)
 | |
| {
 | |
| 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 | |
| 	struct sev_data_send_start data;
 | |
| 	int ret;
 | |
| 
 | |
| 	memset(&data, 0, sizeof(data));
 | |
| 	data.handle = sev->handle;
 | |
| 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
 | |
| 
 | |
| 	params->session_len = data.session_len;
 | |
| 	if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
 | |
| 				sizeof(struct kvm_sev_send_start)))
 | |
| 		ret = -EFAULT;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
 | |
| {
 | |
| 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 | |
| 	struct sev_data_send_start data;
 | |
| 	struct kvm_sev_send_start params;
 | |
| 	void *amd_certs, *session_data;
 | |
| 	void *pdh_cert, *plat_certs;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!sev_guest(kvm))
 | |
| 		return -ENOTTY;
 | |
| 
 | |
| 	if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data,
 | |
| 				sizeof(struct kvm_sev_send_start)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	/* if session_len is zero, userspace wants to query the session length */
 | |
| 	if (!params.session_len)
 | |
| 		return __sev_send_start_query_session_length(kvm, argp,
 | |
| 				¶ms);
 | |
| 
 | |
| 	/* some sanity checks */
 | |
| 	if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
 | |
| 	    !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* allocate the memory to hold the session data blob */
 | |
| 	session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT);
 | |
| 	if (!session_data)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* copy the certificate blobs from userspace */
 | |
| 	pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
 | |
| 				params.pdh_cert_len);
 | |
| 	if (IS_ERR(pdh_cert)) {
 | |
| 		ret = PTR_ERR(pdh_cert);
 | |
| 		goto e_free_session;
 | |
| 	}
 | |
| 
 | |
| 	plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
 | |
| 				params.plat_certs_len);
 | |
| 	if (IS_ERR(plat_certs)) {
 | |
| 		ret = PTR_ERR(plat_certs);
 | |
| 		goto e_free_pdh;
 | |
| 	}
 | |
| 
 | |
| 	amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
 | |
| 				params.amd_certs_len);
 | |
| 	if (IS_ERR(amd_certs)) {
 | |
| 		ret = PTR_ERR(amd_certs);
 | |
| 		goto e_free_plat_cert;
 | |
| 	}
 | |
| 
 | |
| 	/* populate the FW SEND_START field with system physical address */
 | |
| 	memset(&data, 0, sizeof(data));
 | |
| 	data.pdh_cert_address = __psp_pa(pdh_cert);
 | |
| 	data.pdh_cert_len = params.pdh_cert_len;
 | |
| 	data.plat_certs_address = __psp_pa(plat_certs);
 | |
| 	data.plat_certs_len = params.plat_certs_len;
 | |
| 	data.amd_certs_address = __psp_pa(amd_certs);
 | |
| 	data.amd_certs_len = params.amd_certs_len;
 | |
| 	data.session_address = __psp_pa(session_data);
 | |
| 	data.session_len = params.session_len;
 | |
| 	data.handle = sev->handle;
 | |
| 
 | |
| 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
 | |
| 
 | |
| 	if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr,
 | |
| 			session_data, params.session_len)) {
 | |
| 		ret = -EFAULT;
 | |
| 		goto e_free_amd_cert;
 | |
| 	}
 | |
| 
 | |
| 	params.policy = data.policy;
 | |
| 	params.session_len = data.session_len;
 | |
| 	if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms,
 | |
| 				sizeof(struct kvm_sev_send_start)))
 | |
| 		ret = -EFAULT;
 | |
| 
 | |
| e_free_amd_cert:
 | |
| 	kfree(amd_certs);
 | |
| e_free_plat_cert:
 | |
| 	kfree(plat_certs);
 | |
| e_free_pdh:
 | |
| 	kfree(pdh_cert);
 | |
| e_free_session:
 | |
| 	kfree(session_data);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Userspace wants to query either header or trans length. */
 | |
| static int
 | |
| __sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
 | |
| 				     struct kvm_sev_send_update_data *params)
 | |
| {
 | |
| 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 | |
| 	struct sev_data_send_update_data data;
 | |
| 	int ret;
 | |
| 
 | |
| 	memset(&data, 0, sizeof(data));
 | |
| 	data.handle = sev->handle;
 | |
| 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
 | |
| 
 | |
| 	params->hdr_len = data.hdr_len;
 | |
| 	params->trans_len = data.trans_len;
 | |
| 
 | |
| 	if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
 | |
| 			 sizeof(struct kvm_sev_send_update_data)))
 | |
| 		ret = -EFAULT;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
 | |
| {
 | |
| 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 | |
| 	struct sev_data_send_update_data data;
 | |
| 	struct kvm_sev_send_update_data params;
 | |
| 	void *hdr, *trans_data;
 | |
| 	struct page **guest_page;
 | |
| 	unsigned long n;
 | |
| 	int ret, offset;
 | |
| 
 | |
| 	if (!sev_guest(kvm))
 | |
| 		return -ENOTTY;
 | |
| 
 | |
| 	if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data,
 | |
| 			sizeof(struct kvm_sev_send_update_data)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	/* userspace wants to query either header or trans length */
 | |
| 	if (!params.trans_len || !params.hdr_len)
 | |
| 		return __sev_send_update_data_query_lengths(kvm, argp, ¶ms);
 | |
| 
 | |
| 	if (!params.trans_uaddr || !params.guest_uaddr ||
 | |
| 	    !params.guest_len || !params.hdr_uaddr)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Check if we are crossing the page boundary */
 | |
| 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
 | |
| 	if ((params.guest_len + offset > PAGE_SIZE))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Pin guest memory */
 | |
| 	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
 | |
| 				    PAGE_SIZE, &n, 0);
 | |
| 	if (IS_ERR(guest_page))
 | |
| 		return PTR_ERR(guest_page);
 | |
| 
 | |
| 	/* allocate memory for header and transport buffer */
 | |
| 	ret = -ENOMEM;
 | |
| 	hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
 | |
| 	if (!hdr)
 | |
| 		goto e_unpin;
 | |
| 
 | |
| 	trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
 | |
| 	if (!trans_data)
 | |
| 		goto e_free_hdr;
 | |
| 
 | |
| 	memset(&data, 0, sizeof(data));
 | |
| 	data.hdr_address = __psp_pa(hdr);
 | |
| 	data.hdr_len = params.hdr_len;
 | |
| 	data.trans_address = __psp_pa(trans_data);
 | |
| 	data.trans_len = params.trans_len;
 | |
| 
 | |
| 	/* The SEND_UPDATE_DATA command requires C-bit to be always set. */
 | |
| 	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
 | |
| 	data.guest_address |= sev_me_mask;
 | |
| 	data.guest_len = params.guest_len;
 | |
| 	data.handle = sev->handle;
 | |
| 
 | |
| 	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
 | |
| 
 | |
| 	if (ret)
 | |
| 		goto e_free_trans_data;
 | |
| 
 | |
| 	/* copy transport buffer to user space */
 | |
| 	if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr,
 | |
| 			 trans_data, params.trans_len)) {
 | |
| 		ret = -EFAULT;
 | |
| 		goto e_free_trans_data;
 | |
| 	}
 | |
| 
 | |
| 	/* Copy packet header to userspace. */
 | |
| 	if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr,
 | |
| 			 params.hdr_len))
 | |
| 		ret = -EFAULT;
 | |
| 
 | |
| e_free_trans_data:
 | |
| 	kfree(trans_data);
 | |
| e_free_hdr:
 | |
| 	kfree(hdr);
 | |
| e_unpin:
 | |
| 	sev_unpin_memory(kvm, guest_page, n);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
 | |
| {
 | |
| 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 | |
| 	struct sev_data_send_finish data;
 | |
| 
 | |
| 	if (!sev_guest(kvm))
 | |
| 		return -ENOTTY;
 | |
| 
 | |
| 	data.handle = sev->handle;
 | |
| 	return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
 | |
| }
 | |
| 
 | |
| static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
 | |
| {
 | |
| 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 | |
| 	struct sev_data_send_cancel data;
 | |
| 
 | |
| 	if (!sev_guest(kvm))
 | |
| 		return -ENOTTY;
 | |
| 
 | |
| 	data.handle = sev->handle;
 | |
| 	return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
 | |
| }
 | |
| 
 | |
| static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
 | |
| {
 | |
| 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 | |
| 	struct sev_data_receive_start start;
 | |
| 	struct kvm_sev_receive_start params;
 | |
| 	int *error = &argp->error;
 | |
| 	void *session_data;
 | |
| 	void *pdh_data;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!sev_guest(kvm))
 | |
| 		return -ENOTTY;
 | |
| 
 | |
| 	/* Get parameter from the userspace */
 | |
| 	if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data,
 | |
| 			sizeof(struct kvm_sev_receive_start)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	/* some sanity checks */
 | |
| 	if (!params.pdh_uaddr || !params.pdh_len ||
 | |
| 	    !params.session_uaddr || !params.session_len)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
 | |
| 	if (IS_ERR(pdh_data))
 | |
| 		return PTR_ERR(pdh_data);
 | |
| 
 | |
| 	session_data = psp_copy_user_blob(params.session_uaddr,
 | |
| 			params.session_len);
 | |
| 	if (IS_ERR(session_data)) {
 | |
| 		ret = PTR_ERR(session_data);
 | |
| 		goto e_free_pdh;
 | |
| 	}
 | |
| 
 | |
| 	memset(&start, 0, sizeof(start));
 | |
| 	start.handle = params.handle;
 | |
| 	start.policy = params.policy;
 | |
| 	start.pdh_cert_address = __psp_pa(pdh_data);
 | |
| 	start.pdh_cert_len = params.pdh_len;
 | |
| 	start.session_address = __psp_pa(session_data);
 | |
| 	start.session_len = params.session_len;
 | |
| 
 | |
| 	/* create memory encryption context */
 | |
| 	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
 | |
| 				error);
 | |
| 	if (ret)
 | |
| 		goto e_free_session;
 | |
| 
 | |
| 	/* Bind ASID to this guest */
 | |
| 	ret = sev_bind_asid(kvm, start.handle, error);
 | |
| 	if (ret) {
 | |
| 		sev_decommission(start.handle);
 | |
| 		goto e_free_session;
 | |
| 	}
 | |
| 
 | |
| 	params.handle = start.handle;
 | |
| 	if (copy_to_user((void __user *)(uintptr_t)argp->data,
 | |
| 			 ¶ms, sizeof(struct kvm_sev_receive_start))) {
 | |
| 		ret = -EFAULT;
 | |
| 		sev_unbind_asid(kvm, start.handle);
 | |
| 		goto e_free_session;
 | |
| 	}
 | |
| 
 | |
|     	sev->handle = start.handle;
 | |
| 	sev->fd = argp->sev_fd;
 | |
| 
 | |
| e_free_session:
 | |
| 	kfree(session_data);
 | |
| e_free_pdh:
 | |
| 	kfree(pdh_data);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
 | |
| {
 | |
| 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 | |
| 	struct kvm_sev_receive_update_data params;
 | |
| 	struct sev_data_receive_update_data data;
 | |
| 	void *hdr = NULL, *trans = NULL;
 | |
| 	struct page **guest_page;
 | |
| 	unsigned long n;
 | |
| 	int ret, offset;
 | |
| 
 | |
| 	if (!sev_guest(kvm))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data,
 | |
| 			sizeof(struct kvm_sev_receive_update_data)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	if (!params.hdr_uaddr || !params.hdr_len ||
 | |
| 	    !params.guest_uaddr || !params.guest_len ||
 | |
| 	    !params.trans_uaddr || !params.trans_len)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Check if we are crossing the page boundary */
 | |
| 	offset = params.guest_uaddr & (PAGE_SIZE - 1);
 | |
| 	if ((params.guest_len + offset > PAGE_SIZE))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
 | |
| 	if (IS_ERR(hdr))
 | |
| 		return PTR_ERR(hdr);
 | |
| 
 | |
| 	trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
 | |
| 	if (IS_ERR(trans)) {
 | |
| 		ret = PTR_ERR(trans);
 | |
| 		goto e_free_hdr;
 | |
| 	}
 | |
| 
 | |
| 	memset(&data, 0, sizeof(data));
 | |
| 	data.hdr_address = __psp_pa(hdr);
 | |
| 	data.hdr_len = params.hdr_len;
 | |
| 	data.trans_address = __psp_pa(trans);
 | |
| 	data.trans_len = params.trans_len;
 | |
| 
 | |
| 	/* Pin guest memory */
 | |
| 	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
 | |
| 				    PAGE_SIZE, &n, 1);
 | |
| 	if (IS_ERR(guest_page)) {
 | |
| 		ret = PTR_ERR(guest_page);
 | |
| 		goto e_free_trans;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
 | |
| 	 * encrypts the written data with the guest's key, and the cache may
 | |
| 	 * contain dirty, unencrypted data.
 | |
| 	 */
 | |
| 	sev_clflush_pages(guest_page, n);
 | |
| 
 | |
| 	/* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
 | |
| 	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
 | |
| 	data.guest_address |= sev_me_mask;
 | |
| 	data.guest_len = params.guest_len;
 | |
| 	data.handle = sev->handle;
 | |
| 
 | |
| 	ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
 | |
| 				&argp->error);
 | |
| 
 | |
| 	sev_unpin_memory(kvm, guest_page, n);
 | |
| 
 | |
| e_free_trans:
 | |
| 	kfree(trans);
 | |
| e_free_hdr:
 | |
| 	kfree(hdr);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
 | |
| {
 | |
| 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 | |
| 	struct sev_data_receive_finish data;
 | |
| 
 | |
| 	if (!sev_guest(kvm))
 | |
| 		return -ENOTTY;
 | |
| 
 | |
| 	data.handle = sev->handle;
 | |
| 	return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
 | |
| }
 | |
| 
 | |
| static bool is_cmd_allowed_from_mirror(u32 cmd_id)
 | |
| {
 | |
| 	/*
 | |
| 	 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
 | |
| 	 * active mirror VMs. Also allow the debugging and status commands.
 | |
| 	 */
 | |
| 	if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
 | |
| 	    cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
 | |
| 	    cmd_id == KVM_SEV_DBG_ENCRYPT)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
 | |
| {
 | |
| 	struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
 | |
| 	struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
 | |
| 	int r = -EBUSY;
 | |
| 
 | |
| 	if (dst_kvm == src_kvm)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Bail if these VMs are already involved in a migration to avoid
 | |
| 	 * deadlock between two VMs trying to migrate to/from each other.
 | |
| 	 */
 | |
| 	if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
 | |
| 		return -EBUSY;
 | |
| 
 | |
| 	if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1))
 | |
| 		goto release_dst;
 | |
| 
 | |
| 	r = -EINTR;
 | |
| 	if (mutex_lock_killable(&dst_kvm->lock))
 | |
| 		goto release_src;
 | |
| 	if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING))
 | |
| 		goto unlock_dst;
 | |
| 	return 0;
 | |
| 
 | |
| unlock_dst:
 | |
| 	mutex_unlock(&dst_kvm->lock);
 | |
| release_src:
 | |
| 	atomic_set_release(&src_sev->migration_in_progress, 0);
 | |
| release_dst:
 | |
| 	atomic_set_release(&dst_sev->migration_in_progress, 0);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
 | |
| {
 | |
| 	struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
 | |
| 	struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
 | |
| 
 | |
| 	mutex_unlock(&dst_kvm->lock);
 | |
| 	mutex_unlock(&src_kvm->lock);
 | |
| 	atomic_set_release(&dst_sev->migration_in_progress, 0);
 | |
| 	atomic_set_release(&src_sev->migration_in_progress, 0);
 | |
| }
 | |
| 
 | |
| /* vCPU mutex subclasses.  */
 | |
| enum sev_migration_role {
 | |
| 	SEV_MIGRATION_SOURCE = 0,
 | |
| 	SEV_MIGRATION_TARGET,
 | |
| 	SEV_NR_MIGRATION_ROLES,
 | |
| };
 | |
| 
 | |
| static int sev_lock_vcpus_for_migration(struct kvm *kvm,
 | |
| 					enum sev_migration_role role)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu;
 | |
| 	unsigned long i, j;
 | |
| 	bool first = true;
 | |
| 
 | |
| 	kvm_for_each_vcpu(i, vcpu, kvm) {
 | |
| 		if (mutex_lock_killable_nested(&vcpu->mutex, role))
 | |
| 			goto out_unlock;
 | |
| 
 | |
| 		if (first) {
 | |
| 			/*
 | |
| 			 * Reset the role to one that avoids colliding with
 | |
| 			 * the role used for the first vcpu mutex.
 | |
| 			 */
 | |
| 			role = SEV_NR_MIGRATION_ROLES;
 | |
| 			first = false;
 | |
| 		} else {
 | |
| 			mutex_release(&vcpu->mutex.dep_map, _THIS_IP_);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_unlock:
 | |
| 
 | |
| 	first = true;
 | |
| 	kvm_for_each_vcpu(j, vcpu, kvm) {
 | |
| 		if (i == j)
 | |
| 			break;
 | |
| 
 | |
| 		if (first)
 | |
| 			first = false;
 | |
| 		else
 | |
| 			mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_);
 | |
| 
 | |
| 
 | |
| 		mutex_unlock(&vcpu->mutex);
 | |
| 	}
 | |
| 	return -EINTR;
 | |
| }
 | |
| 
 | |
| static void sev_unlock_vcpus_for_migration(struct kvm *kvm)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu;
 | |
| 	unsigned long i;
 | |
| 	bool first = true;
 | |
| 
 | |
| 	kvm_for_each_vcpu(i, vcpu, kvm) {
 | |
| 		if (first)
 | |
| 			first = false;
 | |
| 		else
 | |
| 			mutex_acquire(&vcpu->mutex.dep_map,
 | |
| 				      SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_);
 | |
| 
 | |
| 		mutex_unlock(&vcpu->mutex);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm)
 | |
| {
 | |
| 	struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info;
 | |
| 	struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info;
 | |
| 	struct kvm_vcpu *dst_vcpu, *src_vcpu;
 | |
| 	struct vcpu_svm *dst_svm, *src_svm;
 | |
| 	struct kvm_sev_info *mirror;
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	dst->active = true;
 | |
| 	dst->asid = src->asid;
 | |
| 	dst->handle = src->handle;
 | |
| 	dst->pages_locked = src->pages_locked;
 | |
| 	dst->enc_context_owner = src->enc_context_owner;
 | |
| 	dst->es_active = src->es_active;
 | |
| 
 | |
| 	src->asid = 0;
 | |
| 	src->active = false;
 | |
| 	src->handle = 0;
 | |
| 	src->pages_locked = 0;
 | |
| 	src->enc_context_owner = NULL;
 | |
| 	src->es_active = false;
 | |
| 
 | |
| 	list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);
 | |
| 
 | |
| 	/*
 | |
| 	 * If this VM has mirrors, "transfer" each mirror's refcount of the
 | |
| 	 * source to the destination (this KVM).  The caller holds a reference
 | |
| 	 * to the source, so there's no danger of use-after-free.
 | |
| 	 */
 | |
| 	list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms);
 | |
| 	list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) {
 | |
| 		kvm_get_kvm(dst_kvm);
 | |
| 		kvm_put_kvm(src_kvm);
 | |
| 		mirror->enc_context_owner = dst_kvm;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If this VM is a mirror, remove the old mirror from the owners list
 | |
| 	 * and add the new mirror to the list.
 | |
| 	 */
 | |
| 	if (is_mirroring_enc_context(dst_kvm)) {
 | |
| 		struct kvm_sev_info *owner_sev_info =
 | |
| 			&to_kvm_svm(dst->enc_context_owner)->sev_info;
 | |
| 
 | |
| 		list_del(&src->mirror_entry);
 | |
| 		list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms);
 | |
| 	}
 | |
| 
 | |
| 	kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) {
 | |
| 		dst_svm = to_svm(dst_vcpu);
 | |
| 
 | |
| 		sev_init_vmcb(dst_svm);
 | |
| 
 | |
| 		if (!dst->es_active)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Note, the source is not required to have the same number of
 | |
| 		 * vCPUs as the destination when migrating a vanilla SEV VM.
 | |
| 		 */
 | |
| 		src_vcpu = kvm_get_vcpu(src_kvm, i);
 | |
| 		src_svm = to_svm(src_vcpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * Transfer VMSA and GHCB state to the destination.  Nullify and
 | |
| 		 * clear source fields as appropriate, the state now belongs to
 | |
| 		 * the destination.
 | |
| 		 */
 | |
| 		memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
 | |
| 		dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
 | |
| 		dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
 | |
| 		dst_vcpu->arch.guest_state_protected = true;
 | |
| 
 | |
| 		memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
 | |
| 		src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
 | |
| 		src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
 | |
| 		src_vcpu->arch.guest_state_protected = false;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src)
 | |
| {
 | |
| 	struct kvm_vcpu *src_vcpu;
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	if (!sev_es_guest(src))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	kvm_for_each_vcpu(i, src_vcpu, src) {
 | |
| 		if (!src_vcpu->arch.guest_state_protected)
 | |
| 			return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
 | |
| {
 | |
| 	struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info;
 | |
| 	struct kvm_sev_info *src_sev, *cg_cleanup_sev;
 | |
| 	struct file *source_kvm_file;
 | |
| 	struct kvm *source_kvm;
 | |
| 	bool charged = false;
 | |
| 	int ret;
 | |
| 
 | |
| 	source_kvm_file = fget(source_fd);
 | |
| 	if (!file_is_kvm(source_kvm_file)) {
 | |
| 		ret = -EBADF;
 | |
| 		goto out_fput;
 | |
| 	}
 | |
| 
 | |
| 	source_kvm = source_kvm_file->private_data;
 | |
| 	ret = sev_lock_two_vms(kvm, source_kvm);
 | |
| 	if (ret)
 | |
| 		goto out_fput;
 | |
| 
 | |
| 	if (sev_guest(kvm) || !sev_guest(source_kvm)) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	src_sev = &to_kvm_svm(source_kvm)->sev_info;
 | |
| 
 | |
| 	dst_sev->misc_cg = get_current_misc_cg();
 | |
| 	cg_cleanup_sev = dst_sev;
 | |
| 	if (dst_sev->misc_cg != src_sev->misc_cg) {
 | |
| 		ret = sev_misc_cg_try_charge(dst_sev);
 | |
| 		if (ret)
 | |
| 			goto out_dst_cgroup;
 | |
| 		charged = true;
 | |
| 	}
 | |
| 
 | |
| 	ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE);
 | |
| 	if (ret)
 | |
| 		goto out_dst_cgroup;
 | |
| 	ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET);
 | |
| 	if (ret)
 | |
| 		goto out_dst_vcpu;
 | |
| 
 | |
| 	ret = sev_check_source_vcpus(kvm, source_kvm);
 | |
| 	if (ret)
 | |
| 		goto out_source_vcpu;
 | |
| 
 | |
| 	sev_migrate_from(kvm, source_kvm);
 | |
| 	kvm_vm_dead(source_kvm);
 | |
| 	cg_cleanup_sev = src_sev;
 | |
| 	ret = 0;
 | |
| 
 | |
| out_source_vcpu:
 | |
| 	sev_unlock_vcpus_for_migration(source_kvm);
 | |
| out_dst_vcpu:
 | |
| 	sev_unlock_vcpus_for_migration(kvm);
 | |
| out_dst_cgroup:
 | |
| 	/* Operates on the source on success, on the destination on failure.  */
 | |
| 	if (charged)
 | |
| 		sev_misc_cg_uncharge(cg_cleanup_sev);
 | |
| 	put_misc_cg(cg_cleanup_sev->misc_cg);
 | |
| 	cg_cleanup_sev->misc_cg = NULL;
 | |
| out_unlock:
 | |
| 	sev_unlock_two_vms(kvm, source_kvm);
 | |
| out_fput:
 | |
| 	if (source_kvm_file)
 | |
| 		fput(source_kvm_file);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp)
 | |
| {
 | |
| 	struct kvm_sev_cmd sev_cmd;
 | |
| 	int r;
 | |
| 
 | |
| 	if (!sev_enabled)
 | |
| 		return -ENOTTY;
 | |
| 
 | |
| 	if (!argp)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	mutex_lock(&kvm->lock);
 | |
| 
 | |
| 	/* Only the enc_context_owner handles some memory enc operations. */
 | |
| 	if (is_mirroring_enc_context(kvm) &&
 | |
| 	    !is_cmd_allowed_from_mirror(sev_cmd.id)) {
 | |
| 		r = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	switch (sev_cmd.id) {
 | |
| 	case KVM_SEV_ES_INIT:
 | |
| 		if (!sev_es_enabled) {
 | |
| 			r = -ENOTTY;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		fallthrough;
 | |
| 	case KVM_SEV_INIT:
 | |
| 		r = sev_guest_init(kvm, &sev_cmd);
 | |
| 		break;
 | |
| 	case KVM_SEV_LAUNCH_START:
 | |
| 		r = sev_launch_start(kvm, &sev_cmd);
 | |
| 		break;
 | |
| 	case KVM_SEV_LAUNCH_UPDATE_DATA:
 | |
| 		r = sev_launch_update_data(kvm, &sev_cmd);
 | |
| 		break;
 | |
| 	case KVM_SEV_LAUNCH_UPDATE_VMSA:
 | |
| 		r = sev_launch_update_vmsa(kvm, &sev_cmd);
 | |
| 		break;
 | |
| 	case KVM_SEV_LAUNCH_MEASURE:
 | |
| 		r = sev_launch_measure(kvm, &sev_cmd);
 | |
| 		break;
 | |
| 	case KVM_SEV_LAUNCH_FINISH:
 | |
| 		r = sev_launch_finish(kvm, &sev_cmd);
 | |
| 		break;
 | |
| 	case KVM_SEV_GUEST_STATUS:
 | |
| 		r = sev_guest_status(kvm, &sev_cmd);
 | |
| 		break;
 | |
| 	case KVM_SEV_DBG_DECRYPT:
 | |
| 		r = sev_dbg_crypt(kvm, &sev_cmd, true);
 | |
| 		break;
 | |
| 	case KVM_SEV_DBG_ENCRYPT:
 | |
| 		r = sev_dbg_crypt(kvm, &sev_cmd, false);
 | |
| 		break;
 | |
| 	case KVM_SEV_LAUNCH_SECRET:
 | |
| 		r = sev_launch_secret(kvm, &sev_cmd);
 | |
| 		break;
 | |
| 	case KVM_SEV_GET_ATTESTATION_REPORT:
 | |
| 		r = sev_get_attestation_report(kvm, &sev_cmd);
 | |
| 		break;
 | |
| 	case KVM_SEV_SEND_START:
 | |
| 		r = sev_send_start(kvm, &sev_cmd);
 | |
| 		break;
 | |
| 	case KVM_SEV_SEND_UPDATE_DATA:
 | |
| 		r = sev_send_update_data(kvm, &sev_cmd);
 | |
| 		break;
 | |
| 	case KVM_SEV_SEND_FINISH:
 | |
| 		r = sev_send_finish(kvm, &sev_cmd);
 | |
| 		break;
 | |
| 	case KVM_SEV_SEND_CANCEL:
 | |
| 		r = sev_send_cancel(kvm, &sev_cmd);
 | |
| 		break;
 | |
| 	case KVM_SEV_RECEIVE_START:
 | |
| 		r = sev_receive_start(kvm, &sev_cmd);
 | |
| 		break;
 | |
| 	case KVM_SEV_RECEIVE_UPDATE_DATA:
 | |
| 		r = sev_receive_update_data(kvm, &sev_cmd);
 | |
| 		break;
 | |
| 	case KVM_SEV_RECEIVE_FINISH:
 | |
| 		r = sev_receive_finish(kvm, &sev_cmd);
 | |
| 		break;
 | |
| 	default:
 | |
| 		r = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
 | |
| 		r = -EFAULT;
 | |
| 
 | |
| out:
 | |
| 	mutex_unlock(&kvm->lock);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| int sev_mem_enc_register_region(struct kvm *kvm,
 | |
| 				struct kvm_enc_region *range)
 | |
| {
 | |
| 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 | |
| 	struct enc_region *region;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!sev_guest(kvm))
 | |
| 		return -ENOTTY;
 | |
| 
 | |
| 	/* If kvm is mirroring encryption context it isn't responsible for it */
 | |
| 	if (is_mirroring_enc_context(kvm))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
 | |
| 	if (!region)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	mutex_lock(&kvm->lock);
 | |
| 	region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1);
 | |
| 	if (IS_ERR(region->pages)) {
 | |
| 		ret = PTR_ERR(region->pages);
 | |
| 		mutex_unlock(&kvm->lock);
 | |
| 		goto e_free;
 | |
| 	}
 | |
| 
 | |
| 	region->uaddr = range->addr;
 | |
| 	region->size = range->size;
 | |
| 
 | |
| 	list_add_tail(®ion->list, &sev->regions_list);
 | |
| 	mutex_unlock(&kvm->lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * The guest may change the memory encryption attribute from C=0 -> C=1
 | |
| 	 * or vice versa for this memory range. Lets make sure caches are
 | |
| 	 * flushed to ensure that guest data gets written into memory with
 | |
| 	 * correct C-bit.
 | |
| 	 */
 | |
| 	sev_clflush_pages(region->pages, region->npages);
 | |
| 
 | |
| 	return ret;
 | |
| 
 | |
| e_free:
 | |
| 	kfree(region);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct enc_region *
 | |
| find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
 | |
| {
 | |
| 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 | |
| 	struct list_head *head = &sev->regions_list;
 | |
| 	struct enc_region *i;
 | |
| 
 | |
| 	list_for_each_entry(i, head, list) {
 | |
| 		if (i->uaddr == range->addr &&
 | |
| 		    i->size == range->size)
 | |
| 			return i;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void __unregister_enc_region_locked(struct kvm *kvm,
 | |
| 					   struct enc_region *region)
 | |
| {
 | |
| 	sev_unpin_memory(kvm, region->pages, region->npages);
 | |
| 	list_del(®ion->list);
 | |
| 	kfree(region);
 | |
| }
 | |
| 
 | |
| int sev_mem_enc_unregister_region(struct kvm *kvm,
 | |
| 				  struct kvm_enc_region *range)
 | |
| {
 | |
| 	struct enc_region *region;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* If kvm is mirroring encryption context it isn't responsible for it */
 | |
| 	if (is_mirroring_enc_context(kvm))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	mutex_lock(&kvm->lock);
 | |
| 
 | |
| 	if (!sev_guest(kvm)) {
 | |
| 		ret = -ENOTTY;
 | |
| 		goto failed;
 | |
| 	}
 | |
| 
 | |
| 	region = find_enc_region(kvm, range);
 | |
| 	if (!region) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto failed;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure that all guest tagged cache entries are flushed before
 | |
| 	 * releasing the pages back to the system for use. CLFLUSH will
 | |
| 	 * not do this, so issue a WBINVD.
 | |
| 	 */
 | |
| 	wbinvd_on_all_cpus();
 | |
| 
 | |
| 	__unregister_enc_region_locked(kvm, region);
 | |
| 
 | |
| 	mutex_unlock(&kvm->lock);
 | |
| 	return 0;
 | |
| 
 | |
| failed:
 | |
| 	mutex_unlock(&kvm->lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd)
 | |
| {
 | |
| 	struct file *source_kvm_file;
 | |
| 	struct kvm *source_kvm;
 | |
| 	struct kvm_sev_info *source_sev, *mirror_sev;
 | |
| 	int ret;
 | |
| 
 | |
| 	source_kvm_file = fget(source_fd);
 | |
| 	if (!file_is_kvm(source_kvm_file)) {
 | |
| 		ret = -EBADF;
 | |
| 		goto e_source_fput;
 | |
| 	}
 | |
| 
 | |
| 	source_kvm = source_kvm_file->private_data;
 | |
| 	ret = sev_lock_two_vms(kvm, source_kvm);
 | |
| 	if (ret)
 | |
| 		goto e_source_fput;
 | |
| 
 | |
| 	/*
 | |
| 	 * Mirrors of mirrors should work, but let's not get silly.  Also
 | |
| 	 * disallow out-of-band SEV/SEV-ES init if the target is already an
 | |
| 	 * SEV guest, or if vCPUs have been created.  KVM relies on vCPUs being
 | |
| 	 * created after SEV/SEV-ES initialization, e.g. to init intercepts.
 | |
| 	 */
 | |
| 	if (sev_guest(kvm) || !sev_guest(source_kvm) ||
 | |
| 	    is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) {
 | |
| 		ret = -EINVAL;
 | |
| 		goto e_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The mirror kvm holds an enc_context_owner ref so its asid can't
 | |
| 	 * disappear until we're done with it
 | |
| 	 */
 | |
| 	source_sev = &to_kvm_svm(source_kvm)->sev_info;
 | |
| 	kvm_get_kvm(source_kvm);
 | |
| 	mirror_sev = &to_kvm_svm(kvm)->sev_info;
 | |
| 	list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms);
 | |
| 
 | |
| 	/* Set enc_context_owner and copy its encryption context over */
 | |
| 	mirror_sev->enc_context_owner = source_kvm;
 | |
| 	mirror_sev->active = true;
 | |
| 	mirror_sev->asid = source_sev->asid;
 | |
| 	mirror_sev->fd = source_sev->fd;
 | |
| 	mirror_sev->es_active = source_sev->es_active;
 | |
| 	mirror_sev->handle = source_sev->handle;
 | |
| 	INIT_LIST_HEAD(&mirror_sev->regions_list);
 | |
| 	INIT_LIST_HEAD(&mirror_sev->mirror_vms);
 | |
| 	ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Do not copy ap_jump_table. Since the mirror does not share the same
 | |
| 	 * KVM contexts as the original, and they may have different
 | |
| 	 * memory-views.
 | |
| 	 */
 | |
| 
 | |
| e_unlock:
 | |
| 	sev_unlock_two_vms(kvm, source_kvm);
 | |
| e_source_fput:
 | |
| 	if (source_kvm_file)
 | |
| 		fput(source_kvm_file);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void sev_vm_destroy(struct kvm *kvm)
 | |
| {
 | |
| 	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
 | |
| 	struct list_head *head = &sev->regions_list;
 | |
| 	struct list_head *pos, *q;
 | |
| 
 | |
| 	if (!sev_guest(kvm))
 | |
| 		return;
 | |
| 
 | |
| 	WARN_ON(!list_empty(&sev->mirror_vms));
 | |
| 
 | |
| 	/* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
 | |
| 	if (is_mirroring_enc_context(kvm)) {
 | |
| 		struct kvm *owner_kvm = sev->enc_context_owner;
 | |
| 
 | |
| 		mutex_lock(&owner_kvm->lock);
 | |
| 		list_del(&sev->mirror_entry);
 | |
| 		mutex_unlock(&owner_kvm->lock);
 | |
| 		kvm_put_kvm(owner_kvm);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure that all guest tagged cache entries are flushed before
 | |
| 	 * releasing the pages back to the system for use. CLFLUSH will
 | |
| 	 * not do this, so issue a WBINVD.
 | |
| 	 */
 | |
| 	wbinvd_on_all_cpus();
 | |
| 
 | |
| 	/*
 | |
| 	 * if userspace was terminated before unregistering the memory regions
 | |
| 	 * then lets unpin all the registered memory.
 | |
| 	 */
 | |
| 	if (!list_empty(head)) {
 | |
| 		list_for_each_safe(pos, q, head) {
 | |
| 			__unregister_enc_region_locked(kvm,
 | |
| 				list_entry(pos, struct enc_region, list));
 | |
| 			cond_resched();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	sev_unbind_asid(kvm, sev->handle);
 | |
| 	sev_asid_free(sev);
 | |
| }
 | |
| 
 | |
| void __init sev_set_cpu_caps(void)
 | |
| {
 | |
| 	if (!sev_enabled)
 | |
| 		kvm_cpu_cap_clear(X86_FEATURE_SEV);
 | |
| 	if (!sev_es_enabled)
 | |
| 		kvm_cpu_cap_clear(X86_FEATURE_SEV_ES);
 | |
| }
 | |
| 
 | |
| void __init sev_hardware_setup(void)
 | |
| {
 | |
| #ifdef CONFIG_KVM_AMD_SEV
 | |
| 	unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
 | |
| 	bool sev_es_supported = false;
 | |
| 	bool sev_supported = false;
 | |
| 
 | |
| 	if (!sev_enabled || !npt_enabled)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * SEV must obviously be supported in hardware.  Sanity check that the
 | |
| 	 * CPU supports decode assists, which is mandatory for SEV guests to
 | |
| 	 * support instruction emulation.
 | |
| 	 */
 | |
| 	if (!boot_cpu_has(X86_FEATURE_SEV) ||
 | |
| 	    WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Retrieve SEV CPUID information */
 | |
| 	cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
 | |
| 
 | |
| 	/* Set encryption bit location for SEV-ES guests */
 | |
| 	sev_enc_bit = ebx & 0x3f;
 | |
| 
 | |
| 	/* Maximum number of encrypted guests supported simultaneously */
 | |
| 	max_sev_asid = ecx;
 | |
| 	if (!max_sev_asid)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Minimum ASID value that should be used for SEV guest */
 | |
| 	min_sev_asid = edx;
 | |
| 	sev_me_mask = 1UL << (ebx & 0x3f);
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
 | |
| 	 * even though it's never used, so that the bitmap is indexed by the
 | |
| 	 * actual ASID.
 | |
| 	 */
 | |
| 	nr_asids = max_sev_asid + 1;
 | |
| 	sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
 | |
| 	if (!sev_asid_bitmap)
 | |
| 		goto out;
 | |
| 
 | |
| 	sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
 | |
| 	if (!sev_reclaim_asid_bitmap) {
 | |
| 		bitmap_free(sev_asid_bitmap);
 | |
| 		sev_asid_bitmap = NULL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	sev_asid_count = max_sev_asid - min_sev_asid + 1;
 | |
| 	if (misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count))
 | |
| 		goto out;
 | |
| 
 | |
| 	pr_info("SEV supported: %u ASIDs\n", sev_asid_count);
 | |
| 	sev_supported = true;
 | |
| 
 | |
| 	/* SEV-ES support requested? */
 | |
| 	if (!sev_es_enabled)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Does the CPU support SEV-ES? */
 | |
| 	if (!boot_cpu_has(X86_FEATURE_SEV_ES))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Has the system been allocated ASIDs for SEV-ES? */
 | |
| 	if (min_sev_asid == 1)
 | |
| 		goto out;
 | |
| 
 | |
| 	sev_es_asid_count = min_sev_asid - 1;
 | |
| 	if (misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count))
 | |
| 		goto out;
 | |
| 
 | |
| 	pr_info("SEV-ES supported: %u ASIDs\n", sev_es_asid_count);
 | |
| 	sev_es_supported = true;
 | |
| 
 | |
| out:
 | |
| 	sev_enabled = sev_supported;
 | |
| 	sev_es_enabled = sev_es_supported;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void sev_hardware_unsetup(void)
 | |
| {
 | |
| 	if (!sev_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	/* No need to take sev_bitmap_lock, all VMs have been destroyed. */
 | |
| 	sev_flush_asids(1, max_sev_asid);
 | |
| 
 | |
| 	bitmap_free(sev_asid_bitmap);
 | |
| 	bitmap_free(sev_reclaim_asid_bitmap);
 | |
| 
 | |
| 	misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
 | |
| 	misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
 | |
| }
 | |
| 
 | |
| int sev_cpu_init(struct svm_cpu_data *sd)
 | |
| {
 | |
| 	if (!sev_enabled)
 | |
| 		return 0;
 | |
| 
 | |
| 	sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
 | |
| 	if (!sd->sev_vmcbs)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Pages used by hardware to hold guest encrypted state must be flushed before
 | |
|  * returning them to the system.
 | |
|  */
 | |
| static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va)
 | |
| {
 | |
| 	int asid = to_kvm_svm(vcpu->kvm)->sev_info.asid;
 | |
| 
 | |
| 	/*
 | |
| 	 * Note!  The address must be a kernel address, as regular page walk
 | |
| 	 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user
 | |
| 	 * address is non-deterministic and unsafe.  This function deliberately
 | |
| 	 * takes a pointer to deter passing in a user address.
 | |
| 	 */
 | |
| 	unsigned long addr = (unsigned long)va;
 | |
| 
 | |
| 	/*
 | |
| 	 * If CPU enforced cache coherency for encrypted mappings of the
 | |
| 	 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache
 | |
| 	 * flush is still needed in order to work properly with DMA devices.
 | |
| 	 */
 | |
| 	if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) {
 | |
| 		clflush_cache_range(va, PAGE_SIZE);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * VM Page Flush takes a host virtual address and a guest ASID.  Fall
 | |
| 	 * back to WBINVD if this faults so as not to make any problems worse
 | |
| 	 * by leaving stale encrypted data in the cache.
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid)))
 | |
| 		goto do_wbinvd;
 | |
| 
 | |
| 	return;
 | |
| 
 | |
| do_wbinvd:
 | |
| 	wbinvd_on_all_cpus();
 | |
| }
 | |
| 
 | |
| void sev_guest_memory_reclaimed(struct kvm *kvm)
 | |
| {
 | |
| 	if (!sev_guest(kvm))
 | |
| 		return;
 | |
| 
 | |
| 	wbinvd_on_all_cpus();
 | |
| }
 | |
| 
 | |
| void sev_free_vcpu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm;
 | |
| 
 | |
| 	if (!sev_es_guest(vcpu->kvm))
 | |
| 		return;
 | |
| 
 | |
| 	svm = to_svm(vcpu);
 | |
| 
 | |
| 	if (vcpu->arch.guest_state_protected)
 | |
| 		sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa);
 | |
| 
 | |
| 	__free_page(virt_to_page(svm->sev_es.vmsa));
 | |
| 
 | |
| 	if (svm->sev_es.ghcb_sa_free)
 | |
| 		kvfree(svm->sev_es.ghcb_sa);
 | |
| }
 | |
| 
 | |
| static void dump_ghcb(struct vcpu_svm *svm)
 | |
| {
 | |
| 	struct ghcb *ghcb = svm->sev_es.ghcb;
 | |
| 	unsigned int nbits;
 | |
| 
 | |
| 	/* Re-use the dump_invalid_vmcb module parameter */
 | |
| 	if (!dump_invalid_vmcb) {
 | |
| 		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	nbits = sizeof(ghcb->save.valid_bitmap) * 8;
 | |
| 
 | |
| 	pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
 | |
| 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
 | |
| 	       ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
 | |
| 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
 | |
| 	       ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
 | |
| 	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
 | |
| 	       ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
 | |
| 	pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
 | |
| 	       ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
 | |
| 	pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
 | |
| }
 | |
| 
 | |
| static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu = &svm->vcpu;
 | |
| 	struct ghcb *ghcb = svm->sev_es.ghcb;
 | |
| 
 | |
| 	/*
 | |
| 	 * The GHCB protocol so far allows for the following data
 | |
| 	 * to be returned:
 | |
| 	 *   GPRs RAX, RBX, RCX, RDX
 | |
| 	 *
 | |
| 	 * Copy their values, even if they may not have been written during the
 | |
| 	 * VM-Exit.  It's the guest's responsibility to not consume random data.
 | |
| 	 */
 | |
| 	ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
 | |
| 	ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
 | |
| 	ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
 | |
| 	ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
 | |
| }
 | |
| 
 | |
| static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
 | |
| {
 | |
| 	struct vmcb_control_area *control = &svm->vmcb->control;
 | |
| 	struct kvm_vcpu *vcpu = &svm->vcpu;
 | |
| 	struct ghcb *ghcb = svm->sev_es.ghcb;
 | |
| 	u64 exit_code;
 | |
| 
 | |
| 	/*
 | |
| 	 * The GHCB protocol so far allows for the following data
 | |
| 	 * to be supplied:
 | |
| 	 *   GPRs RAX, RBX, RCX, RDX
 | |
| 	 *   XCR0
 | |
| 	 *   CPL
 | |
| 	 *
 | |
| 	 * VMMCALL allows the guest to provide extra registers. KVM also
 | |
| 	 * expects RSI for hypercalls, so include that, too.
 | |
| 	 *
 | |
| 	 * Copy their values to the appropriate location if supplied.
 | |
| 	 */
 | |
| 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
 | |
| 
 | |
| 	BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap));
 | |
| 	memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap));
 | |
| 
 | |
| 	vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb);
 | |
| 	vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb);
 | |
| 	vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb);
 | |
| 	vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb);
 | |
| 	vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb);
 | |
| 
 | |
| 	svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb);
 | |
| 
 | |
| 	if (kvm_ghcb_xcr0_is_valid(svm)) {
 | |
| 		vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
 | |
| 		kvm_update_cpuid_runtime(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	/* Copy the GHCB exit information into the VMCB fields */
 | |
| 	exit_code = ghcb_get_sw_exit_code(ghcb);
 | |
| 	control->exit_code = lower_32_bits(exit_code);
 | |
| 	control->exit_code_hi = upper_32_bits(exit_code);
 | |
| 	control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
 | |
| 	control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
 | |
| 	svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb);
 | |
| 
 | |
| 	/* Clear the valid entries fields */
 | |
| 	memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
 | |
| }
 | |
| 
 | |
| static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control)
 | |
| {
 | |
| 	return (((u64)control->exit_code_hi) << 32) | control->exit_code;
 | |
| }
 | |
| 
 | |
| static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
 | |
| {
 | |
| 	struct vmcb_control_area *control = &svm->vmcb->control;
 | |
| 	struct kvm_vcpu *vcpu = &svm->vcpu;
 | |
| 	u64 exit_code;
 | |
| 	u64 reason;
 | |
| 
 | |
| 	/*
 | |
| 	 * Retrieve the exit code now even though it may not be marked valid
 | |
| 	 * as it could help with debugging.
 | |
| 	 */
 | |
| 	exit_code = kvm_ghcb_get_sw_exit_code(control);
 | |
| 
 | |
| 	/* Only GHCB Usage code 0 is supported */
 | |
| 	if (svm->sev_es.ghcb->ghcb_usage) {
 | |
| 		reason = GHCB_ERR_INVALID_USAGE;
 | |
| 		goto vmgexit_err;
 | |
| 	}
 | |
| 
 | |
| 	reason = GHCB_ERR_MISSING_INPUT;
 | |
| 
 | |
| 	if (!kvm_ghcb_sw_exit_code_is_valid(svm) ||
 | |
| 	    !kvm_ghcb_sw_exit_info_1_is_valid(svm) ||
 | |
| 	    !kvm_ghcb_sw_exit_info_2_is_valid(svm))
 | |
| 		goto vmgexit_err;
 | |
| 
 | |
| 	switch (exit_code) {
 | |
| 	case SVM_EXIT_READ_DR7:
 | |
| 		break;
 | |
| 	case SVM_EXIT_WRITE_DR7:
 | |
| 		if (!kvm_ghcb_rax_is_valid(svm))
 | |
| 			goto vmgexit_err;
 | |
| 		break;
 | |
| 	case SVM_EXIT_RDTSC:
 | |
| 		break;
 | |
| 	case SVM_EXIT_RDPMC:
 | |
| 		if (!kvm_ghcb_rcx_is_valid(svm))
 | |
| 			goto vmgexit_err;
 | |
| 		break;
 | |
| 	case SVM_EXIT_CPUID:
 | |
| 		if (!kvm_ghcb_rax_is_valid(svm) ||
 | |
| 		    !kvm_ghcb_rcx_is_valid(svm))
 | |
| 			goto vmgexit_err;
 | |
| 		if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd)
 | |
| 			if (!kvm_ghcb_xcr0_is_valid(svm))
 | |
| 				goto vmgexit_err;
 | |
| 		break;
 | |
| 	case SVM_EXIT_INVD:
 | |
| 		break;
 | |
| 	case SVM_EXIT_IOIO:
 | |
| 		if (control->exit_info_1 & SVM_IOIO_STR_MASK) {
 | |
| 			if (!kvm_ghcb_sw_scratch_is_valid(svm))
 | |
| 				goto vmgexit_err;
 | |
| 		} else {
 | |
| 			if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK))
 | |
| 				if (!kvm_ghcb_rax_is_valid(svm))
 | |
| 					goto vmgexit_err;
 | |
| 		}
 | |
| 		break;
 | |
| 	case SVM_EXIT_MSR:
 | |
| 		if (!kvm_ghcb_rcx_is_valid(svm))
 | |
| 			goto vmgexit_err;
 | |
| 		if (control->exit_info_1) {
 | |
| 			if (!kvm_ghcb_rax_is_valid(svm) ||
 | |
| 			    !kvm_ghcb_rdx_is_valid(svm))
 | |
| 				goto vmgexit_err;
 | |
| 		}
 | |
| 		break;
 | |
| 	case SVM_EXIT_VMMCALL:
 | |
| 		if (!kvm_ghcb_rax_is_valid(svm) ||
 | |
| 		    !kvm_ghcb_cpl_is_valid(svm))
 | |
| 			goto vmgexit_err;
 | |
| 		break;
 | |
| 	case SVM_EXIT_RDTSCP:
 | |
| 		break;
 | |
| 	case SVM_EXIT_WBINVD:
 | |
| 		break;
 | |
| 	case SVM_EXIT_MONITOR:
 | |
| 		if (!kvm_ghcb_rax_is_valid(svm) ||
 | |
| 		    !kvm_ghcb_rcx_is_valid(svm) ||
 | |
| 		    !kvm_ghcb_rdx_is_valid(svm))
 | |
| 			goto vmgexit_err;
 | |
| 		break;
 | |
| 	case SVM_EXIT_MWAIT:
 | |
| 		if (!kvm_ghcb_rax_is_valid(svm) ||
 | |
| 		    !kvm_ghcb_rcx_is_valid(svm))
 | |
| 			goto vmgexit_err;
 | |
| 		break;
 | |
| 	case SVM_VMGEXIT_MMIO_READ:
 | |
| 	case SVM_VMGEXIT_MMIO_WRITE:
 | |
| 		if (!kvm_ghcb_sw_scratch_is_valid(svm))
 | |
| 			goto vmgexit_err;
 | |
| 		break;
 | |
| 	case SVM_VMGEXIT_NMI_COMPLETE:
 | |
| 	case SVM_VMGEXIT_AP_HLT_LOOP:
 | |
| 	case SVM_VMGEXIT_AP_JUMP_TABLE:
 | |
| 	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
 | |
| 		break;
 | |
| 	default:
 | |
| 		reason = GHCB_ERR_INVALID_EVENT;
 | |
| 		goto vmgexit_err;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| vmgexit_err:
 | |
| 	if (reason == GHCB_ERR_INVALID_USAGE) {
 | |
| 		vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
 | |
| 			    svm->sev_es.ghcb->ghcb_usage);
 | |
| 	} else if (reason == GHCB_ERR_INVALID_EVENT) {
 | |
| 		vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
 | |
| 			    exit_code);
 | |
| 	} else {
 | |
| 		vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
 | |
| 			    exit_code);
 | |
| 		dump_ghcb(svm);
 | |
| 	}
 | |
| 
 | |
| 	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
 | |
| 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, reason);
 | |
| 
 | |
| 	/* Resume the guest to "return" the error code. */
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| void sev_es_unmap_ghcb(struct vcpu_svm *svm)
 | |
| {
 | |
| 	if (!svm->sev_es.ghcb)
 | |
| 		return;
 | |
| 
 | |
| 	if (svm->sev_es.ghcb_sa_free) {
 | |
| 		/*
 | |
| 		 * The scratch area lives outside the GHCB, so there is a
 | |
| 		 * buffer that, depending on the operation performed, may
 | |
| 		 * need to be synced, then freed.
 | |
| 		 */
 | |
| 		if (svm->sev_es.ghcb_sa_sync) {
 | |
| 			kvm_write_guest(svm->vcpu.kvm,
 | |
| 					svm->sev_es.sw_scratch,
 | |
| 					svm->sev_es.ghcb_sa,
 | |
| 					svm->sev_es.ghcb_sa_len);
 | |
| 			svm->sev_es.ghcb_sa_sync = false;
 | |
| 		}
 | |
| 
 | |
| 		kvfree(svm->sev_es.ghcb_sa);
 | |
| 		svm->sev_es.ghcb_sa = NULL;
 | |
| 		svm->sev_es.ghcb_sa_free = false;
 | |
| 	}
 | |
| 
 | |
| 	trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
 | |
| 
 | |
| 	sev_es_sync_to_ghcb(svm);
 | |
| 
 | |
| 	kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true);
 | |
| 	svm->sev_es.ghcb = NULL;
 | |
| }
 | |
| 
 | |
| void pre_sev_run(struct vcpu_svm *svm, int cpu)
 | |
| {
 | |
| 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
 | |
| 	int asid = sev_get_asid(svm->vcpu.kvm);
 | |
| 
 | |
| 	/* Assign the asid allocated with this SEV guest */
 | |
| 	svm->asid = asid;
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush guest TLB:
 | |
| 	 *
 | |
| 	 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
 | |
| 	 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
 | |
| 	 */
 | |
| 	if (sd->sev_vmcbs[asid] == svm->vmcb &&
 | |
| 	    svm->vcpu.arch.last_vmentry_cpu == cpu)
 | |
| 		return;
 | |
| 
 | |
| 	sd->sev_vmcbs[asid] = svm->vmcb;
 | |
| 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
 | |
| 	vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
 | |
| }
 | |
| 
 | |
| #define GHCB_SCRATCH_AREA_LIMIT		(16ULL * PAGE_SIZE)
 | |
| static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
 | |
| {
 | |
| 	struct vmcb_control_area *control = &svm->vmcb->control;
 | |
| 	u64 ghcb_scratch_beg, ghcb_scratch_end;
 | |
| 	u64 scratch_gpa_beg, scratch_gpa_end;
 | |
| 	void *scratch_va;
 | |
| 
 | |
| 	scratch_gpa_beg = svm->sev_es.sw_scratch;
 | |
| 	if (!scratch_gpa_beg) {
 | |
| 		pr_err("vmgexit: scratch gpa not provided\n");
 | |
| 		goto e_scratch;
 | |
| 	}
 | |
| 
 | |
| 	scratch_gpa_end = scratch_gpa_beg + len;
 | |
| 	if (scratch_gpa_end < scratch_gpa_beg) {
 | |
| 		pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
 | |
| 		       len, scratch_gpa_beg);
 | |
| 		goto e_scratch;
 | |
| 	}
 | |
| 
 | |
| 	if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
 | |
| 		/* Scratch area begins within GHCB */
 | |
| 		ghcb_scratch_beg = control->ghcb_gpa +
 | |
| 				   offsetof(struct ghcb, shared_buffer);
 | |
| 		ghcb_scratch_end = control->ghcb_gpa +
 | |
| 				   offsetof(struct ghcb, reserved_1);
 | |
| 
 | |
| 		/*
 | |
| 		 * If the scratch area begins within the GHCB, it must be
 | |
| 		 * completely contained in the GHCB shared buffer area.
 | |
| 		 */
 | |
| 		if (scratch_gpa_beg < ghcb_scratch_beg ||
 | |
| 		    scratch_gpa_end > ghcb_scratch_end) {
 | |
| 			pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
 | |
| 			       scratch_gpa_beg, scratch_gpa_end);
 | |
| 			goto e_scratch;
 | |
| 		}
 | |
| 
 | |
| 		scratch_va = (void *)svm->sev_es.ghcb;
 | |
| 		scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * The guest memory must be read into a kernel buffer, so
 | |
| 		 * limit the size
 | |
| 		 */
 | |
| 		if (len > GHCB_SCRATCH_AREA_LIMIT) {
 | |
| 			pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
 | |
| 			       len, GHCB_SCRATCH_AREA_LIMIT);
 | |
| 			goto e_scratch;
 | |
| 		}
 | |
| 		scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT);
 | |
| 		if (!scratch_va)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
 | |
| 			/* Unable to copy scratch area from guest */
 | |
| 			pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
 | |
| 
 | |
| 			kvfree(scratch_va);
 | |
| 			return -EFAULT;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * The scratch area is outside the GHCB. The operation will
 | |
| 		 * dictate whether the buffer needs to be synced before running
 | |
| 		 * the vCPU next time (i.e. a read was requested so the data
 | |
| 		 * must be written back to the guest memory).
 | |
| 		 */
 | |
| 		svm->sev_es.ghcb_sa_sync = sync;
 | |
| 		svm->sev_es.ghcb_sa_free = true;
 | |
| 	}
 | |
| 
 | |
| 	svm->sev_es.ghcb_sa = scratch_va;
 | |
| 	svm->sev_es.ghcb_sa_len = len;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| e_scratch:
 | |
| 	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
 | |
| 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_SCRATCH_AREA);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
 | |
| 			      unsigned int pos)
 | |
| {
 | |
| 	svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
 | |
| 	svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
 | |
| }
 | |
| 
 | |
| static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
 | |
| {
 | |
| 	return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
 | |
| }
 | |
| 
 | |
| static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
 | |
| {
 | |
| 	svm->vmcb->control.ghcb_gpa = value;
 | |
| }
 | |
| 
 | |
| static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
 | |
| {
 | |
| 	struct vmcb_control_area *control = &svm->vmcb->control;
 | |
| 	struct kvm_vcpu *vcpu = &svm->vcpu;
 | |
| 	u64 ghcb_info;
 | |
| 	int ret = 1;
 | |
| 
 | |
| 	ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
 | |
| 
 | |
| 	trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
 | |
| 					     control->ghcb_gpa);
 | |
| 
 | |
| 	switch (ghcb_info) {
 | |
| 	case GHCB_MSR_SEV_INFO_REQ:
 | |
| 		set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
 | |
| 						    GHCB_VERSION_MIN,
 | |
| 						    sev_enc_bit));
 | |
| 		break;
 | |
| 	case GHCB_MSR_CPUID_REQ: {
 | |
| 		u64 cpuid_fn, cpuid_reg, cpuid_value;
 | |
| 
 | |
| 		cpuid_fn = get_ghcb_msr_bits(svm,
 | |
| 					     GHCB_MSR_CPUID_FUNC_MASK,
 | |
| 					     GHCB_MSR_CPUID_FUNC_POS);
 | |
| 
 | |
| 		/* Initialize the registers needed by the CPUID intercept */
 | |
| 		vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
 | |
| 		vcpu->arch.regs[VCPU_REGS_RCX] = 0;
 | |
| 
 | |
| 		ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
 | |
| 		if (!ret) {
 | |
| 			/* Error, keep GHCB MSR value as-is */
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		cpuid_reg = get_ghcb_msr_bits(svm,
 | |
| 					      GHCB_MSR_CPUID_REG_MASK,
 | |
| 					      GHCB_MSR_CPUID_REG_POS);
 | |
| 		if (cpuid_reg == 0)
 | |
| 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
 | |
| 		else if (cpuid_reg == 1)
 | |
| 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
 | |
| 		else if (cpuid_reg == 2)
 | |
| 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
 | |
| 		else
 | |
| 			cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
 | |
| 
 | |
| 		set_ghcb_msr_bits(svm, cpuid_value,
 | |
| 				  GHCB_MSR_CPUID_VALUE_MASK,
 | |
| 				  GHCB_MSR_CPUID_VALUE_POS);
 | |
| 
 | |
| 		set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
 | |
| 				  GHCB_MSR_INFO_MASK,
 | |
| 				  GHCB_MSR_INFO_POS);
 | |
| 		break;
 | |
| 	}
 | |
| 	case GHCB_MSR_TERM_REQ: {
 | |
| 		u64 reason_set, reason_code;
 | |
| 
 | |
| 		reason_set = get_ghcb_msr_bits(svm,
 | |
| 					       GHCB_MSR_TERM_REASON_SET_MASK,
 | |
| 					       GHCB_MSR_TERM_REASON_SET_POS);
 | |
| 		reason_code = get_ghcb_msr_bits(svm,
 | |
| 						GHCB_MSR_TERM_REASON_MASK,
 | |
| 						GHCB_MSR_TERM_REASON_POS);
 | |
| 		pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
 | |
| 			reason_set, reason_code);
 | |
| 
 | |
| 		ret = -EINVAL;
 | |
| 		break;
 | |
| 	}
 | |
| 	default:
 | |
| 		/* Error, keep GHCB MSR value as-is */
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
 | |
| 					    control->ghcb_gpa, ret);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 	struct vmcb_control_area *control = &svm->vmcb->control;
 | |
| 	u64 ghcb_gpa, exit_code;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Validate the GHCB */
 | |
| 	ghcb_gpa = control->ghcb_gpa;
 | |
| 	if (ghcb_gpa & GHCB_MSR_INFO_MASK)
 | |
| 		return sev_handle_vmgexit_msr_protocol(svm);
 | |
| 
 | |
| 	if (!ghcb_gpa) {
 | |
| 		vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
 | |
| 
 | |
| 		/* Without a GHCB, just return right back to the guest */
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
 | |
| 		/* Unable to map GHCB from guest */
 | |
| 		vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
 | |
| 			    ghcb_gpa);
 | |
| 
 | |
| 		/* Without a GHCB, just return right back to the guest */
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
 | |
| 
 | |
| 	trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb);
 | |
| 
 | |
| 	sev_es_sync_from_ghcb(svm);
 | |
| 	ret = sev_es_validate_vmgexit(svm);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 0);
 | |
| 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 0);
 | |
| 
 | |
| 	exit_code = kvm_ghcb_get_sw_exit_code(control);
 | |
| 	switch (exit_code) {
 | |
| 	case SVM_VMGEXIT_MMIO_READ:
 | |
| 		ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		ret = kvm_sev_es_mmio_read(vcpu,
 | |
| 					   control->exit_info_1,
 | |
| 					   control->exit_info_2,
 | |
| 					   svm->sev_es.ghcb_sa);
 | |
| 		break;
 | |
| 	case SVM_VMGEXIT_MMIO_WRITE:
 | |
| 		ret = setup_vmgexit_scratch(svm, false, control->exit_info_2);
 | |
| 		if (ret)
 | |
| 			break;
 | |
| 
 | |
| 		ret = kvm_sev_es_mmio_write(vcpu,
 | |
| 					    control->exit_info_1,
 | |
| 					    control->exit_info_2,
 | |
| 					    svm->sev_es.ghcb_sa);
 | |
| 		break;
 | |
| 	case SVM_VMGEXIT_NMI_COMPLETE:
 | |
| 		ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_IRET);
 | |
| 		break;
 | |
| 	case SVM_VMGEXIT_AP_HLT_LOOP:
 | |
| 		ret = kvm_emulate_ap_reset_hold(vcpu);
 | |
| 		break;
 | |
| 	case SVM_VMGEXIT_AP_JUMP_TABLE: {
 | |
| 		struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
 | |
| 
 | |
| 		switch (control->exit_info_1) {
 | |
| 		case 0:
 | |
| 			/* Set AP jump table address */
 | |
| 			sev->ap_jump_table = control->exit_info_2;
 | |
| 			break;
 | |
| 		case 1:
 | |
| 			/* Get AP jump table address */
 | |
| 			ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, sev->ap_jump_table);
 | |
| 			break;
 | |
| 		default:
 | |
| 			pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
 | |
| 			       control->exit_info_1);
 | |
| 			ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
 | |
| 			ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT);
 | |
| 		}
 | |
| 
 | |
| 		ret = 1;
 | |
| 		break;
 | |
| 	}
 | |
| 	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
 | |
| 		vcpu_unimpl(vcpu,
 | |
| 			    "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
 | |
| 			    control->exit_info_1, control->exit_info_2);
 | |
| 		ret = -EINVAL;
 | |
| 		break;
 | |
| 	default:
 | |
| 		ret = svm_invoke_exit_handler(vcpu, exit_code);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
 | |
| {
 | |
| 	int count;
 | |
| 	int bytes;
 | |
| 	int r;
 | |
| 
 | |
| 	if (svm->vmcb->control.exit_info_2 > INT_MAX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	count = svm->vmcb->control.exit_info_2;
 | |
| 	if (unlikely(check_mul_overflow(count, size, &bytes)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	r = setup_vmgexit_scratch(svm, in, bytes);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
 | |
| 				    count, in);
 | |
| }
 | |
| 
 | |
| static void sev_es_init_vmcb(struct vcpu_svm *svm)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu = &svm->vcpu;
 | |
| 
 | |
| 	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
 | |
| 	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
 | |
| 
 | |
| 	/*
 | |
| 	 * An SEV-ES guest requires a VMSA area that is a separate from the
 | |
| 	 * VMCB page. Do not include the encryption mask on the VMSA physical
 | |
| 	 * address since hardware will access it using the guest key.
 | |
| 	 */
 | |
| 	svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
 | |
| 
 | |
| 	/* Can't intercept CR register access, HV can't modify CR registers */
 | |
| 	svm_clr_intercept(svm, INTERCEPT_CR0_READ);
 | |
| 	svm_clr_intercept(svm, INTERCEPT_CR4_READ);
 | |
| 	svm_clr_intercept(svm, INTERCEPT_CR8_READ);
 | |
| 	svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
 | |
| 	svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
 | |
| 	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
 | |
| 
 | |
| 	svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
 | |
| 
 | |
| 	/* Track EFER/CR register changes */
 | |
| 	svm_set_intercept(svm, TRAP_EFER_WRITE);
 | |
| 	svm_set_intercept(svm, TRAP_CR0_WRITE);
 | |
| 	svm_set_intercept(svm, TRAP_CR4_WRITE);
 | |
| 	svm_set_intercept(svm, TRAP_CR8_WRITE);
 | |
| 
 | |
| 	/* No support for enable_vmware_backdoor */
 | |
| 	clr_exception_intercept(svm, GP_VECTOR);
 | |
| 
 | |
| 	/* Can't intercept XSETBV, HV can't modify XCR0 directly */
 | |
| 	svm_clr_intercept(svm, INTERCEPT_XSETBV);
 | |
| 
 | |
| 	/* Clear intercepts on selected MSRs */
 | |
| 	set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
 | |
| 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
 | |
| 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
 | |
| 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
 | |
| 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
 | |
| 	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
 | |
| }
 | |
| 
 | |
| void sev_init_vmcb(struct vcpu_svm *svm)
 | |
| {
 | |
| 	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
 | |
| 	clr_exception_intercept(svm, UD_VECTOR);
 | |
| 
 | |
| 	if (sev_es_guest(svm->vcpu.kvm))
 | |
| 		sev_es_init_vmcb(svm);
 | |
| }
 | |
| 
 | |
| void sev_es_vcpu_reset(struct vcpu_svm *svm)
 | |
| {
 | |
| 	/*
 | |
| 	 * Set the GHCB MSR value as per the GHCB specification when emulating
 | |
| 	 * vCPU RESET for an SEV-ES guest.
 | |
| 	 */
 | |
| 	set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
 | |
| 					    GHCB_VERSION_MIN,
 | |
| 					    sev_enc_bit));
 | |
| }
 | |
| 
 | |
| void sev_es_prepare_switch_to_guest(struct sev_es_save_area *hostsa)
 | |
| {
 | |
| 	/*
 | |
| 	 * As an SEV-ES guest, hardware will restore the host state on VMEXIT,
 | |
| 	 * of which one step is to perform a VMLOAD.  KVM performs the
 | |
| 	 * corresponding VMSAVE in svm_prepare_guest_switch for both
 | |
| 	 * traditional and SEV-ES guests.
 | |
| 	 */
 | |
| 
 | |
| 	/* XCR0 is restored on VMEXIT, save the current host value */
 | |
| 	hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
 | |
| 
 | |
| 	/* PKRU is restored on VMEXIT, save the curent host value */
 | |
| 	hostsa->pkru = read_pkru();
 | |
| 
 | |
| 	/* MSR_IA32_XSS is restored on VMEXIT, save the currnet host value */
 | |
| 	hostsa->xss = host_xss;
 | |
| }
 | |
| 
 | |
| void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
 | |
| {
 | |
| 	struct vcpu_svm *svm = to_svm(vcpu);
 | |
| 
 | |
| 	/* First SIPI: Use the values as initially set by the VMM */
 | |
| 	if (!svm->sev_es.received_first_sipi) {
 | |
| 		svm->sev_es.received_first_sipi = true;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
 | |
| 	 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
 | |
| 	 * non-zero value.
 | |
| 	 */
 | |
| 	if (!svm->sev_es.ghcb)
 | |
| 		return;
 | |
| 
 | |
| 	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1);
 | |
| }
 |