6504 lines
		
	
	
		
			174 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			6504 lines
		
	
	
		
			174 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /*
 | |
|  * Kernel-based Virtual Machine driver for Linux
 | |
|  *
 | |
|  * This module enables machines with Intel VT-x extensions to run virtual
 | |
|  * machines without emulation or binary translation.
 | |
|  *
 | |
|  * MMU support
 | |
|  *
 | |
|  * Copyright (C) 2006 Qumranet, Inc.
 | |
|  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
 | |
|  *
 | |
|  * Authors:
 | |
|  *   Yaniv Kamay  <yaniv@qumranet.com>
 | |
|  *   Avi Kivity   <avi@qumranet.com>
 | |
|  */
 | |
| 
 | |
| #include "irq.h"
 | |
| #include "ioapic.h"
 | |
| #include "mmu.h"
 | |
| #include "mmu_internal.h"
 | |
| #include "tdp_mmu.h"
 | |
| #include "x86.h"
 | |
| #include "kvm_cache_regs.h"
 | |
| #include "smm.h"
 | |
| #include "kvm_emulate.h"
 | |
| #include "cpuid.h"
 | |
| #include "spte.h"
 | |
| 
 | |
| #include <linux/kvm_host.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/moduleparam.h>
 | |
| #include <linux/export.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/srcu.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/sched/signal.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/hash.h>
 | |
| #include <linux/kern_levels.h>
 | |
| #include <linux/kthread.h>
 | |
| 
 | |
| #include <asm/page.h>
 | |
| #include <asm/memtype.h>
 | |
| #include <asm/cmpxchg.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/set_memory.h>
 | |
| #include <asm/vmx.h>
 | |
| #include <asm/kvm_page_track.h>
 | |
| #include "trace.h"
 | |
| 
 | |
| #include "paging.h"
 | |
| 
 | |
| extern bool itlb_multihit_kvm_mitigation;
 | |
| 
 | |
| int __read_mostly nx_huge_pages = -1;
 | |
| static uint __read_mostly nx_huge_pages_recovery_period_ms;
 | |
| #ifdef CONFIG_PREEMPT_RT
 | |
| /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
 | |
| static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
 | |
| #else
 | |
| static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
 | |
| #endif
 | |
| 
 | |
| static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
 | |
| static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp);
 | |
| 
 | |
| static const struct kernel_param_ops nx_huge_pages_ops = {
 | |
| 	.set = set_nx_huge_pages,
 | |
| 	.get = param_get_bool,
 | |
| };
 | |
| 
 | |
| static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = {
 | |
| 	.set = set_nx_huge_pages_recovery_param,
 | |
| 	.get = param_get_uint,
 | |
| };
 | |
| 
 | |
| module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
 | |
| __MODULE_PARM_TYPE(nx_huge_pages, "bool");
 | |
| module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops,
 | |
| 		&nx_huge_pages_recovery_ratio, 0644);
 | |
| __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
 | |
| module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops,
 | |
| 		&nx_huge_pages_recovery_period_ms, 0644);
 | |
| __MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint");
 | |
| 
 | |
| static bool __read_mostly force_flush_and_sync_on_reuse;
 | |
| module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
 | |
| 
 | |
| /*
 | |
|  * When setting this variable to true it enables Two-Dimensional-Paging
 | |
|  * where the hardware walks 2 page tables:
 | |
|  * 1. the guest-virtual to guest-physical
 | |
|  * 2. while doing 1. it walks guest-physical to host-physical
 | |
|  * If the hardware supports that we don't need to do shadow paging.
 | |
|  */
 | |
| bool tdp_enabled = false;
 | |
| 
 | |
| static int max_huge_page_level __read_mostly;
 | |
| static int tdp_root_level __read_mostly;
 | |
| static int max_tdp_level __read_mostly;
 | |
| 
 | |
| #ifdef MMU_DEBUG
 | |
| bool dbg = 0;
 | |
| module_param(dbg, bool, 0644);
 | |
| #endif
 | |
| 
 | |
| #define PTE_PREFETCH_NUM		8
 | |
| 
 | |
| #define PT32_LEVEL_BITS 10
 | |
| 
 | |
| #define PT32_LEVEL_SHIFT(level) \
 | |
| 		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
 | |
| 
 | |
| #define PT32_LVL_OFFSET_MASK(level) \
 | |
| 	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
 | |
| 						* PT32_LEVEL_BITS))) - 1))
 | |
| 
 | |
| #define PT32_INDEX(address, level)\
 | |
| 	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
 | |
| 
 | |
| 
 | |
| #define PT32_BASE_ADDR_MASK PAGE_MASK
 | |
| #define PT32_DIR_BASE_ADDR_MASK \
 | |
| 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
 | |
| #define PT32_LVL_ADDR_MASK(level) \
 | |
| 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
 | |
| 					    * PT32_LEVEL_BITS))) - 1))
 | |
| 
 | |
| #include <trace/events/kvm.h>
 | |
| 
 | |
| /* make pte_list_desc fit well in cache lines */
 | |
| #define PTE_LIST_EXT 14
 | |
| 
 | |
| /*
 | |
|  * Slight optimization of cacheline layout, by putting `more' and `spte_count'
 | |
|  * at the start; then accessing it will only use one single cacheline for
 | |
|  * either full (entries==PTE_LIST_EXT) case or entries<=6.
 | |
|  */
 | |
| struct pte_list_desc {
 | |
| 	struct pte_list_desc *more;
 | |
| 	/*
 | |
| 	 * Stores number of entries stored in the pte_list_desc.  No need to be
 | |
| 	 * u64 but just for easier alignment.  When PTE_LIST_EXT, means full.
 | |
| 	 */
 | |
| 	u64 spte_count;
 | |
| 	u64 *sptes[PTE_LIST_EXT];
 | |
| };
 | |
| 
 | |
| struct kvm_shadow_walk_iterator {
 | |
| 	u64 addr;
 | |
| 	hpa_t shadow_addr;
 | |
| 	u64 *sptep;
 | |
| 	int level;
 | |
| 	unsigned index;
 | |
| };
 | |
| 
 | |
| #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
 | |
| 	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
 | |
| 					 (_root), (_addr));                \
 | |
| 	     shadow_walk_okay(&(_walker));			           \
 | |
| 	     shadow_walk_next(&(_walker)))
 | |
| 
 | |
| #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
 | |
| 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
 | |
| 	     shadow_walk_okay(&(_walker));			\
 | |
| 	     shadow_walk_next(&(_walker)))
 | |
| 
 | |
| #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
 | |
| 	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
 | |
| 	     shadow_walk_okay(&(_walker)) &&				\
 | |
| 		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
 | |
| 	     __shadow_walk_next(&(_walker), spte))
 | |
| 
 | |
| static struct kmem_cache *pte_list_desc_cache;
 | |
| struct kmem_cache *mmu_page_header_cache;
 | |
| static struct percpu_counter kvm_total_used_mmu_pages;
 | |
| 
 | |
| static void mmu_spte_set(u64 *sptep, u64 spte);
 | |
| 
 | |
| struct kvm_mmu_role_regs {
 | |
| 	const unsigned long cr0;
 | |
| 	const unsigned long cr4;
 | |
| 	const u64 efer;
 | |
| };
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include "mmutrace.h"
 | |
| 
 | |
| /*
 | |
|  * Yes, lot's of underscores.  They're a hint that you probably shouldn't be
 | |
|  * reading from the role_regs.  Once the mmu_role is constructed, it becomes
 | |
|  * the single source of truth for the MMU's state.
 | |
|  */
 | |
| #define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag)			\
 | |
| static inline bool __maybe_unused ____is_##reg##_##name(struct kvm_mmu_role_regs *regs)\
 | |
| {									\
 | |
| 	return !!(regs->reg & flag);					\
 | |
| }
 | |
| BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
 | |
| BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
 | |
| BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
 | |
| BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
 | |
| BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
 | |
| BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
 | |
| BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
 | |
| BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
 | |
| BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
 | |
| BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
 | |
| 
 | |
| /*
 | |
|  * The MMU itself (with a valid role) is the single source of truth for the
 | |
|  * MMU.  Do not use the regs used to build the MMU/role, nor the vCPU.  The
 | |
|  * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
 | |
|  * and the vCPU may be incorrect/irrelevant.
 | |
|  */
 | |
| #define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name)		\
 | |
| static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu)	\
 | |
| {								\
 | |
| 	return !!(mmu->mmu_role. base_or_ext . reg##_##name);	\
 | |
| }
 | |
| BUILD_MMU_ROLE_ACCESSOR(ext,  cr0, pg);
 | |
| BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
 | |
| BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pse);
 | |
| BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pae);
 | |
| BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smep);
 | |
| BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, smap);
 | |
| BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, pke);
 | |
| BUILD_MMU_ROLE_ACCESSOR(ext,  cr4, la57);
 | |
| BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
 | |
| 
 | |
| static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_mmu_role_regs regs = {
 | |
| 		.cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
 | |
| 		.cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
 | |
| 		.efer = vcpu->arch.efer,
 | |
| 	};
 | |
| 
 | |
| 	return regs;
 | |
| }
 | |
| 
 | |
| static int role_regs_to_root_level(struct kvm_mmu_role_regs *regs)
 | |
| {
 | |
| 	if (!____is_cr0_pg(regs))
 | |
| 		return 0;
 | |
| 	else if (____is_efer_lma(regs))
 | |
| 		return ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL :
 | |
| 					       PT64_ROOT_4LEVEL;
 | |
| 	else if (____is_cr4_pae(regs))
 | |
| 		return PT32E_ROOT_LEVEL;
 | |
| 	else
 | |
| 		return PT32_ROOT_LEVEL;
 | |
| }
 | |
| 
 | |
| static inline bool kvm_available_flush_tlb_with_range(void)
 | |
| {
 | |
| 	return kvm_x86_ops.tlb_remote_flush_with_range;
 | |
| }
 | |
| 
 | |
| static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
 | |
| 		struct kvm_tlb_range *range)
 | |
| {
 | |
| 	int ret = -ENOTSUPP;
 | |
| 
 | |
| 	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
 | |
| 		ret = static_call(kvm_x86_tlb_remote_flush_with_range)(kvm, range);
 | |
| 
 | |
| 	if (ret)
 | |
| 		kvm_flush_remote_tlbs(kvm);
 | |
| }
 | |
| 
 | |
| void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
 | |
| 		u64 start_gfn, u64 pages)
 | |
| {
 | |
| 	struct kvm_tlb_range range;
 | |
| 
 | |
| 	range.start_gfn = start_gfn;
 | |
| 	range.pages = pages;
 | |
| 
 | |
| 	kvm_flush_remote_tlbs_with_range(kvm, &range);
 | |
| }
 | |
| 
 | |
| static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
 | |
| 			   unsigned int access)
 | |
| {
 | |
| 	u64 spte = make_mmio_spte(vcpu, gfn, access);
 | |
| 
 | |
| 	trace_mark_mmio_spte(sptep, gfn, spte);
 | |
| 	mmu_spte_set(sptep, spte);
 | |
| }
 | |
| 
 | |
| static gfn_t get_mmio_spte_gfn(u64 spte)
 | |
| {
 | |
| 	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
 | |
| 
 | |
| 	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
 | |
| 	       & shadow_nonpresent_or_rsvd_mask;
 | |
| 
 | |
| 	return gpa >> PAGE_SHIFT;
 | |
| }
 | |
| 
 | |
| static unsigned get_mmio_spte_access(u64 spte)
 | |
| {
 | |
| 	return spte & shadow_mmio_access_mask;
 | |
| }
 | |
| 
 | |
| static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
 | |
| {
 | |
| 	u64 kvm_gen, spte_gen, gen;
 | |
| 
 | |
| 	gen = kvm_vcpu_memslots(vcpu)->generation;
 | |
| 	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
 | |
| 		return false;
 | |
| 
 | |
| 	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
 | |
| 	spte_gen = get_mmio_spte_generation(spte);
 | |
| 
 | |
| 	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
 | |
| 	return likely(kvm_gen == spte_gen);
 | |
| }
 | |
| 
 | |
| static int is_cpuid_PSE36(void)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static gfn_t pse36_gfn_delta(u32 gpte)
 | |
| {
 | |
| 	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
 | |
| 
 | |
| 	return (gpte & PT32_DIR_PSE36_MASK) << shift;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| static void __set_spte(u64 *sptep, u64 spte)
 | |
| {
 | |
| 	WRITE_ONCE(*sptep, spte);
 | |
| }
 | |
| 
 | |
| static void __update_clear_spte_fast(u64 *sptep, u64 spte)
 | |
| {
 | |
| 	WRITE_ONCE(*sptep, spte);
 | |
| }
 | |
| 
 | |
| static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
 | |
| {
 | |
| 	return xchg(sptep, spte);
 | |
| }
 | |
| 
 | |
| static u64 __get_spte_lockless(u64 *sptep)
 | |
| {
 | |
| 	return READ_ONCE(*sptep);
 | |
| }
 | |
| #else
 | |
| union split_spte {
 | |
| 	struct {
 | |
| 		u32 spte_low;
 | |
| 		u32 spte_high;
 | |
| 	};
 | |
| 	u64 spte;
 | |
| };
 | |
| 
 | |
| static void count_spte_clear(u64 *sptep, u64 spte)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
 | |
| 
 | |
| 	if (is_shadow_present_pte(spte))
 | |
| 		return;
 | |
| 
 | |
| 	/* Ensure the spte is completely set before we increase the count */
 | |
| 	smp_wmb();
 | |
| 	sp->clear_spte_count++;
 | |
| }
 | |
| 
 | |
| static void __set_spte(u64 *sptep, u64 spte)
 | |
| {
 | |
| 	union split_spte *ssptep, sspte;
 | |
| 
 | |
| 	ssptep = (union split_spte *)sptep;
 | |
| 	sspte = (union split_spte)spte;
 | |
| 
 | |
| 	ssptep->spte_high = sspte.spte_high;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we map the spte from nonpresent to present, We should store
 | |
| 	 * the high bits firstly, then set present bit, so cpu can not
 | |
| 	 * fetch this spte while we are setting the spte.
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
 | |
| }
 | |
| 
 | |
| static void __update_clear_spte_fast(u64 *sptep, u64 spte)
 | |
| {
 | |
| 	union split_spte *ssptep, sspte;
 | |
| 
 | |
| 	ssptep = (union split_spte *)sptep;
 | |
| 	sspte = (union split_spte)spte;
 | |
| 
 | |
| 	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we map the spte from present to nonpresent, we should clear
 | |
| 	 * present bit firstly to avoid vcpu fetch the old high bits.
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	ssptep->spte_high = sspte.spte_high;
 | |
| 	count_spte_clear(sptep, spte);
 | |
| }
 | |
| 
 | |
| static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
 | |
| {
 | |
| 	union split_spte *ssptep, sspte, orig;
 | |
| 
 | |
| 	ssptep = (union split_spte *)sptep;
 | |
| 	sspte = (union split_spte)spte;
 | |
| 
 | |
| 	/* xchg acts as a barrier before the setting of the high bits */
 | |
| 	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
 | |
| 	orig.spte_high = ssptep->spte_high;
 | |
| 	ssptep->spte_high = sspte.spte_high;
 | |
| 	count_spte_clear(sptep, spte);
 | |
| 
 | |
| 	return orig.spte;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The idea using the light way get the spte on x86_32 guest is from
 | |
|  * gup_get_pte (mm/gup.c).
 | |
|  *
 | |
|  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
 | |
|  * coalesces them and we are running out of the MMU lock.  Therefore
 | |
|  * we need to protect against in-progress updates of the spte.
 | |
|  *
 | |
|  * Reading the spte while an update is in progress may get the old value
 | |
|  * for the high part of the spte.  The race is fine for a present->non-present
 | |
|  * change (because the high part of the spte is ignored for non-present spte),
 | |
|  * but for a present->present change we must reread the spte.
 | |
|  *
 | |
|  * All such changes are done in two steps (present->non-present and
 | |
|  * non-present->present), hence it is enough to count the number of
 | |
|  * present->non-present updates: if it changed while reading the spte,
 | |
|  * we might have hit the race.  This is done using clear_spte_count.
 | |
|  */
 | |
| static u64 __get_spte_lockless(u64 *sptep)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
 | |
| 	union split_spte spte, *orig = (union split_spte *)sptep;
 | |
| 	int count;
 | |
| 
 | |
| retry:
 | |
| 	count = sp->clear_spte_count;
 | |
| 	smp_rmb();
 | |
| 
 | |
| 	spte.spte_low = orig->spte_low;
 | |
| 	smp_rmb();
 | |
| 
 | |
| 	spte.spte_high = orig->spte_high;
 | |
| 	smp_rmb();
 | |
| 
 | |
| 	if (unlikely(spte.spte_low != orig->spte_low ||
 | |
| 	      count != sp->clear_spte_count))
 | |
| 		goto retry;
 | |
| 
 | |
| 	return spte.spte;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Rules for using mmu_spte_set:
 | |
|  * Set the sptep from nonpresent to present.
 | |
|  * Note: the sptep being assigned *must* be either not present
 | |
|  * or in a state where the hardware will not attempt to update
 | |
|  * the spte.
 | |
|  */
 | |
| static void mmu_spte_set(u64 *sptep, u64 new_spte)
 | |
| {
 | |
| 	WARN_ON(is_shadow_present_pte(*sptep));
 | |
| 	__set_spte(sptep, new_spte);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the SPTE (excluding the PFN), but do not track changes in its
 | |
|  * accessed/dirty status.
 | |
|  */
 | |
| static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
 | |
| {
 | |
| 	u64 old_spte = *sptep;
 | |
| 
 | |
| 	WARN_ON(!is_shadow_present_pte(new_spte));
 | |
| 	check_spte_writable_invariants(new_spte);
 | |
| 
 | |
| 	if (!is_shadow_present_pte(old_spte)) {
 | |
| 		mmu_spte_set(sptep, new_spte);
 | |
| 		return old_spte;
 | |
| 	}
 | |
| 
 | |
| 	if (!spte_has_volatile_bits(old_spte))
 | |
| 		__update_clear_spte_fast(sptep, new_spte);
 | |
| 	else
 | |
| 		old_spte = __update_clear_spte_slow(sptep, new_spte);
 | |
| 
 | |
| 	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
 | |
| 
 | |
| 	return old_spte;
 | |
| }
 | |
| 
 | |
| /* Rules for using mmu_spte_update:
 | |
|  * Update the state bits, it means the mapped pfn is not changed.
 | |
|  *
 | |
|  * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote
 | |
|  * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only
 | |
|  * spte, even though the writable spte might be cached on a CPU's TLB.
 | |
|  *
 | |
|  * Returns true if the TLB needs to be flushed
 | |
|  */
 | |
| static bool mmu_spte_update(u64 *sptep, u64 new_spte)
 | |
| {
 | |
| 	bool flush = false;
 | |
| 	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
 | |
| 
 | |
| 	if (!is_shadow_present_pte(old_spte))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * For the spte updated out of mmu-lock is safe, since
 | |
| 	 * we always atomically update it, see the comments in
 | |
| 	 * spte_has_volatile_bits().
 | |
| 	 */
 | |
| 	if (is_mmu_writable_spte(old_spte) &&
 | |
| 	      !is_writable_pte(new_spte))
 | |
| 		flush = true;
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush TLB when accessed/dirty states are changed in the page tables,
 | |
| 	 * to guarantee consistency between TLB and page tables.
 | |
| 	 */
 | |
| 
 | |
| 	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
 | |
| 		flush = true;
 | |
| 		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
 | |
| 	}
 | |
| 
 | |
| 	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
 | |
| 		flush = true;
 | |
| 		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
 | |
| 	}
 | |
| 
 | |
| 	return flush;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Rules for using mmu_spte_clear_track_bits:
 | |
|  * It sets the sptep from present to nonpresent, and track the
 | |
|  * state bits, it is used to clear the last level sptep.
 | |
|  * Returns the old PTE.
 | |
|  */
 | |
| static int mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
 | |
| {
 | |
| 	kvm_pfn_t pfn;
 | |
| 	u64 old_spte = *sptep;
 | |
| 	int level = sptep_to_sp(sptep)->role.level;
 | |
| 
 | |
| 	if (!is_shadow_present_pte(old_spte) ||
 | |
| 	    !spte_has_volatile_bits(old_spte))
 | |
| 		__update_clear_spte_fast(sptep, 0ull);
 | |
| 	else
 | |
| 		old_spte = __update_clear_spte_slow(sptep, 0ull);
 | |
| 
 | |
| 	if (!is_shadow_present_pte(old_spte))
 | |
| 		return old_spte;
 | |
| 
 | |
| 	kvm_update_page_stats(kvm, level, -1);
 | |
| 
 | |
| 	pfn = spte_to_pfn(old_spte);
 | |
| 
 | |
| 	/*
 | |
| 	 * KVM does not hold the refcount of the page used by
 | |
| 	 * kvm mmu, before reclaiming the page, we should
 | |
| 	 * unmap it from mmu first.
 | |
| 	 */
 | |
| 	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
 | |
| 
 | |
| 	if (is_accessed_spte(old_spte))
 | |
| 		kvm_set_pfn_accessed(pfn);
 | |
| 
 | |
| 	if (is_dirty_spte(old_spte))
 | |
| 		kvm_set_pfn_dirty(pfn);
 | |
| 
 | |
| 	return old_spte;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Rules for using mmu_spte_clear_no_track:
 | |
|  * Directly clear spte without caring the state bits of sptep,
 | |
|  * it is used to set the upper level spte.
 | |
|  */
 | |
| static void mmu_spte_clear_no_track(u64 *sptep)
 | |
| {
 | |
| 	__update_clear_spte_fast(sptep, 0ull);
 | |
| }
 | |
| 
 | |
| static u64 mmu_spte_get_lockless(u64 *sptep)
 | |
| {
 | |
| 	return __get_spte_lockless(sptep);
 | |
| }
 | |
| 
 | |
| /* Returns the Accessed status of the PTE and resets it at the same time. */
 | |
| static bool mmu_spte_age(u64 *sptep)
 | |
| {
 | |
| 	u64 spte = mmu_spte_get_lockless(sptep);
 | |
| 
 | |
| 	if (!is_accessed_spte(spte))
 | |
| 		return false;
 | |
| 
 | |
| 	if (spte_ad_enabled(spte)) {
 | |
| 		clear_bit((ffs(shadow_accessed_mask) - 1),
 | |
| 			  (unsigned long *)sptep);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Capture the dirty status of the page, so that it doesn't get
 | |
| 		 * lost when the SPTE is marked for access tracking.
 | |
| 		 */
 | |
| 		if (is_writable_pte(spte))
 | |
| 			kvm_set_pfn_dirty(spte_to_pfn(spte));
 | |
| 
 | |
| 		spte = mark_spte_for_access_track(spte);
 | |
| 		mmu_spte_update_no_track(sptep, spte);
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (is_tdp_mmu(vcpu->arch.mmu)) {
 | |
| 		kvm_tdp_mmu_walk_lockless_begin();
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Prevent page table teardown by making any free-er wait during
 | |
| 		 * kvm_flush_remote_tlbs() IPI to all active vcpus.
 | |
| 		 */
 | |
| 		local_irq_disable();
 | |
| 
 | |
| 		/*
 | |
| 		 * Make sure a following spte read is not reordered ahead of the write
 | |
| 		 * to vcpu->mode.
 | |
| 		 */
 | |
| 		smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (is_tdp_mmu(vcpu->arch.mmu)) {
 | |
| 		kvm_tdp_mmu_walk_lockless_end();
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Make sure the write to vcpu->mode is not reordered in front of
 | |
| 		 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
 | |
| 		 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
 | |
| 		 */
 | |
| 		smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
 | |
| 		local_irq_enable();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
 | |
| 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
 | |
| 				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
 | |
| 				       PT64_ROOT_MAX_LEVEL);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 	if (maybe_indirect) {
 | |
| 		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
 | |
| 					       PT64_ROOT_MAX_LEVEL);
 | |
| 		if (r)
 | |
| 			return r;
 | |
| 	}
 | |
| 	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
 | |
| 					  PT64_ROOT_MAX_LEVEL);
 | |
| }
 | |
| 
 | |
| static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
 | |
| 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
 | |
| 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
 | |
| 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
 | |
| }
 | |
| 
 | |
| static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
 | |
| }
 | |
| 
 | |
| static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
 | |
| {
 | |
| 	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
 | |
| }
 | |
| 
 | |
| static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
 | |
| {
 | |
| 	if (!sp->role.direct)
 | |
| 		return sp->gfns[index];
 | |
| 
 | |
| 	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
 | |
| {
 | |
| 	if (!sp->role.direct) {
 | |
| 		sp->gfns[index] = gfn;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
 | |
| 		pr_err_ratelimited("gfn mismatch under direct page %llx "
 | |
| 				   "(expected %llx, got %llx)\n",
 | |
| 				   sp->gfn,
 | |
| 				   kvm_mmu_page_get_gfn(sp, index), gfn);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the pointer to the large page information for a given gfn,
 | |
|  * handling slots that are not large page aligned.
 | |
|  */
 | |
| static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
 | |
| 		const struct kvm_memory_slot *slot, int level)
 | |
| {
 | |
| 	unsigned long idx;
 | |
| 
 | |
| 	idx = gfn_to_index(gfn, slot->base_gfn, level);
 | |
| 	return &slot->arch.lpage_info[level - 2][idx];
 | |
| }
 | |
| 
 | |
| static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
 | |
| 					    gfn_t gfn, int count)
 | |
| {
 | |
| 	struct kvm_lpage_info *linfo;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
 | |
| 		linfo = lpage_info_slot(gfn, slot, i);
 | |
| 		linfo->disallow_lpage += count;
 | |
| 		WARN_ON(linfo->disallow_lpage < 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
 | |
| {
 | |
| 	update_gfn_disallow_lpage_count(slot, gfn, 1);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
 | |
| {
 | |
| 	update_gfn_disallow_lpage_count(slot, gfn, -1);
 | |
| }
 | |
| 
 | |
| static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	struct kvm_memslots *slots;
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 	gfn_t gfn;
 | |
| 
 | |
| 	kvm->arch.indirect_shadow_pages++;
 | |
| 	gfn = sp->gfn;
 | |
| 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
 | |
| 	slot = __gfn_to_memslot(slots, gfn);
 | |
| 
 | |
| 	/* the non-leaf shadow pages are keeping readonly. */
 | |
| 	if (sp->role.level > PG_LEVEL_4K)
 | |
| 		return kvm_slot_page_track_add_page(kvm, slot, gfn,
 | |
| 						    KVM_PAGE_TRACK_WRITE);
 | |
| 
 | |
| 	kvm_mmu_gfn_disallow_lpage(slot, gfn);
 | |
| }
 | |
| 
 | |
| void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	if (sp->lpage_disallowed)
 | |
| 		return;
 | |
| 
 | |
| 	++kvm->stat.nx_lpage_splits;
 | |
| 	list_add_tail(&sp->lpage_disallowed_link,
 | |
| 		      &kvm->arch.lpage_disallowed_mmu_pages);
 | |
| 	sp->lpage_disallowed = true;
 | |
| }
 | |
| 
 | |
| static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	struct kvm_memslots *slots;
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 	gfn_t gfn;
 | |
| 
 | |
| 	kvm->arch.indirect_shadow_pages--;
 | |
| 	gfn = sp->gfn;
 | |
| 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
 | |
| 	slot = __gfn_to_memslot(slots, gfn);
 | |
| 	if (sp->role.level > PG_LEVEL_4K)
 | |
| 		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
 | |
| 						       KVM_PAGE_TRACK_WRITE);
 | |
| 
 | |
| 	kvm_mmu_gfn_allow_lpage(slot, gfn);
 | |
| }
 | |
| 
 | |
| void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	--kvm->stat.nx_lpage_splits;
 | |
| 	sp->lpage_disallowed = false;
 | |
| 	list_del(&sp->lpage_disallowed_link);
 | |
| }
 | |
| 
 | |
| static struct kvm_memory_slot *
 | |
| gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
 | |
| 			    bool no_dirty_log)
 | |
| {
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 
 | |
| 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
 | |
| 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
 | |
| 		return NULL;
 | |
| 	if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return slot;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * About rmap_head encoding:
 | |
|  *
 | |
|  * If the bit zero of rmap_head->val is clear, then it points to the only spte
 | |
|  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
 | |
|  * pte_list_desc containing more mappings.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Returns the number of pointers in the rmap chain, not counting the new one.
 | |
|  */
 | |
| static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
 | |
| 			struct kvm_rmap_head *rmap_head)
 | |
| {
 | |
| 	struct pte_list_desc *desc;
 | |
| 	int count = 0;
 | |
| 
 | |
| 	if (!rmap_head->val) {
 | |
| 		rmap_printk("%p %llx 0->1\n", spte, *spte);
 | |
| 		rmap_head->val = (unsigned long)spte;
 | |
| 	} else if (!(rmap_head->val & 1)) {
 | |
| 		rmap_printk("%p %llx 1->many\n", spte, *spte);
 | |
| 		desc = mmu_alloc_pte_list_desc(vcpu);
 | |
| 		desc->sptes[0] = (u64 *)rmap_head->val;
 | |
| 		desc->sptes[1] = spte;
 | |
| 		desc->spte_count = 2;
 | |
| 		rmap_head->val = (unsigned long)desc | 1;
 | |
| 		++count;
 | |
| 	} else {
 | |
| 		rmap_printk("%p %llx many->many\n", spte, *spte);
 | |
| 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
 | |
| 		while (desc->spte_count == PTE_LIST_EXT) {
 | |
| 			count += PTE_LIST_EXT;
 | |
| 			if (!desc->more) {
 | |
| 				desc->more = mmu_alloc_pte_list_desc(vcpu);
 | |
| 				desc = desc->more;
 | |
| 				desc->spte_count = 0;
 | |
| 				break;
 | |
| 			}
 | |
| 			desc = desc->more;
 | |
| 		}
 | |
| 		count += desc->spte_count;
 | |
| 		desc->sptes[desc->spte_count++] = spte;
 | |
| 	}
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static void
 | |
| pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
 | |
| 			   struct pte_list_desc *desc, int i,
 | |
| 			   struct pte_list_desc *prev_desc)
 | |
| {
 | |
| 	int j = desc->spte_count - 1;
 | |
| 
 | |
| 	desc->sptes[i] = desc->sptes[j];
 | |
| 	desc->sptes[j] = NULL;
 | |
| 	desc->spte_count--;
 | |
| 	if (desc->spte_count)
 | |
| 		return;
 | |
| 	if (!prev_desc && !desc->more)
 | |
| 		rmap_head->val = 0;
 | |
| 	else
 | |
| 		if (prev_desc)
 | |
| 			prev_desc->more = desc->more;
 | |
| 		else
 | |
| 			rmap_head->val = (unsigned long)desc->more | 1;
 | |
| 	mmu_free_pte_list_desc(desc);
 | |
| }
 | |
| 
 | |
| static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
 | |
| {
 | |
| 	struct pte_list_desc *desc;
 | |
| 	struct pte_list_desc *prev_desc;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!rmap_head->val) {
 | |
| 		pr_err("%s: %p 0->BUG\n", __func__, spte);
 | |
| 		BUG();
 | |
| 	} else if (!(rmap_head->val & 1)) {
 | |
| 		rmap_printk("%p 1->0\n", spte);
 | |
| 		if ((u64 *)rmap_head->val != spte) {
 | |
| 			pr_err("%s:  %p 1->BUG\n", __func__, spte);
 | |
| 			BUG();
 | |
| 		}
 | |
| 		rmap_head->val = 0;
 | |
| 	} else {
 | |
| 		rmap_printk("%p many->many\n", spte);
 | |
| 		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
 | |
| 		prev_desc = NULL;
 | |
| 		while (desc) {
 | |
| 			for (i = 0; i < desc->spte_count; ++i) {
 | |
| 				if (desc->sptes[i] == spte) {
 | |
| 					pte_list_desc_remove_entry(rmap_head,
 | |
| 							desc, i, prev_desc);
 | |
| 					return;
 | |
| 				}
 | |
| 			}
 | |
| 			prev_desc = desc;
 | |
| 			desc = desc->more;
 | |
| 		}
 | |
| 		pr_err("%s: %p many->many\n", __func__, spte);
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void pte_list_remove(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
 | |
| 			    u64 *sptep)
 | |
| {
 | |
| 	mmu_spte_clear_track_bits(kvm, sptep);
 | |
| 	__pte_list_remove(sptep, rmap_head);
 | |
| }
 | |
| 
 | |
| /* Return true if rmap existed, false otherwise */
 | |
| static bool pte_list_destroy(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
 | |
| {
 | |
| 	struct pte_list_desc *desc, *next;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!rmap_head->val)
 | |
| 		return false;
 | |
| 
 | |
| 	if (!(rmap_head->val & 1)) {
 | |
| 		mmu_spte_clear_track_bits(kvm, (u64 *)rmap_head->val);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
 | |
| 
 | |
| 	for (; desc; desc = next) {
 | |
| 		for (i = 0; i < desc->spte_count; i++)
 | |
| 			mmu_spte_clear_track_bits(kvm, desc->sptes[i]);
 | |
| 		next = desc->more;
 | |
| 		mmu_free_pte_list_desc(desc);
 | |
| 	}
 | |
| out:
 | |
| 	/* rmap_head is meaningless now, remember to reset it */
 | |
| 	rmap_head->val = 0;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
 | |
| {
 | |
| 	struct pte_list_desc *desc;
 | |
| 	unsigned int count = 0;
 | |
| 
 | |
| 	if (!rmap_head->val)
 | |
| 		return 0;
 | |
| 	else if (!(rmap_head->val & 1))
 | |
| 		return 1;
 | |
| 
 | |
| 	desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
 | |
| 
 | |
| 	while (desc) {
 | |
| 		count += desc->spte_count;
 | |
| 		desc = desc->more;
 | |
| 	}
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
 | |
| 					 const struct kvm_memory_slot *slot)
 | |
| {
 | |
| 	unsigned long idx;
 | |
| 
 | |
| 	idx = gfn_to_index(gfn, slot->base_gfn, level);
 | |
| 	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
 | |
| }
 | |
| 
 | |
| static bool rmap_can_add(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_mmu_memory_cache *mc;
 | |
| 
 | |
| 	mc = &vcpu->arch.mmu_pte_list_desc_cache;
 | |
| 	return kvm_mmu_memory_cache_nr_free_objects(mc);
 | |
| }
 | |
| 
 | |
| static void rmap_remove(struct kvm *kvm, u64 *spte)
 | |
| {
 | |
| 	struct kvm_memslots *slots;
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	gfn_t gfn;
 | |
| 	struct kvm_rmap_head *rmap_head;
 | |
| 
 | |
| 	sp = sptep_to_sp(spte);
 | |
| 	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
 | |
| 
 | |
| 	/*
 | |
| 	 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
 | |
| 	 * so we have to determine which memslots to use based on context
 | |
| 	 * information in sp->role.
 | |
| 	 */
 | |
| 	slots = kvm_memslots_for_spte_role(kvm, sp->role);
 | |
| 
 | |
| 	slot = __gfn_to_memslot(slots, gfn);
 | |
| 	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
 | |
| 
 | |
| 	__pte_list_remove(spte, rmap_head);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Used by the following functions to iterate through the sptes linked by a
 | |
|  * rmap.  All fields are private and not assumed to be used outside.
 | |
|  */
 | |
| struct rmap_iterator {
 | |
| 	/* private fields */
 | |
| 	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
 | |
| 	int pos;			/* index of the sptep */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Iteration must be started by this function.  This should also be used after
 | |
|  * removing/dropping sptes from the rmap link because in such cases the
 | |
|  * information in the iterator may not be valid.
 | |
|  *
 | |
|  * Returns sptep if found, NULL otherwise.
 | |
|  */
 | |
| static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
 | |
| 			   struct rmap_iterator *iter)
 | |
| {
 | |
| 	u64 *sptep;
 | |
| 
 | |
| 	if (!rmap_head->val)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!(rmap_head->val & 1)) {
 | |
| 		iter->desc = NULL;
 | |
| 		sptep = (u64 *)rmap_head->val;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
 | |
| 	iter->pos = 0;
 | |
| 	sptep = iter->desc->sptes[iter->pos];
 | |
| out:
 | |
| 	BUG_ON(!is_shadow_present_pte(*sptep));
 | |
| 	return sptep;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Must be used with a valid iterator: e.g. after rmap_get_first().
 | |
|  *
 | |
|  * Returns sptep if found, NULL otherwise.
 | |
|  */
 | |
| static u64 *rmap_get_next(struct rmap_iterator *iter)
 | |
| {
 | |
| 	u64 *sptep;
 | |
| 
 | |
| 	if (iter->desc) {
 | |
| 		if (iter->pos < PTE_LIST_EXT - 1) {
 | |
| 			++iter->pos;
 | |
| 			sptep = iter->desc->sptes[iter->pos];
 | |
| 			if (sptep)
 | |
| 				goto out;
 | |
| 		}
 | |
| 
 | |
| 		iter->desc = iter->desc->more;
 | |
| 
 | |
| 		if (iter->desc) {
 | |
| 			iter->pos = 0;
 | |
| 			/* desc->sptes[0] cannot be NULL */
 | |
| 			sptep = iter->desc->sptes[iter->pos];
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| out:
 | |
| 	BUG_ON(!is_shadow_present_pte(*sptep));
 | |
| 	return sptep;
 | |
| }
 | |
| 
 | |
| #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
 | |
| 	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
 | |
| 	     _spte_; _spte_ = rmap_get_next(_iter_))
 | |
| 
 | |
| static void drop_spte(struct kvm *kvm, u64 *sptep)
 | |
| {
 | |
| 	u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
 | |
| 
 | |
| 	if (is_shadow_present_pte(old_spte))
 | |
| 		rmap_remove(kvm, sptep);
 | |
| }
 | |
| 
 | |
| 
 | |
| static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
 | |
| {
 | |
| 	if (is_large_pte(*sptep)) {
 | |
| 		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
 | |
| 		drop_spte(kvm, sptep);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
 | |
| {
 | |
| 	if (__drop_large_spte(vcpu->kvm, sptep)) {
 | |
| 		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
 | |
| 
 | |
| 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
 | |
| 			KVM_PAGES_PER_HPAGE(sp->role.level));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write-protect on the specified @sptep, @pt_protect indicates whether
 | |
|  * spte write-protection is caused by protecting shadow page table.
 | |
|  *
 | |
|  * Note: write protection is difference between dirty logging and spte
 | |
|  * protection:
 | |
|  * - for dirty logging, the spte can be set to writable at anytime if
 | |
|  *   its dirty bitmap is properly set.
 | |
|  * - for spte protection, the spte can be writable only after unsync-ing
 | |
|  *   shadow page.
 | |
|  *
 | |
|  * Return true if tlb need be flushed.
 | |
|  */
 | |
| static bool spte_write_protect(u64 *sptep, bool pt_protect)
 | |
| {
 | |
| 	u64 spte = *sptep;
 | |
| 
 | |
| 	if (!is_writable_pte(spte) &&
 | |
| 	    !(pt_protect && is_mmu_writable_spte(spte)))
 | |
| 		return false;
 | |
| 
 | |
| 	rmap_printk("spte %p %llx\n", sptep, *sptep);
 | |
| 
 | |
| 	if (pt_protect)
 | |
| 		spte &= ~shadow_mmu_writable_mask;
 | |
| 	spte = spte & ~PT_WRITABLE_MASK;
 | |
| 
 | |
| 	return mmu_spte_update(sptep, spte);
 | |
| }
 | |
| 
 | |
| static bool rmap_write_protect(struct kvm_rmap_head *rmap_head,
 | |
| 			       bool pt_protect)
 | |
| {
 | |
| 	u64 *sptep;
 | |
| 	struct rmap_iterator iter;
 | |
| 	bool flush = false;
 | |
| 
 | |
| 	for_each_rmap_spte(rmap_head, &iter, sptep)
 | |
| 		flush |= spte_write_protect(sptep, pt_protect);
 | |
| 
 | |
| 	return flush;
 | |
| }
 | |
| 
 | |
| static bool spte_clear_dirty(u64 *sptep)
 | |
| {
 | |
| 	u64 spte = *sptep;
 | |
| 
 | |
| 	rmap_printk("spte %p %llx\n", sptep, *sptep);
 | |
| 
 | |
| 	MMU_WARN_ON(!spte_ad_enabled(spte));
 | |
| 	spte &= ~shadow_dirty_mask;
 | |
| 	return mmu_spte_update(sptep, spte);
 | |
| }
 | |
| 
 | |
| static bool spte_wrprot_for_clear_dirty(u64 *sptep)
 | |
| {
 | |
| 	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
 | |
| 					       (unsigned long *)sptep);
 | |
| 	if (was_writable && !spte_ad_enabled(*sptep))
 | |
| 		kvm_set_pfn_dirty(spte_to_pfn(*sptep));
 | |
| 
 | |
| 	return was_writable;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Gets the GFN ready for another round of dirty logging by clearing the
 | |
|  *	- D bit on ad-enabled SPTEs, and
 | |
|  *	- W bit on ad-disabled SPTEs.
 | |
|  * Returns true iff any D or W bits were cleared.
 | |
|  */
 | |
| static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
 | |
| 			       const struct kvm_memory_slot *slot)
 | |
| {
 | |
| 	u64 *sptep;
 | |
| 	struct rmap_iterator iter;
 | |
| 	bool flush = false;
 | |
| 
 | |
| 	for_each_rmap_spte(rmap_head, &iter, sptep)
 | |
| 		if (spte_ad_need_write_protect(*sptep))
 | |
| 			flush |= spte_wrprot_for_clear_dirty(sptep);
 | |
| 		else
 | |
| 			flush |= spte_clear_dirty(sptep);
 | |
| 
 | |
| 	return flush;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
 | |
|  * @kvm: kvm instance
 | |
|  * @slot: slot to protect
 | |
|  * @gfn_offset: start of the BITS_PER_LONG pages we care about
 | |
|  * @mask: indicates which pages we should protect
 | |
|  *
 | |
|  * Used when we do not need to care about huge page mappings.
 | |
|  */
 | |
| static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
 | |
| 				     struct kvm_memory_slot *slot,
 | |
| 				     gfn_t gfn_offset, unsigned long mask)
 | |
| {
 | |
| 	struct kvm_rmap_head *rmap_head;
 | |
| 
 | |
| 	if (is_tdp_mmu_enabled(kvm))
 | |
| 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
 | |
| 				slot->base_gfn + gfn_offset, mask, true);
 | |
| 
 | |
| 	if (!kvm_memslots_have_rmaps(kvm))
 | |
| 		return;
 | |
| 
 | |
| 	while (mask) {
 | |
| 		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
 | |
| 					PG_LEVEL_4K, slot);
 | |
| 		rmap_write_protect(rmap_head, false);
 | |
| 
 | |
| 		/* clear the first set bit */
 | |
| 		mask &= mask - 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
 | |
|  * protect the page if the D-bit isn't supported.
 | |
|  * @kvm: kvm instance
 | |
|  * @slot: slot to clear D-bit
 | |
|  * @gfn_offset: start of the BITS_PER_LONG pages we care about
 | |
|  * @mask: indicates which pages we should clear D-bit
 | |
|  *
 | |
|  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
 | |
|  */
 | |
| static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
 | |
| 					 struct kvm_memory_slot *slot,
 | |
| 					 gfn_t gfn_offset, unsigned long mask)
 | |
| {
 | |
| 	struct kvm_rmap_head *rmap_head;
 | |
| 
 | |
| 	if (is_tdp_mmu_enabled(kvm))
 | |
| 		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
 | |
| 				slot->base_gfn + gfn_offset, mask, false);
 | |
| 
 | |
| 	if (!kvm_memslots_have_rmaps(kvm))
 | |
| 		return;
 | |
| 
 | |
| 	while (mask) {
 | |
| 		rmap_head = gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
 | |
| 					PG_LEVEL_4K, slot);
 | |
| 		__rmap_clear_dirty(kvm, rmap_head, slot);
 | |
| 
 | |
| 		/* clear the first set bit */
 | |
| 		mask &= mask - 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
 | |
|  * PT level pages.
 | |
|  *
 | |
|  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
 | |
|  * enable dirty logging for them.
 | |
|  *
 | |
|  * We need to care about huge page mappings: e.g. during dirty logging we may
 | |
|  * have such mappings.
 | |
|  */
 | |
| void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
 | |
| 				struct kvm_memory_slot *slot,
 | |
| 				gfn_t gfn_offset, unsigned long mask)
 | |
| {
 | |
| 	/*
 | |
| 	 * Huge pages are NOT write protected when we start dirty logging in
 | |
| 	 * initially-all-set mode; must write protect them here so that they
 | |
| 	 * are split to 4K on the first write.
 | |
| 	 *
 | |
| 	 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
 | |
| 	 * of memslot has no such restriction, so the range can cross two large
 | |
| 	 * pages.
 | |
| 	 */
 | |
| 	if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
 | |
| 		gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
 | |
| 		gfn_t end = slot->base_gfn + gfn_offset + __fls(mask);
 | |
| 
 | |
| 		if (READ_ONCE(eager_page_split))
 | |
| 			kvm_mmu_try_split_huge_pages(kvm, slot, start, end, PG_LEVEL_4K);
 | |
| 
 | |
| 		kvm_mmu_slot_gfn_write_protect(kvm, slot, start, PG_LEVEL_2M);
 | |
| 
 | |
| 		/* Cross two large pages? */
 | |
| 		if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
 | |
| 		    ALIGN(end << PAGE_SHIFT, PMD_SIZE))
 | |
| 			kvm_mmu_slot_gfn_write_protect(kvm, slot, end,
 | |
| 						       PG_LEVEL_2M);
 | |
| 	}
 | |
| 
 | |
| 	/* Now handle 4K PTEs.  */
 | |
| 	if (kvm_x86_ops.cpu_dirty_log_size)
 | |
| 		kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
 | |
| 	else
 | |
| 		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
 | |
| }
 | |
| 
 | |
| int kvm_cpu_dirty_log_size(void)
 | |
| {
 | |
| 	return kvm_x86_ops.cpu_dirty_log_size;
 | |
| }
 | |
| 
 | |
| bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
 | |
| 				    struct kvm_memory_slot *slot, u64 gfn,
 | |
| 				    int min_level)
 | |
| {
 | |
| 	struct kvm_rmap_head *rmap_head;
 | |
| 	int i;
 | |
| 	bool write_protected = false;
 | |
| 
 | |
| 	if (kvm_memslots_have_rmaps(kvm)) {
 | |
| 		for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
 | |
| 			rmap_head = gfn_to_rmap(gfn, i, slot);
 | |
| 			write_protected |= rmap_write_protect(rmap_head, true);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (is_tdp_mmu_enabled(kvm))
 | |
| 		write_protected |=
 | |
| 			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
 | |
| 
 | |
| 	return write_protected;
 | |
| }
 | |
| 
 | |
| static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn)
 | |
| {
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 
 | |
| 	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
 | |
| 	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn, PG_LEVEL_4K);
 | |
| }
 | |
| 
 | |
| static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
 | |
| 			  const struct kvm_memory_slot *slot)
 | |
| {
 | |
| 	return pte_list_destroy(kvm, rmap_head);
 | |
| }
 | |
| 
 | |
| static bool kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
 | |
| 			    struct kvm_memory_slot *slot, gfn_t gfn, int level,
 | |
| 			    pte_t unused)
 | |
| {
 | |
| 	return kvm_zap_rmapp(kvm, rmap_head, slot);
 | |
| }
 | |
| 
 | |
| static bool kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
 | |
| 			      struct kvm_memory_slot *slot, gfn_t gfn, int level,
 | |
| 			      pte_t pte)
 | |
| {
 | |
| 	u64 *sptep;
 | |
| 	struct rmap_iterator iter;
 | |
| 	bool need_flush = false;
 | |
| 	u64 new_spte;
 | |
| 	kvm_pfn_t new_pfn;
 | |
| 
 | |
| 	WARN_ON(pte_huge(pte));
 | |
| 	new_pfn = pte_pfn(pte);
 | |
| 
 | |
| restart:
 | |
| 	for_each_rmap_spte(rmap_head, &iter, sptep) {
 | |
| 		rmap_printk("spte %p %llx gfn %llx (%d)\n",
 | |
| 			    sptep, *sptep, gfn, level);
 | |
| 
 | |
| 		need_flush = true;
 | |
| 
 | |
| 		if (pte_write(pte)) {
 | |
| 			pte_list_remove(kvm, rmap_head, sptep);
 | |
| 			goto restart;
 | |
| 		} else {
 | |
| 			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
 | |
| 					*sptep, new_pfn);
 | |
| 
 | |
| 			mmu_spte_clear_track_bits(kvm, sptep);
 | |
| 			mmu_spte_set(sptep, new_spte);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (need_flush && kvm_available_flush_tlb_with_range()) {
 | |
| 		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
 | |
| 		return false;
 | |
| 	}
 | |
| 
 | |
| 	return need_flush;
 | |
| }
 | |
| 
 | |
| struct slot_rmap_walk_iterator {
 | |
| 	/* input fields. */
 | |
| 	const struct kvm_memory_slot *slot;
 | |
| 	gfn_t start_gfn;
 | |
| 	gfn_t end_gfn;
 | |
| 	int start_level;
 | |
| 	int end_level;
 | |
| 
 | |
| 	/* output fields. */
 | |
| 	gfn_t gfn;
 | |
| 	struct kvm_rmap_head *rmap;
 | |
| 	int level;
 | |
| 
 | |
| 	/* private field. */
 | |
| 	struct kvm_rmap_head *end_rmap;
 | |
| };
 | |
| 
 | |
| static void
 | |
| rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
 | |
| {
 | |
| 	iterator->level = level;
 | |
| 	iterator->gfn = iterator->start_gfn;
 | |
| 	iterator->rmap = gfn_to_rmap(iterator->gfn, level, iterator->slot);
 | |
| 	iterator->end_rmap = gfn_to_rmap(iterator->end_gfn, level, iterator->slot);
 | |
| }
 | |
| 
 | |
| static void
 | |
| slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
 | |
| 		    const struct kvm_memory_slot *slot, int start_level,
 | |
| 		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
 | |
| {
 | |
| 	iterator->slot = slot;
 | |
| 	iterator->start_level = start_level;
 | |
| 	iterator->end_level = end_level;
 | |
| 	iterator->start_gfn = start_gfn;
 | |
| 	iterator->end_gfn = end_gfn;
 | |
| 
 | |
| 	rmap_walk_init_level(iterator, iterator->start_level);
 | |
| }
 | |
| 
 | |
| static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
 | |
| {
 | |
| 	return !!iterator->rmap;
 | |
| }
 | |
| 
 | |
| static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
 | |
| {
 | |
| 	if (++iterator->rmap <= iterator->end_rmap) {
 | |
| 		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (++iterator->level > iterator->end_level) {
 | |
| 		iterator->rmap = NULL;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	rmap_walk_init_level(iterator, iterator->level);
 | |
| }
 | |
| 
 | |
| #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
 | |
| 	   _start_gfn, _end_gfn, _iter_)				\
 | |
| 	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
 | |
| 				 _end_level_, _start_gfn, _end_gfn);	\
 | |
| 	     slot_rmap_walk_okay(_iter_);				\
 | |
| 	     slot_rmap_walk_next(_iter_))
 | |
| 
 | |
| typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
 | |
| 			       struct kvm_memory_slot *slot, gfn_t gfn,
 | |
| 			       int level, pte_t pte);
 | |
| 
 | |
| static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
 | |
| 						 struct kvm_gfn_range *range,
 | |
| 						 rmap_handler_t handler)
 | |
| {
 | |
| 	struct slot_rmap_walk_iterator iterator;
 | |
| 	bool ret = false;
 | |
| 
 | |
| 	for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
 | |
| 				 range->start, range->end - 1, &iterator)
 | |
| 		ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
 | |
| 			       iterator.level, range->pte);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
 | |
| {
 | |
| 	bool flush = false;
 | |
| 
 | |
| 	if (kvm_memslots_have_rmaps(kvm))
 | |
| 		flush = kvm_handle_gfn_range(kvm, range, kvm_unmap_rmapp);
 | |
| 
 | |
| 	if (is_tdp_mmu_enabled(kvm))
 | |
| 		flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
 | |
| 
 | |
| 	return flush;
 | |
| }
 | |
| 
 | |
| bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
 | |
| {
 | |
| 	bool flush = false;
 | |
| 
 | |
| 	if (kvm_memslots_have_rmaps(kvm))
 | |
| 		flush = kvm_handle_gfn_range(kvm, range, kvm_set_pte_rmapp);
 | |
| 
 | |
| 	if (is_tdp_mmu_enabled(kvm))
 | |
| 		flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
 | |
| 
 | |
| 	return flush;
 | |
| }
 | |
| 
 | |
| static bool kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
 | |
| 			  struct kvm_memory_slot *slot, gfn_t gfn, int level,
 | |
| 			  pte_t unused)
 | |
| {
 | |
| 	u64 *sptep;
 | |
| 	struct rmap_iterator uninitialized_var(iter);
 | |
| 	int young = 0;
 | |
| 
 | |
| 	for_each_rmap_spte(rmap_head, &iter, sptep)
 | |
| 		young |= mmu_spte_age(sptep);
 | |
| 
 | |
| 	return young;
 | |
| }
 | |
| 
 | |
| static bool kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
 | |
| 			       struct kvm_memory_slot *slot, gfn_t gfn,
 | |
| 			       int level, pte_t unused)
 | |
| {
 | |
| 	u64 *sptep;
 | |
| 	struct rmap_iterator iter;
 | |
| 
 | |
| 	for_each_rmap_spte(rmap_head, &iter, sptep)
 | |
| 		if (is_accessed_spte(*sptep))
 | |
| 			return true;
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| #define RMAP_RECYCLE_THRESHOLD 1000
 | |
| 
 | |
| static void rmap_add(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
 | |
| 		     u64 *spte, gfn_t gfn)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	struct kvm_rmap_head *rmap_head;
 | |
| 	int rmap_count;
 | |
| 
 | |
| 	sp = sptep_to_sp(spte);
 | |
| 	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
 | |
| 	rmap_head = gfn_to_rmap(gfn, sp->role.level, slot);
 | |
| 	rmap_count = pte_list_add(vcpu, spte, rmap_head);
 | |
| 
 | |
| 	if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
 | |
| 		kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, __pte(0));
 | |
| 		kvm_flush_remote_tlbs_with_address(
 | |
| 				vcpu->kvm, sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
 | |
| {
 | |
| 	bool young = false;
 | |
| 
 | |
| 	if (kvm_memslots_have_rmaps(kvm))
 | |
| 		young = kvm_handle_gfn_range(kvm, range, kvm_age_rmapp);
 | |
| 
 | |
| 	if (is_tdp_mmu_enabled(kvm))
 | |
| 		young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
 | |
| 
 | |
| 	return young;
 | |
| }
 | |
| 
 | |
| bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
 | |
| {
 | |
| 	bool young = false;
 | |
| 
 | |
| 	if (kvm_memslots_have_rmaps(kvm))
 | |
| 		young = kvm_handle_gfn_range(kvm, range, kvm_test_age_rmapp);
 | |
| 
 | |
| 	if (is_tdp_mmu_enabled(kvm))
 | |
| 		young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
 | |
| 
 | |
| 	return young;
 | |
| }
 | |
| 
 | |
| #ifdef MMU_DEBUG
 | |
| static int is_empty_shadow_page(u64 *spt)
 | |
| {
 | |
| 	u64 *pos;
 | |
| 	u64 *end;
 | |
| 
 | |
| 	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
 | |
| 		if (is_shadow_present_pte(*pos)) {
 | |
| 			printk(KERN_ERR "%s: %p %llx\n", __func__,
 | |
| 			       pos, *pos);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	return 1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * This value is the sum of all of the kvm instances's
 | |
|  * kvm->arch.n_used_mmu_pages values.  We need a global,
 | |
|  * aggregate version in order to make the slab shrinker
 | |
|  * faster
 | |
|  */
 | |
| static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
 | |
| {
 | |
| 	kvm->arch.n_used_mmu_pages += nr;
 | |
| 	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
 | |
| 	hlist_del(&sp->hash_link);
 | |
| 	list_del(&sp->link);
 | |
| 	free_page((unsigned long)sp->spt);
 | |
| 	if (!sp->role.direct)
 | |
| 		free_page((unsigned long)sp->gfns);
 | |
| 	kmem_cache_free(mmu_page_header_cache, sp);
 | |
| }
 | |
| 
 | |
| static unsigned kvm_page_table_hashfn(gfn_t gfn)
 | |
| {
 | |
| 	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
 | |
| }
 | |
| 
 | |
| static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_mmu_page *sp, u64 *parent_pte)
 | |
| {
 | |
| 	if (!parent_pte)
 | |
| 		return;
 | |
| 
 | |
| 	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
 | |
| }
 | |
| 
 | |
| static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
 | |
| 				       u64 *parent_pte)
 | |
| {
 | |
| 	__pte_list_remove(parent_pte, &sp->parent_ptes);
 | |
| }
 | |
| 
 | |
| static void drop_parent_pte(struct kvm_mmu_page *sp,
 | |
| 			    u64 *parent_pte)
 | |
| {
 | |
| 	mmu_page_remove_parent_pte(sp, parent_pte);
 | |
| 	mmu_spte_clear_no_track(parent_pte);
 | |
| }
 | |
| 
 | |
| static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 
 | |
| 	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
 | |
| 	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
 | |
| 	if (!direct)
 | |
| 		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
 | |
| 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
 | |
| 
 | |
| 	/*
 | |
| 	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
 | |
| 	 * depends on valid pages being added to the head of the list.  See
 | |
| 	 * comments in kvm_zap_obsolete_pages().
 | |
| 	 */
 | |
| 	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
 | |
| 	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
 | |
| 	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
 | |
| 	return sp;
 | |
| }
 | |
| 
 | |
| static void mark_unsync(u64 *spte);
 | |
| static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	u64 *sptep;
 | |
| 	struct rmap_iterator iter;
 | |
| 
 | |
| 	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
 | |
| 		mark_unsync(sptep);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void mark_unsync(u64 *spte)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	unsigned int index;
 | |
| 
 | |
| 	sp = sptep_to_sp(spte);
 | |
| 	index = spte - sp->spt;
 | |
| 	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
 | |
| 		return;
 | |
| 	if (sp->unsync_children++)
 | |
| 		return;
 | |
| 	kvm_mmu_mark_parents_unsync(sp);
 | |
| }
 | |
| 
 | |
| static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
 | |
| 			       struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| #define KVM_PAGE_ARRAY_NR 16
 | |
| 
 | |
| struct kvm_mmu_pages {
 | |
| 	struct mmu_page_and_offset {
 | |
| 		struct kvm_mmu_page *sp;
 | |
| 		unsigned int idx;
 | |
| 	} page[KVM_PAGE_ARRAY_NR];
 | |
| 	unsigned int nr;
 | |
| };
 | |
| 
 | |
| static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
 | |
| 			 int idx)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (sp->unsync)
 | |
| 		for (i=0; i < pvec->nr; i++)
 | |
| 			if (pvec->page[i].sp == sp)
 | |
| 				return 0;
 | |
| 
 | |
| 	pvec->page[pvec->nr].sp = sp;
 | |
| 	pvec->page[pvec->nr].idx = idx;
 | |
| 	pvec->nr++;
 | |
| 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
 | |
| }
 | |
| 
 | |
| static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
 | |
| {
 | |
| 	--sp->unsync_children;
 | |
| 	WARN_ON((int)sp->unsync_children < 0);
 | |
| 	__clear_bit(idx, sp->unsync_child_bitmap);
 | |
| }
 | |
| 
 | |
| static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
 | |
| 			   struct kvm_mmu_pages *pvec)
 | |
| {
 | |
| 	int i, ret, nr_unsync_leaf = 0;
 | |
| 
 | |
| 	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
 | |
| 		struct kvm_mmu_page *child;
 | |
| 		u64 ent = sp->spt[i];
 | |
| 
 | |
| 		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
 | |
| 			clear_unsync_child_bit(sp, i);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
 | |
| 
 | |
| 		if (child->unsync_children) {
 | |
| 			if (mmu_pages_add(pvec, child, i))
 | |
| 				return -ENOSPC;
 | |
| 
 | |
| 			ret = __mmu_unsync_walk(child, pvec);
 | |
| 			if (!ret) {
 | |
| 				clear_unsync_child_bit(sp, i);
 | |
| 				continue;
 | |
| 			} else if (ret > 0) {
 | |
| 				nr_unsync_leaf += ret;
 | |
| 			} else
 | |
| 				return ret;
 | |
| 		} else if (child->unsync) {
 | |
| 			nr_unsync_leaf++;
 | |
| 			if (mmu_pages_add(pvec, child, i))
 | |
| 				return -ENOSPC;
 | |
| 		} else
 | |
| 			clear_unsync_child_bit(sp, i);
 | |
| 	}
 | |
| 
 | |
| 	return nr_unsync_leaf;
 | |
| }
 | |
| 
 | |
| #define INVALID_INDEX (-1)
 | |
| 
 | |
| static int mmu_unsync_walk(struct kvm_mmu_page *sp,
 | |
| 			   struct kvm_mmu_pages *pvec)
 | |
| {
 | |
| 	pvec->nr = 0;
 | |
| 	if (!sp->unsync_children)
 | |
| 		return 0;
 | |
| 
 | |
| 	mmu_pages_add(pvec, sp, INVALID_INDEX);
 | |
| 	return __mmu_unsync_walk(sp, pvec);
 | |
| }
 | |
| 
 | |
| static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	WARN_ON(!sp->unsync);
 | |
| 	trace_kvm_mmu_sync_page(sp);
 | |
| 	sp->unsync = 0;
 | |
| 	--kvm->stat.mmu_unsync;
 | |
| }
 | |
| 
 | |
| static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
 | |
| 				     struct list_head *invalid_list);
 | |
| static void kvm_mmu_commit_zap_page(struct kvm *kvm,
 | |
| 				    struct list_head *invalid_list);
 | |
| 
 | |
| #define for_each_valid_sp(_kvm, _sp, _list)				\
 | |
| 	hlist_for_each_entry(_sp, _list, hash_link)			\
 | |
| 		if (is_obsolete_sp((_kvm), (_sp))) {			\
 | |
| 		} else
 | |
| 
 | |
| #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
 | |
| 	for_each_valid_sp(_kvm, _sp,					\
 | |
| 	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
 | |
| 		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
 | |
| 
 | |
| static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
 | |
| 			 struct list_head *invalid_list)
 | |
| {
 | |
| 	int ret = vcpu->arch.mmu->sync_page(vcpu, sp);
 | |
| 
 | |
| 	if (ret < 0)
 | |
| 		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
 | |
| 					struct list_head *invalid_list,
 | |
| 					bool remote_flush)
 | |
| {
 | |
| 	if (!remote_flush && list_empty(invalid_list))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!list_empty(invalid_list))
 | |
| 		kvm_mmu_commit_zap_page(kvm, invalid_list);
 | |
| 	else
 | |
| 		kvm_flush_remote_tlbs(kvm);
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	if (sp->role.invalid)
 | |
| 		return true;
 | |
| 
 | |
| 	/* TDP MMU pages due not use the MMU generation. */
 | |
| 	return !sp->tdp_mmu_page &&
 | |
| 	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
 | |
| }
 | |
| 
 | |
| struct mmu_page_path {
 | |
| 	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
 | |
| 	unsigned int idx[PT64_ROOT_MAX_LEVEL];
 | |
| };
 | |
| 
 | |
| #define for_each_sp(pvec, sp, parents, i)			\
 | |
| 		for (i = mmu_pages_first(&pvec, &parents);	\
 | |
| 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
 | |
| 			i = mmu_pages_next(&pvec, &parents, i))
 | |
| 
 | |
| static int mmu_pages_next(struct kvm_mmu_pages *pvec,
 | |
| 			  struct mmu_page_path *parents,
 | |
| 			  int i)
 | |
| {
 | |
| 	int n;
 | |
| 
 | |
| 	for (n = i+1; n < pvec->nr; n++) {
 | |
| 		struct kvm_mmu_page *sp = pvec->page[n].sp;
 | |
| 		unsigned idx = pvec->page[n].idx;
 | |
| 		int level = sp->role.level;
 | |
| 
 | |
| 		parents->idx[level-1] = idx;
 | |
| 		if (level == PG_LEVEL_4K)
 | |
| 			break;
 | |
| 
 | |
| 		parents->parent[level-2] = sp;
 | |
| 	}
 | |
| 
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| static int mmu_pages_first(struct kvm_mmu_pages *pvec,
 | |
| 			   struct mmu_page_path *parents)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	int level;
 | |
| 
 | |
| 	if (pvec->nr == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	WARN_ON(pvec->page[0].idx != INVALID_INDEX);
 | |
| 
 | |
| 	sp = pvec->page[0].sp;
 | |
| 	level = sp->role.level;
 | |
| 	WARN_ON(level == PG_LEVEL_4K);
 | |
| 
 | |
| 	parents->parent[level-2] = sp;
 | |
| 
 | |
| 	/* Also set up a sentinel.  Further entries in pvec are all
 | |
| 	 * children of sp, so this element is never overwritten.
 | |
| 	 */
 | |
| 	parents->parent[level-1] = NULL;
 | |
| 	return mmu_pages_next(pvec, parents, 0);
 | |
| }
 | |
| 
 | |
| static void mmu_pages_clear_parents(struct mmu_page_path *parents)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	unsigned int level = 0;
 | |
| 
 | |
| 	do {
 | |
| 		unsigned int idx = parents->idx[level];
 | |
| 		sp = parents->parent[level];
 | |
| 		if (!sp)
 | |
| 			return;
 | |
| 
 | |
| 		WARN_ON(idx == INVALID_INDEX);
 | |
| 		clear_unsync_child_bit(sp, idx);
 | |
| 		level++;
 | |
| 	} while (!sp->unsync_children);
 | |
| }
 | |
| 
 | |
| static int mmu_sync_children(struct kvm_vcpu *vcpu,
 | |
| 			     struct kvm_mmu_page *parent, bool can_yield)
 | |
| {
 | |
| 	int i;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	struct mmu_page_path parents;
 | |
| 	struct kvm_mmu_pages pages;
 | |
| 	LIST_HEAD(invalid_list);
 | |
| 	bool flush = false;
 | |
| 
 | |
| 	while (mmu_unsync_walk(parent, &pages)) {
 | |
| 		bool protected = false;
 | |
| 
 | |
| 		for_each_sp(pages, sp, parents, i)
 | |
| 			protected |= kvm_vcpu_write_protect_gfn(vcpu, sp->gfn);
 | |
| 
 | |
| 		if (protected) {
 | |
| 			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, true);
 | |
| 			flush = false;
 | |
| 		}
 | |
| 
 | |
| 		for_each_sp(pages, sp, parents, i) {
 | |
| 			kvm_unlink_unsync_page(vcpu->kvm, sp);
 | |
| 			flush |= kvm_sync_page(vcpu, sp, &invalid_list) > 0;
 | |
| 			mmu_pages_clear_parents(&parents);
 | |
| 		}
 | |
| 		if (need_resched() || rwlock_needbreak(&vcpu->kvm->mmu_lock)) {
 | |
| 			kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
 | |
| 			if (!can_yield) {
 | |
| 				kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
 | |
| 				return -EINTR;
 | |
| 			}
 | |
| 
 | |
| 			cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
 | |
| 			flush = false;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	atomic_set(&sp->write_flooding_count,  0);
 | |
| }
 | |
| 
 | |
| static void clear_sp_write_flooding_count(u64 *spte)
 | |
| {
 | |
| 	__clear_sp_write_flooding_count(sptep_to_sp(spte));
 | |
| }
 | |
| 
 | |
| static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
 | |
| 					     gfn_t gfn,
 | |
| 					     gva_t gaddr,
 | |
| 					     unsigned level,
 | |
| 					     int direct,
 | |
| 					     unsigned int access)
 | |
| {
 | |
| 	bool direct_mmu = vcpu->arch.mmu->direct_map;
 | |
| 	union kvm_mmu_page_role role;
 | |
| 	struct hlist_head *sp_list;
 | |
| 	unsigned quadrant;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	int ret;
 | |
| 	int collisions = 0;
 | |
| 	LIST_HEAD(invalid_list);
 | |
| 
 | |
| 	role = vcpu->arch.mmu->mmu_role.base;
 | |
| 	role.level = level;
 | |
| 	role.direct = direct;
 | |
| 	role.access = access;
 | |
| 	if (role.has_4_byte_gpte) {
 | |
| 		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
 | |
| 		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
 | |
| 		role.quadrant = quadrant;
 | |
| 	}
 | |
| 
 | |
| 	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
 | |
| 	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
 | |
| 		if (sp->gfn != gfn) {
 | |
| 			collisions++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (sp->role.word != role.word) {
 | |
| 			/*
 | |
| 			 * If the guest is creating an upper-level page, zap
 | |
| 			 * unsync pages for the same gfn.  While it's possible
 | |
| 			 * the guest is using recursive page tables, in all
 | |
| 			 * likelihood the guest has stopped using the unsync
 | |
| 			 * page and is installing a completely unrelated page.
 | |
| 			 * Unsync pages must not be left as is, because the new
 | |
| 			 * upper-level page will be write-protected.
 | |
| 			 */
 | |
| 			if (level > PG_LEVEL_4K && sp->unsync)
 | |
| 				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
 | |
| 							 &invalid_list);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (direct_mmu)
 | |
| 			goto trace_get_page;
 | |
| 
 | |
| 		if (sp->unsync) {
 | |
| 			/*
 | |
| 			 * The page is good, but is stale.  kvm_sync_page does
 | |
| 			 * get the latest guest state, but (unlike mmu_unsync_children)
 | |
| 			 * it doesn't write-protect the page or mark it synchronized!
 | |
| 			 * This way the validity of the mapping is ensured, but the
 | |
| 			 * overhead of write protection is not incurred until the
 | |
| 			 * guest invalidates the TLB mapping.  This allows multiple
 | |
| 			 * SPs for a single gfn to be unsync.
 | |
| 			 *
 | |
| 			 * If the sync fails, the page is zapped.  If so, break
 | |
| 			 * in order to rebuild it.
 | |
| 			 */
 | |
| 			ret = kvm_sync_page(vcpu, sp, &invalid_list);
 | |
| 			if (ret < 0)
 | |
| 				break;
 | |
| 
 | |
| 			WARN_ON(!list_empty(&invalid_list));
 | |
| 			if (ret > 0)
 | |
| 				kvm_flush_remote_tlbs(vcpu->kvm);
 | |
| 		}
 | |
| 
 | |
| 		__clear_sp_write_flooding_count(sp);
 | |
| 
 | |
| trace_get_page:
 | |
| 		trace_kvm_mmu_get_page(sp, false);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	++vcpu->kvm->stat.mmu_cache_miss;
 | |
| 
 | |
| 	sp = kvm_mmu_alloc_page(vcpu, direct);
 | |
| 
 | |
| 	sp->gfn = gfn;
 | |
| 	sp->role = role;
 | |
| 	hlist_add_head(&sp->hash_link, sp_list);
 | |
| 	if (!direct) {
 | |
| 		account_shadowed(vcpu->kvm, sp);
 | |
| 		if (level == PG_LEVEL_4K && kvm_vcpu_write_protect_gfn(vcpu, gfn))
 | |
| 			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
 | |
| 	}
 | |
| 	trace_kvm_mmu_get_page(sp, true);
 | |
| out:
 | |
| 	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
 | |
| 
 | |
| 	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
 | |
| 		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
 | |
| 	return sp;
 | |
| }
 | |
| 
 | |
| static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
 | |
| 					struct kvm_vcpu *vcpu, hpa_t root,
 | |
| 					u64 addr)
 | |
| {
 | |
| 	iterator->addr = addr;
 | |
| 	iterator->shadow_addr = root;
 | |
| 	iterator->level = vcpu->arch.mmu->shadow_root_level;
 | |
| 
 | |
| 	if (iterator->level >= PT64_ROOT_4LEVEL &&
 | |
| 	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
 | |
| 	    !vcpu->arch.mmu->direct_map)
 | |
| 		iterator->level = PT32E_ROOT_LEVEL;
 | |
| 
 | |
| 	if (iterator->level == PT32E_ROOT_LEVEL) {
 | |
| 		/*
 | |
| 		 * prev_root is currently only used for 64-bit hosts. So only
 | |
| 		 * the active root_hpa is valid here.
 | |
| 		 */
 | |
| 		BUG_ON(root != vcpu->arch.mmu->root.hpa);
 | |
| 
 | |
| 		iterator->shadow_addr
 | |
| 			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
 | |
| 		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
 | |
| 		--iterator->level;
 | |
| 		if (!iterator->shadow_addr)
 | |
| 			iterator->level = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
 | |
| 			     struct kvm_vcpu *vcpu, u64 addr)
 | |
| {
 | |
| 	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root.hpa,
 | |
| 				    addr);
 | |
| }
 | |
| 
 | |
| static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
 | |
| {
 | |
| 	if (iterator->level < PG_LEVEL_4K)
 | |
| 		return false;
 | |
| 
 | |
| 	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
 | |
| 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
 | |
| 			       u64 spte)
 | |
| {
 | |
| 	if (!is_shadow_present_pte(spte) || is_last_spte(spte, iterator->level)) {
 | |
| 		iterator->level = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
 | |
| 	--iterator->level;
 | |
| }
 | |
| 
 | |
| static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
 | |
| {
 | |
| 	__shadow_walk_next(iterator, *iterator->sptep);
 | |
| }
 | |
| 
 | |
| static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
 | |
| 			     struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	u64 spte;
 | |
| 
 | |
| 	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
 | |
| 
 | |
| 	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
 | |
| 
 | |
| 	mmu_spte_set(sptep, spte);
 | |
| 
 | |
| 	mmu_page_add_parent_pte(vcpu, sp, sptep);
 | |
| 
 | |
| 	if (sp->unsync_children || sp->unsync)
 | |
| 		mark_unsync(sptep);
 | |
| }
 | |
| 
 | |
| static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
 | |
| 				   unsigned direct_access)
 | |
| {
 | |
| 	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
 | |
| 		struct kvm_mmu_page *child;
 | |
| 
 | |
| 		/*
 | |
| 		 * For the direct sp, if the guest pte's dirty bit
 | |
| 		 * changed form clean to dirty, it will corrupt the
 | |
| 		 * sp's access: allow writable in the read-only sp,
 | |
| 		 * so we should update the spte at this point to get
 | |
| 		 * a new sp with the correct access.
 | |
| 		 */
 | |
| 		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
 | |
| 		if (child->role.access == direct_access)
 | |
| 			return;
 | |
| 
 | |
| 		drop_parent_pte(child, sptep);
 | |
| 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Returns the number of zapped non-leaf child shadow pages. */
 | |
| static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
 | |
| 			    u64 *spte, struct list_head *invalid_list)
 | |
| {
 | |
| 	u64 pte;
 | |
| 	struct kvm_mmu_page *child;
 | |
| 
 | |
| 	pte = *spte;
 | |
| 	if (is_shadow_present_pte(pte)) {
 | |
| 		if (is_last_spte(pte, sp->role.level)) {
 | |
| 			drop_spte(kvm, spte);
 | |
| 		} else {
 | |
| 			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
 | |
| 			drop_parent_pte(child, spte);
 | |
| 
 | |
| 			/*
 | |
| 			 * Recursively zap nested TDP SPs, parentless SPs are
 | |
| 			 * unlikely to be used again in the near future.  This
 | |
| 			 * avoids retaining a large number of stale nested SPs.
 | |
| 			 */
 | |
| 			if (tdp_enabled && invalid_list &&
 | |
| 			    child->role.guest_mode && !child->parent_ptes.val)
 | |
| 				return kvm_mmu_prepare_zap_page(kvm, child,
 | |
| 								invalid_list);
 | |
| 		}
 | |
| 	} else if (is_mmio_spte(pte)) {
 | |
| 		mmu_spte_clear_no_track(spte);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_mmu_page_unlink_children(struct kvm *kvm,
 | |
| 					struct kvm_mmu_page *sp,
 | |
| 					struct list_head *invalid_list)
 | |
| {
 | |
| 	int zapped = 0;
 | |
| 	unsigned i;
 | |
| 
 | |
| 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
 | |
| 		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
 | |
| 
 | |
| 	return zapped;
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_unlink_parents(struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	u64 *sptep;
 | |
| 	struct rmap_iterator iter;
 | |
| 
 | |
| 	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
 | |
| 		drop_parent_pte(sp, sptep);
 | |
| }
 | |
| 
 | |
| static int mmu_zap_unsync_children(struct kvm *kvm,
 | |
| 				   struct kvm_mmu_page *parent,
 | |
| 				   struct list_head *invalid_list)
 | |
| {
 | |
| 	int i, zapped = 0;
 | |
| 	struct mmu_page_path parents;
 | |
| 	struct kvm_mmu_pages pages;
 | |
| 
 | |
| 	if (parent->role.level == PG_LEVEL_4K)
 | |
| 		return 0;
 | |
| 
 | |
| 	while (mmu_unsync_walk(parent, &pages)) {
 | |
| 		struct kvm_mmu_page *sp;
 | |
| 
 | |
| 		for_each_sp(pages, sp, parents, i) {
 | |
| 			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
 | |
| 			mmu_pages_clear_parents(&parents);
 | |
| 			zapped++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return zapped;
 | |
| }
 | |
| 
 | |
| static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
 | |
| 				       struct kvm_mmu_page *sp,
 | |
| 				       struct list_head *invalid_list,
 | |
| 				       int *nr_zapped)
 | |
| {
 | |
| 	bool list_unstable, zapped_root = false;
 | |
| 
 | |
| 	lockdep_assert_held_write(&kvm->mmu_lock);
 | |
| 	trace_kvm_mmu_prepare_zap_page(sp);
 | |
| 	++kvm->stat.mmu_shadow_zapped;
 | |
| 	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
 | |
| 	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
 | |
| 	kvm_mmu_unlink_parents(sp);
 | |
| 
 | |
| 	/* Zapping children means active_mmu_pages has become unstable. */
 | |
| 	list_unstable = *nr_zapped;
 | |
| 
 | |
| 	if (!sp->role.invalid && !sp->role.direct)
 | |
| 		unaccount_shadowed(kvm, sp);
 | |
| 
 | |
| 	if (sp->unsync)
 | |
| 		kvm_unlink_unsync_page(kvm, sp);
 | |
| 	if (!sp->root_count) {
 | |
| 		/* Count self */
 | |
| 		(*nr_zapped)++;
 | |
| 
 | |
| 		/*
 | |
| 		 * Already invalid pages (previously active roots) are not on
 | |
| 		 * the active page list.  See list_del() in the "else" case of
 | |
| 		 * !sp->root_count.
 | |
| 		 */
 | |
| 		if (sp->role.invalid)
 | |
| 			list_add(&sp->link, invalid_list);
 | |
| 		else
 | |
| 			list_move(&sp->link, invalid_list);
 | |
| 		kvm_mod_used_mmu_pages(kvm, -1);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Remove the active root from the active page list, the root
 | |
| 		 * will be explicitly freed when the root_count hits zero.
 | |
| 		 */
 | |
| 		list_del(&sp->link);
 | |
| 
 | |
| 		/*
 | |
| 		 * Obsolete pages cannot be used on any vCPUs, see the comment
 | |
| 		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
 | |
| 		 * treats invalid shadow pages as being obsolete.
 | |
| 		 */
 | |
| 		zapped_root = !is_obsolete_sp(kvm, sp);
 | |
| 	}
 | |
| 
 | |
| 	if (sp->lpage_disallowed)
 | |
| 		unaccount_huge_nx_page(kvm, sp);
 | |
| 
 | |
| 	sp->role.invalid = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make the request to free obsolete roots after marking the root
 | |
| 	 * invalid, otherwise other vCPUs may not see it as invalid.
 | |
| 	 */
 | |
| 	if (zapped_root)
 | |
| 		kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
 | |
| 	return list_unstable;
 | |
| }
 | |
| 
 | |
| static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
 | |
| 				     struct list_head *invalid_list)
 | |
| {
 | |
| 	int nr_zapped;
 | |
| 
 | |
| 	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
 | |
| 	return nr_zapped;
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_commit_zap_page(struct kvm *kvm,
 | |
| 				    struct list_head *invalid_list)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp, *nsp;
 | |
| 
 | |
| 	if (list_empty(invalid_list))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to make sure everyone sees our modifications to
 | |
| 	 * the page tables and see changes to vcpu->mode here. The barrier
 | |
| 	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
 | |
| 	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
 | |
| 	 *
 | |
| 	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
 | |
| 	 * guest mode and/or lockless shadow page table walks.
 | |
| 	 */
 | |
| 	kvm_flush_remote_tlbs(kvm);
 | |
| 
 | |
| 	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
 | |
| 		WARN_ON(!sp->role.invalid || sp->root_count);
 | |
| 		kvm_mmu_free_page(sp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
 | |
| 						  unsigned long nr_to_zap)
 | |
| {
 | |
| 	unsigned long total_zapped = 0;
 | |
| 	struct kvm_mmu_page *sp, *tmp;
 | |
| 	LIST_HEAD(invalid_list);
 | |
| 	bool unstable;
 | |
| 	int nr_zapped;
 | |
| 
 | |
| 	if (list_empty(&kvm->arch.active_mmu_pages))
 | |
| 		return 0;
 | |
| 
 | |
| restart:
 | |
| 	list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
 | |
| 		/*
 | |
| 		 * Don't zap active root pages, the page itself can't be freed
 | |
| 		 * and zapping it will just force vCPUs to realloc and reload.
 | |
| 		 */
 | |
| 		if (sp->root_count)
 | |
| 			continue;
 | |
| 
 | |
| 		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
 | |
| 						      &nr_zapped);
 | |
| 		total_zapped += nr_zapped;
 | |
| 		if (total_zapped >= nr_to_zap)
 | |
| 			break;
 | |
| 
 | |
| 		if (unstable)
 | |
| 			goto restart;
 | |
| 	}
 | |
| 
 | |
| 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
 | |
| 
 | |
| 	kvm->stat.mmu_recycled += total_zapped;
 | |
| 	return total_zapped;
 | |
| }
 | |
| 
 | |
| static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
 | |
| {
 | |
| 	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
 | |
| 		return kvm->arch.n_max_mmu_pages -
 | |
| 			kvm->arch.n_used_mmu_pages;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
 | |
| 
 | |
| 	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
 | |
| 		return 0;
 | |
| 
 | |
| 	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
 | |
| 
 | |
| 	/*
 | |
| 	 * Note, this check is intentionally soft, it only guarantees that one
 | |
| 	 * page is available, while the caller may end up allocating as many as
 | |
| 	 * four pages, e.g. for PAE roots or for 5-level paging.  Temporarily
 | |
| 	 * exceeding the (arbitrary by default) limit will not harm the host,
 | |
| 	 * being too agressive may unnecessarily kill the guest, and getting an
 | |
| 	 * exact count is far more trouble than it's worth, especially in the
 | |
| 	 * page fault paths.
 | |
| 	 */
 | |
| 	if (!kvm_mmu_available_pages(vcpu->kvm))
 | |
| 		return -ENOSPC;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Changing the number of mmu pages allocated to the vm
 | |
|  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
 | |
|  */
 | |
| void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
 | |
| {
 | |
| 	write_lock(&kvm->mmu_lock);
 | |
| 
 | |
| 	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
 | |
| 		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
 | |
| 						  goal_nr_mmu_pages);
 | |
| 
 | |
| 		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
 | |
| 	}
 | |
| 
 | |
| 	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
 | |
| 
 | |
| 	write_unlock(&kvm->mmu_lock);
 | |
| }
 | |
| 
 | |
| int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	LIST_HEAD(invalid_list);
 | |
| 	int r;
 | |
| 
 | |
| 	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
 | |
| 	r = 0;
 | |
| 	write_lock(&kvm->mmu_lock);
 | |
| 	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
 | |
| 		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
 | |
| 			 sp->role.word);
 | |
| 		r = 1;
 | |
| 		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
 | |
| 	}
 | |
| 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
 | |
| 	write_unlock(&kvm->mmu_lock);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
 | |
| {
 | |
| 	gpa_t gpa;
 | |
| 	int r;
 | |
| 
 | |
| 	if (vcpu->arch.mmu->direct_map)
 | |
| 		return 0;
 | |
| 
 | |
| 	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
 | |
| 
 | |
| 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	trace_kvm_mmu_unsync_page(sp);
 | |
| 	++kvm->stat.mmu_unsync;
 | |
| 	sp->unsync = 1;
 | |
| 
 | |
| 	kvm_mmu_mark_parents_unsync(sp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Attempt to unsync any shadow pages that can be reached by the specified gfn,
 | |
|  * KVM is creating a writable mapping for said gfn.  Returns 0 if all pages
 | |
|  * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
 | |
|  * be write-protected.
 | |
|  */
 | |
| int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
 | |
| 			    gfn_t gfn, bool can_unsync, bool prefetch)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	bool locked = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * Force write-protection if the page is being tracked.  Note, the page
 | |
| 	 * track machinery is used to write-protect upper-level shadow pages,
 | |
| 	 * i.e. this guards the role.level == 4K assertion below!
 | |
| 	 */
 | |
| 	if (kvm_slot_page_track_is_active(kvm, slot, gfn, KVM_PAGE_TRACK_WRITE))
 | |
| 		return -EPERM;
 | |
| 
 | |
| 	/*
 | |
| 	 * The page is not write-tracked, mark existing shadow pages unsync
 | |
| 	 * unless KVM is synchronizing an unsync SP (can_unsync = false).  In
 | |
| 	 * that case, KVM must complete emulation of the guest TLB flush before
 | |
| 	 * allowing shadow pages to become unsync (writable by the guest).
 | |
| 	 */
 | |
| 	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
 | |
| 		if (!can_unsync)
 | |
| 			return -EPERM;
 | |
| 
 | |
| 		if (sp->unsync)
 | |
| 			continue;
 | |
| 
 | |
| 		if (prefetch)
 | |
| 			return -EEXIST;
 | |
| 
 | |
| 		/*
 | |
| 		 * TDP MMU page faults require an additional spinlock as they
 | |
| 		 * run with mmu_lock held for read, not write, and the unsync
 | |
| 		 * logic is not thread safe.  Take the spinklock regardless of
 | |
| 		 * the MMU type to avoid extra conditionals/parameters, there's
 | |
| 		 * no meaningful penalty if mmu_lock is held for write.
 | |
| 		 */
 | |
| 		if (!locked) {
 | |
| 			locked = true;
 | |
| 			spin_lock(&kvm->arch.mmu_unsync_pages_lock);
 | |
| 
 | |
| 			/*
 | |
| 			 * Recheck after taking the spinlock, a different vCPU
 | |
| 			 * may have since marked the page unsync.  A false
 | |
| 			 * positive on the unprotected check above is not
 | |
| 			 * possible as clearing sp->unsync _must_ hold mmu_lock
 | |
| 			 * for write, i.e. unsync cannot transition from 0->1
 | |
| 			 * while this CPU holds mmu_lock for read (or write).
 | |
| 			 */
 | |
| 			if (READ_ONCE(sp->unsync))
 | |
| 				continue;
 | |
| 		}
 | |
| 
 | |
| 		WARN_ON(sp->role.level != PG_LEVEL_4K);
 | |
| 		kvm_unsync_page(kvm, sp);
 | |
| 	}
 | |
| 	if (locked)
 | |
| 		spin_unlock(&kvm->arch.mmu_unsync_pages_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to ensure that the marking of unsync pages is visible
 | |
| 	 * before the SPTE is updated to allow writes because
 | |
| 	 * kvm_mmu_sync_roots() checks the unsync flags without holding
 | |
| 	 * the MMU lock and so can race with this. If the SPTE was updated
 | |
| 	 * before the page had been marked as unsync-ed, something like the
 | |
| 	 * following could happen:
 | |
| 	 *
 | |
| 	 * CPU 1                    CPU 2
 | |
| 	 * ---------------------------------------------------------------------
 | |
| 	 * 1.2 Host updates SPTE
 | |
| 	 *     to be writable
 | |
| 	 *                      2.1 Guest writes a GPTE for GVA X.
 | |
| 	 *                          (GPTE being in the guest page table shadowed
 | |
| 	 *                           by the SP from CPU 1.)
 | |
| 	 *                          This reads SPTE during the page table walk.
 | |
| 	 *                          Since SPTE.W is read as 1, there is no
 | |
| 	 *                          fault.
 | |
| 	 *
 | |
| 	 *                      2.2 Guest issues TLB flush.
 | |
| 	 *                          That causes a VM Exit.
 | |
| 	 *
 | |
| 	 *                      2.3 Walking of unsync pages sees sp->unsync is
 | |
| 	 *                          false and skips the page.
 | |
| 	 *
 | |
| 	 *                      2.4 Guest accesses GVA X.
 | |
| 	 *                          Since the mapping in the SP was not updated,
 | |
| 	 *                          so the old mapping for GVA X incorrectly
 | |
| 	 *                          gets used.
 | |
| 	 * 1.1 Host marks SP
 | |
| 	 *     as unsync
 | |
| 	 *     (sp->unsync = true)
 | |
| 	 *
 | |
| 	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
 | |
| 	 * the situation in 2.4 does not arise.  It pairs with the read barrier
 | |
| 	 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
 | |
| 	 */
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
 | |
| 			u64 *sptep, unsigned int pte_access, gfn_t gfn,
 | |
| 			kvm_pfn_t pfn, struct kvm_page_fault *fault)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp = sptep_to_sp(sptep);
 | |
| 	int level = sp->role.level;
 | |
| 	int was_rmapped = 0;
 | |
| 	int ret = RET_PF_FIXED;
 | |
| 	bool flush = false;
 | |
| 	bool wrprot;
 | |
| 	u64 spte;
 | |
| 
 | |
| 	/* Prefetching always gets a writable pfn.  */
 | |
| 	bool host_writable = !fault || fault->map_writable;
 | |
| 	bool prefetch = !fault || fault->prefetch;
 | |
| 	bool write_fault = fault && fault->write;
 | |
| 
 | |
| 	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
 | |
| 		 *sptep, write_fault, gfn);
 | |
| 
 | |
| 	if (unlikely(is_noslot_pfn(pfn))) {
 | |
| 		mark_mmio_spte(vcpu, sptep, gfn, pte_access);
 | |
| 		return RET_PF_EMULATE;
 | |
| 	}
 | |
| 
 | |
| 	if (is_shadow_present_pte(*sptep)) {
 | |
| 		/*
 | |
| 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
 | |
| 		 * the parent of the now unreachable PTE.
 | |
| 		 */
 | |
| 		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
 | |
| 			struct kvm_mmu_page *child;
 | |
| 			u64 pte = *sptep;
 | |
| 
 | |
| 			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
 | |
| 			drop_parent_pte(child, sptep);
 | |
| 			flush = true;
 | |
| 		} else if (pfn != spte_to_pfn(*sptep)) {
 | |
| 			pgprintk("hfn old %llx new %llx\n",
 | |
| 				 spte_to_pfn(*sptep), pfn);
 | |
| 			drop_spte(vcpu->kvm, sptep);
 | |
| 			flush = true;
 | |
| 		} else
 | |
| 			was_rmapped = 1;
 | |
| 	}
 | |
| 
 | |
| 	wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, *sptep, prefetch,
 | |
| 			   true, host_writable, &spte);
 | |
| 
 | |
| 	if (*sptep == spte) {
 | |
| 		ret = RET_PF_SPURIOUS;
 | |
| 	} else {
 | |
| 		flush |= mmu_spte_update(sptep, spte);
 | |
| 		trace_kvm_mmu_set_spte(level, gfn, sptep);
 | |
| 	}
 | |
| 
 | |
| 	if (wrprot) {
 | |
| 		if (write_fault)
 | |
| 			ret = RET_PF_EMULATE;
 | |
| 	}
 | |
| 
 | |
| 	if (flush)
 | |
| 		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
 | |
| 				KVM_PAGES_PER_HPAGE(level));
 | |
| 
 | |
| 	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
 | |
| 
 | |
| 	if (!was_rmapped) {
 | |
| 		WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
 | |
| 		kvm_update_page_stats(vcpu->kvm, level, 1);
 | |
| 		rmap_add(vcpu, slot, sptep, gfn);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_mmu_page *sp,
 | |
| 				    u64 *start, u64 *end)
 | |
| {
 | |
| 	struct page *pages[PTE_PREFETCH_NUM];
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 	unsigned int access = sp->role.access;
 | |
| 	int i, ret;
 | |
| 	gfn_t gfn;
 | |
| 
 | |
| 	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
 | |
| 	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
 | |
| 	if (!slot)
 | |
| 		return -1;
 | |
| 
 | |
| 	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
 | |
| 	if (ret <= 0)
 | |
| 		return -1;
 | |
| 
 | |
| 	for (i = 0; i < ret; i++, gfn++, start++) {
 | |
| 		mmu_set_spte(vcpu, slot, start, access, gfn,
 | |
| 			     page_to_pfn(pages[i]), NULL);
 | |
| 		put_page(pages[i]);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
 | |
| 				  struct kvm_mmu_page *sp, u64 *sptep)
 | |
| {
 | |
| 	u64 *spte, *start = NULL;
 | |
| 	int i;
 | |
| 
 | |
| 	WARN_ON(!sp->role.direct);
 | |
| 
 | |
| 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
 | |
| 	spte = sp->spt + i;
 | |
| 
 | |
| 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
 | |
| 		if (is_shadow_present_pte(*spte) || spte == sptep) {
 | |
| 			if (!start)
 | |
| 				continue;
 | |
| 			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
 | |
| 				return;
 | |
| 			start = NULL;
 | |
| 		} else if (!start)
 | |
| 			start = spte;
 | |
| 	}
 | |
| 	if (start)
 | |
| 		direct_pte_prefetch_many(vcpu, sp, start, spte);
 | |
| }
 | |
| 
 | |
| static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 
 | |
| 	sp = sptep_to_sp(sptep);
 | |
| 
 | |
| 	/*
 | |
| 	 * Without accessed bits, there's no way to distinguish between
 | |
| 	 * actually accessed translations and prefetched, so disable pte
 | |
| 	 * prefetch if accessed bits aren't available.
 | |
| 	 */
 | |
| 	if (sp_ad_disabled(sp))
 | |
| 		return;
 | |
| 
 | |
| 	if (sp->role.level > PG_LEVEL_4K)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * If addresses are being invalidated, skip prefetching to avoid
 | |
| 	 * accidentally prefetching those addresses.
 | |
| 	 */
 | |
| 	if (unlikely(vcpu->kvm->mmu_notifier_count))
 | |
| 		return;
 | |
| 
 | |
| 	__direct_pte_prefetch(vcpu, sp, sptep);
 | |
| }
 | |
| 
 | |
| static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn,
 | |
| 				  const struct kvm_memory_slot *slot)
 | |
| {
 | |
| 	unsigned long hva;
 | |
| 	unsigned long flags;
 | |
| 	int level = PG_LEVEL_4K;
 | |
| 	pgd_t pgd;
 | |
| 	p4d_t p4d;
 | |
| 	pud_t pud;
 | |
| 	pmd_t pmd;
 | |
| 
 | |
| 	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
 | |
| 		return PG_LEVEL_4K;
 | |
| 
 | |
| 	/*
 | |
| 	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
 | |
| 	 * is not solely for performance, it's also necessary to avoid the
 | |
| 	 * "writable" check in __gfn_to_hva_many(), which will always fail on
 | |
| 	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
 | |
| 	 * page fault steps have already verified the guest isn't writing a
 | |
| 	 * read-only memslot.
 | |
| 	 */
 | |
| 	hva = __gfn_to_hva_memslot(slot, gfn);
 | |
| 
 | |
| 	/*
 | |
| 	 * Lookup the mapping level in the current mm.  The information
 | |
| 	 * may become stale soon, but it is safe to use as long as
 | |
| 	 * 1) mmu_notifier_retry was checked after taking mmu_lock, and
 | |
| 	 * 2) mmu_lock is taken now.
 | |
| 	 *
 | |
| 	 * We still need to disable IRQs to prevent concurrent tear down
 | |
| 	 * of page tables.
 | |
| 	 */
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	pgd = READ_ONCE(*pgd_offset(kvm->mm, hva));
 | |
| 	if (pgd_none(pgd))
 | |
| 		goto out;
 | |
| 
 | |
| 	p4d = READ_ONCE(*p4d_offset(&pgd, hva));
 | |
| 	if (p4d_none(p4d) || !p4d_present(p4d))
 | |
| 		goto out;
 | |
| 
 | |
| 	pud = READ_ONCE(*pud_offset(&p4d, hva));
 | |
| 	if (pud_none(pud) || !pud_present(pud))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (pud_large(pud)) {
 | |
| 		level = PG_LEVEL_1G;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	pmd = READ_ONCE(*pmd_offset(&pud, hva));
 | |
| 	if (pmd_none(pmd) || !pmd_present(pmd))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (pmd_large(pmd))
 | |
| 		level = PG_LEVEL_2M;
 | |
| 
 | |
| out:
 | |
| 	local_irq_restore(flags);
 | |
| 	return level;
 | |
| }
 | |
| 
 | |
| int kvm_mmu_max_mapping_level(struct kvm *kvm,
 | |
| 			      const struct kvm_memory_slot *slot, gfn_t gfn,
 | |
| 			      kvm_pfn_t pfn, int max_level)
 | |
| {
 | |
| 	struct kvm_lpage_info *linfo;
 | |
| 	int host_level;
 | |
| 
 | |
| 	max_level = min(max_level, max_huge_page_level);
 | |
| 	for ( ; max_level > PG_LEVEL_4K; max_level--) {
 | |
| 		linfo = lpage_info_slot(gfn, slot, max_level);
 | |
| 		if (!linfo->disallow_lpage)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (max_level == PG_LEVEL_4K)
 | |
| 		return PG_LEVEL_4K;
 | |
| 
 | |
| 	host_level = host_pfn_mapping_level(kvm, gfn, pfn, slot);
 | |
| 	return min(host_level, max_level);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
 | |
| {
 | |
| 	struct kvm_memory_slot *slot = fault->slot;
 | |
| 	kvm_pfn_t mask;
 | |
| 
 | |
| 	fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
 | |
| 
 | |
| 	if (unlikely(fault->max_level == PG_LEVEL_4K))
 | |
| 		return;
 | |
| 
 | |
| 	if (is_error_noslot_pfn(fault->pfn) || kvm_is_reserved_pfn(fault->pfn))
 | |
| 		return;
 | |
| 
 | |
| 	if (kvm_slot_dirty_track_enabled(slot))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Enforce the iTLB multihit workaround after capturing the requested
 | |
| 	 * level, which will be used to do precise, accurate accounting.
 | |
| 	 */
 | |
| 	fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot,
 | |
| 						     fault->gfn, fault->pfn,
 | |
| 						     fault->max_level);
 | |
| 	if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * mmu_notifier_retry() was successful and mmu_lock is held, so
 | |
| 	 * the pmd can't be split from under us.
 | |
| 	 */
 | |
| 	fault->goal_level = fault->req_level;
 | |
| 	mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
 | |
| 	VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
 | |
| 	fault->pfn &= ~mask;
 | |
| }
 | |
| 
 | |
| void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
 | |
| {
 | |
| 	if (cur_level > PG_LEVEL_4K &&
 | |
| 	    cur_level == fault->goal_level &&
 | |
| 	    is_shadow_present_pte(spte) &&
 | |
| 	    !is_large_pte(spte)) {
 | |
| 		/*
 | |
| 		 * A small SPTE exists for this pfn, but FNAME(fetch)
 | |
| 		 * and __direct_map would like to create a large PTE
 | |
| 		 * instead: just force them to go down another level,
 | |
| 		 * patching back for them into pfn the next 9 bits of
 | |
| 		 * the address.
 | |
| 		 */
 | |
| 		u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
 | |
| 				KVM_PAGES_PER_HPAGE(cur_level - 1);
 | |
| 		fault->pfn |= fault->gfn & page_mask;
 | |
| 		fault->goal_level--;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
 | |
| {
 | |
| 	struct kvm_shadow_walk_iterator it;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	int ret;
 | |
| 	gfn_t base_gfn = fault->gfn;
 | |
| 
 | |
| 	kvm_mmu_hugepage_adjust(vcpu, fault);
 | |
| 
 | |
| 	trace_kvm_mmu_spte_requested(fault);
 | |
| 	for_each_shadow_entry(vcpu, fault->addr, it) {
 | |
| 		/*
 | |
| 		 * We cannot overwrite existing page tables with an NX
 | |
| 		 * large page, as the leaf could be executable.
 | |
| 		 */
 | |
| 		if (fault->nx_huge_page_workaround_enabled)
 | |
| 			disallowed_hugepage_adjust(fault, *it.sptep, it.level);
 | |
| 
 | |
| 		base_gfn = fault->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
 | |
| 		if (it.level == fault->goal_level)
 | |
| 			break;
 | |
| 
 | |
| 		drop_large_spte(vcpu, it.sptep);
 | |
| 		if (is_shadow_present_pte(*it.sptep))
 | |
| 			continue;
 | |
| 
 | |
| 		sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
 | |
| 				      it.level - 1, true, ACC_ALL);
 | |
| 
 | |
| 		link_shadow_page(vcpu, it.sptep, sp);
 | |
| 		if (fault->is_tdp && fault->huge_page_disallowed &&
 | |
| 		    fault->req_level >= it.level)
 | |
| 			account_huge_nx_page(vcpu->kvm, sp);
 | |
| 	}
 | |
| 
 | |
| 	if (WARN_ON_ONCE(it.level != fault->goal_level))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
 | |
| 			   base_gfn, fault->pfn, fault);
 | |
| 	if (ret == RET_PF_SPURIOUS)
 | |
| 		return ret;
 | |
| 
 | |
| 	direct_pte_prefetch(vcpu, it.sptep);
 | |
| 	++vcpu->stat.pf_fixed;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
 | |
| {
 | |
| 	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
 | |
| }
 | |
| 
 | |
| static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
 | |
| {
 | |
| 	/*
 | |
| 	 * Do not cache the mmio info caused by writing the readonly gfn
 | |
| 	 * into the spte otherwise read access on readonly gfn also can
 | |
| 	 * caused mmio page fault and treat it as mmio access.
 | |
| 	 */
 | |
| 	if (pfn == KVM_PFN_ERR_RO_FAULT)
 | |
| 		return RET_PF_EMULATE;
 | |
| 
 | |
| 	if (pfn == KVM_PFN_ERR_HWPOISON) {
 | |
| 		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
 | |
| 		return RET_PF_RETRY;
 | |
| 	}
 | |
| 
 | |
| 	return -EFAULT;
 | |
| }
 | |
| 
 | |
| static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
 | |
| 				unsigned int access, int *ret_val)
 | |
| {
 | |
| 	/* The pfn is invalid, report the error! */
 | |
| 	if (unlikely(is_error_pfn(fault->pfn))) {
 | |
| 		*ret_val = kvm_handle_bad_page(vcpu, fault->gfn, fault->pfn);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(!fault->slot)) {
 | |
| 		gva_t gva = fault->is_tdp ? 0 : fault->addr;
 | |
| 
 | |
| 		vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
 | |
| 				     access & shadow_mmio_access_mask);
 | |
| 		/*
 | |
| 		 * If MMIO caching is disabled, emulate immediately without
 | |
| 		 * touching the shadow page tables as attempting to install an
 | |
| 		 * MMIO SPTE will just be an expensive nop.  Do not cache MMIO
 | |
| 		 * whose gfn is greater than host.MAXPHYADDR, any guest that
 | |
| 		 * generates such gfns is running nested and is being tricked
 | |
| 		 * by L0 userspace (you can observe gfn > L1.MAXPHYADDR if
 | |
| 		 * and only if L1's MAXPHYADDR is inaccurate with respect to
 | |
| 		 * the hardware's).
 | |
| 		 */
 | |
| 		if (unlikely(!shadow_mmio_value) ||
 | |
| 		    unlikely(fault->gfn > kvm_mmu_max_gfn())) {
 | |
| 			*ret_val = RET_PF_EMULATE;
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool page_fault_can_be_fast(struct kvm_page_fault *fault)
 | |
| {
 | |
| 	/*
 | |
| 	 * Do not fix the mmio spte with invalid generation number which
 | |
| 	 * need to be updated by slow page fault path.
 | |
| 	 */
 | |
| 	if (fault->rsvd)
 | |
| 		return false;
 | |
| 
 | |
| 	/* See if the page fault is due to an NX violation */
 | |
| 	if (unlikely(fault->exec && fault->present))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * #PF can be fast if:
 | |
| 	 * 1. The shadow page table entry is not present, which could mean that
 | |
| 	 *    the fault is potentially caused by access tracking (if enabled).
 | |
| 	 * 2. The shadow page table entry is present and the fault
 | |
| 	 *    is caused by write-protect, that means we just need change the W
 | |
| 	 *    bit of the spte which can be done out of mmu-lock.
 | |
| 	 *
 | |
| 	 * However, if access tracking is disabled we know that a non-present
 | |
| 	 * page must be a genuine page fault where we have to create a new SPTE.
 | |
| 	 * So, if access tracking is disabled, we return true only for write
 | |
| 	 * accesses to a present page.
 | |
| 	 */
 | |
| 
 | |
| 	return shadow_acc_track_mask != 0 || (fault->write && fault->present);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns true if the SPTE was fixed successfully. Otherwise,
 | |
|  * someone else modified the SPTE from its original value.
 | |
|  */
 | |
| static bool
 | |
| fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
 | |
| 			u64 *sptep, u64 old_spte, u64 new_spte)
 | |
| {
 | |
| 	/*
 | |
| 	 * Theoretically we could also set dirty bit (and flush TLB) here in
 | |
| 	 * order to eliminate unnecessary PML logging. See comments in
 | |
| 	 * set_spte. But fast_page_fault is very unlikely to happen with PML
 | |
| 	 * enabled, so we do not do this. This might result in the same GPA
 | |
| 	 * to be logged in PML buffer again when the write really happens, and
 | |
| 	 * eventually to be called by mark_page_dirty twice. But it's also no
 | |
| 	 * harm. This also avoids the TLB flush needed after setting dirty bit
 | |
| 	 * so non-PML cases won't be impacted.
 | |
| 	 *
 | |
| 	 * Compare with set_spte where instead shadow_dirty_mask is set.
 | |
| 	 */
 | |
| 	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
 | |
| 		return false;
 | |
| 
 | |
| 	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte))
 | |
| 		mark_page_dirty_in_slot(vcpu->kvm, fault->slot, fault->gfn);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
 | |
| {
 | |
| 	if (fault->exec)
 | |
| 		return is_executable_pte(spte);
 | |
| 
 | |
| 	if (fault->write)
 | |
| 		return is_writable_pte(spte);
 | |
| 
 | |
| 	/* Fault was on Read access */
 | |
| 	return spte & PT_PRESENT_MASK;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the last level spte pointer of the shadow page walk for the given
 | |
|  * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
 | |
|  * walk could be performed, returns NULL and *spte does not contain valid data.
 | |
|  *
 | |
|  * Contract:
 | |
|  *  - Must be called between walk_shadow_page_lockless_{begin,end}.
 | |
|  *  - The returned sptep must not be used after walk_shadow_page_lockless_end.
 | |
|  */
 | |
| static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
 | |
| {
 | |
| 	struct kvm_shadow_walk_iterator iterator;
 | |
| 	u64 old_spte;
 | |
| 	u64 *sptep = NULL;
 | |
| 
 | |
| 	for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
 | |
| 		sptep = iterator.sptep;
 | |
| 		*spte = old_spte;
 | |
| 	}
 | |
| 
 | |
| 	return sptep;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
 | |
|  */
 | |
| static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	int ret = RET_PF_INVALID;
 | |
| 	u64 spte = 0ull;
 | |
| 	u64 *sptep = NULL;
 | |
| 	uint retry_count = 0;
 | |
| 
 | |
| 	if (!page_fault_can_be_fast(fault))
 | |
| 		return ret;
 | |
| 
 | |
| 	walk_shadow_page_lockless_begin(vcpu);
 | |
| 
 | |
| 	do {
 | |
| 		u64 new_spte;
 | |
| 
 | |
| 		if (is_tdp_mmu(vcpu->arch.mmu))
 | |
| 			sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
 | |
| 		else
 | |
| 			sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte);
 | |
| 
 | |
| 		if (!is_shadow_present_pte(spte))
 | |
| 			break;
 | |
| 
 | |
| 		sp = sptep_to_sp(sptep);
 | |
| 		if (!is_last_spte(spte, sp->role.level))
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * Check whether the memory access that caused the fault would
 | |
| 		 * still cause it if it were to be performed right now. If not,
 | |
| 		 * then this is a spurious fault caused by TLB lazily flushed,
 | |
| 		 * or some other CPU has already fixed the PTE after the
 | |
| 		 * current CPU took the fault.
 | |
| 		 *
 | |
| 		 * Need not check the access of upper level table entries since
 | |
| 		 * they are always ACC_ALL.
 | |
| 		 */
 | |
| 		if (is_access_allowed(fault, spte)) {
 | |
| 			ret = RET_PF_SPURIOUS;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		new_spte = spte;
 | |
| 
 | |
| 		if (is_access_track_spte(spte))
 | |
| 			new_spte = restore_acc_track_spte(new_spte);
 | |
| 
 | |
| 		/*
 | |
| 		 * Currently, to simplify the code, write-protection can
 | |
| 		 * be removed in the fast path only if the SPTE was
 | |
| 		 * write-protected for dirty-logging or access tracking.
 | |
| 		 */
 | |
| 		if (fault->write && is_mmu_writable_spte(spte)) {
 | |
| 			new_spte |= PT_WRITABLE_MASK;
 | |
| 
 | |
| 			/*
 | |
| 			 * Do not fix write-permission on the large spte when
 | |
| 			 * dirty logging is enabled. Since we only dirty the
 | |
| 			 * first page into the dirty-bitmap in
 | |
| 			 * fast_pf_fix_direct_spte(), other pages are missed
 | |
| 			 * if its slot has dirty logging enabled.
 | |
| 			 *
 | |
| 			 * Instead, we let the slow page fault path create a
 | |
| 			 * normal spte to fix the access.
 | |
| 			 */
 | |
| 			if (sp->role.level > PG_LEVEL_4K &&
 | |
| 			    kvm_slot_dirty_track_enabled(fault->slot))
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		/* Verify that the fault can be handled in the fast path */
 | |
| 		if (new_spte == spte ||
 | |
| 		    !is_access_allowed(fault, new_spte))
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * Currently, fast page fault only works for direct mapping
 | |
| 		 * since the gfn is not stable for indirect shadow page. See
 | |
| 		 * Documentation/virt/kvm/locking.rst to get more detail.
 | |
| 		 */
 | |
| 		if (fast_pf_fix_direct_spte(vcpu, fault, sptep, spte, new_spte)) {
 | |
| 			ret = RET_PF_FIXED;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (++retry_count > 4) {
 | |
| 			printk_once(KERN_WARNING
 | |
| 				"kvm: Fast #PF retrying more than 4 times.\n");
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 	} while (true);
 | |
| 
 | |
| 	trace_fast_page_fault(vcpu, fault, sptep, spte, ret);
 | |
| 	walk_shadow_page_lockless_end(vcpu);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
 | |
| 			       struct list_head *invalid_list)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 
 | |
| 	if (!VALID_PAGE(*root_hpa))
 | |
| 		return;
 | |
| 
 | |
| 	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
 | |
| 	if (WARN_ON(!sp))
 | |
| 		return;
 | |
| 
 | |
| 	if (is_tdp_mmu_page(sp))
 | |
| 		kvm_tdp_mmu_put_root(kvm, sp, false);
 | |
| 	else if (!--sp->root_count && sp->role.invalid)
 | |
| 		kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
 | |
| 
 | |
| 	*root_hpa = INVALID_PAGE;
 | |
| }
 | |
| 
 | |
| /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
 | |
| void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
 | |
| 			ulong roots_to_free)
 | |
| {
 | |
| 	int i;
 | |
| 	LIST_HEAD(invalid_list);
 | |
| 	bool free_active_root;
 | |
| 
 | |
| 	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
 | |
| 
 | |
| 	/* Before acquiring the MMU lock, see if we need to do any real work. */
 | |
| 	free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT)
 | |
| 		&& VALID_PAGE(mmu->root.hpa);
 | |
| 
 | |
| 	if (!free_active_root) {
 | |
| 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
 | |
| 			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
 | |
| 			    VALID_PAGE(mmu->prev_roots[i].hpa))
 | |
| 				break;
 | |
| 
 | |
| 		if (i == KVM_MMU_NUM_PREV_ROOTS)
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	write_lock(&kvm->mmu_lock);
 | |
| 
 | |
| 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
 | |
| 		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
 | |
| 			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
 | |
| 					   &invalid_list);
 | |
| 
 | |
| 	if (free_active_root) {
 | |
| 		if (to_shadow_page(mmu->root.hpa)) {
 | |
| 			mmu_free_root_page(kvm, &mmu->root.hpa, &invalid_list);
 | |
| 		} else if (mmu->pae_root) {
 | |
| 			for (i = 0; i < 4; ++i) {
 | |
| 				if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
 | |
| 					continue;
 | |
| 
 | |
| 				mmu_free_root_page(kvm, &mmu->pae_root[i],
 | |
| 						   &invalid_list);
 | |
| 				mmu->pae_root[i] = INVALID_PAE_ROOT;
 | |
| 			}
 | |
| 		}
 | |
| 		mmu->root.hpa = INVALID_PAGE;
 | |
| 		mmu->root.pgd = 0;
 | |
| 	}
 | |
| 
 | |
| 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
 | |
| 	write_unlock(&kvm->mmu_lock);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
 | |
| 
 | |
| void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu)
 | |
| {
 | |
| 	unsigned long roots_to_free = 0;
 | |
| 	hpa_t root_hpa;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * This should not be called while L2 is active, L2 can't invalidate
 | |
| 	 * _only_ its own roots, e.g. INVVPID unconditionally exits.
 | |
| 	 */
 | |
| 	WARN_ON_ONCE(mmu->mmu_role.base.guest_mode);
 | |
| 
 | |
| 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
 | |
| 		root_hpa = mmu->prev_roots[i].hpa;
 | |
| 		if (!VALID_PAGE(root_hpa))
 | |
| 			continue;
 | |
| 
 | |
| 		if (!to_shadow_page(root_hpa) ||
 | |
| 			to_shadow_page(root_hpa)->role.guest_mode)
 | |
| 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
 | |
| 	}
 | |
| 
 | |
| 	kvm_mmu_free_roots(kvm, mmu, roots_to_free);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
 | |
| 
 | |
| 
 | |
| static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
 | |
| 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
 | |
| 			    u8 level, bool direct)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 
 | |
| 	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
 | |
| 	++sp->root_count;
 | |
| 
 | |
| 	return __pa(sp->spt);
 | |
| }
 | |
| 
 | |
| static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_mmu *mmu = vcpu->arch.mmu;
 | |
| 	u8 shadow_root_level = mmu->shadow_root_level;
 | |
| 	hpa_t root;
 | |
| 	unsigned i;
 | |
| 	int r;
 | |
| 
 | |
| 	write_lock(&vcpu->kvm->mmu_lock);
 | |
| 	r = make_mmu_pages_available(vcpu);
 | |
| 	if (r < 0)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	if (is_tdp_mmu_enabled(vcpu->kvm)) {
 | |
| 		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
 | |
| 		mmu->root.hpa = root;
 | |
| 	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
 | |
| 		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level, true);
 | |
| 		mmu->root.hpa = root;
 | |
| 	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
 | |
| 		if (WARN_ON_ONCE(!mmu->pae_root)) {
 | |
| 			r = -EIO;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 
 | |
| 		for (i = 0; i < 4; ++i) {
 | |
| 			WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
 | |
| 
 | |
| 			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
 | |
| 					      i << 30, PT32_ROOT_LEVEL, true);
 | |
| 			mmu->pae_root[i] = root | PT_PRESENT_MASK |
 | |
| 					   shadow_me_mask;
 | |
| 		}
 | |
| 		mmu->root.hpa = __pa(mmu->pae_root);
 | |
| 	} else {
 | |
| 		WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
 | |
| 		r = -EIO;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/* root.pgd is ignored for direct MMUs. */
 | |
| 	mmu->root.pgd = 0;
 | |
| out_unlock:
 | |
| 	write_unlock(&vcpu->kvm->mmu_lock);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int mmu_first_shadow_root_alloc(struct kvm *kvm)
 | |
| {
 | |
| 	struct kvm_memslots *slots;
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 	int r = 0, i, bkt;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if this is the first shadow root being allocated before
 | |
| 	 * taking the lock.
 | |
| 	 */
 | |
| 	if (kvm_shadow_root_allocated(kvm))
 | |
| 		return 0;
 | |
| 
 | |
| 	mutex_lock(&kvm->slots_arch_lock);
 | |
| 
 | |
| 	/* Recheck, under the lock, whether this is the first shadow root. */
 | |
| 	if (kvm_shadow_root_allocated(kvm))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if anything actually needs to be allocated, e.g. all metadata
 | |
| 	 * will be allocated upfront if TDP is disabled.
 | |
| 	 */
 | |
| 	if (kvm_memslots_have_rmaps(kvm) &&
 | |
| 	    kvm_page_track_write_tracking_enabled(kvm))
 | |
| 		goto out_success;
 | |
| 
 | |
| 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
 | |
| 		slots = __kvm_memslots(kvm, i);
 | |
| 		kvm_for_each_memslot(slot, bkt, slots) {
 | |
| 			/*
 | |
| 			 * Both of these functions are no-ops if the target is
 | |
| 			 * already allocated, so unconditionally calling both
 | |
| 			 * is safe.  Intentionally do NOT free allocations on
 | |
| 			 * failure to avoid having to track which allocations
 | |
| 			 * were made now versus when the memslot was created.
 | |
| 			 * The metadata is guaranteed to be freed when the slot
 | |
| 			 * is freed, and will be kept/used if userspace retries
 | |
| 			 * KVM_RUN instead of killing the VM.
 | |
| 			 */
 | |
| 			r = memslot_rmap_alloc(slot, slot->npages);
 | |
| 			if (r)
 | |
| 				goto out_unlock;
 | |
| 			r = kvm_page_track_write_tracking_alloc(slot);
 | |
| 			if (r)
 | |
| 				goto out_unlock;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure that shadow_root_allocated becomes true strictly after
 | |
| 	 * all the related pointers are set.
 | |
| 	 */
 | |
| out_success:
 | |
| 	smp_store_release(&kvm->arch.shadow_root_allocated, true);
 | |
| 
 | |
| out_unlock:
 | |
| 	mutex_unlock(&kvm->slots_arch_lock);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_mmu *mmu = vcpu->arch.mmu;
 | |
| 	u64 pdptrs[4], pm_mask;
 | |
| 	gfn_t root_gfn, root_pgd;
 | |
| 	hpa_t root;
 | |
| 	unsigned i;
 | |
| 	int r;
 | |
| 
 | |
| 	root_pgd = mmu->get_guest_pgd(vcpu);
 | |
| 	root_gfn = root_pgd >> PAGE_SHIFT;
 | |
| 
 | |
| 	if (mmu_check_root(vcpu, root_gfn))
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * On SVM, reading PDPTRs might access guest memory, which might fault
 | |
| 	 * and thus might sleep.  Grab the PDPTRs before acquiring mmu_lock.
 | |
| 	 */
 | |
| 	if (mmu->root_level == PT32E_ROOT_LEVEL) {
 | |
| 		for (i = 0; i < 4; ++i) {
 | |
| 			pdptrs[i] = mmu->get_pdptr(vcpu, i);
 | |
| 			if (!(pdptrs[i] & PT_PRESENT_MASK))
 | |
| 				continue;
 | |
| 
 | |
| 			if (mmu_check_root(vcpu, pdptrs[i] >> PAGE_SHIFT))
 | |
| 				return 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	r = mmu_first_shadow_root_alloc(vcpu->kvm);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	write_lock(&vcpu->kvm->mmu_lock);
 | |
| 	r = make_mmu_pages_available(vcpu);
 | |
| 	if (r < 0)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	/*
 | |
| 	 * Do we shadow a long mode page table? If so we need to
 | |
| 	 * write-protect the guests page table root.
 | |
| 	 */
 | |
| 	if (mmu->root_level >= PT64_ROOT_4LEVEL) {
 | |
| 		root = mmu_alloc_root(vcpu, root_gfn, 0,
 | |
| 				      mmu->shadow_root_level, false);
 | |
| 		mmu->root.hpa = root;
 | |
| 		goto set_root_pgd;
 | |
| 	}
 | |
| 
 | |
| 	if (WARN_ON_ONCE(!mmu->pae_root)) {
 | |
| 		r = -EIO;
 | |
| 		goto out_unlock;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We shadow a 32 bit page table. This may be a legacy 2-level
 | |
| 	 * or a PAE 3-level page table. In either case we need to be aware that
 | |
| 	 * the shadow page table may be a PAE or a long mode page table.
 | |
| 	 */
 | |
| 	pm_mask = PT_PRESENT_MASK | shadow_me_mask;
 | |
| 	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
 | |
| 		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
 | |
| 
 | |
| 		if (WARN_ON_ONCE(!mmu->pml4_root)) {
 | |
| 			r = -EIO;
 | |
| 			goto out_unlock;
 | |
| 		}
 | |
| 		mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
 | |
| 
 | |
| 		if (mmu->shadow_root_level == PT64_ROOT_5LEVEL) {
 | |
| 			if (WARN_ON_ONCE(!mmu->pml5_root)) {
 | |
| 				r = -EIO;
 | |
| 				goto out_unlock;
 | |
| 			}
 | |
| 			mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < 4; ++i) {
 | |
| 		WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
 | |
| 
 | |
| 		if (mmu->root_level == PT32E_ROOT_LEVEL) {
 | |
| 			if (!(pdptrs[i] & PT_PRESENT_MASK)) {
 | |
| 				mmu->pae_root[i] = INVALID_PAE_ROOT;
 | |
| 				continue;
 | |
| 			}
 | |
| 			root_gfn = pdptrs[i] >> PAGE_SHIFT;
 | |
| 		}
 | |
| 
 | |
| 		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
 | |
| 				      PT32_ROOT_LEVEL, false);
 | |
| 		mmu->pae_root[i] = root | pm_mask;
 | |
| 	}
 | |
| 
 | |
| 	if (mmu->shadow_root_level == PT64_ROOT_5LEVEL)
 | |
| 		mmu->root.hpa = __pa(mmu->pml5_root);
 | |
| 	else if (mmu->shadow_root_level == PT64_ROOT_4LEVEL)
 | |
| 		mmu->root.hpa = __pa(mmu->pml4_root);
 | |
| 	else
 | |
| 		mmu->root.hpa = __pa(mmu->pae_root);
 | |
| 
 | |
| set_root_pgd:
 | |
| 	mmu->root.pgd = root_pgd;
 | |
| out_unlock:
 | |
| 	write_unlock(&vcpu->kvm->mmu_lock);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_mmu *mmu = vcpu->arch.mmu;
 | |
| 	bool need_pml5 = mmu->shadow_root_level > PT64_ROOT_4LEVEL;
 | |
| 	u64 *pml5_root = NULL;
 | |
| 	u64 *pml4_root = NULL;
 | |
| 	u64 *pae_root;
 | |
| 
 | |
| 	/*
 | |
| 	 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
 | |
| 	 * tables are allocated and initialized at root creation as there is no
 | |
| 	 * equivalent level in the guest's NPT to shadow.  Allocate the tables
 | |
| 	 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
 | |
| 	 */
 | |
| 	if (mmu->direct_map || mmu->root_level >= PT64_ROOT_4LEVEL ||
 | |
| 	    mmu->shadow_root_level < PT64_ROOT_4LEVEL)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * NPT, the only paging mode that uses this horror, uses a fixed number
 | |
| 	 * of levels for the shadow page tables, e.g. all MMUs are 4-level or
 | |
| 	 * all MMus are 5-level.  Thus, this can safely require that pml5_root
 | |
| 	 * is allocated if the other roots are valid and pml5 is needed, as any
 | |
| 	 * prior MMU would also have required pml5.
 | |
| 	 */
 | |
| 	if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * The special roots should always be allocated in concert.  Yell and
 | |
| 	 * bail if KVM ends up in a state where only one of the roots is valid.
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
 | |
| 			 (need_pml5 && mmu->pml5_root)))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	/*
 | |
| 	 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
 | |
| 	 * doesn't need to be decrypted.
 | |
| 	 */
 | |
| 	pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
 | |
| 	if (!pae_root)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 	pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
 | |
| 	if (!pml4_root)
 | |
| 		goto err_pml4;
 | |
| 
 | |
| 	if (need_pml5) {
 | |
| 		pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
 | |
| 		if (!pml5_root)
 | |
| 			goto err_pml5;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	mmu->pae_root = pae_root;
 | |
| 	mmu->pml4_root = pml4_root;
 | |
| 	mmu->pml5_root = pml5_root;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| err_pml5:
 | |
| 	free_page((unsigned long)pml4_root);
 | |
| err_pml4:
 | |
| 	free_page((unsigned long)pae_root);
 | |
| 	return -ENOMEM;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static bool is_unsync_root(hpa_t root)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 
 | |
| 	if (!VALID_PAGE(root))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * The read barrier orders the CPU's read of SPTE.W during the page table
 | |
| 	 * walk before the reads of sp->unsync/sp->unsync_children here.
 | |
| 	 *
 | |
| 	 * Even if another CPU was marking the SP as unsync-ed simultaneously,
 | |
| 	 * any guest page table changes are not guaranteed to be visible anyway
 | |
| 	 * until this VCPU issues a TLB flush strictly after those changes are
 | |
| 	 * made.  We only need to ensure that the other CPU sets these flags
 | |
| 	 * before any actual changes to the page tables are made.  The comments
 | |
| 	 * in mmu_try_to_unsync_pages() describe what could go wrong if this
 | |
| 	 * requirement isn't satisfied.
 | |
| 	 */
 | |
| 	smp_rmb();
 | |
| 	sp = to_shadow_page(root);
 | |
| 
 | |
| 	/*
 | |
| 	 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the
 | |
| 	 * PDPTEs for a given PAE root need to be synchronized individually.
 | |
| 	 */
 | |
| 	if (WARN_ON_ONCE(!sp))
 | |
| 		return false;
 | |
| 
 | |
| 	if (sp->unsync || sp->unsync_children)
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int i;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 
 | |
| 	if (vcpu->arch.mmu->direct_map)
 | |
| 		return;
 | |
| 
 | |
| 	if (!VALID_PAGE(vcpu->arch.mmu->root.hpa))
 | |
| 		return;
 | |
| 
 | |
| 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
 | |
| 
 | |
| 	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
 | |
| 		hpa_t root = vcpu->arch.mmu->root.hpa;
 | |
| 		sp = to_shadow_page(root);
 | |
| 
 | |
| 		if (!is_unsync_root(root))
 | |
| 			return;
 | |
| 
 | |
| 		write_lock(&vcpu->kvm->mmu_lock);
 | |
| 		mmu_sync_children(vcpu, sp, true);
 | |
| 		write_unlock(&vcpu->kvm->mmu_lock);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	write_lock(&vcpu->kvm->mmu_lock);
 | |
| 
 | |
| 	for (i = 0; i < 4; ++i) {
 | |
| 		hpa_t root = vcpu->arch.mmu->pae_root[i];
 | |
| 
 | |
| 		if (IS_VALID_PAE_ROOT(root)) {
 | |
| 			root &= PT64_BASE_ADDR_MASK;
 | |
| 			sp = to_shadow_page(root);
 | |
| 			mmu_sync_children(vcpu, sp, true);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	write_unlock(&vcpu->kvm->mmu_lock);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long roots_to_free = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
 | |
| 		if (is_unsync_root(vcpu->arch.mmu->prev_roots[i].hpa))
 | |
| 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
 | |
| 
 | |
| 	/* sync prev_roots by simply freeing them */
 | |
| 	kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free);
 | |
| }
 | |
| 
 | |
| static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 | |
| 				  gpa_t vaddr, u64 access,
 | |
| 				  struct x86_exception *exception)
 | |
| {
 | |
| 	if (exception)
 | |
| 		exception->error_code = 0;
 | |
| 	return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception);
 | |
| }
 | |
| 
 | |
| static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
 | |
| {
 | |
| 	/*
 | |
| 	 * A nested guest cannot use the MMIO cache if it is using nested
 | |
| 	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
 | |
| 	 */
 | |
| 	if (mmu_is_nested(vcpu))
 | |
| 		return false;
 | |
| 
 | |
| 	if (direct)
 | |
| 		return vcpu_match_mmio_gpa(vcpu, addr);
 | |
| 
 | |
| 	return vcpu_match_mmio_gva(vcpu, addr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the level of the lowest level SPTE added to sptes.
 | |
|  * That SPTE may be non-present.
 | |
|  *
 | |
|  * Must be called between walk_shadow_page_lockless_{begin,end}.
 | |
|  */
 | |
| static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
 | |
| {
 | |
| 	struct kvm_shadow_walk_iterator iterator;
 | |
| 	int leaf = -1;
 | |
| 	u64 spte;
 | |
| 
 | |
| 	for (shadow_walk_init(&iterator, vcpu, addr),
 | |
| 	     *root_level = iterator.level;
 | |
| 	     shadow_walk_okay(&iterator);
 | |
| 	     __shadow_walk_next(&iterator, spte)) {
 | |
| 		leaf = iterator.level;
 | |
| 		spte = mmu_spte_get_lockless(iterator.sptep);
 | |
| 
 | |
| 		sptes[leaf] = spte;
 | |
| 	}
 | |
| 
 | |
| 	return leaf;
 | |
| }
 | |
| 
 | |
| /* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
 | |
| static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
 | |
| {
 | |
| 	u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
 | |
| 	struct rsvd_bits_validate *rsvd_check;
 | |
| 	int root, leaf, level;
 | |
| 	bool reserved = false;
 | |
| 
 | |
| 	walk_shadow_page_lockless_begin(vcpu);
 | |
| 
 | |
| 	if (is_tdp_mmu(vcpu->arch.mmu))
 | |
| 		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, &root);
 | |
| 	else
 | |
| 		leaf = get_walk(vcpu, addr, sptes, &root);
 | |
| 
 | |
| 	walk_shadow_page_lockless_end(vcpu);
 | |
| 
 | |
| 	if (unlikely(leaf < 0)) {
 | |
| 		*sptep = 0ull;
 | |
| 		return reserved;
 | |
| 	}
 | |
| 
 | |
| 	*sptep = sptes[leaf];
 | |
| 
 | |
| 	/*
 | |
| 	 * Skip reserved bits checks on the terminal leaf if it's not a valid
 | |
| 	 * SPTE.  Note, this also (intentionally) skips MMIO SPTEs, which, by
 | |
| 	 * design, always have reserved bits set.  The purpose of the checks is
 | |
| 	 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
 | |
| 	 */
 | |
| 	if (!is_shadow_present_pte(sptes[leaf]))
 | |
| 		leaf++;
 | |
| 
 | |
| 	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
 | |
| 
 | |
| 	for (level = root; level >= leaf; level--)
 | |
| 		reserved |= is_rsvd_spte(rsvd_check, sptes[level], level);
 | |
| 
 | |
| 	if (reserved) {
 | |
| 		pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
 | |
| 		       __func__, addr);
 | |
| 		for (level = root; level >= leaf; level--)
 | |
| 			pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
 | |
| 			       sptes[level], level,
 | |
| 			       get_rsvd_bits(rsvd_check, sptes[level], level));
 | |
| 	}
 | |
| 
 | |
| 	return reserved;
 | |
| }
 | |
| 
 | |
| static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
 | |
| {
 | |
| 	u64 spte;
 | |
| 	bool reserved;
 | |
| 
 | |
| 	if (mmio_info_in_cache(vcpu, addr, direct))
 | |
| 		return RET_PF_EMULATE;
 | |
| 
 | |
| 	reserved = get_mmio_spte(vcpu, addr, &spte);
 | |
| 	if (WARN_ON(reserved))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (is_mmio_spte(spte)) {
 | |
| 		gfn_t gfn = get_mmio_spte_gfn(spte);
 | |
| 		unsigned int access = get_mmio_spte_access(spte);
 | |
| 
 | |
| 		if (!check_mmio_spte(vcpu, spte))
 | |
| 			return RET_PF_INVALID;
 | |
| 
 | |
| 		if (direct)
 | |
| 			addr = 0;
 | |
| 
 | |
| 		trace_handle_mmio_page_fault(addr, gfn, access);
 | |
| 		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
 | |
| 		return RET_PF_EMULATE;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the page table is zapped by other cpus, let CPU fault again on
 | |
| 	 * the address.
 | |
| 	 */
 | |
| 	return RET_PF_RETRY;
 | |
| }
 | |
| 
 | |
| static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
 | |
| 					 struct kvm_page_fault *fault)
 | |
| {
 | |
| 	if (unlikely(fault->rsvd))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!fault->present || !fault->write)
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * guest is writing the page which is write tracked which can
 | |
| 	 * not be fixed by page fault handler.
 | |
| 	 */
 | |
| 	if (kvm_slot_page_track_is_active(vcpu->kvm, fault->slot, fault->gfn, KVM_PAGE_TRACK_WRITE))
 | |
| 		return true;
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
 | |
| {
 | |
| 	struct kvm_shadow_walk_iterator iterator;
 | |
| 	u64 spte;
 | |
| 
 | |
| 	walk_shadow_page_lockless_begin(vcpu);
 | |
| 	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
 | |
| 		clear_sp_write_flooding_count(iterator.sptep);
 | |
| 	walk_shadow_page_lockless_end(vcpu);
 | |
| }
 | |
| 
 | |
| static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/* make sure the token value is not 0 */
 | |
| 	u32 id = vcpu->arch.apf.id;
 | |
| 
 | |
| 	if (id << 12 == 0)
 | |
| 		vcpu->arch.apf.id = 1;
 | |
| 
 | |
| 	return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
 | |
| }
 | |
| 
 | |
| static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
 | |
| 				    gfn_t gfn)
 | |
| {
 | |
| 	struct kvm_arch_async_pf arch;
 | |
| 
 | |
| 	arch.token = alloc_apf_token(vcpu);
 | |
| 	arch.gfn = gfn;
 | |
| 	arch.direct_map = vcpu->arch.mmu->direct_map;
 | |
| 	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
 | |
| 
 | |
| 	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
 | |
| 				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
 | |
| }
 | |
| 
 | |
| static bool kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault, int *r)
 | |
| {
 | |
| 	struct kvm_memory_slot *slot = fault->slot;
 | |
| 	bool async;
 | |
| 
 | |
| 	/*
 | |
| 	 * Retry the page fault if the gfn hit a memslot that is being deleted
 | |
| 	 * or moved.  This ensures any existing SPTEs for the old memslot will
 | |
| 	 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
 | |
| 	 */
 | |
| 	if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
 | |
| 		goto out_retry;
 | |
| 
 | |
| 	if (!kvm_is_visible_memslot(slot)) {
 | |
| 		/* Don't expose private memslots to L2. */
 | |
| 		if (is_guest_mode(vcpu)) {
 | |
| 			fault->slot = NULL;
 | |
| 			fault->pfn = KVM_PFN_NOSLOT;
 | |
| 			fault->map_writable = false;
 | |
| 			return false;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * If the APIC access page exists but is disabled, go directly
 | |
| 		 * to emulation without caching the MMIO access or creating a
 | |
| 		 * MMIO SPTE.  That way the cache doesn't need to be purged
 | |
| 		 * when the AVIC is re-enabled.
 | |
| 		 */
 | |
| 		if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
 | |
| 		    !kvm_apicv_activated(vcpu->kvm)) {
 | |
| 			*r = RET_PF_EMULATE;
 | |
| 			return true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	async = false;
 | |
| 	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, &async,
 | |
| 					  fault->write, &fault->map_writable,
 | |
| 					  &fault->hva);
 | |
| 	if (!async)
 | |
| 		return false; /* *pfn has correct page already */
 | |
| 
 | |
| 	if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
 | |
| 		trace_kvm_try_async_get_page(fault->addr, fault->gfn);
 | |
| 		if (kvm_find_async_pf_gfn(vcpu, fault->gfn)) {
 | |
| 			trace_kvm_async_pf_doublefault(fault->addr, fault->gfn);
 | |
| 			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
 | |
| 			goto out_retry;
 | |
| 		} else if (kvm_arch_setup_async_pf(vcpu, fault->addr, fault->gfn))
 | |
| 			goto out_retry;
 | |
| 	}
 | |
| 
 | |
| 	fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, NULL,
 | |
| 					  fault->write, &fault->map_writable,
 | |
| 					  &fault->hva);
 | |
| 	return false;
 | |
| 
 | |
| out_retry:
 | |
| 	*r = RET_PF_RETRY;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns true if the page fault is stale and needs to be retried, i.e. if the
 | |
|  * root was invalidated by a memslot update or a relevant mmu_notifier fired.
 | |
|  */
 | |
| static bool is_page_fault_stale(struct kvm_vcpu *vcpu,
 | |
| 				struct kvm_page_fault *fault,
 | |
| 				unsigned long mmu_seq)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp = to_shadow_page(vcpu->arch.mmu->root.hpa);
 | |
| 
 | |
| 	/* Special roots, e.g. pae_root, are not backed by shadow pages. */
 | |
| 	if (sp && is_obsolete_sp(vcpu->kvm, sp))
 | |
| 		return true;
 | |
| 
 | |
| 	/*
 | |
| 	 * Roots without an associated shadow page are considered invalid if
 | |
| 	 * there is a pending request to free obsolete roots.  The request is
 | |
| 	 * only a hint that the current root _may_ be obsolete and needs to be
 | |
| 	 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a
 | |
| 	 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs
 | |
| 	 * to reload even if no vCPU is actively using the root.
 | |
| 	 */
 | |
| 	if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
 | |
| 		return true;
 | |
| 
 | |
| 	return fault->slot &&
 | |
| 	       mmu_notifier_retry_hva(vcpu->kvm, mmu_seq, fault->hva);
 | |
| }
 | |
| 
 | |
| static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
 | |
| {
 | |
| 	bool is_tdp_mmu_fault = is_tdp_mmu(vcpu->arch.mmu);
 | |
| 
 | |
| 	unsigned long mmu_seq;
 | |
| 	int r;
 | |
| 
 | |
| 	fault->gfn = fault->addr >> PAGE_SHIFT;
 | |
| 	fault->slot = kvm_vcpu_gfn_to_memslot(vcpu, fault->gfn);
 | |
| 
 | |
| 	if (page_fault_handle_page_track(vcpu, fault))
 | |
| 		return RET_PF_EMULATE;
 | |
| 
 | |
| 	r = fast_page_fault(vcpu, fault);
 | |
| 	if (r != RET_PF_INVALID)
 | |
| 		return r;
 | |
| 
 | |
| 	r = mmu_topup_memory_caches(vcpu, false);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
 | |
| 	smp_rmb();
 | |
| 
 | |
| 	if (kvm_faultin_pfn(vcpu, fault, &r))
 | |
| 		return r;
 | |
| 
 | |
| 	if (handle_abnormal_pfn(vcpu, fault, ACC_ALL, &r))
 | |
| 		return r;
 | |
| 
 | |
| 	r = RET_PF_RETRY;
 | |
| 
 | |
| 	if (is_tdp_mmu_fault)
 | |
| 		read_lock(&vcpu->kvm->mmu_lock);
 | |
| 	else
 | |
| 		write_lock(&vcpu->kvm->mmu_lock);
 | |
| 
 | |
| 	if (is_page_fault_stale(vcpu, fault, mmu_seq))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	if (is_tdp_mmu_fault) {
 | |
| 		r = kvm_tdp_mmu_map(vcpu, fault);
 | |
| 	} else {
 | |
| 		r = make_mmu_pages_available(vcpu);
 | |
| 		if (r)
 | |
| 			goto out_unlock;
 | |
| 		r = __direct_map(vcpu, fault);
 | |
| 	}
 | |
| 
 | |
| out_unlock:
 | |
| 	if (is_tdp_mmu_fault)
 | |
| 		read_unlock(&vcpu->kvm->mmu_lock);
 | |
| 	else
 | |
| 		write_unlock(&vcpu->kvm->mmu_lock);
 | |
| 	kvm_release_pfn_clean(fault->pfn);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
 | |
| 				struct kvm_page_fault *fault)
 | |
| {
 | |
| 	pgprintk("%s: gva %lx error %x\n", __func__, fault->addr, fault->error_code);
 | |
| 
 | |
| 	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
 | |
| 	fault->max_level = PG_LEVEL_2M;
 | |
| 	return direct_page_fault(vcpu, fault);
 | |
| }
 | |
| 
 | |
| int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
 | |
| 				u64 fault_address, char *insn, int insn_len)
 | |
| {
 | |
| 	int r = 1;
 | |
| 	u32 flags = vcpu->arch.apf.host_apf_flags;
 | |
| 
 | |
| #ifndef CONFIG_X86_64
 | |
| 	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
 | |
| 	if (WARN_ON_ONCE(fault_address >> 32))
 | |
| 		return -EFAULT;
 | |
| #endif
 | |
| 
 | |
| 	vcpu->arch.l1tf_flush_l1d = true;
 | |
| 	if (!flags) {
 | |
| 		trace_kvm_page_fault(fault_address, error_code);
 | |
| 
 | |
| 		if (kvm_event_needs_reinjection(vcpu))
 | |
| 			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
 | |
| 		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
 | |
| 				insn_len);
 | |
| 	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
 | |
| 		vcpu->arch.apf.host_apf_flags = 0;
 | |
| 		local_irq_disable();
 | |
| 		kvm_async_pf_task_wait_schedule(fault_address);
 | |
| 		local_irq_enable();
 | |
| 	} else {
 | |
| 		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
 | |
| 	}
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
 | |
| 
 | |
| int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
 | |
| {
 | |
| 	while (fault->max_level > PG_LEVEL_4K) {
 | |
| 		int page_num = KVM_PAGES_PER_HPAGE(fault->max_level);
 | |
| 		gfn_t base = (fault->addr >> PAGE_SHIFT) & ~(page_num - 1);
 | |
| 
 | |
| 		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
 | |
| 			break;
 | |
| 
 | |
| 		--fault->max_level;
 | |
| 	}
 | |
| 
 | |
| 	return direct_page_fault(vcpu, fault);
 | |
| }
 | |
| 
 | |
| static void nonpaging_init_context(struct kvm_mmu *context)
 | |
| {
 | |
| 	context->page_fault = nonpaging_page_fault;
 | |
| 	context->gva_to_gpa = nonpaging_gva_to_gpa;
 | |
| 	context->sync_page = nonpaging_sync_page;
 | |
| 	context->invlpg = NULL;
 | |
| 	context->direct_map = true;
 | |
| }
 | |
| 
 | |
| static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
 | |
| 				  union kvm_mmu_page_role role)
 | |
| {
 | |
| 	return (role.direct || pgd == root->pgd) &&
 | |
| 	       VALID_PAGE(root->hpa) &&
 | |
| 	       role.word == to_shadow_page(root->hpa)->role.word;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find out if a previously cached root matching the new pgd/role is available,
 | |
|  * and insert the current root as the MRU in the cache.
 | |
|  * If a matching root is found, it is assigned to kvm_mmu->root and
 | |
|  * true is returned.
 | |
|  * If no match is found, kvm_mmu->root is left invalid, the LRU root is
 | |
|  * evicted to make room for the current root, and false is returned.
 | |
|  */
 | |
| static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu,
 | |
| 					      gpa_t new_pgd,
 | |
| 					      union kvm_mmu_page_role new_role)
 | |
| {
 | |
| 	uint i;
 | |
| 
 | |
| 	if (is_root_usable(&mmu->root, new_pgd, new_role))
 | |
| 		return true;
 | |
| 
 | |
| 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
 | |
| 		/*
 | |
| 		 * The swaps end up rotating the cache like this:
 | |
| 		 *   C   0 1 2 3   (on entry to the function)
 | |
| 		 *   0   C 1 2 3
 | |
| 		 *   1   C 0 2 3
 | |
| 		 *   2   C 0 1 3
 | |
| 		 *   3   C 0 1 2   (on exit from the loop)
 | |
| 		 */
 | |
| 		swap(mmu->root, mmu->prev_roots[i]);
 | |
| 		if (is_root_usable(&mmu->root, new_pgd, new_role))
 | |
| 			return true;
 | |
| 	}
 | |
| 
 | |
| 	kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find out if a previously cached root matching the new pgd/role is available.
 | |
|  * On entry, mmu->root is invalid.
 | |
|  * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry
 | |
|  * of the cache becomes invalid, and true is returned.
 | |
|  * If no match is found, kvm_mmu->root is left invalid and false is returned.
 | |
|  */
 | |
| static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu,
 | |
| 					     gpa_t new_pgd,
 | |
| 					     union kvm_mmu_page_role new_role)
 | |
| {
 | |
| 	uint i;
 | |
| 
 | |
| 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
 | |
| 		if (is_root_usable(&mmu->prev_roots[i], new_pgd, new_role))
 | |
| 			goto hit;
 | |
| 
 | |
| 	return false;
 | |
| 
 | |
| hit:
 | |
| 	swap(mmu->root, mmu->prev_roots[i]);
 | |
| 	/* Bubble up the remaining roots.  */
 | |
| 	for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++)
 | |
| 		mmu->prev_roots[i] = mmu->prev_roots[i + 1];
 | |
| 	mmu->prev_roots[i].hpa = INVALID_PAGE;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu,
 | |
| 			    gpa_t new_pgd, union kvm_mmu_page_role new_role)
 | |
| {
 | |
| 	/*
 | |
| 	 * For now, limit the caching to 64-bit hosts+VMs in order to avoid
 | |
| 	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
 | |
| 	 * later if necessary.
 | |
| 	 */
 | |
| 	if (VALID_PAGE(mmu->root.hpa) && !to_shadow_page(mmu->root.hpa))
 | |
| 		kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
 | |
| 
 | |
| 	if (VALID_PAGE(mmu->root.hpa))
 | |
| 		return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role);
 | |
| 	else
 | |
| 		return cached_root_find_without_current(kvm, mmu, new_pgd, new_role);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
 | |
| {
 | |
| 	struct kvm_mmu *mmu = vcpu->arch.mmu;
 | |
| 	union kvm_mmu_page_role new_role = mmu->mmu_role.base;
 | |
| 
 | |
| 	if (!fast_pgd_switch(vcpu->kvm, mmu, new_pgd, new_role)) {
 | |
| 		/* kvm_mmu_ensure_valid_pgd will set up a new root.  */
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * It's possible that the cached previous root page is obsolete because
 | |
| 	 * of a change in the MMU generation number. However, changing the
 | |
| 	 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS,
 | |
| 	 * which will free the root set here and allocate a new one.
 | |
| 	 */
 | |
| 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
 | |
| 
 | |
| 	if (force_flush_and_sync_on_reuse) {
 | |
| 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
 | |
| 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
 | |
| 	 * switching to a new CR3, that GVA->GPA mapping may no longer be
 | |
| 	 * valid. So clear any cached MMIO info even when we don't need to sync
 | |
| 	 * the shadow page tables.
 | |
| 	 */
 | |
| 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a direct root page, it doesn't have a write flooding
 | |
| 	 * count. Otherwise, clear the write flooding count.
 | |
| 	 */
 | |
| 	if (!new_role.direct)
 | |
| 		__clear_sp_write_flooding_count(
 | |
| 				to_shadow_page(vcpu->arch.mmu->root.hpa));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
 | |
| 
 | |
| static unsigned long get_cr3(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return kvm_read_cr3(vcpu);
 | |
| }
 | |
| 
 | |
| static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
 | |
| 			   unsigned int access)
 | |
| {
 | |
| 	if (unlikely(is_mmio_spte(*sptep))) {
 | |
| 		if (gfn != get_mmio_spte_gfn(*sptep)) {
 | |
| 			mmu_spte_clear_no_track(sptep);
 | |
| 			return true;
 | |
| 		}
 | |
| 
 | |
| 		mark_mmio_spte(vcpu, sptep, gfn, access);
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| #define PTTYPE_EPT 18 /* arbitrary */
 | |
| #define PTTYPE PTTYPE_EPT
 | |
| #include "paging_tmpl.h"
 | |
| #undef PTTYPE
 | |
| 
 | |
| #define PTTYPE 64
 | |
| #include "paging_tmpl.h"
 | |
| #undef PTTYPE
 | |
| 
 | |
| #define PTTYPE 32
 | |
| #include "paging_tmpl.h"
 | |
| #undef PTTYPE
 | |
| 
 | |
| static void
 | |
| __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
 | |
| 			u64 pa_bits_rsvd, int level, bool nx, bool gbpages,
 | |
| 			bool pse, bool amd)
 | |
| {
 | |
| 	u64 gbpages_bit_rsvd = 0;
 | |
| 	u64 nonleaf_bit8_rsvd = 0;
 | |
| 	u64 high_bits_rsvd;
 | |
| 
 | |
| 	rsvd_check->bad_mt_xwr = 0;
 | |
| 
 | |
| 	if (!gbpages)
 | |
| 		gbpages_bit_rsvd = rsvd_bits(7, 7);
 | |
| 
 | |
| 	if (level == PT32E_ROOT_LEVEL)
 | |
| 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
 | |
| 	else
 | |
| 		high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
 | |
| 
 | |
| 	/* Note, NX doesn't exist in PDPTEs, this is handled below. */
 | |
| 	if (!nx)
 | |
| 		high_bits_rsvd |= rsvd_bits(63, 63);
 | |
| 
 | |
| 	/*
 | |
| 	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
 | |
| 	 * leaf entries) on AMD CPUs only.
 | |
| 	 */
 | |
| 	if (amd)
 | |
| 		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
 | |
| 
 | |
| 	switch (level) {
 | |
| 	case PT32_ROOT_LEVEL:
 | |
| 		/* no rsvd bits for 2 level 4K page table entries */
 | |
| 		rsvd_check->rsvd_bits_mask[0][1] = 0;
 | |
| 		rsvd_check->rsvd_bits_mask[0][0] = 0;
 | |
| 		rsvd_check->rsvd_bits_mask[1][0] =
 | |
| 			rsvd_check->rsvd_bits_mask[0][0];
 | |
| 
 | |
| 		if (!pse) {
 | |
| 			rsvd_check->rsvd_bits_mask[1][1] = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (is_cpuid_PSE36())
 | |
| 			/* 36bits PSE 4MB page */
 | |
| 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
 | |
| 		else
 | |
| 			/* 32 bits PSE 4MB page */
 | |
| 			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
 | |
| 		break;
 | |
| 	case PT32E_ROOT_LEVEL:
 | |
| 		rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
 | |
| 						   high_bits_rsvd |
 | |
| 						   rsvd_bits(5, 8) |
 | |
| 						   rsvd_bits(1, 2);	/* PDPTE */
 | |
| 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;	/* PDE */
 | |
| 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;	/* PTE */
 | |
| 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
 | |
| 						   rsvd_bits(13, 20);	/* large page */
 | |
| 		rsvd_check->rsvd_bits_mask[1][0] =
 | |
| 			rsvd_check->rsvd_bits_mask[0][0];
 | |
| 		break;
 | |
| 	case PT64_ROOT_5LEVEL:
 | |
| 		rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
 | |
| 						   nonleaf_bit8_rsvd |
 | |
| 						   rsvd_bits(7, 7);
 | |
| 		rsvd_check->rsvd_bits_mask[1][4] =
 | |
| 			rsvd_check->rsvd_bits_mask[0][4];
 | |
| 		/* fall through */
 | |
| 	case PT64_ROOT_4LEVEL:
 | |
| 		rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
 | |
| 						   nonleaf_bit8_rsvd |
 | |
| 						   rsvd_bits(7, 7);
 | |
| 		rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
 | |
| 						   gbpages_bit_rsvd;
 | |
| 		rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
 | |
| 		rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
 | |
| 		rsvd_check->rsvd_bits_mask[1][3] =
 | |
| 			rsvd_check->rsvd_bits_mask[0][3];
 | |
| 		rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
 | |
| 						   gbpages_bit_rsvd |
 | |
| 						   rsvd_bits(13, 29);
 | |
| 		rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
 | |
| 						   rsvd_bits(13, 20); /* large page */
 | |
| 		rsvd_check->rsvd_bits_mask[1][0] =
 | |
| 			rsvd_check->rsvd_bits_mask[0][0];
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool guest_can_use_gbpages(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/*
 | |
| 	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
 | |
| 	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
 | |
| 	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
 | |
| 	 * walk for performance and complexity reasons.  Not to mention KVM
 | |
| 	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
 | |
| 	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
 | |
| 	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
 | |
| 	 */
 | |
| 	return tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
 | |
| 			     guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
 | |
| }
 | |
| 
 | |
| static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
 | |
| 				  struct kvm_mmu *context)
 | |
| {
 | |
| 	__reset_rsvds_bits_mask(&context->guest_rsvd_check,
 | |
| 				vcpu->arch.reserved_gpa_bits,
 | |
| 				context->root_level, is_efer_nx(context),
 | |
| 				guest_can_use_gbpages(vcpu),
 | |
| 				is_cr4_pse(context),
 | |
| 				guest_cpuid_is_amd(vcpu));
 | |
| }
 | |
| 
 | |
| static void
 | |
| __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
 | |
| 			    u64 pa_bits_rsvd, bool execonly, int huge_page_level)
 | |
| {
 | |
| 	u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
 | |
| 	u64 large_1g_rsvd = 0, large_2m_rsvd = 0;
 | |
| 	u64 bad_mt_xwr;
 | |
| 
 | |
| 	if (huge_page_level < PG_LEVEL_1G)
 | |
| 		large_1g_rsvd = rsvd_bits(7, 7);
 | |
| 	if (huge_page_level < PG_LEVEL_2M)
 | |
| 		large_2m_rsvd = rsvd_bits(7, 7);
 | |
| 
 | |
| 	rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
 | |
| 	rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
 | |
| 	rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd;
 | |
| 	rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd;
 | |
| 	rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
 | |
| 
 | |
| 	/* large page */
 | |
| 	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
 | |
| 	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
 | |
| 	rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd;
 | |
| 	rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd;
 | |
| 	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
 | |
| 
 | |
| 	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
 | |
| 	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
 | |
| 	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
 | |
| 	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
 | |
| 	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
 | |
| 	if (!execonly) {
 | |
| 		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
 | |
| 		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
 | |
| 	}
 | |
| 	rsvd_check->bad_mt_xwr = bad_mt_xwr;
 | |
| }
 | |
| 
 | |
| static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
 | |
| 		struct kvm_mmu *context, bool execonly, int huge_page_level)
 | |
| {
 | |
| 	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
 | |
| 				    vcpu->arch.reserved_gpa_bits, execonly,
 | |
| 				    huge_page_level);
 | |
| }
 | |
| 
 | |
| static inline u64 reserved_hpa_bits(void)
 | |
| {
 | |
| 	return rsvd_bits(shadow_phys_bits, 63);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * the page table on host is the shadow page table for the page
 | |
|  * table in guest or amd nested guest, its mmu features completely
 | |
|  * follow the features in guest.
 | |
|  */
 | |
| static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
 | |
| 					struct kvm_mmu *context)
 | |
| {
 | |
| 	/*
 | |
| 	 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
 | |
| 	 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
 | |
| 	 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
 | |
| 	 * The iTLB multi-hit workaround can be toggled at any time, so assume
 | |
| 	 * NX can be used by any non-nested shadow MMU to avoid having to reset
 | |
| 	 * MMU contexts.  Note, KVM forces EFER.NX=1 when TDP is disabled.
 | |
| 	 */
 | |
| 	bool uses_nx = is_efer_nx(context) || !tdp_enabled;
 | |
| 
 | |
| 	/* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
 | |
| 	bool is_amd = true;
 | |
| 	/* KVM doesn't use 2-level page tables for the shadow MMU. */
 | |
| 	bool is_pse = false;
 | |
| 	struct rsvd_bits_validate *shadow_zero_check;
 | |
| 	int i;
 | |
| 
 | |
| 	WARN_ON_ONCE(context->shadow_root_level < PT32E_ROOT_LEVEL);
 | |
| 
 | |
| 	shadow_zero_check = &context->shadow_zero_check;
 | |
| 	__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
 | |
| 				context->shadow_root_level, uses_nx,
 | |
| 				guest_can_use_gbpages(vcpu), is_pse, is_amd);
 | |
| 
 | |
| 	if (!shadow_me_mask)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = context->shadow_root_level; --i >= 0;) {
 | |
| 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
 | |
| 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| static inline bool boot_cpu_is_amd(void)
 | |
| {
 | |
| 	WARN_ON_ONCE(!tdp_enabled);
 | |
| 	return shadow_x_mask == 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * the direct page table on host, use as much mmu features as
 | |
|  * possible, however, kvm currently does not do execution-protection.
 | |
|  */
 | |
| static void
 | |
| reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context)
 | |
| {
 | |
| 	struct rsvd_bits_validate *shadow_zero_check;
 | |
| 	int i;
 | |
| 
 | |
| 	shadow_zero_check = &context->shadow_zero_check;
 | |
| 
 | |
| 	if (boot_cpu_is_amd())
 | |
| 		__reset_rsvds_bits_mask(shadow_zero_check, reserved_hpa_bits(),
 | |
| 					context->shadow_root_level, false,
 | |
| 					boot_cpu_has(X86_FEATURE_GBPAGES),
 | |
| 					false, true);
 | |
| 	else
 | |
| 		__reset_rsvds_bits_mask_ept(shadow_zero_check,
 | |
| 					    reserved_hpa_bits(), false,
 | |
| 					    max_huge_page_level);
 | |
| 
 | |
| 	if (!shadow_me_mask)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = context->shadow_root_level; --i >= 0;) {
 | |
| 		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
 | |
| 		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * as the comments in reset_shadow_zero_bits_mask() except it
 | |
|  * is the shadow page table for intel nested guest.
 | |
|  */
 | |
| static void
 | |
| reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly)
 | |
| {
 | |
| 	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
 | |
| 				    reserved_hpa_bits(), execonly,
 | |
| 				    max_huge_page_level);
 | |
| }
 | |
| 
 | |
| #define BYTE_MASK(access) \
 | |
| 	((1 & (access) ? 2 : 0) | \
 | |
| 	 (2 & (access) ? 4 : 0) | \
 | |
| 	 (3 & (access) ? 8 : 0) | \
 | |
| 	 (4 & (access) ? 16 : 0) | \
 | |
| 	 (5 & (access) ? 32 : 0) | \
 | |
| 	 (6 & (access) ? 64 : 0) | \
 | |
| 	 (7 & (access) ? 128 : 0))
 | |
| 
 | |
| 
 | |
| static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
 | |
| {
 | |
| 	unsigned byte;
 | |
| 
 | |
| 	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
 | |
| 	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
 | |
| 	const u8 u = BYTE_MASK(ACC_USER_MASK);
 | |
| 
 | |
| 	bool cr4_smep = is_cr4_smep(mmu);
 | |
| 	bool cr4_smap = is_cr4_smap(mmu);
 | |
| 	bool cr0_wp = is_cr0_wp(mmu);
 | |
| 	bool efer_nx = is_efer_nx(mmu);
 | |
| 
 | |
| 	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
 | |
| 		unsigned pfec = byte << 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * Each "*f" variable has a 1 bit for each UWX value
 | |
| 		 * that causes a fault with the given PFEC.
 | |
| 		 */
 | |
| 
 | |
| 		/* Faults from writes to non-writable pages */
 | |
| 		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
 | |
| 		/* Faults from user mode accesses to supervisor pages */
 | |
| 		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
 | |
| 		/* Faults from fetches of non-executable pages*/
 | |
| 		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
 | |
| 		/* Faults from kernel mode fetches of user pages */
 | |
| 		u8 smepf = 0;
 | |
| 		/* Faults from kernel mode accesses of user pages */
 | |
| 		u8 smapf = 0;
 | |
| 
 | |
| 		if (!ept) {
 | |
| 			/* Faults from kernel mode accesses to user pages */
 | |
| 			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
 | |
| 
 | |
| 			/* Not really needed: !nx will cause pte.nx to fault */
 | |
| 			if (!efer_nx)
 | |
| 				ff = 0;
 | |
| 
 | |
| 			/* Allow supervisor writes if !cr0.wp */
 | |
| 			if (!cr0_wp)
 | |
| 				wf = (pfec & PFERR_USER_MASK) ? wf : 0;
 | |
| 
 | |
| 			/* Disallow supervisor fetches of user code if cr4.smep */
 | |
| 			if (cr4_smep)
 | |
| 				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
 | |
| 
 | |
| 			/*
 | |
| 			 * SMAP:kernel-mode data accesses from user-mode
 | |
| 			 * mappings should fault. A fault is considered
 | |
| 			 * as a SMAP violation if all of the following
 | |
| 			 * conditions are true:
 | |
| 			 *   - X86_CR4_SMAP is set in CR4
 | |
| 			 *   - A user page is accessed
 | |
| 			 *   - The access is not a fetch
 | |
| 			 *   - The access is supervisor mode
 | |
| 			 *   - If implicit supervisor access or X86_EFLAGS_AC is clear
 | |
| 			 *
 | |
| 			 * Here, we cover the first four conditions.
 | |
| 			 * The fifth is computed dynamically in permission_fault();
 | |
| 			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
 | |
| 			 * *not* subject to SMAP restrictions.
 | |
| 			 */
 | |
| 			if (cr4_smap)
 | |
| 				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
 | |
| 		}
 | |
| 
 | |
| 		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
| * PKU is an additional mechanism by which the paging controls access to
 | |
| * user-mode addresses based on the value in the PKRU register.  Protection
 | |
| * key violations are reported through a bit in the page fault error code.
 | |
| * Unlike other bits of the error code, the PK bit is not known at the
 | |
| * call site of e.g. gva_to_gpa; it must be computed directly in
 | |
| * permission_fault based on two bits of PKRU, on some machine state (CR4,
 | |
| * CR0, EFER, CPL), and on other bits of the error code and the page tables.
 | |
| *
 | |
| * In particular the following conditions come from the error code, the
 | |
| * page tables and the machine state:
 | |
| * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
 | |
| * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
 | |
| * - PK is always zero if U=0 in the page tables
 | |
| * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
 | |
| *
 | |
| * The PKRU bitmask caches the result of these four conditions.  The error
 | |
| * code (minus the P bit) and the page table's U bit form an index into the
 | |
| * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
 | |
| * with the two bits of the PKRU register corresponding to the protection key.
 | |
| * For the first three conditions above the bits will be 00, thus masking
 | |
| * away both AD and WD.  For all reads or if the last condition holds, WD
 | |
| * only will be masked away.
 | |
| */
 | |
| static void update_pkru_bitmask(struct kvm_mmu *mmu)
 | |
| {
 | |
| 	unsigned bit;
 | |
| 	bool wp;
 | |
| 
 | |
| 	mmu->pkru_mask = 0;
 | |
| 
 | |
| 	if (!is_cr4_pke(mmu))
 | |
| 		return;
 | |
| 
 | |
| 	wp = is_cr0_wp(mmu);
 | |
| 
 | |
| 	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
 | |
| 		unsigned pfec, pkey_bits;
 | |
| 		bool check_pkey, check_write, ff, uf, wf, pte_user;
 | |
| 
 | |
| 		pfec = bit << 1;
 | |
| 		ff = pfec & PFERR_FETCH_MASK;
 | |
| 		uf = pfec & PFERR_USER_MASK;
 | |
| 		wf = pfec & PFERR_WRITE_MASK;
 | |
| 
 | |
| 		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
 | |
| 		pte_user = pfec & PFERR_RSVD_MASK;
 | |
| 
 | |
| 		/*
 | |
| 		 * Only need to check the access which is not an
 | |
| 		 * instruction fetch and is to a user page.
 | |
| 		 */
 | |
| 		check_pkey = (!ff && pte_user);
 | |
| 		/*
 | |
| 		 * write access is controlled by PKRU if it is a
 | |
| 		 * user access or CR0.WP = 1.
 | |
| 		 */
 | |
| 		check_write = check_pkey && wf && (uf || wp);
 | |
| 
 | |
| 		/* PKRU.AD stops both read and write access. */
 | |
| 		pkey_bits = !!check_pkey;
 | |
| 		/* PKRU.WD stops write access. */
 | |
| 		pkey_bits |= (!!check_write) << 1;
 | |
| 
 | |
| 		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
 | |
| 					struct kvm_mmu *mmu)
 | |
| {
 | |
| 	if (!is_cr0_pg(mmu))
 | |
| 		return;
 | |
| 
 | |
| 	reset_rsvds_bits_mask(vcpu, mmu);
 | |
| 	update_permission_bitmask(mmu, false);
 | |
| 	update_pkru_bitmask(mmu);
 | |
| }
 | |
| 
 | |
| static void paging64_init_context(struct kvm_mmu *context)
 | |
| {
 | |
| 	context->page_fault = paging64_page_fault;
 | |
| 	context->gva_to_gpa = paging64_gva_to_gpa;
 | |
| 	context->sync_page = paging64_sync_page;
 | |
| 	context->invlpg = paging64_invlpg;
 | |
| 	context->direct_map = false;
 | |
| }
 | |
| 
 | |
| static void paging32_init_context(struct kvm_mmu *context)
 | |
| {
 | |
| 	context->page_fault = paging32_page_fault;
 | |
| 	context->gva_to_gpa = paging32_gva_to_gpa;
 | |
| 	context->sync_page = paging32_sync_page;
 | |
| 	context->invlpg = paging32_invlpg;
 | |
| 	context->direct_map = false;
 | |
| }
 | |
| 
 | |
| static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu,
 | |
| 							 struct kvm_mmu_role_regs *regs)
 | |
| {
 | |
| 	union kvm_mmu_extended_role ext = {0};
 | |
| 
 | |
| 	if (____is_cr0_pg(regs)) {
 | |
| 		ext.cr0_pg = 1;
 | |
| 		ext.cr4_pae = ____is_cr4_pae(regs);
 | |
| 		ext.cr4_smep = ____is_cr4_smep(regs);
 | |
| 		ext.cr4_smap = ____is_cr4_smap(regs);
 | |
| 		ext.cr4_pse = ____is_cr4_pse(regs);
 | |
| 
 | |
| 		/* PKEY and LA57 are active iff long mode is active. */
 | |
| 		ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
 | |
| 		ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
 | |
| 		ext.efer_lma = ____is_efer_lma(regs);
 | |
| 	}
 | |
| 
 | |
| 	ext.valid = 1;
 | |
| 
 | |
| 	return ext;
 | |
| }
 | |
| 
 | |
| static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
 | |
| 						   struct kvm_mmu_role_regs *regs,
 | |
| 						   bool base_only)
 | |
| {
 | |
| 	union kvm_mmu_role role = {0};
 | |
| 
 | |
| 	role.base.access = ACC_ALL;
 | |
| 	if (____is_cr0_pg(regs)) {
 | |
| 		role.base.efer_nx = ____is_efer_nx(regs);
 | |
| 		role.base.cr0_wp = ____is_cr0_wp(regs);
 | |
| 	}
 | |
| 	role.base.smm = is_smm(vcpu);
 | |
| 	role.base.guest_mode = is_guest_mode(vcpu);
 | |
| 
 | |
| 	if (base_only)
 | |
| 		return role;
 | |
| 
 | |
| 	role.ext = kvm_calc_mmu_role_ext(vcpu, regs);
 | |
| 
 | |
| 	return role;
 | |
| }
 | |
| 
 | |
| static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/* tdp_root_level is architecture forced level, use it if nonzero */
 | |
| 	if (tdp_root_level)
 | |
| 		return tdp_root_level;
 | |
| 
 | |
| 	/* Use 5-level TDP if and only if it's useful/necessary. */
 | |
| 	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
 | |
| 		return 4;
 | |
| 
 | |
| 	return max_tdp_level;
 | |
| }
 | |
| 
 | |
| static union kvm_mmu_role
 | |
| kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
 | |
| 				struct kvm_mmu_role_regs *regs, bool base_only)
 | |
| {
 | |
| 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
 | |
| 
 | |
| 	role.base.ad_disabled = (shadow_accessed_mask == 0);
 | |
| 	role.base.level = kvm_mmu_get_tdp_level(vcpu);
 | |
| 	role.base.direct = true;
 | |
| 	role.base.has_4_byte_gpte = false;
 | |
| 
 | |
| 	return role;
 | |
| }
 | |
| 
 | |
| static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
 | |
| 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
 | |
| 	union kvm_mmu_role new_role =
 | |
| 		kvm_calc_tdp_mmu_root_page_role(vcpu, ®s, false);
 | |
| 
 | |
| 	if (new_role.as_u64 == context->mmu_role.as_u64)
 | |
| 		return;
 | |
| 
 | |
| 	context->mmu_role.as_u64 = new_role.as_u64;
 | |
| 	context->page_fault = kvm_tdp_page_fault;
 | |
| 	context->sync_page = nonpaging_sync_page;
 | |
| 	context->invlpg = NULL;
 | |
| 	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
 | |
| 	context->direct_map = true;
 | |
| 	context->get_guest_pgd = get_cr3;
 | |
| 	context->get_pdptr = kvm_pdptr_read;
 | |
| 	context->inject_page_fault = kvm_inject_page_fault;
 | |
| 	context->root_level = role_regs_to_root_level(®s);
 | |
| 
 | |
| 	if (!is_cr0_pg(context))
 | |
| 		context->gva_to_gpa = nonpaging_gva_to_gpa;
 | |
| 	else if (is_cr4_pae(context))
 | |
| 		context->gva_to_gpa = paging64_gva_to_gpa;
 | |
| 	else
 | |
| 		context->gva_to_gpa = paging32_gva_to_gpa;
 | |
| 
 | |
| 	reset_guest_paging_metadata(vcpu, context);
 | |
| 	reset_tdp_shadow_zero_bits_mask(context);
 | |
| }
 | |
| 
 | |
| static union kvm_mmu_role
 | |
| kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu,
 | |
| 				      struct kvm_mmu_role_regs *regs, bool base_only)
 | |
| {
 | |
| 	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, regs, base_only);
 | |
| 
 | |
| 	role.base.smep_andnot_wp = role.ext.cr4_smep && !____is_cr0_wp(regs);
 | |
| 	role.base.smap_andnot_wp = role.ext.cr4_smap && !____is_cr0_wp(regs);
 | |
| 	role.base.has_4_byte_gpte = ____is_cr0_pg(regs) && !____is_cr4_pae(regs);
 | |
| 
 | |
| 	return role;
 | |
| }
 | |
| 
 | |
| static union kvm_mmu_role
 | |
| kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu,
 | |
| 				   struct kvm_mmu_role_regs *regs, bool base_only)
 | |
| {
 | |
| 	union kvm_mmu_role role =
 | |
| 		kvm_calc_shadow_root_page_role_common(vcpu, regs, base_only);
 | |
| 
 | |
| 	role.base.direct = !____is_cr0_pg(regs);
 | |
| 
 | |
| 	if (!____is_efer_lma(regs))
 | |
| 		role.base.level = PT32E_ROOT_LEVEL;
 | |
| 	else if (____is_cr4_la57(regs))
 | |
| 		role.base.level = PT64_ROOT_5LEVEL;
 | |
| 	else
 | |
| 		role.base.level = PT64_ROOT_4LEVEL;
 | |
| 
 | |
| 	return role;
 | |
| }
 | |
| 
 | |
| static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
 | |
| 				    struct kvm_mmu_role_regs *regs,
 | |
| 				    union kvm_mmu_role new_role)
 | |
| {
 | |
| 	if (new_role.as_u64 == context->mmu_role.as_u64)
 | |
| 		return;
 | |
| 
 | |
| 	context->mmu_role.as_u64 = new_role.as_u64;
 | |
| 
 | |
| 	if (!is_cr0_pg(context))
 | |
| 		nonpaging_init_context(context);
 | |
| 	else if (is_cr4_pae(context))
 | |
| 		paging64_init_context(context);
 | |
| 	else
 | |
| 		paging32_init_context(context);
 | |
| 	context->root_level = role_regs_to_root_level(regs);
 | |
| 
 | |
| 	reset_guest_paging_metadata(vcpu, context);
 | |
| 	context->shadow_root_level = new_role.base.level;
 | |
| 
 | |
| 	reset_shadow_zero_bits_mask(vcpu, context);
 | |
| }
 | |
| 
 | |
| static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
 | |
| 				struct kvm_mmu_role_regs *regs)
 | |
| {
 | |
| 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
 | |
| 	union kvm_mmu_role new_role =
 | |
| 		kvm_calc_shadow_mmu_root_page_role(vcpu, regs, false);
 | |
| 
 | |
| 	shadow_mmu_init_context(vcpu, context, regs, new_role);
 | |
| }
 | |
| 
 | |
| static union kvm_mmu_role
 | |
| kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu,
 | |
| 				   struct kvm_mmu_role_regs *regs)
 | |
| {
 | |
| 	union kvm_mmu_role role =
 | |
| 		kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
 | |
| 
 | |
| 	role.base.direct = false;
 | |
| 	role.base.level = kvm_mmu_get_tdp_level(vcpu);
 | |
| 
 | |
| 	return role;
 | |
| }
 | |
| 
 | |
| void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
 | |
| 			     unsigned long cr4, u64 efer, gpa_t nested_cr3)
 | |
| {
 | |
| 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
 | |
| 	struct kvm_mmu_role_regs regs = {
 | |
| 		.cr0 = cr0,
 | |
| 		.cr4 = cr4 & ~X86_CR4_PKE,
 | |
| 		.efer = efer,
 | |
| 	};
 | |
| 	union kvm_mmu_role new_role;
 | |
| 
 | |
| 	new_role = kvm_calc_shadow_npt_root_page_role(vcpu, ®s);
 | |
| 
 | |
| 	shadow_mmu_init_context(vcpu, context, ®s, new_role);
 | |
| 	kvm_mmu_new_pgd(vcpu, nested_cr3);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
 | |
| 
 | |
| static union kvm_mmu_role
 | |
| kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
 | |
| 				   bool execonly, u8 level)
 | |
| {
 | |
| 	union kvm_mmu_role role = {0};
 | |
| 
 | |
| 	/* SMM flag is inherited from root_mmu */
 | |
| 	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
 | |
| 
 | |
| 	role.base.level = level;
 | |
| 	role.base.has_4_byte_gpte = false;
 | |
| 	role.base.direct = false;
 | |
| 	role.base.ad_disabled = !accessed_dirty;
 | |
| 	role.base.guest_mode = true;
 | |
| 	role.base.access = ACC_ALL;
 | |
| 
 | |
| 	/* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
 | |
| 	role.ext.word = 0;
 | |
| 	role.ext.execonly = execonly;
 | |
| 	role.ext.valid = 1;
 | |
| 
 | |
| 	return role;
 | |
| }
 | |
| 
 | |
| void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
 | |
| 			     int huge_page_level, bool accessed_dirty,
 | |
| 			     gpa_t new_eptp)
 | |
| {
 | |
| 	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
 | |
| 	u8 level = vmx_eptp_page_walk_level(new_eptp);
 | |
| 	union kvm_mmu_role new_role =
 | |
| 		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
 | |
| 						   execonly, level);
 | |
| 
 | |
| 	if (new_role.as_u64 != context->mmu_role.as_u64) {
 | |
| 		context->mmu_role.as_u64 = new_role.as_u64;
 | |
| 
 | |
| 		context->shadow_root_level = level;
 | |
| 
 | |
| 		context->ept_ad = accessed_dirty;
 | |
| 		context->page_fault = ept_page_fault;
 | |
| 		context->gva_to_gpa = ept_gva_to_gpa;
 | |
| 		context->sync_page = ept_sync_page;
 | |
| 		context->invlpg = ept_invlpg;
 | |
| 		context->root_level = level;
 | |
| 		context->direct_map = false;
 | |
| 		update_permission_bitmask(context, true);
 | |
| 		context->pkru_mask = 0;
 | |
| 		reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level);
 | |
| 		reset_ept_shadow_zero_bits_mask(context, execonly);
 | |
| 	}
 | |
| 
 | |
| 	kvm_mmu_new_pgd(vcpu, new_eptp);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
 | |
| 
 | |
| static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_mmu *context = &vcpu->arch.root_mmu;
 | |
| 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
 | |
| 
 | |
| 	kvm_init_shadow_mmu(vcpu, ®s);
 | |
| 
 | |
| 	context->get_guest_pgd     = get_cr3;
 | |
| 	context->get_pdptr         = kvm_pdptr_read;
 | |
| 	context->inject_page_fault = kvm_inject_page_fault;
 | |
| }
 | |
| 
 | |
| static union kvm_mmu_role
 | |
| kvm_calc_nested_mmu_role(struct kvm_vcpu *vcpu, struct kvm_mmu_role_regs *regs)
 | |
| {
 | |
| 	union kvm_mmu_role role;
 | |
| 
 | |
| 	role = kvm_calc_shadow_root_page_role_common(vcpu, regs, false);
 | |
| 
 | |
| 	/*
 | |
| 	 * Nested MMUs are used only for walking L2's gva->gpa, they never have
 | |
| 	 * shadow pages of their own and so "direct" has no meaning.   Set it
 | |
| 	 * to "true" to try to detect bogus usage of the nested MMU.
 | |
| 	 */
 | |
| 	role.base.direct = true;
 | |
| 	role.base.level = role_regs_to_root_level(regs);
 | |
| 	return role;
 | |
| }
 | |
| 
 | |
| static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
 | |
| 	union kvm_mmu_role new_role = kvm_calc_nested_mmu_role(vcpu, ®s);
 | |
| 	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
 | |
| 
 | |
| 	if (new_role.as_u64 == g_context->mmu_role.as_u64)
 | |
| 		return;
 | |
| 
 | |
| 	g_context->mmu_role.as_u64 = new_role.as_u64;
 | |
| 	g_context->get_guest_pgd     = get_cr3;
 | |
| 	g_context->get_pdptr         = kvm_pdptr_read;
 | |
| 	g_context->inject_page_fault = kvm_inject_page_fault;
 | |
| 	g_context->root_level        = new_role.base.level;
 | |
| 
 | |
| 	/*
 | |
| 	 * L2 page tables are never shadowed, so there is no need to sync
 | |
| 	 * SPTEs.
 | |
| 	 */
 | |
| 	g_context->invlpg            = NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
 | |
| 	 * L1's nested page tables (e.g. EPT12). The nested translation
 | |
| 	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
 | |
| 	 * L2's page tables as the first level of translation and L1's
 | |
| 	 * nested page tables as the second level of translation. Basically
 | |
| 	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
 | |
| 	 */
 | |
| 	if (!is_paging(vcpu))
 | |
| 		g_context->gva_to_gpa = nonpaging_gva_to_gpa;
 | |
| 	else if (is_long_mode(vcpu))
 | |
| 		g_context->gva_to_gpa = paging64_gva_to_gpa;
 | |
| 	else if (is_pae(vcpu))
 | |
| 		g_context->gva_to_gpa = paging64_gva_to_gpa;
 | |
| 	else
 | |
| 		g_context->gva_to_gpa = paging32_gva_to_gpa;
 | |
| 
 | |
| 	reset_guest_paging_metadata(vcpu, g_context);
 | |
| }
 | |
| 
 | |
| void kvm_init_mmu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (mmu_is_nested(vcpu))
 | |
| 		init_kvm_nested_mmu(vcpu);
 | |
| 	else if (tdp_enabled)
 | |
| 		init_kvm_tdp_mmu(vcpu);
 | |
| 	else
 | |
| 		init_kvm_softmmu(vcpu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_init_mmu);
 | |
| 
 | |
| void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/*
 | |
| 	 * Invalidate all MMU roles to force them to reinitialize as CPUID
 | |
| 	 * information is factored into reserved bit calculations.
 | |
| 	 *
 | |
| 	 * Correctly handling multiple vCPU models with respect to paging and
 | |
| 	 * physical address properties) in a single VM would require tracking
 | |
| 	 * all relevant CPUID information in kvm_mmu_page_role. That is very
 | |
| 	 * undesirable as it would increase the memory requirements for
 | |
| 	 * gfn_track (see struct kvm_mmu_page_role comments).  For now that
 | |
| 	 * problem is swept under the rug; KVM's CPUID API is horrific and
 | |
| 	 * it's all but impossible to solve it without introducing a new API.
 | |
| 	 */
 | |
| 	vcpu->arch.root_mmu.mmu_role.ext.valid = 0;
 | |
| 	vcpu->arch.guest_mmu.mmu_role.ext.valid = 0;
 | |
| 	vcpu->arch.nested_mmu.mmu_role.ext.valid = 0;
 | |
| 	kvm_mmu_reset_context(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in
 | |
| 	 * kvm_arch_vcpu_ioctl().
 | |
| 	 */
 | |
| 	KVM_BUG_ON(vcpu->arch.last_vmentry_cpu != -1, vcpu->kvm);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kvm_mmu_unload(vcpu);
 | |
| 	kvm_init_mmu(vcpu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
 | |
| 
 | |
| int kvm_mmu_load(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
 | |
| 	if (r)
 | |
| 		goto out;
 | |
| 	r = mmu_alloc_special_roots(vcpu);
 | |
| 	if (r)
 | |
| 		goto out;
 | |
| 	if (vcpu->arch.mmu->direct_map)
 | |
| 		r = mmu_alloc_direct_roots(vcpu);
 | |
| 	else
 | |
| 		r = mmu_alloc_shadow_roots(vcpu);
 | |
| 	if (r)
 | |
| 		goto out;
 | |
| 
 | |
| 	kvm_mmu_sync_roots(vcpu);
 | |
| 
 | |
| 	kvm_mmu_load_pgd(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush any TLB entries for the new root, the provenance of the root
 | |
| 	 * is unknown.  Even if KVM ensures there are no stale TLB entries
 | |
| 	 * for a freed root, in theory another hypervisor could have left
 | |
| 	 * stale entries.  Flushing on alloc also allows KVM to skip the TLB
 | |
| 	 * flush when freeing a root (see kvm_tdp_mmu_put_root()).
 | |
| 	 */
 | |
| 	static_call(kvm_x86_flush_tlb_current)(vcpu);
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| void kvm_mmu_unload(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm *kvm = vcpu->kvm;
 | |
| 
 | |
| 	kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
 | |
| 	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root.hpa));
 | |
| 	kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
 | |
| 	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa));
 | |
| 	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
 | |
| }
 | |
| 
 | |
| static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 
 | |
| 	if (!VALID_PAGE(root_hpa))
 | |
| 		return false;
 | |
| 
 | |
| 	/*
 | |
| 	 * When freeing obsolete roots, treat roots as obsolete if they don't
 | |
| 	 * have an associated shadow page.  This does mean KVM will get false
 | |
| 	 * positives and free roots that don't strictly need to be freed, but
 | |
| 	 * such false positives are relatively rare:
 | |
| 	 *
 | |
| 	 *  (a) only PAE paging and nested NPT has roots without shadow pages
 | |
| 	 *  (b) remote reloads due to a memslot update obsoletes _all_ roots
 | |
| 	 *  (c) KVM doesn't track previous roots for PAE paging, and the guest
 | |
| 	 *      is unlikely to zap an in-use PGD.
 | |
| 	 */
 | |
| 	sp = to_shadow_page(root_hpa);
 | |
| 	return !sp || is_obsolete_sp(kvm, sp);
 | |
| }
 | |
| 
 | |
| static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu)
 | |
| {
 | |
| 	unsigned long roots_to_free = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	if (is_obsolete_root(kvm, mmu->root.hpa))
 | |
| 		roots_to_free |= KVM_MMU_ROOT_CURRENT;
 | |
| 
 | |
| 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
 | |
| 		if (is_obsolete_root(kvm, mmu->prev_roots[i].hpa))
 | |
| 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
 | |
| 	}
 | |
| 
 | |
| 	if (roots_to_free)
 | |
| 		kvm_mmu_free_roots(kvm, mmu, roots_to_free);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.root_mmu);
 | |
| 	__kvm_mmu_free_obsolete_roots(vcpu->kvm, &vcpu->arch.guest_mmu);
 | |
| }
 | |
| 
 | |
| static bool need_remote_flush(u64 old, u64 new)
 | |
| {
 | |
| 	if (!is_shadow_present_pte(old))
 | |
| 		return false;
 | |
| 	if (!is_shadow_present_pte(new))
 | |
| 		return true;
 | |
| 	if ((old ^ new) & PT64_BASE_ADDR_MASK)
 | |
| 		return true;
 | |
| 	old ^= shadow_nx_mask;
 | |
| 	new ^= shadow_nx_mask;
 | |
| 	return (old & ~new & PT64_PERM_MASK) != 0;
 | |
| }
 | |
| 
 | |
| static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
 | |
| 				    int *bytes)
 | |
| {
 | |
| 	u64 gentry = 0;
 | |
| 	int r;
 | |
| 
 | |
| 	/*
 | |
| 	 * Assume that the pte write on a page table of the same type
 | |
| 	 * as the current vcpu paging mode since we update the sptes only
 | |
| 	 * when they have the same mode.
 | |
| 	 */
 | |
| 	if (is_pae(vcpu) && *bytes == 4) {
 | |
| 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
 | |
| 		*gpa &= ~(gpa_t)7;
 | |
| 		*bytes = 8;
 | |
| 	}
 | |
| 
 | |
| 	if (*bytes == 4 || *bytes == 8) {
 | |
| 		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
 | |
| 		if (r)
 | |
| 			gentry = 0;
 | |
| 	}
 | |
| 
 | |
| 	return gentry;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If we're seeing too many writes to a page, it may no longer be a page table,
 | |
|  * or we may be forking, in which case it is better to unmap the page.
 | |
|  */
 | |
| static bool detect_write_flooding(struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	/*
 | |
| 	 * Skip write-flooding detected for the sp whose level is 1, because
 | |
| 	 * it can become unsync, then the guest page is not write-protected.
 | |
| 	 */
 | |
| 	if (sp->role.level == PG_LEVEL_4K)
 | |
| 		return false;
 | |
| 
 | |
| 	atomic_inc(&sp->write_flooding_count);
 | |
| 	return atomic_read(&sp->write_flooding_count) >= 3;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Misaligned accesses are too much trouble to fix up; also, they usually
 | |
|  * indicate a page is not used as a page table.
 | |
|  */
 | |
| static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
 | |
| 				    int bytes)
 | |
| {
 | |
| 	unsigned offset, pte_size, misaligned;
 | |
| 
 | |
| 	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
 | |
| 		 gpa, bytes, sp->role.word);
 | |
| 
 | |
| 	offset = offset_in_page(gpa);
 | |
| 	pte_size = sp->role.has_4_byte_gpte ? 4 : 8;
 | |
| 
 | |
| 	/*
 | |
| 	 * Sometimes, the OS only writes the last one bytes to update status
 | |
| 	 * bits, for example, in linux, andb instruction is used in clear_bit().
 | |
| 	 */
 | |
| 	if (!(offset & (pte_size - 1)) && bytes == 1)
 | |
| 		return false;
 | |
| 
 | |
| 	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
 | |
| 	misaligned |= bytes < 4;
 | |
| 
 | |
| 	return misaligned;
 | |
| }
 | |
| 
 | |
| static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
 | |
| {
 | |
| 	unsigned page_offset, quadrant;
 | |
| 	u64 *spte;
 | |
| 	int level;
 | |
| 
 | |
| 	page_offset = offset_in_page(gpa);
 | |
| 	level = sp->role.level;
 | |
| 	*nspte = 1;
 | |
| 	if (sp->role.has_4_byte_gpte) {
 | |
| 		page_offset <<= 1;	/* 32->64 */
 | |
| 		/*
 | |
| 		 * A 32-bit pde maps 4MB while the shadow pdes map
 | |
| 		 * only 2MB.  So we need to double the offset again
 | |
| 		 * and zap two pdes instead of one.
 | |
| 		 */
 | |
| 		if (level == PT32_ROOT_LEVEL) {
 | |
| 			page_offset &= ~7; /* kill rounding error */
 | |
| 			page_offset <<= 1;
 | |
| 			*nspte = 2;
 | |
| 		}
 | |
| 		quadrant = page_offset >> PAGE_SHIFT;
 | |
| 		page_offset &= ~PAGE_MASK;
 | |
| 		if (quadrant != sp->role.quadrant)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	spte = &sp->spt[page_offset / sizeof(*spte)];
 | |
| 	return spte;
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
 | |
| 			      const u8 *new, int bytes,
 | |
| 			      struct kvm_page_track_notifier_node *node)
 | |
| {
 | |
| 	gfn_t gfn = gpa >> PAGE_SHIFT;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	LIST_HEAD(invalid_list);
 | |
| 	u64 entry, gentry, *spte;
 | |
| 	int npte;
 | |
| 	bool flush = false;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we don't have indirect shadow pages, it means no page is
 | |
| 	 * write-protected, so we can exit simply.
 | |
| 	 */
 | |
| 	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
 | |
| 		return;
 | |
| 
 | |
| 	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
 | |
| 
 | |
| 	/*
 | |
| 	 * No need to care whether allocation memory is successful
 | |
| 	 * or not since pte prefetch is skiped if it does not have
 | |
| 	 * enough objects in the cache.
 | |
| 	 */
 | |
| 	mmu_topup_memory_caches(vcpu, true);
 | |
| 
 | |
| 	write_lock(&vcpu->kvm->mmu_lock);
 | |
| 
 | |
| 	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
 | |
| 
 | |
| 	++vcpu->kvm->stat.mmu_pte_write;
 | |
| 
 | |
| 	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
 | |
| 		if (detect_write_misaligned(sp, gpa, bytes) ||
 | |
| 		      detect_write_flooding(sp)) {
 | |
| 			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
 | |
| 			++vcpu->kvm->stat.mmu_flooded;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		spte = get_written_sptes(sp, gpa, &npte);
 | |
| 		if (!spte)
 | |
| 			continue;
 | |
| 
 | |
| 		while (npte--) {
 | |
| 			entry = *spte;
 | |
| 			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
 | |
| 			if (gentry && sp->role.level != PG_LEVEL_4K)
 | |
| 				++vcpu->kvm->stat.mmu_pde_zapped;
 | |
| 			if (need_remote_flush(entry, *spte))
 | |
| 				flush = true;
 | |
| 			++spte;
 | |
| 		}
 | |
| 	}
 | |
| 	kvm_mmu_remote_flush_or_zap(vcpu->kvm, &invalid_list, flush);
 | |
| 	write_unlock(&vcpu->kvm->mmu_lock);
 | |
| }
 | |
| 
 | |
| int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
 | |
| 		       void *insn, int insn_len)
 | |
| {
 | |
| 	int r, emulation_type = EMULTYPE_PF;
 | |
| 	bool direct = vcpu->arch.mmu->direct_map;
 | |
| 
 | |
| 	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
 | |
| 		return RET_PF_RETRY;
 | |
| 
 | |
| 	r = RET_PF_INVALID;
 | |
| 	if (unlikely(error_code & PFERR_RSVD_MASK)) {
 | |
| 		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
 | |
| 		if (r == RET_PF_EMULATE)
 | |
| 			goto emulate;
 | |
| 	}
 | |
| 
 | |
| 	if (r == RET_PF_INVALID) {
 | |
| 		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
 | |
| 					  lower_32_bits(error_code), false);
 | |
| 		if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
 | |
| 			return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (r < 0)
 | |
| 		return r;
 | |
| 	if (r != RET_PF_EMULATE)
 | |
| 		return 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Before emulating the instruction, check if the error code
 | |
| 	 * was due to a RO violation while translating the guest page.
 | |
| 	 * This can occur when using nested virtualization with nested
 | |
| 	 * paging in both guests. If true, we simply unprotect the page
 | |
| 	 * and resume the guest.
 | |
| 	 */
 | |
| 	if (vcpu->arch.mmu->direct_map &&
 | |
| 	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
 | |
| 		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
 | |
| 	 * optimistically try to just unprotect the page and let the processor
 | |
| 	 * re-execute the instruction that caused the page fault.  Do not allow
 | |
| 	 * retrying MMIO emulation, as it's not only pointless but could also
 | |
| 	 * cause us to enter an infinite loop because the processor will keep
 | |
| 	 * faulting on the non-existent MMIO address.  Retrying an instruction
 | |
| 	 * from a nested guest is also pointless and dangerous as we are only
 | |
| 	 * explicitly shadowing L1's page tables, i.e. unprotecting something
 | |
| 	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
 | |
| 	 */
 | |
| 	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
 | |
| 		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
 | |
| emulate:
 | |
| 	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
 | |
| 				       insn_len);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
 | |
| 
 | |
| void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 | |
| 			    gva_t gva, hpa_t root_hpa)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
 | |
| 	if (mmu != &vcpu->arch.guest_mmu) {
 | |
| 		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
 | |
| 		if (is_noncanonical_address(gva, vcpu))
 | |
| 			return;
 | |
| 
 | |
| 		static_call(kvm_x86_flush_tlb_gva)(vcpu, gva);
 | |
| 	}
 | |
| 
 | |
| 	if (!mmu->invlpg)
 | |
| 		return;
 | |
| 
 | |
| 	if (root_hpa == INVALID_PAGE) {
 | |
| 		mmu->invlpg(vcpu, gva, mmu->root.hpa);
 | |
| 
 | |
| 		/*
 | |
| 		 * INVLPG is required to invalidate any global mappings for the VA,
 | |
| 		 * irrespective of PCID. Since it would take us roughly similar amount
 | |
| 		 * of work to determine whether any of the prev_root mappings of the VA
 | |
| 		 * is marked global, or to just sync it blindly, so we might as well
 | |
| 		 * just always sync it.
 | |
| 		 *
 | |
| 		 * Mappings not reachable via the current cr3 or the prev_roots will be
 | |
| 		 * synced when switching to that cr3, so nothing needs to be done here
 | |
| 		 * for them.
 | |
| 		 */
 | |
| 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
 | |
| 			if (VALID_PAGE(mmu->prev_roots[i].hpa))
 | |
| 				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
 | |
| 	} else {
 | |
| 		mmu->invlpg(vcpu, gva, root_hpa);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
 | |
| {
 | |
| 	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.walk_mmu, gva, INVALID_PAGE);
 | |
| 	++vcpu->stat.invlpg;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
 | |
| 
 | |
| 
 | |
| void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
 | |
| {
 | |
| 	struct kvm_mmu *mmu = vcpu->arch.mmu;
 | |
| 	bool tlb_flush = false;
 | |
| 	uint i;
 | |
| 
 | |
| 	if (pcid == kvm_get_active_pcid(vcpu)) {
 | |
| 		if (mmu->invlpg)
 | |
| 			mmu->invlpg(vcpu, gva, mmu->root.hpa);
 | |
| 		tlb_flush = true;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
 | |
| 		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
 | |
| 		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
 | |
| 			if (mmu->invlpg)
 | |
| 				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
 | |
| 			tlb_flush = true;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (tlb_flush)
 | |
| 		static_call(kvm_x86_flush_tlb_gva)(vcpu, gva);
 | |
| 
 | |
| 	++vcpu->stat.invlpg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Mappings not reachable via the current cr3 or the prev_roots will be
 | |
| 	 * synced when switching to that cr3, so nothing needs to be done here
 | |
| 	 * for them.
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
 | |
| 		       int tdp_max_root_level, int tdp_huge_page_level)
 | |
| {
 | |
| 	tdp_enabled = enable_tdp;
 | |
| 	tdp_root_level = tdp_forced_root_level;
 | |
| 	max_tdp_level = tdp_max_root_level;
 | |
| 
 | |
| 	/*
 | |
| 	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
 | |
| 	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
 | |
| 	 * the kernel is not.  But, KVM never creates a page size greater than
 | |
| 	 * what is used by the kernel for any given HVA, i.e. the kernel's
 | |
| 	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
 | |
| 	 */
 | |
| 	if (tdp_enabled)
 | |
| 		max_huge_page_level = tdp_huge_page_level;
 | |
| 	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
 | |
| 		max_huge_page_level = PG_LEVEL_1G;
 | |
| 	else
 | |
| 		max_huge_page_level = PG_LEVEL_2M;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_configure_mmu);
 | |
| 
 | |
| /* The return value indicates if tlb flush on all vcpus is needed. */
 | |
| typedef bool (*slot_level_handler) (struct kvm *kvm,
 | |
| 				    struct kvm_rmap_head *rmap_head,
 | |
| 				    const struct kvm_memory_slot *slot);
 | |
| 
 | |
| /* The caller should hold mmu-lock before calling this function. */
 | |
| static __always_inline bool
 | |
| slot_handle_level_range(struct kvm *kvm, const struct kvm_memory_slot *memslot,
 | |
| 			slot_level_handler fn, int start_level, int end_level,
 | |
| 			gfn_t start_gfn, gfn_t end_gfn, bool flush_on_yield,
 | |
| 			bool flush)
 | |
| {
 | |
| 	struct slot_rmap_walk_iterator iterator;
 | |
| 
 | |
| 	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
 | |
| 			end_gfn, &iterator) {
 | |
| 		if (iterator.rmap)
 | |
| 			flush |= fn(kvm, iterator.rmap, memslot);
 | |
| 
 | |
| 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
 | |
| 			if (flush && flush_on_yield) {
 | |
| 				kvm_flush_remote_tlbs_with_address(kvm,
 | |
| 						start_gfn,
 | |
| 						iterator.gfn - start_gfn + 1);
 | |
| 				flush = false;
 | |
| 			}
 | |
| 			cond_resched_rwlock_write(&kvm->mmu_lock);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return flush;
 | |
| }
 | |
| 
 | |
| static __always_inline bool
 | |
| slot_handle_level(struct kvm *kvm, const struct kvm_memory_slot *memslot,
 | |
| 		  slot_level_handler fn, int start_level, int end_level,
 | |
| 		  bool flush_on_yield)
 | |
| {
 | |
| 	return slot_handle_level_range(kvm, memslot, fn, start_level,
 | |
| 			end_level, memslot->base_gfn,
 | |
| 			memslot->base_gfn + memslot->npages - 1,
 | |
| 			flush_on_yield, false);
 | |
| }
 | |
| 
 | |
| static __always_inline bool
 | |
| slot_handle_level_4k(struct kvm *kvm, const struct kvm_memory_slot *memslot,
 | |
| 		     slot_level_handler fn, bool flush_on_yield)
 | |
| {
 | |
| 	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
 | |
| 				 PG_LEVEL_4K, flush_on_yield);
 | |
| }
 | |
| 
 | |
| static void free_mmu_pages(struct kvm_mmu *mmu)
 | |
| {
 | |
| 	if (!tdp_enabled && mmu->pae_root)
 | |
| 		set_memory_encrypted((unsigned long)mmu->pae_root, 1);
 | |
| 	free_page((unsigned long)mmu->pae_root);
 | |
| 	free_page((unsigned long)mmu->pml4_root);
 | |
| 	free_page((unsigned long)mmu->pml5_root);
 | |
| }
 | |
| 
 | |
| static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	int i;
 | |
| 
 | |
| 	mmu->root.hpa = INVALID_PAGE;
 | |
| 	mmu->root.pgd = 0;
 | |
| 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
 | |
| 		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
 | |
| 
 | |
| 	/* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */
 | |
| 	if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
 | |
| 	 * while the PDP table is a per-vCPU construct that's allocated at MMU
 | |
| 	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
 | |
| 	 * x86_64.  Therefore we need to allocate the PDP table in the first
 | |
| 	 * 4GB of memory, which happens to fit the DMA32 zone.  TDP paging
 | |
| 	 * generally doesn't use PAE paging and can skip allocating the PDP
 | |
| 	 * table.  The main exception, handled here, is SVM's 32-bit NPT.  The
 | |
| 	 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
 | |
| 	 * KVM; that horror is handled on-demand by mmu_alloc_special_roots().
 | |
| 	 */
 | |
| 	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
 | |
| 		return 0;
 | |
| 
 | |
| 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
 | |
| 	if (!page)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	mmu->pae_root = page_address(page);
 | |
| 
 | |
| 	/*
 | |
| 	 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
 | |
| 	 * get the CPU to treat the PDPTEs as encrypted.  Decrypt the page so
 | |
| 	 * that KVM's writes and the CPU's reads get along.  Note, this is
 | |
| 	 * only necessary when using shadow paging, as 64-bit NPT can get at
 | |
| 	 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
 | |
| 	 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
 | |
| 	 */
 | |
| 	if (!tdp_enabled)
 | |
| 		set_memory_decrypted((unsigned long)mmu->pae_root, 1);
 | |
| 	else
 | |
| 		WARN_ON_ONCE(shadow_me_mask);
 | |
| 
 | |
| 	for (i = 0; i < 4; ++i)
 | |
| 		mmu->pae_root[i] = INVALID_PAE_ROOT;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_mmu_create(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
 | |
| 	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
 | |
| 
 | |
| 	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
 | |
| 	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
 | |
| 
 | |
| 	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
 | |
| 
 | |
| 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
 | |
| 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
 | |
| 
 | |
| 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
 | |
| 	if (ret)
 | |
| 		goto fail_allocate_root;
 | |
| 
 | |
| 	return ret;
 | |
|  fail_allocate_root:
 | |
| 	free_mmu_pages(&vcpu->arch.guest_mmu);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| #define BATCH_ZAP_PAGES	10
 | |
| static void kvm_zap_obsolete_pages(struct kvm *kvm)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp, *node;
 | |
| 	int nr_zapped, batch = 0;
 | |
| 
 | |
| restart:
 | |
| 	list_for_each_entry_safe_reverse(sp, node,
 | |
| 	      &kvm->arch.active_mmu_pages, link) {
 | |
| 		/*
 | |
| 		 * No obsolete valid page exists before a newly created page
 | |
| 		 * since active_mmu_pages is a FIFO list.
 | |
| 		 */
 | |
| 		if (!is_obsolete_sp(kvm, sp))
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * Invalid pages should never land back on the list of active
 | |
| 		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
 | |
| 		 * infinite loop if the page gets put back on the list (again).
 | |
| 		 */
 | |
| 		if (WARN_ON(sp->role.invalid))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * No need to flush the TLB since we're only zapping shadow
 | |
| 		 * pages with an obsolete generation number and all vCPUS have
 | |
| 		 * loaded a new root, i.e. the shadow pages being zapped cannot
 | |
| 		 * be in active use by the guest.
 | |
| 		 */
 | |
| 		if (batch >= BATCH_ZAP_PAGES &&
 | |
| 		    cond_resched_rwlock_write(&kvm->mmu_lock)) {
 | |
| 			batch = 0;
 | |
| 			goto restart;
 | |
| 		}
 | |
| 
 | |
| 		if (__kvm_mmu_prepare_zap_page(kvm, sp,
 | |
| 				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
 | |
| 			batch += nr_zapped;
 | |
| 			goto restart;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Kick all vCPUs (via remote TLB flush) before freeing the page tables
 | |
| 	 * to ensure KVM is not in the middle of a lockless shadow page table
 | |
| 	 * walk, which may reference the pages.  The remote TLB flush itself is
 | |
| 	 * not required and is simply a convenient way to kick vCPUs as needed.
 | |
| 	 * KVM performs a local TLB flush when allocating a new root (see
 | |
| 	 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are
 | |
| 	 * running with an obsolete MMU.
 | |
| 	 */
 | |
| 	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fast invalidate all shadow pages and use lock-break technique
 | |
|  * to zap obsolete pages.
 | |
|  *
 | |
|  * It's required when memslot is being deleted or VM is being
 | |
|  * destroyed, in these cases, we should ensure that KVM MMU does
 | |
|  * not use any resource of the being-deleted slot or all slots
 | |
|  * after calling the function.
 | |
|  */
 | |
| static void kvm_mmu_zap_all_fast(struct kvm *kvm)
 | |
| {
 | |
| 	lockdep_assert_held(&kvm->slots_lock);
 | |
| 
 | |
| 	write_lock(&kvm->mmu_lock);
 | |
| 	trace_kvm_mmu_zap_all_fast(kvm);
 | |
| 
 | |
| 	/*
 | |
| 	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
 | |
| 	 * held for the entire duration of zapping obsolete pages, it's
 | |
| 	 * impossible for there to be multiple invalid generations associated
 | |
| 	 * with *valid* shadow pages at any given time, i.e. there is exactly
 | |
| 	 * one valid generation and (at most) one invalid generation.
 | |
| 	 */
 | |
| 	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * In order to ensure all vCPUs drop their soon-to-be invalid roots,
 | |
| 	 * invalidating TDP MMU roots must be done while holding mmu_lock for
 | |
| 	 * write and in the same critical section as making the reload request,
 | |
| 	 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield.
 | |
| 	 */
 | |
| 	if (is_tdp_mmu_enabled(kvm))
 | |
| 		kvm_tdp_mmu_invalidate_all_roots(kvm);
 | |
| 
 | |
| 	/*
 | |
| 	 * Notify all vcpus to reload its shadow page table and flush TLB.
 | |
| 	 * Then all vcpus will switch to new shadow page table with the new
 | |
| 	 * mmu_valid_gen.
 | |
| 	 *
 | |
| 	 * Note: we need to do this under the protection of mmu_lock,
 | |
| 	 * otherwise, vcpu would purge shadow page but miss tlb flush.
 | |
| 	 */
 | |
| 	kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
 | |
| 
 | |
| 	kvm_zap_obsolete_pages(kvm);
 | |
| 
 | |
| 	write_unlock(&kvm->mmu_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before
 | |
| 	 * returning to the caller, e.g. if the zap is in response to a memslot
 | |
| 	 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs
 | |
| 	 * associated with the deleted memslot once the update completes, and
 | |
| 	 * Deferring the zap until the final reference to the root is put would
 | |
| 	 * lead to use-after-free.
 | |
| 	 */
 | |
| 	if (is_tdp_mmu_enabled(kvm))
 | |
| 		kvm_tdp_mmu_zap_invalidated_roots(kvm);
 | |
| }
 | |
| 
 | |
| static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
 | |
| {
 | |
| 	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
 | |
| 			struct kvm_memory_slot *slot,
 | |
| 			struct kvm_page_track_notifier_node *node)
 | |
| {
 | |
| 	kvm_mmu_zap_all_fast(kvm);
 | |
| }
 | |
| 
 | |
| int kvm_mmu_init_vm(struct kvm *kvm)
 | |
| {
 | |
| 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
 | |
| 	int r;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
 | |
| 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
 | |
| 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
 | |
| 	spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);
 | |
| 
 | |
| 	r = kvm_mmu_init_tdp_mmu(kvm);
 | |
| 	if (r < 0)
 | |
| 		return r;
 | |
| 
 | |
| 	node->track_write = kvm_mmu_pte_write;
 | |
| 	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
 | |
| 	kvm_page_track_register_notifier(kvm, node);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void kvm_mmu_uninit_vm(struct kvm *kvm)
 | |
| {
 | |
| 	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
 | |
| 
 | |
| 	kvm_page_track_unregister_notifier(kvm, node);
 | |
| 
 | |
| 	kvm_mmu_uninit_tdp_mmu(kvm);
 | |
| }
 | |
| 
 | |
| static bool __kvm_zap_rmaps(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
 | |
| {
 | |
| 	const struct kvm_memory_slot *memslot;
 | |
| 	struct kvm_memslots *slots;
 | |
| 	struct kvm_memslot_iter iter;
 | |
| 	bool flush = false;
 | |
| 	gfn_t start, end;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!kvm_memslots_have_rmaps(kvm))
 | |
| 		return flush;
 | |
| 
 | |
| 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
 | |
| 		slots = __kvm_memslots(kvm, i);
 | |
| 
 | |
| 		kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
 | |
| 			memslot = iter.slot;
 | |
| 			start = max(gfn_start, memslot->base_gfn);
 | |
| 			end = min(gfn_end, memslot->base_gfn + memslot->npages);
 | |
| 			if (WARN_ON_ONCE(start >= end))
 | |
| 				continue;
 | |
| 
 | |
| 			flush = slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
 | |
| 
 | |
| 							PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
 | |
| 							start, end - 1, true, flush);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return flush;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
 | |
|  * (not including it)
 | |
|  */
 | |
| void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
 | |
| {
 | |
| 	bool flush;
 | |
| 	int i;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(gfn_end <= gfn_start))
 | |
| 		return;
 | |
| 
 | |
| 	write_lock(&kvm->mmu_lock);
 | |
| 
 | |
| 	kvm_inc_notifier_count(kvm, gfn_start, gfn_end);
 | |
| 
 | |
| 	flush = __kvm_zap_rmaps(kvm, gfn_start, gfn_end);
 | |
| 
 | |
| 	if (is_tdp_mmu_enabled(kvm)) {
 | |
| 		for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
 | |
| 			flush = kvm_tdp_mmu_zap_leafs(kvm, i, gfn_start,
 | |
| 						      gfn_end, true, flush);
 | |
| 	}
 | |
| 
 | |
| 	if (flush)
 | |
| 		kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
 | |
| 						   gfn_end - gfn_start);
 | |
| 
 | |
| 	kvm_dec_notifier_count(kvm, gfn_start, gfn_end);
 | |
| 
 | |
| 	write_unlock(&kvm->mmu_lock);
 | |
| }
 | |
| 
 | |
| static bool slot_rmap_write_protect(struct kvm *kvm,
 | |
| 				    struct kvm_rmap_head *rmap_head,
 | |
| 				    const struct kvm_memory_slot *slot)
 | |
| {
 | |
| 	return rmap_write_protect(rmap_head, false);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
 | |
| 				      const struct kvm_memory_slot *memslot,
 | |
| 				      int start_level)
 | |
| {
 | |
| 	bool flush = false;
 | |
| 
 | |
| 	if (kvm_memslots_have_rmaps(kvm)) {
 | |
| 		write_lock(&kvm->mmu_lock);
 | |
| 		flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
 | |
| 					  start_level, KVM_MAX_HUGEPAGE_LEVEL,
 | |
| 					  false);
 | |
| 		write_unlock(&kvm->mmu_lock);
 | |
| 	}
 | |
| 
 | |
| 	if (is_tdp_mmu_enabled(kvm)) {
 | |
| 		read_lock(&kvm->mmu_lock);
 | |
| 		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, start_level);
 | |
| 		read_unlock(&kvm->mmu_lock);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Flush TLBs if any SPTEs had to be write-protected to ensure that
 | |
| 	 * guest writes are reflected in the dirty bitmap before the memslot
 | |
| 	 * update completes, i.e. before enabling dirty logging is visible to
 | |
| 	 * userspace.
 | |
| 	 *
 | |
| 	 * Perform the TLB flush outside the mmu_lock to reduce the amount of
 | |
| 	 * time the lock is held. However, this does mean that another CPU can
 | |
| 	 * now grab mmu_lock and encounter a write-protected SPTE while CPUs
 | |
| 	 * still have a writable mapping for the associated GFN in their TLB.
 | |
| 	 *
 | |
| 	 * This is safe but requires KVM to be careful when making decisions
 | |
| 	 * based on the write-protection status of an SPTE. Specifically, KVM
 | |
| 	 * also write-protects SPTEs to monitor changes to guest page tables
 | |
| 	 * during shadow paging, and must guarantee no CPUs can write to those
 | |
| 	 * page before the lock is dropped. As mentioned in the previous
 | |
| 	 * paragraph, a write-protected SPTE is no guarantee that CPU cannot
 | |
| 	 * perform writes. So to determine if a TLB flush is truly required, KVM
 | |
| 	 * will clear a separate software-only bit (MMU-writable) and skip the
 | |
| 	 * flush if-and-only-if this bit was already clear.
 | |
| 	 *
 | |
| 	 * See is_writable_pte() for more details.
 | |
| 	 */
 | |
| 	if (flush)
 | |
| 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
 | |
| }
 | |
| 
 | |
| /* Must be called with the mmu_lock held in write-mode. */
 | |
| void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
 | |
| 				   const struct kvm_memory_slot *memslot,
 | |
| 				   u64 start, u64 end,
 | |
| 				   int target_level)
 | |
| {
 | |
| 	if (is_tdp_mmu_enabled(kvm))
 | |
| 		kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end,
 | |
| 						 target_level, false);
 | |
| 
 | |
| 	/*
 | |
| 	 * A TLB flush is unnecessary at this point for the same resons as in
 | |
| 	 * kvm_mmu_slot_try_split_huge_pages().
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
 | |
| 					const struct kvm_memory_slot *memslot,
 | |
| 					int target_level)
 | |
| {
 | |
| 	u64 start = memslot->base_gfn;
 | |
| 	u64 end = start + memslot->npages;
 | |
| 
 | |
| 	if (is_tdp_mmu_enabled(kvm)) {
 | |
| 		read_lock(&kvm->mmu_lock);
 | |
| 		kvm_tdp_mmu_try_split_huge_pages(kvm, memslot, start, end, target_level, true);
 | |
| 		read_unlock(&kvm->mmu_lock);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * No TLB flush is necessary here. KVM will flush TLBs after
 | |
| 	 * write-protecting and/or clearing dirty on the newly split SPTEs to
 | |
| 	 * ensure that guest writes are reflected in the dirty log before the
 | |
| 	 * ioctl to enable dirty logging on this memslot completes. Since the
 | |
| 	 * split SPTEs retain the write and dirty bits of the huge SPTE, it is
 | |
| 	 * safe for KVM to decide if a TLB flush is necessary based on the split
 | |
| 	 * SPTEs.
 | |
| 	 */
 | |
| }
 | |
| 
 | |
| static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
 | |
| 					 struct kvm_rmap_head *rmap_head,
 | |
| 					 const struct kvm_memory_slot *slot)
 | |
| {
 | |
| 	u64 *sptep;
 | |
| 	struct rmap_iterator iter;
 | |
| 	int need_tlb_flush = 0;
 | |
| 	kvm_pfn_t pfn;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 
 | |
| restart:
 | |
| 	for_each_rmap_spte(rmap_head, &iter, sptep) {
 | |
| 		sp = sptep_to_sp(sptep);
 | |
| 		pfn = spte_to_pfn(*sptep);
 | |
| 
 | |
| 		/*
 | |
| 		 * We cannot do huge page mapping for indirect shadow pages,
 | |
| 		 * which are found on the last rmap (level = 1) when not using
 | |
| 		 * tdp; such shadow pages are synced with the page table in
 | |
| 		 * the guest, and the guest page table is using 4K page size
 | |
| 		 * mapping if the indirect sp has level = 1.
 | |
| 		 */
 | |
| 		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
 | |
| 		    sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, sp->gfn,
 | |
| 							       pfn, PG_LEVEL_NUM)) {
 | |
| 			pte_list_remove(kvm, rmap_head, sptep);
 | |
| 
 | |
| 			if (kvm_available_flush_tlb_with_range())
 | |
| 				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
 | |
| 					KVM_PAGES_PER_HPAGE(sp->role.level));
 | |
| 			else
 | |
| 				need_tlb_flush = 1;
 | |
| 
 | |
| 			goto restart;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return need_tlb_flush;
 | |
| }
 | |
| 
 | |
| void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
 | |
| 				   const struct kvm_memory_slot *slot)
 | |
| {
 | |
| 	if (kvm_memslots_have_rmaps(kvm)) {
 | |
| 		write_lock(&kvm->mmu_lock);
 | |
| 		/*
 | |
| 		 * Zap only 4k SPTEs since the legacy MMU only supports dirty
 | |
| 		 * logging at a 4k granularity and never creates collapsible
 | |
| 		 * 2m SPTEs during dirty logging.
 | |
| 		 */
 | |
| 		if (slot_handle_level_4k(kvm, slot, kvm_mmu_zap_collapsible_spte, true))
 | |
| 			kvm_arch_flush_remote_tlbs_memslot(kvm, slot);
 | |
| 		write_unlock(&kvm->mmu_lock);
 | |
| 	}
 | |
| 
 | |
| 	if (is_tdp_mmu_enabled(kvm)) {
 | |
| 		read_lock(&kvm->mmu_lock);
 | |
| 		kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
 | |
| 		read_unlock(&kvm->mmu_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
 | |
| 					const struct kvm_memory_slot *memslot)
 | |
| {
 | |
| 	/*
 | |
| 	 * All current use cases for flushing the TLBs for a specific memslot
 | |
| 	 * related to dirty logging, and many do the TLB flush out of mmu_lock.
 | |
| 	 * The interaction between the various operations on memslot must be
 | |
| 	 * serialized by slots_locks to ensure the TLB flush from one operation
 | |
| 	 * is observed by any other operation on the same memslot.
 | |
| 	 */
 | |
| 	lockdep_assert_held(&kvm->slots_lock);
 | |
| 	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
 | |
| 					   memslot->npages);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
 | |
| 				   const struct kvm_memory_slot *memslot)
 | |
| {
 | |
| 	bool flush = false;
 | |
| 
 | |
| 	if (kvm_memslots_have_rmaps(kvm)) {
 | |
| 		write_lock(&kvm->mmu_lock);
 | |
| 		/*
 | |
| 		 * Clear dirty bits only on 4k SPTEs since the legacy MMU only
 | |
| 		 * support dirty logging at a 4k granularity.
 | |
| 		 */
 | |
| 		flush = slot_handle_level_4k(kvm, memslot, __rmap_clear_dirty, false);
 | |
| 		write_unlock(&kvm->mmu_lock);
 | |
| 	}
 | |
| 
 | |
| 	if (is_tdp_mmu_enabled(kvm)) {
 | |
| 		read_lock(&kvm->mmu_lock);
 | |
| 		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
 | |
| 		read_unlock(&kvm->mmu_lock);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * It's also safe to flush TLBs out of mmu lock here as currently this
 | |
| 	 * function is only used for dirty logging, in which case flushing TLB
 | |
| 	 * out of mmu lock also guarantees no dirty pages will be lost in
 | |
| 	 * dirty_bitmap.
 | |
| 	 */
 | |
| 	if (flush)
 | |
| 		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_zap_all(struct kvm *kvm)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp, *node;
 | |
| 	LIST_HEAD(invalid_list);
 | |
| 	int ign;
 | |
| 
 | |
| 	write_lock(&kvm->mmu_lock);
 | |
| restart:
 | |
| 	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
 | |
| 		if (WARN_ON(sp->role.invalid))
 | |
| 			continue;
 | |
| 		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
 | |
| 			goto restart;
 | |
| 		if (cond_resched_rwlock_write(&kvm->mmu_lock))
 | |
| 			goto restart;
 | |
| 	}
 | |
| 
 | |
| 	kvm_mmu_commit_zap_page(kvm, &invalid_list);
 | |
| 
 | |
| 	if (is_tdp_mmu_enabled(kvm))
 | |
| 		kvm_tdp_mmu_zap_all(kvm);
 | |
| 
 | |
| 	write_unlock(&kvm->mmu_lock);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
 | |
| {
 | |
| 	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
 | |
| 
 | |
| 	gen &= MMIO_SPTE_GEN_MASK;
 | |
| 
 | |
| 	/*
 | |
| 	 * Generation numbers are incremented in multiples of the number of
 | |
| 	 * address spaces in order to provide unique generations across all
 | |
| 	 * address spaces.  Strip what is effectively the address space
 | |
| 	 * modifier prior to checking for a wrap of the MMIO generation so
 | |
| 	 * that a wrap in any address space is detected.
 | |
| 	 */
 | |
| 	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
 | |
| 
 | |
| 	/*
 | |
| 	 * The very rare case: if the MMIO generation number has wrapped,
 | |
| 	 * zap all shadow pages.
 | |
| 	 */
 | |
| 	if (unlikely(gen == 0)) {
 | |
| 		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
 | |
| 		kvm_mmu_zap_all_fast(kvm);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static unsigned long
 | |
| mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
 | |
| {
 | |
| 	struct kvm *kvm;
 | |
| 	int nr_to_scan = sc->nr_to_scan;
 | |
| 	unsigned long freed = 0;
 | |
| 
 | |
| 	mutex_lock(&kvm_lock);
 | |
| 
 | |
| 	list_for_each_entry(kvm, &vm_list, vm_list) {
 | |
| 		int idx;
 | |
| 		LIST_HEAD(invalid_list);
 | |
| 
 | |
| 		/*
 | |
| 		 * Never scan more than sc->nr_to_scan VM instances.
 | |
| 		 * Will not hit this condition practically since we do not try
 | |
| 		 * to shrink more than one VM and it is very unlikely to see
 | |
| 		 * !n_used_mmu_pages so many times.
 | |
| 		 */
 | |
| 		if (!nr_to_scan--)
 | |
| 			break;
 | |
| 		/*
 | |
| 		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
 | |
| 		 * here. We may skip a VM instance errorneosly, but we do not
 | |
| 		 * want to shrink a VM that only started to populate its MMU
 | |
| 		 * anyway.
 | |
| 		 */
 | |
| 		if (!kvm->arch.n_used_mmu_pages &&
 | |
| 		    !kvm_has_zapped_obsolete_pages(kvm))
 | |
| 			continue;
 | |
| 
 | |
| 		idx = srcu_read_lock(&kvm->srcu);
 | |
| 		write_lock(&kvm->mmu_lock);
 | |
| 
 | |
| 		if (kvm_has_zapped_obsolete_pages(kvm)) {
 | |
| 			kvm_mmu_commit_zap_page(kvm,
 | |
| 			      &kvm->arch.zapped_obsolete_pages);
 | |
| 			goto unlock;
 | |
| 		}
 | |
| 
 | |
| 		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
 | |
| 
 | |
| unlock:
 | |
| 		write_unlock(&kvm->mmu_lock);
 | |
| 		srcu_read_unlock(&kvm->srcu, idx);
 | |
| 
 | |
| 		/*
 | |
| 		 * unfair on small ones
 | |
| 		 * per-vm shrinkers cry out
 | |
| 		 * sadness comes quickly
 | |
| 		 */
 | |
| 		list_move_tail(&kvm->vm_list, &vm_list);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&kvm_lock);
 | |
| 	return freed;
 | |
| }
 | |
| 
 | |
| static unsigned long
 | |
| mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
 | |
| {
 | |
| 	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
 | |
| }
 | |
| 
 | |
| static struct shrinker mmu_shrinker = {
 | |
| 	.count_objects = mmu_shrink_count,
 | |
| 	.scan_objects = mmu_shrink_scan,
 | |
| 	.seeks = DEFAULT_SEEKS * 10,
 | |
| };
 | |
| 
 | |
| static void mmu_destroy_caches(void)
 | |
| {
 | |
| 	kmem_cache_destroy(pte_list_desc_cache);
 | |
| 	kmem_cache_destroy(mmu_page_header_cache);
 | |
| }
 | |
| 
 | |
| static bool get_nx_auto_mode(void)
 | |
| {
 | |
| 	/* Return true when CPU has the bug, and mitigations are ON */
 | |
| 	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
 | |
| }
 | |
| 
 | |
| static void __set_nx_huge_pages(bool val)
 | |
| {
 | |
| 	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
 | |
| }
 | |
| 
 | |
| static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
 | |
| {
 | |
| 	bool old_val = nx_huge_pages;
 | |
| 	bool new_val;
 | |
| 
 | |
| 	/* In "auto" mode deploy workaround only if CPU has the bug. */
 | |
| 	if (sysfs_streq(val, "off"))
 | |
| 		new_val = 0;
 | |
| 	else if (sysfs_streq(val, "force"))
 | |
| 		new_val = 1;
 | |
| 	else if (sysfs_streq(val, "auto"))
 | |
| 		new_val = get_nx_auto_mode();
 | |
| 	else if (strtobool(val, &new_val) < 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	__set_nx_huge_pages(new_val);
 | |
| 
 | |
| 	if (new_val != old_val) {
 | |
| 		struct kvm *kvm;
 | |
| 
 | |
| 		mutex_lock(&kvm_lock);
 | |
| 
 | |
| 		list_for_each_entry(kvm, &vm_list, vm_list) {
 | |
| 			mutex_lock(&kvm->slots_lock);
 | |
| 			kvm_mmu_zap_all_fast(kvm);
 | |
| 			mutex_unlock(&kvm->slots_lock);
 | |
| 
 | |
| 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
 | |
| 		}
 | |
| 		mutex_unlock(&kvm_lock);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as
 | |
|  * its default value of -1 is technically undefined behavior for a boolean.
 | |
|  */
 | |
| void kvm_mmu_x86_module_init(void)
 | |
| {
 | |
| 	if (nx_huge_pages == -1)
 | |
| 		__set_nx_huge_pages(get_nx_auto_mode());
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The bulk of the MMU initialization is deferred until the vendor module is
 | |
|  * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need
 | |
|  * to be reset when a potentially different vendor module is loaded.
 | |
|  */
 | |
| int kvm_mmu_vendor_module_init(void)
 | |
| {
 | |
| 	int ret = -ENOMEM;
 | |
| 
 | |
| 	/*
 | |
| 	 * MMU roles use union aliasing which is, generally speaking, an
 | |
| 	 * undefined behavior. However, we supposedly know how compilers behave
 | |
| 	 * and the current status quo is unlikely to change. Guardians below are
 | |
| 	 * supposed to let us know if the assumption becomes false.
 | |
| 	 */
 | |
| 	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
 | |
| 	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
 | |
| 	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
 | |
| 
 | |
| 	kvm_mmu_reset_all_pte_masks();
 | |
| 
 | |
| 	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
 | |
| 					    sizeof(struct pte_list_desc),
 | |
| 					    0, SLAB_ACCOUNT, NULL);
 | |
| 	if (!pte_list_desc_cache)
 | |
| 		goto out;
 | |
| 
 | |
| 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
 | |
| 						  sizeof(struct kvm_mmu_page),
 | |
| 						  0, SLAB_ACCOUNT, NULL);
 | |
| 	if (!mmu_page_header_cache)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = register_shrinker(&mmu_shrinker);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out:
 | |
| 	mmu_destroy_caches();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kvm_mmu_unload(vcpu);
 | |
| 	free_mmu_pages(&vcpu->arch.root_mmu);
 | |
| 	free_mmu_pages(&vcpu->arch.guest_mmu);
 | |
| 	mmu_free_memory_caches(vcpu);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_vendor_module_exit(void)
 | |
| {
 | |
| 	mmu_destroy_caches();
 | |
| 	percpu_counter_destroy(&kvm_total_used_mmu_pages);
 | |
| 	unregister_shrinker(&mmu_shrinker);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the effective recovery period, accounting for '0' meaning "let KVM
 | |
|  * select a halving time of 1 hour".  Returns true if recovery is enabled.
 | |
|  */
 | |
| static bool calc_nx_huge_pages_recovery_period(uint *period)
 | |
| {
 | |
| 	/*
 | |
| 	 * Use READ_ONCE to get the params, this may be called outside of the
 | |
| 	 * param setters, e.g. by the kthread to compute its next timeout.
 | |
| 	 */
 | |
| 	bool enabled = READ_ONCE(nx_huge_pages);
 | |
| 	uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
 | |
| 
 | |
| 	if (!enabled || !ratio)
 | |
| 		return false;
 | |
| 
 | |
| 	*period = READ_ONCE(nx_huge_pages_recovery_period_ms);
 | |
| 	if (!*period) {
 | |
| 		/* Make sure the period is not less than one second.  */
 | |
| 		ratio = min(ratio, 3600u);
 | |
| 		*period = 60 * 60 * 1000 / ratio;
 | |
| 	}
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp)
 | |
| {
 | |
| 	bool was_recovery_enabled, is_recovery_enabled;
 | |
| 	uint old_period, new_period;
 | |
| 	int err;
 | |
| 
 | |
| 	was_recovery_enabled = calc_nx_huge_pages_recovery_period(&old_period);
 | |
| 
 | |
| 	err = param_set_uint(val, kp);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	is_recovery_enabled = calc_nx_huge_pages_recovery_period(&new_period);
 | |
| 
 | |
| 	if (is_recovery_enabled &&
 | |
| 	    (!was_recovery_enabled || old_period > new_period)) {
 | |
| 		struct kvm *kvm;
 | |
| 
 | |
| 		mutex_lock(&kvm_lock);
 | |
| 
 | |
| 		list_for_each_entry(kvm, &vm_list, vm_list)
 | |
| 			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
 | |
| 
 | |
| 		mutex_unlock(&kvm_lock);
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void kvm_recover_nx_lpages(struct kvm *kvm)
 | |
| {
 | |
| 	unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
 | |
| 	int rcu_idx;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	unsigned int ratio;
 | |
| 	LIST_HEAD(invalid_list);
 | |
| 	bool flush = false;
 | |
| 	ulong to_zap;
 | |
| 
 | |
| 	rcu_idx = srcu_read_lock(&kvm->srcu);
 | |
| 	write_lock(&kvm->mmu_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Zapping TDP MMU shadow pages, including the remote TLB flush, must
 | |
| 	 * be done under RCU protection, because the pages are freed via RCU
 | |
| 	 * callback.
 | |
| 	 */
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
 | |
| 	to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
 | |
| 	for ( ; to_zap; --to_zap) {
 | |
| 		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * We use a separate list instead of just using active_mmu_pages
 | |
| 		 * because the number of lpage_disallowed pages is expected to
 | |
| 		 * be relatively small compared to the total.
 | |
| 		 */
 | |
| 		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
 | |
| 				      struct kvm_mmu_page,
 | |
| 				      lpage_disallowed_link);
 | |
| 		WARN_ON_ONCE(!sp->lpage_disallowed);
 | |
| 		if (is_tdp_mmu_page(sp)) {
 | |
| 			flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
 | |
| 		} else {
 | |
| 			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
 | |
| 			WARN_ON_ONCE(sp->lpage_disallowed);
 | |
| 		}
 | |
| 
 | |
| 		if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
 | |
| 			kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
 | |
| 			rcu_read_unlock();
 | |
| 
 | |
| 			cond_resched_rwlock_write(&kvm->mmu_lock);
 | |
| 			flush = false;
 | |
| 
 | |
| 			rcu_read_lock();
 | |
| 		}
 | |
| 	}
 | |
| 	kvm_mmu_remote_flush_or_zap(kvm, &invalid_list, flush);
 | |
| 
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	write_unlock(&kvm->mmu_lock);
 | |
| 	srcu_read_unlock(&kvm->srcu, rcu_idx);
 | |
| }
 | |
| 
 | |
| static long get_nx_lpage_recovery_timeout(u64 start_time)
 | |
| {
 | |
| 	bool enabled;
 | |
| 	uint period;
 | |
| 
 | |
| 	enabled = calc_nx_huge_pages_recovery_period(&period);
 | |
| 
 | |
| 	return enabled ? start_time + msecs_to_jiffies(period) - get_jiffies_64()
 | |
| 		       : MAX_SCHEDULE_TIMEOUT;
 | |
| }
 | |
| 
 | |
| static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
 | |
| {
 | |
| 	u64 start_time;
 | |
| 	long remaining_time;
 | |
| 
 | |
| 	while (true) {
 | |
| 		start_time = get_jiffies_64();
 | |
| 		remaining_time = get_nx_lpage_recovery_timeout(start_time);
 | |
| 
 | |
| 		set_current_state(TASK_INTERRUPTIBLE);
 | |
| 		while (!kthread_should_stop() && remaining_time > 0) {
 | |
| 			schedule_timeout(remaining_time);
 | |
| 			remaining_time = get_nx_lpage_recovery_timeout(start_time);
 | |
| 			set_current_state(TASK_INTERRUPTIBLE);
 | |
| 		}
 | |
| 
 | |
| 		set_current_state(TASK_RUNNING);
 | |
| 
 | |
| 		if (kthread_should_stop())
 | |
| 			return 0;
 | |
| 
 | |
| 		kvm_recover_nx_lpages(kvm);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int kvm_mmu_post_init_vm(struct kvm *kvm)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
 | |
| 					  "kvm-nx-lpage-recovery",
 | |
| 					  &kvm->arch.nx_lpage_recovery_thread);
 | |
| 	if (!err)
 | |
| 		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
 | |
| {
 | |
| 	if (kvm->arch.nx_lpage_recovery_thread)
 | |
| 		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
 | |
| }
 |